A smart agriculture IoT system based on deep reinforcement learning
Smart agriculture systems based on Internet of Things are the most promising to increase food production and reduce the consumption of resources like fresh water. In this study, we present a smart agriculture IoT system based on deep reinforcement learning which includes four layers, namely agricult...
Saved in:
Published in | Future generation computer systems Vol. 99; pp. 500 - 507 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.10.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Smart agriculture systems based on Internet of Things are the most promising to increase food production and reduce the consumption of resources like fresh water. In this study, we present a smart agriculture IoT system based on deep reinforcement learning which includes four layers, namely agricultural data collection layer, edge computing layer, agricultural data transmission layer, and cloud computing layer. The presented system integrates some advanced information techniques, especially artificial intelligence and cloud computing, with agricultural production to increase food production. Specially, the most advanced artificial intelligence model, deep reinforcement learning is combined in the cloud layer to make immediate smart decisions such as determining the amount of water needed to be irrigated for improving crop growth environment. We present several representative deep reinforcement learning models with their broad applications. Finally, we talk about the open challenges and the potential applications of deep reinforcement learning in smart agriculture IoT systems.
•We design a smart agriculture IoT system based on an edge-cloud computing.•We present several representative deep reinforcement learning models.•We discuss the possible challenges and applications of deep reinforcement learning in smart agriculture. |
---|---|
AbstractList | Smart agriculture systems based on Internet of Things are the most promising to increase food production and reduce the consumption of resources like fresh water. In this study, we present a smart agriculture IoT system based on deep reinforcement learning which includes four layers, namely agricultural data collection layer, edge computing layer, agricultural data transmission layer, and cloud computing layer. The presented system integrates some advanced information techniques, especially artificial intelligence and cloud computing, with agricultural production to increase food production. Specially, the most advanced artificial intelligence model, deep reinforcement learning is combined in the cloud layer to make immediate smart decisions such as determining the amount of water needed to be irrigated for improving crop growth environment. We present several representative deep reinforcement learning models with their broad applications. Finally, we talk about the open challenges and the potential applications of deep reinforcement learning in smart agriculture IoT systems.
•We design a smart agriculture IoT system based on an edge-cloud computing.•We present several representative deep reinforcement learning models.•We discuss the possible challenges and applications of deep reinforcement learning in smart agriculture. |
Author | Wang, Xin Bu, Fanyu |
Author_xml | – sequence: 1 givenname: Fanyu surname: Bu fullname: Bu, Fanyu email: bufanyu@imufe.edu.cn organization: College of Computer and Information Management, Inner Mongolia University of Finance and Economics, Hohhot, China – sequence: 2 givenname: Xin surname: Wang fullname: Wang, Xin organization: Center of Information and Network Technology, Inner Mongolia Agricultural University, Hohhot, China |
BookMark | eNqFkM1KAzEUhYNUsK2-gYu8wIz5mWk6LoRS_CkU3FRwFzI3NyVlmilJKvTtnVJXLhQO3M39DpxvQkahD0jIPWclZ3z2sCvdMR8jloLxpmTVEH5FxnyuRKE4r0dkPLypQsnm84ZMUtoxxriSfEyWC5r2JmZqttHDsTvX0FW_oemUMu5paxJa2gdqEQ80og-uj4B7DJl2aGLwYXtLrp3pEt793Cn5eHneLN-K9fvrarlYFyCVyEUtXGtta5pWWGg4CDuruLPNrFHWWWbmsgWcS9FYK6WRjreC1TVKBSBBGZBT8njphdinFNFp8Nlk34ccje80Z_qsQ-_0RYc-69CsGsIHuPoFH6Iflp_-w54uGA7DvjxGncBjALQ-ImRte_93wTen34Be |
CitedBy_id | crossref_primary_10_1002_ett_4463 crossref_primary_10_1016_j_future_2022_07_026 crossref_primary_10_1007_s11277_021_08970_7 crossref_primary_10_1016_j_scs_2021_102830 crossref_primary_10_3390_bioengineering10020125 crossref_primary_10_1108_BFJ_08_2021_0934 crossref_primary_10_1109_JIOT_2020_3045479 crossref_primary_10_1007_s11277_022_10016_5 crossref_primary_10_1016_j_arcontrol_2021_01_001 crossref_primary_10_3390_s22134874 crossref_primary_10_32604_cmc_2020_012517 crossref_primary_10_1002_ese3_1134 crossref_primary_10_1016_j_micpro_2023_104905 crossref_primary_10_1109_ACCESS_2024_3428401 crossref_primary_10_1007_s12652_021_03605_y crossref_primary_10_3390_horticulturae10010049 crossref_primary_10_1109_ACCESS_2022_3232485 crossref_primary_10_1016_j_procs_2021_07_060 crossref_primary_10_1109_TITS_2023_3256563 crossref_primary_10_1002_gamm_202100007 crossref_primary_10_1109_JSEN_2021_3054561 crossref_primary_10_1111_exsy_13090 crossref_primary_10_1016_j_compag_2022_107119 crossref_primary_10_3390_computers11090135 crossref_primary_10_1155_2020_8090521 crossref_primary_10_1016_j_atech_2025_100848 crossref_primary_10_1109_COMST_2022_3151028 crossref_primary_10_1007_s42979_024_03319_w crossref_primary_10_1016_j_techsoc_2020_101415 crossref_primary_10_1007_s12652_021_03685_w crossref_primary_10_1016_j_compag_2022_107182 crossref_primary_10_1016_j_matpr_2021_03_480 crossref_primary_10_1109_ACCESS_2022_3199353 crossref_primary_10_1016_j_adapen_2022_100119 crossref_primary_10_1080_03772063_2023_2192000 crossref_primary_10_1016_j_seta_2022_102307 crossref_primary_10_1631_FITEE_2300668 crossref_primary_10_3390_agronomy12071643 crossref_primary_10_1016_j_iot_2020_100262 crossref_primary_10_1108_LHT_10_2022_0473 crossref_primary_10_1016_j_comnet_2019_107039 crossref_primary_10_1108_RIA_07_2024_0146 crossref_primary_10_2174_2666255815666220225102615 crossref_primary_10_1109_JAS_2021_1003925 crossref_primary_10_1109_TII_2022_3216295 crossref_primary_10_1016_j_phycom_2024_102460 crossref_primary_10_1142_S0219649224500989 crossref_primary_10_3390_computers11070104 crossref_primary_10_1002_agj2_21061 crossref_primary_10_1007_s11042_023_15442_6 crossref_primary_10_1142_S0219649221400062 crossref_primary_10_32604_cmc_2021_015568 crossref_primary_10_1016_j_neunet_2021_11_021 crossref_primary_10_1016_j_compag_2025_110028 crossref_primary_10_1038_s41598_022_18635_5 crossref_primary_10_3390_stats3030018 crossref_primary_10_1016_j_compag_2024_109032 crossref_primary_10_1007_s12652_020_02752_y crossref_primary_10_2478_amns_2023_2_00175 crossref_primary_10_1016_j_micpro_2023_104894 crossref_primary_10_1088_1742_6596_2466_1_012028 crossref_primary_10_1515_jisys_2022_0012 crossref_primary_10_1016_j_aiia_2023_04_002 crossref_primary_10_33411_IJIST_2022040403 crossref_primary_10_1016_j_suscom_2023_100890 crossref_primary_10_1109_ACCESS_2022_3187528 crossref_primary_10_1109_TII_2023_3257299 crossref_primary_10_1016_j_jksuci_2022_06_017 crossref_primary_10_3390_s20051334 crossref_primary_10_1111_jfpe_14429 crossref_primary_10_3390_s24020495 crossref_primary_10_3390_su151411337 crossref_primary_10_1007_s10586_022_03599_y crossref_primary_10_1016_j_compag_2023_108154 crossref_primary_10_3390_su141811487 crossref_primary_10_1007_s42979_021_00815_1 crossref_primary_10_1016_j_compag_2022_107608 crossref_primary_10_47115_bsagriculture_1536744 crossref_primary_10_1016_j_iswa_2023_200218 crossref_primary_10_1109_ACCESS_2020_2970143 crossref_primary_10_1016_j_eswa_2024_124740 crossref_primary_10_1016_j_engappai_2022_105116 crossref_primary_10_1109_OJVT_2024_3502803 crossref_primary_10_3390_make3040043 crossref_primary_10_1016_j_marpol_2022_105158 crossref_primary_10_61927_igmin210 crossref_primary_10_3390_electronics12051248 crossref_primary_10_1002_spe_3193 crossref_primary_10_3390_agriculture13101900 crossref_primary_10_46300_9106_2020_14_134 crossref_primary_10_1016_j_heliyon_2024_e29564 crossref_primary_10_1080_27685241_2021_2008777 crossref_primary_10_1016_j_future_2021_04_018 crossref_primary_10_1080_23270012_2023_2207184 crossref_primary_10_1007_s11831_022_09761_4 crossref_primary_10_31590_ejosat_1252946 crossref_primary_10_1016_j_procs_2024_06_103 crossref_primary_10_1186_s43067_024_00184_8 crossref_primary_10_3389_fsufs_2025_1551460 crossref_primary_10_1016_j_tpb_2021_06_002 crossref_primary_10_1016_j_agwat_2021_106838 crossref_primary_10_3390_electronics13101894 crossref_primary_10_1038_s41477_021_00946_6 crossref_primary_10_3390_rs14030638 crossref_primary_10_1109_JIOT_2021_3088875 crossref_primary_10_3390_su14031667 crossref_primary_10_1109_ACCESS_2024_3495032 crossref_primary_10_18178_joaat_6_4_241_245 crossref_primary_10_1007_s41870_022_01021_9 crossref_primary_10_1109_ACCESS_2024_3426279 crossref_primary_10_1109_TDSC_2021_3131991 crossref_primary_10_1111_exsy_12892 crossref_primary_10_1371_journal_pone_0246092 crossref_primary_10_3390_agronomy11081568 crossref_primary_10_1016_j_iot_2022_100580 crossref_primary_10_1108_JSTPM_09_2021_0130 crossref_primary_10_1109_JSEN_2021_3049471 crossref_primary_10_1016_j_envsci_2023_103600 crossref_primary_10_1109_ACCESS_2020_3033557 crossref_primary_10_1002_int_22756 crossref_primary_10_1016_j_inpa_2023_08_006 crossref_primary_10_1016_j_egyr_2020_09_022 crossref_primary_10_1109_COMST_2023_3338153 crossref_primary_10_1016_j_plaphy_2023_108051 crossref_primary_10_2174_18743315_v17_e230404_2022_53 crossref_primary_10_1088_1742_6596_1767_1_012026 crossref_primary_10_1142_S0217984920504187 crossref_primary_10_1007_s42853_023_00192_y crossref_primary_10_1002_prs_12150 crossref_primary_10_1016_j_compeleceng_2022_108089 crossref_primary_10_1016_j_cosrev_2020_100303 crossref_primary_10_1109_ACCESS_2020_2992480 crossref_primary_10_1016_j_plana_2024_100079 crossref_primary_10_1109_JIOT_2021_3131524 crossref_primary_10_1016_j_inpa_2020_10_004 crossref_primary_10_1007_s42979_023_02085_5 crossref_primary_10_1590_1678_4162_12659 crossref_primary_10_1016_j_sna_2023_114605 crossref_primary_10_1080_10429247_2024_2407254 crossref_primary_10_1016_j_bcra_2025_100276 crossref_primary_10_3390_s19173667 crossref_primary_10_4108_eetiot_5363 crossref_primary_10_1016_j_compag_2021_106495 crossref_primary_10_1109_MM_2021_3137401 crossref_primary_10_32604_jiot_2023_039391 crossref_primary_10_1007_s42853_020_00078_3 crossref_primary_10_1016_j_scitotenv_2021_148539 crossref_primary_10_1155_2022_9042382 crossref_primary_10_3390_electronics12102336 crossref_primary_10_1007_s10489_021_02884_4 crossref_primary_10_1109_ACCESS_2023_3292302 crossref_primary_10_3390_s21227502 crossref_primary_10_1109_ACCESS_2024_3392338 crossref_primary_10_3389_fpls_2024_1284861 crossref_primary_10_1016_j_aac_2022_10_001 crossref_primary_10_1155_2021_7179374 crossref_primary_10_1155_2020_8818616 crossref_primary_10_1093_jcde_qwac087 crossref_primary_10_3390_s23073752 |
Cites_doi | 10.1109/TII.2018.2808910 10.1016/j.future.2013.01.010 10.1613/jair.806 10.1109/TBDATA.2019.2903092 10.1016/j.jnca.2018.12.012 10.1016/j.future.2019.02.068 10.1145/3110218 10.1038/nature14236 10.1109/MCC.2017.5 10.1038/nature14540 10.1145/2886779 10.1007/BF00992696 10.1109/TC.2015.2470255 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. |
Copyright_xml | – notice: 2019 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.future.2019.04.041 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-7115 |
EndPage | 507 |
ExternalDocumentID | 10_1016_j_future_2019_04_041 S0167739X19307277 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W KOM LG9 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SES SEW SPC SPCBC SSV SSZ T5K UHS WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c372t-52fbddba9b2dc91c2d641fd9697dfd0a83bce8329dd33a3f1b2055e37cc3c7ac3 |
IEDL.DBID | .~1 |
ISSN | 0167-739X |
IngestDate | Tue Jul 01 01:42:40 EDT 2025 Thu Apr 24 22:56:44 EDT 2025 Fri Feb 23 02:30:14 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Smart agriculture IoT Cloud computing Deep reinforcement learning Edge computing |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-52fbddba9b2dc91c2d641fd9697dfd0a83bce8329dd33a3f1b2055e37cc3c7ac3 |
PageCount | 8 |
ParticipantIDs | crossref_citationtrail_10_1016_j_future_2019_04_041 crossref_primary_10_1016_j_future_2019_04_041 elsevier_sciencedirect_doi_10_1016_j_future_2019_04_041 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2019 2019-10-00 |
PublicationDateYYYYMMDD | 2019-10-01 |
PublicationDate_xml | – month: 10 year: 2019 text: October 2019 |
PublicationDecade | 2010 |
PublicationTitle | Future generation computer systems |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Oh, Chockalingam, Singh, Lee (b33) 2016 Heess, Wayne, Silver, Lillicrap, Tassa, Erez (b21) 2015 A.A. Rusu, N.C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick, K. Kavukcuoglu, R. Pascanu, R. Hadsell, Progressive Neural Networks, (2016) Baxter, Bartlett (b16) 2001; 15 Zhang, Zhong, Yang, Chen, Bu (b9) 2016; 12 A. Tampuu, T. Matiisen, D. Kodelja, I. Kuzovkin, K. Korjus, J. Aru, J. Aru, R. Vicente, Multiagent Cooperation and Competition with Deep Reinforcement Learning, (2015) Liu, Yao, Yu, Wu (b6) 2019; 97 Mnih, Kavukcuoglu, Silver, Rusu, Veness, Bellemare, Graves, Riedmiller, Fidjeland, Ostrovski, Peterson, Beasttie, Sadik, Antonoglou, King, Kumaran, Wierstra, Legg, Hassabis (b10) 2015; 518 Zhang, Bai, Chen, Li, Wang, Gao (b13) 2019; 129 Zhang, Yang, Yan, Chen, Li (b42) 2018; 14 A.A. Rusu, S.G. Colmenarejo, C. Gulcehre, G. Desjardins, J. Kirkpatrick, R. Pascanu, V. Mnih, K. Kavukcuoglu, R. Hadsell, Policy Distrillation, (2015) J.N. Foerster, Y.M. Assael, N. de Freitas, S. Whiteson, Learning to Communicate to Solve Riddles with Deep Distributed Recurrent Q-Networks, (2016) Sukhbaatar, Szlam, Weston, Fergus (b32) 2015 Roopaei, Rad, Choo (b2) 2017; 4 Littman (b12) 2015; 521 Levine, Finn, Darrell, Abbeel (b18) 2016; 17 Gubbi, Buyya, Marusic, Palaniswami (b4) 2013; 29 Silver, Lever, Heess, Degris, Wierstra, Riedmiller (b17) 2014 Zhang, Yang, Chen, Li (b11) 2019 Bhatnagar, Sutton, Ghavamzadeh, Lee (b19) 2008 A. Graves, G. Wayne, I. Danihelka, Neural Turing Machines, (2014) Satija, Mcgill, Pineau (b40) 2016 Zhang, Bai, Chen, Li, Yu, Wang, Gao (b7) 2019 D. Balduzzi, M. Ghifary, Compatible Value Gradients for Reinforcement Learning of Continuous Deep Policies, (2015) Huang, Lin, Zhang (b5) 2017 Zhang, Yang, Chen, Li, Bu (b3) 2018 Calandriello, lazaric, Restelli (b24) 2014 Parisotto, Ba, Salakhutdinov (b25) 2016 Zhang, McCarthy, Finn, Levine, Abbeel (b34) 2016 Rao, Lu, Zhou (b36) 2017 Das, Kottur, Moura, Lee, Batra (b38) 2017 . Zhang, Yang, Chen (b8) 2016; 65 T.P. Lillicrap, J.J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, D. Wierstra, Continuous Control with Deep Reinforcement Learning, (2015) Li, Liao, Carin (b27) 2009; 10 Zhang, Yang, Chen, Li (b41) 2018; 3 Willaims (b15) 1992; 8 Zhang, Lin, Yang, Chen, Khan, Li (b37) 2018 Finn, Levine, Abbeel (b35) 2016 Mnih, Badia, Mirza, Graves, Harley, Lillicrap, Silver, Kavukcuoglu (b23) 2016 Gondchawar, Kawitkar (b1) 2016; 5 Sutton, Mcallester, Singh, Mansour (b14) 2000 Li, Monroe, Ritter, Galley, Gao, Jurafsky (b39) 2016 Huang (10.1016/j.future.2019.04.041_b5) 2017 Littman (10.1016/j.future.2019.04.041_b12) 2015; 521 Li (10.1016/j.future.2019.04.041_b39) 2016 Gubbi (10.1016/j.future.2019.04.041_b4) 2013; 29 Zhang (10.1016/j.future.2019.04.041_b37) 2018 Zhang (10.1016/j.future.2019.04.041_b7) 2019 Baxter (10.1016/j.future.2019.04.041_b16) 2001; 15 Sutton (10.1016/j.future.2019.04.041_b14) 2000 10.1016/j.future.2019.04.041_b31 10.1016/j.future.2019.04.041_b30 Li (10.1016/j.future.2019.04.041_b27) 2009; 10 Liu (10.1016/j.future.2019.04.041_b6) 2019; 97 Mnih (10.1016/j.future.2019.04.041_b10) 2015; 518 Zhang (10.1016/j.future.2019.04.041_b8) 2016; 65 Silver (10.1016/j.future.2019.04.041_b17) 2014 Zhang (10.1016/j.future.2019.04.041_b42) 2018; 14 Satija (10.1016/j.future.2019.04.041_b40) 2016 Zhang (10.1016/j.future.2019.04.041_b3) 2018 Zhang (10.1016/j.future.2019.04.041_b11) 2019 Sukhbaatar (10.1016/j.future.2019.04.041_b32) 2015 Levine (10.1016/j.future.2019.04.041_b18) 2016; 17 Zhang (10.1016/j.future.2019.04.041_b13) 2019; 129 Zhang (10.1016/j.future.2019.04.041_b9) 2016; 12 Das (10.1016/j.future.2019.04.041_b38) 2017 Heess (10.1016/j.future.2019.04.041_b21) 2015 Mnih (10.1016/j.future.2019.04.041_b23) 2016 Willaims (10.1016/j.future.2019.04.041_b15) 1992; 8 10.1016/j.future.2019.04.041_b26 Gondchawar (10.1016/j.future.2019.04.041_b1) 2016; 5 10.1016/j.future.2019.04.041_b20 Oh (10.1016/j.future.2019.04.041_b33) 2016 10.1016/j.future.2019.04.041_b22 Calandriello (10.1016/j.future.2019.04.041_b24) 2014 Rao (10.1016/j.future.2019.04.041_b36) 2017 Roopaei (10.1016/j.future.2019.04.041_b2) 2017; 4 Zhang (10.1016/j.future.2019.04.041_b34) 2016 Bhatnagar (10.1016/j.future.2019.04.041_b19) 2008 10.1016/j.future.2019.04.041_b28 Finn (10.1016/j.future.2019.04.041_b35) 2016 Zhang (10.1016/j.future.2019.04.041_b41) 2018; 3 Parisotto (10.1016/j.future.2019.04.041_b25) 2016 10.1016/j.future.2019.04.041_b29 |
References_xml | – volume: 129 start-page: 1 year: 2019 end-page: 8 ident: b13 article-title: Smart chinese medicine for hypertension treatment with a deep learning model publication-title: J. Netw. Comput. Appl. – start-page: 2790 year: 2016 end-page: 2799 ident: b33 article-title: Control of memory, active perception, and action in minecraft publication-title: Proceedings of International Conference on Machine Learning – year: 2018 ident: b37 article-title: A double deep Q-learning model for energy-efficient edge scheduling publication-title: IEEE Trans. Serv. Comput. – start-page: 110 year: 2016 end-page: 119 ident: b40 article-title: Simultaneous machine translation using deep reinforcement learning publication-title: Proceedings of the Workshops of International Conference on Machine Learning – start-page: 819 year: 2014 end-page: 827 ident: b24 article-title: Sparse multi-task reinforcement learning publication-title: Proceedings of Advances in Neural Information Processing Systems – volume: 14 start-page: 3170 year: 2018 end-page: 3178 ident: b42 article-title: An efficient deep learning model to predict cloud workload for industry informatics publication-title: IEEE Trans. Ind. Inf. – start-page: 2970 year: 2017 end-page: 2979 ident: b38 article-title: Learning cooperative visual dialog agents with deep reinforcement learning publication-title: Proceedings of IEEE International Conference on Computer Vision – volume: 518 start-page: 529 year: 2015 end-page: 533 ident: b10 article-title: Human-level control through deep reinforcement learning publication-title: Nature – start-page: 1928 year: 2016 end-page: 1937 ident: b23 article-title: Asynchronous methods for deep reinforcement learning publication-title: Proceedings of International Conference on Machine Learning – year: 2019 ident: b11 article-title: Incremental deep computation model for wireless big data feature learning publication-title: IEEE Trans. Big Data – year: 2017 ident: b5 article-title: Double-Q learning-based DVFS for multi-core real-time systems publication-title: Proceedings of IEEE International Conference on Green Computing and Communications – reference: A. Graves, G. Wayne, I. Danihelka, Neural Turing Machines, (2014), – reference: A.A. Rusu, N.C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick, K. Kavukcuoglu, R. Pascanu, R. Hadsell, Progressive Neural Networks, (2016), – volume: 3 start-page: 11 year: 2018 ident: b41 article-title: Dependable deep computation model for feature learning on big data in cyber-physical systems publication-title: ACM Trans. Cyber-Phys. Syst. – volume: 4 start-page: 10 year: 2017 end-page: 15 ident: b2 article-title: Cloud of things in smart agriculture: Intelligent irrigation monitoring by thermal imaging publication-title: IEEE Cloud Comput. – start-page: 1192 year: 2016 end-page: 1202 ident: b39 article-title: Deep reinforcement learning for dialogue generation publication-title: Proceedings of the Conference on Empirical Methods in Natural Language Processing – volume: 5 start-page: 838 year: 2016 end-page: 842 ident: b1 article-title: IoT based smart agriculture publication-title: Int. J. Adv. Res. Comput. Commun. Eng. – volume: 65 start-page: 1351 year: 2016 end-page: 1362 ident: b8 article-title: Privacy preserving deep computation model on cloud for big data feature learning publication-title: IEEE Trans. Comput. – volume: 8 start-page: 229 year: 1992 end-page: 256 ident: b15 article-title: Simple statistical gradient-following algorithms for connectionist reinforcement learning publication-title: Mach. Learn. – start-page: 1057 year: 2000 end-page: 1063 ident: b14 article-title: Policy gradient methods for reinforcement learning with function approximation publication-title: Proceedings of Advances on Neural Information Processing Systems – start-page: 105 year: 2008 end-page: 112 ident: b19 article-title: Incremental natural actor-critic algorithms publication-title: Proceedings of Advances in Neural Information Processing Systems – start-page: 2944 year: 2015 end-page: 2952 ident: b21 article-title: Learning continuous control policies by stochastic value gradients publication-title: Proceedings of Advances in Neural Information Processing Systems – volume: 17 start-page: 1 year: 2016 end-page: 40 ident: b18 article-title: End-to-end training of deep visuomotor policies publication-title: J. Mach. Learn. Res. – reference: A.A. Rusu, S.G. Colmenarejo, C. Gulcehre, G. Desjardins, J. Kirkpatrick, R. Pascanu, V. Mnih, K. Kavukcuoglu, R. Hadsell, Policy Distrillation, (2015), – start-page: 49 year: 2016 end-page: 58 ident: b35 article-title: Guided cost learning: Deep inverse optimal control via policy optimization publication-title: Proceedings of International Conference on Machine Learning – reference: T.P. Lillicrap, J.J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, D. Wierstra, Continuous Control with Deep Reinforcement Learning, (2015), – start-page: 3951 year: 2017 end-page: 3960 ident: b36 article-title: Attention-aware deep reinforcement learning for video face recognition publication-title: Proceedings of IEEE International Conference on Computer Vision – reference: . – volume: 10 start-page: 1131 year: 2009 end-page: 1186 ident: b27 article-title: Multi-task reinforcement learning in partially observable stochastic environment publication-title: J. Mach. Learn. Res. – reference: A. Tampuu, T. Matiisen, D. Kodelja, I. Kuzovkin, K. Korjus, J. Aru, J. Aru, R. Vicente, Multiagent Cooperation and Competition with Deep Reinforcement Learning, (2015), – year: 2019 ident: b7 article-title: Deep learning models for diagnosing spleen and stomach diseases in smart chinese medicine with cloud computing publication-title: Concurr. Comput.: Pract. Exper. – volume: 15 start-page: 319 year: 2001 end-page: 350 ident: b16 article-title: Infinite-horizon policy-gradient estimation publication-title: J. Artificial Intelligence Res. – year: 2018 ident: b3 article-title: An adaptive droupout deep computation model for industrial IoT big data learning with crowdsourcing to cloud computing publication-title: IEEE Trans. Ind. Inf. – reference: D. Balduzzi, M. Ghifary, Compatible Value Gradients for Reinforcement Learning of Continuous Deep Policies, (2015), – reference: J.N. Foerster, Y.M. Assael, N. de Freitas, S. Whiteson, Learning to Communicate to Solve Riddles with Deep Distributed Recurrent Q-Networks, (2016), – start-page: 2440 year: 2015 end-page: 2448 ident: b32 article-title: End-to-end memory networks publication-title: Proceedins of Advances in Neural Information Processing Systems – volume: 29 start-page: 1645 year: 2013 end-page: 1660 ident: b4 article-title: Internet of things (IoT): A vision, architectural elements, and future directions publication-title: Future Gener. Comput. Syst. – volume: 521 start-page: 445 year: 2015 end-page: 451 ident: b12 article-title: Reinforcement learning improves behaviour from evaluative feedback publication-title: Nature – start-page: 156 year: 2016 end-page: 171 ident: b25 article-title: Actor-mimic deep multitask and transfer reinforcement learning publication-title: Proceedings of International Conference on Learning Representations – volume: 97 start-page: 1 year: 2019 end-page: 9 ident: b6 article-title: Deep reinforcement learning with its application for lung cancer detection in medical internet of things publication-title: Future Gener. Comput. Syst. – volume: 12 start-page: 66 year: 2016 ident: b9 article-title: PPHOCFS: Privacy preserving high-order CFS algorithm on the cloud for clustering multimedia data publication-title: ACM Trans. Multimedia Comput. Commun. Appl. – start-page: 520 year: 2016 end-page: 527 ident: b34 article-title: Learning deep neural network policies with continuous memory states publication-title: Proceedings of IEEE International Conference on Robotics and Automation – start-page: 387 year: 2014 end-page: 395 ident: b17 article-title: Deterministic policy gradient algorithms publication-title: Proceedings of International Conference on Machine Learning – ident: 10.1016/j.future.2019.04.041_b28 – ident: 10.1016/j.future.2019.04.041_b30 – volume: 14 start-page: 3170 issue: 7 year: 2018 ident: 10.1016/j.future.2019.04.041_b42 article-title: An efficient deep learning model to predict cloud workload for industry informatics publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2018.2808910 – start-page: 819 year: 2014 ident: 10.1016/j.future.2019.04.041_b24 article-title: Sparse multi-task reinforcement learning – ident: 10.1016/j.future.2019.04.041_b26 – volume: 17 start-page: 1 year: 2016 ident: 10.1016/j.future.2019.04.041_b18 article-title: End-to-end training of deep visuomotor policies publication-title: J. Mach. Learn. Res. – volume: 29 start-page: 1645 issue: 7 year: 2013 ident: 10.1016/j.future.2019.04.041_b4 article-title: Internet of things (IoT): A vision, architectural elements, and future directions publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2013.01.010 – volume: 15 start-page: 319 year: 2001 ident: 10.1016/j.future.2019.04.041_b16 article-title: Infinite-horizon policy-gradient estimation publication-title: J. Artificial Intelligence Res. doi: 10.1613/jair.806 – ident: 10.1016/j.future.2019.04.041_b22 – start-page: 3951 year: 2017 ident: 10.1016/j.future.2019.04.041_b36 article-title: Attention-aware deep reinforcement learning for video face recognition – year: 2019 ident: 10.1016/j.future.2019.04.041_b11 article-title: Incremental deep computation model for wireless big data feature learning publication-title: IEEE Trans. Big Data doi: 10.1109/TBDATA.2019.2903092 – volume: 129 start-page: 1 year: 2019 ident: 10.1016/j.future.2019.04.041_b13 article-title: Smart chinese medicine for hypertension treatment with a deep learning model publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2018.12.012 – volume: 97 start-page: 1 year: 2019 ident: 10.1016/j.future.2019.04.041_b6 article-title: Deep reinforcement learning with its application for lung cancer detection in medical internet of things publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2019.02.068 – ident: 10.1016/j.future.2019.04.041_b20 – start-page: 2790 year: 2016 ident: 10.1016/j.future.2019.04.041_b33 article-title: Control of memory, active perception, and action in minecraft – year: 2018 ident: 10.1016/j.future.2019.04.041_b37 article-title: A double deep Q-learning model for energy-efficient edge scheduling publication-title: IEEE Trans. Serv. Comput. – volume: 3 start-page: 11 issue: 1 year: 2018 ident: 10.1016/j.future.2019.04.041_b41 article-title: Dependable deep computation model for feature learning on big data in cyber-physical systems publication-title: ACM Trans. Cyber-Phys. Syst. doi: 10.1145/3110218 – volume: 518 start-page: 529 issue: 7540 year: 2015 ident: 10.1016/j.future.2019.04.041_b10 article-title: Human-level control through deep reinforcement learning publication-title: Nature doi: 10.1038/nature14236 – start-page: 1057 year: 2000 ident: 10.1016/j.future.2019.04.041_b14 article-title: Policy gradient methods for reinforcement learning with function approximation – volume: 4 start-page: 10 issue: 1 year: 2017 ident: 10.1016/j.future.2019.04.041_b2 article-title: Cloud of things in smart agriculture: Intelligent irrigation monitoring by thermal imaging publication-title: IEEE Cloud Comput. doi: 10.1109/MCC.2017.5 – year: 2018 ident: 10.1016/j.future.2019.04.041_b3 article-title: An adaptive droupout deep computation model for industrial IoT big data learning with crowdsourcing to cloud computing publication-title: IEEE Trans. Ind. Inf. – volume: 10 start-page: 1131 year: 2009 ident: 10.1016/j.future.2019.04.041_b27 article-title: Multi-task reinforcement learning in partially observable stochastic environment publication-title: J. Mach. Learn. Res. – start-page: 387 year: 2014 ident: 10.1016/j.future.2019.04.041_b17 article-title: Deterministic policy gradient algorithms – volume: 521 start-page: 445 issue: 7553 year: 2015 ident: 10.1016/j.future.2019.04.041_b12 article-title: Reinforcement learning improves behaviour from evaluative feedback publication-title: Nature doi: 10.1038/nature14540 – volume: 12 start-page: 66 issue: 4s year: 2016 ident: 10.1016/j.future.2019.04.041_b9 article-title: PPHOCFS: Privacy preserving high-order CFS algorithm on the cloud for clustering multimedia data publication-title: ACM Trans. Multimedia Comput. Commun. Appl. doi: 10.1145/2886779 – start-page: 2440 year: 2015 ident: 10.1016/j.future.2019.04.041_b32 article-title: End-to-end memory networks – start-page: 110 year: 2016 ident: 10.1016/j.future.2019.04.041_b40 article-title: Simultaneous machine translation using deep reinforcement learning – volume: 5 start-page: 838 issue: 6 year: 2016 ident: 10.1016/j.future.2019.04.041_b1 article-title: IoT based smart agriculture publication-title: Int. J. Adv. Res. Comput. Commun. Eng. – ident: 10.1016/j.future.2019.04.041_b31 – ident: 10.1016/j.future.2019.04.041_b29 – start-page: 1192 year: 2016 ident: 10.1016/j.future.2019.04.041_b39 article-title: Deep reinforcement learning for dialogue generation – start-page: 49 year: 2016 ident: 10.1016/j.future.2019.04.041_b35 article-title: Guided cost learning: Deep inverse optimal control via policy optimization – year: 2017 ident: 10.1016/j.future.2019.04.041_b5 article-title: Double-Q learning-based DVFS for multi-core real-time systems – year: 2019 ident: 10.1016/j.future.2019.04.041_b7 article-title: Deep learning models for diagnosing spleen and stomach diseases in smart chinese medicine with cloud computing publication-title: Concurr. Comput.: Pract. Exper. – volume: 8 start-page: 229 year: 1992 ident: 10.1016/j.future.2019.04.041_b15 article-title: Simple statistical gradient-following algorithms for connectionist reinforcement learning publication-title: Mach. Learn. doi: 10.1007/BF00992696 – start-page: 105 year: 2008 ident: 10.1016/j.future.2019.04.041_b19 article-title: Incremental natural actor-critic algorithms – start-page: 1928 year: 2016 ident: 10.1016/j.future.2019.04.041_b23 article-title: Asynchronous methods for deep reinforcement learning – start-page: 2970 year: 2017 ident: 10.1016/j.future.2019.04.041_b38 article-title: Learning cooperative visual dialog agents with deep reinforcement learning – start-page: 2944 year: 2015 ident: 10.1016/j.future.2019.04.041_b21 article-title: Learning continuous control policies by stochastic value gradients – start-page: 156 year: 2016 ident: 10.1016/j.future.2019.04.041_b25 article-title: Actor-mimic deep multitask and transfer reinforcement learning – start-page: 520 year: 2016 ident: 10.1016/j.future.2019.04.041_b34 article-title: Learning deep neural network policies with continuous memory states – volume: 65 start-page: 1351 issue: 5 year: 2016 ident: 10.1016/j.future.2019.04.041_b8 article-title: Privacy preserving deep computation model on cloud for big data feature learning publication-title: IEEE Trans. Comput. doi: 10.1109/TC.2015.2470255 |
SSID | ssj0001731 |
Score | 2.6108298 |
Snippet | Smart agriculture systems based on Internet of Things are the most promising to increase food production and reduce the consumption of resources like fresh... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 500 |
SubjectTerms | Cloud computing Deep reinforcement learning Edge computing Smart agriculture IoT |
Title | A smart agriculture IoT system based on deep reinforcement learning |
URI | https://dx.doi.org/10.1016/j.future.2019.04.041 |
Volume | 99 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB6KXrz4Fuuj5OB17eaxm-ZYiqVV7MUWels2mWypaFtqvfrbTXazPkAUhL3skoHwMZmZLN98A3CFwlKjGUZapBiJNDGRtp0kyjkzlBvDpfLNyfejdDARt9Nk2oBe3QvjaZUh9lcxvYzW4Us7oNlezeftB0-gl1xNXQkSuyzsO8qFkN7Lr98-aR5UhpmELiD41XX7XMnxqnQ7PMFLlYKngv6cnr6knP4-7IZakXSr7RxAwy4OYa-ew0DCsTyCXpe8PLtNk3y2DlIalgyXY1LJNBOfqZAsFwStXZG1LcVSTflfkISpEbNjmPRvxr1BFIYjRA4_tnEXyEIj6lw5oI2ihmEqaIEqVRILjPMO18a646oQOc95QTWLk8Ry6fA3Mjf8BLYWy4U9BdIxLDbK3_UYFxzTvEgSdAFZF8wWDGUTeI1JZoJyuB9g8ZTVFLHHrEIy80hmsXAPbUL0YbWqlDP-WC9ruLNvHpC54P6r5dm_Lc9hx79V5LwL2NqsX-2lKzI2ulV6UQu2u8O7wegduE_UXw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB1BOcCFHbHjAxxDE9uJ6wOHikUt24Ui9RbiJQgEbVWKEBd-ih9knDgsEgIJCSmnJJM4L6MZj_X8BmDbcBtpRU2geGICnsQ6ULYRBxmjOmJaMyHd5uSz86R1yY-7cXcMXqu9MI5W6WN_GdOLaO3P1D2a9cHNTf3CEegFk12cgoSYhYVnVp7Y5yes2x722gf4k3coPTrs7LcC31ogwLfTEZZfuTJGZRKHqWWkqUl4lBuZSGFyE2YNprRFZ5fGMJaxPFI0jGPLBI5ei0wzfO44THAMF65twu7LB68kEr4JIkYgN7xqv15BKiuFQhyjTBYKqzz6Ph9-ynFHszDtJ6ekWX7_HIzZ3jzMVI0fiI8DC7DfJA_3iBLJrodeu8OSdr9DSl1o4lKjIf0eMdYOyNAW6qy6WIgkvk3F9SJc_gtkS1Dr9Xt2GUhD01BLV1xSxplJsjyODWYAlVObUyNWgFWYpNpLlbuOGXdpxUm7TUskU4dkGnI8ohUI3q0GpVTHL_eLCu70i8ulmE1-tFz9s-UWTLY6Z6fpafv8ZA2m3JWSGbgOtdHw0W7gDGekNguPInD13y78BjiHEmI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+smart+agriculture+IoT+system+based+on+deep+reinforcement+learning&rft.jtitle=Future+generation+computer+systems&rft.au=Bu%2C+Fanyu&rft.au=Wang%2C+Xin&rft.date=2019-10-01&rft.pub=Elsevier+B.V&rft.issn=0167-739X&rft.eissn=1872-7115&rft.volume=99&rft.spage=500&rft.epage=507&rft_id=info:doi/10.1016%2Fj.future.2019.04.041&rft.externalDocID=S0167739X19307277 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-739X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-739X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-739X&client=summon |