A framework for propagation of uncertainty contributed by parameterization, input data, model structure, and calibration/validation data in watershed modeling
Failure to consider major sources of uncertainty may bias model predictions in simulating watershed behavior. A framework entitled the Integrated Parameter Estimation and Uncertainty Analysis Tool (IPEAT), was developed utilizing Bayesian inferences, an input error model and modified goodness-of-fit...
Saved in:
Published in | Environmental modelling & software : with environment data news Vol. 54; pp. 211 - 221 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.04.2014
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 1364-8152 1873-6726 |
DOI | 10.1016/j.envsoft.2014.01.004 |
Cover
Loading…
Abstract | Failure to consider major sources of uncertainty may bias model predictions in simulating watershed behavior. A framework entitled the Integrated Parameter Estimation and Uncertainty Analysis Tool (IPEAT), was developed utilizing Bayesian inferences, an input error model and modified goodness-of-fit statistics to incorporate uncertainty in parameter, model structure, input data, and calibration/validation data in watershed modeling. Applications of the framework at the Eagle Creek Watershed in Indiana shows that watershed behavior was more realistically represented when the four uncertainty sources were considered jointly without having to embed watershed behavior constraints in auto-calibration. Accounting for the major sources of uncertainty associated with watershed modeling produces more realistic predictions, improves the quality of calibrated solutions, and consequently reduces predictive uncertainty. IPEAT is an innovative tool to investigate and explore the significance of uncertainty sources, which enhances watershed modeling by improved characterization and assessment of predictive uncertainty.
•Presents framework incorporating major sources of watershed modeling uncertainty.•Designed to produce more realistic simulation of actual watershed processes.•Applications should increase stakeholder, practitioner confidence in model predictions. |
---|---|
AbstractList | Failure to consider major sources of uncertainty may bias model predictions in simulating watershed behavior. A framework entitled the Integrated Parameter Estimation and Uncertainty Analysis Tool (IPEAT), was developed utilizing Bayesian inferences, an input error model and modified goodness-of-fit statistics to incorporate uncertainty in parameter, model structure, input data, and calibration/validation data in watershed modeling. Applications of the framework at the Eagle Creek Watershed in Indiana shows that watershed behavior was more realistically represented when the four uncertainty sources were considered jointly without having to embed watershed behavior constraints in auto-calibration. Accounting for the major sources of uncertainty associated with watershed modeling produces more realistic predictions, improves the quality of calibrated solutions, and consequently reduces predictive uncertainty. IPEAT is an innovative tool to investigate and explore the significance of uncertainty sources, which enhances watershed modeling by improved characterization and assessment of predictive uncertainty. Failure to consider major sources of uncertainty may bias model predictions in simulating watershed behavior. A framework entitled the Integrated Parameter Estimation and Uncertainty Analysis Tool (IPEAT), was developed utilizing Bayesian inferences, an input error model and modified goodness-of-fit statistics to incorporate uncertainty in parameter, model structure, input data, and calibration/validation data in watershed modeling. Applications of the framework at the Eagle Creek Watershed in Indiana shows that watershed behavior was more realistically represented when the four uncertainty sources were considered jointly without having to embed watershed behavior constraints in auto-calibration. Accounting for the major sources of uncertainty associated with watershed modeling produces more realistic predictions, improves the quality of calibrated solutions, and consequently reduces predictive uncertainty. IPEAT is an innovative tool to investigate and explore the significance of uncertainty sources, which enhances watershed modeling by improved characterization and assessment of predictive uncertainty. •Presents framework incorporating major sources of watershed modeling uncertainty.•Designed to produce more realistic simulation of actual watershed processes.•Applications should increase stakeholder, practitioner confidence in model predictions. |
Author | Fontane, Darrell G. Arabi, Mazdak Harmel, R. Daren Wang, Xiuying Yen, Haw |
Author_xml | – sequence: 1 givenname: Haw surname: Yen fullname: Yen, Haw email: hyen@brc.tamus.edu, haw.yen@gmail.com organization: Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO 80523, USA – sequence: 2 givenname: Xiuying surname: Wang fullname: Wang, Xiuying organization: Blackland Research & Extension Center, Texas A&M Agrilife Research, 720 East Blackland Road, Temple, TX 76502, USA – sequence: 3 givenname: Darrell G. surname: Fontane fullname: Fontane, Darrell G. organization: Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO 80523, USA – sequence: 4 givenname: R. Daren surname: Harmel fullname: Harmel, R. Daren organization: Grassland, Soil & Water Research Laboratory, USDA-ARS, 808 East Blackland Road, Temple, TX 76502, USA – sequence: 5 givenname: Mazdak surname: Arabi fullname: Arabi, Mazdak organization: Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO 80523, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28327549$$DView record in Pascal Francis |
BookMark | eNqFkT9v2zAQxTkkQPOnH6EAlwIZbIWUSMlChyAI0iRAgC7tTJzIU0pHJlWScuB-mH7WUra7dMl0N7zfO9x75-TEeYeEfOKs4IzX1-sC3Tb6PhUl46JgvGBMnJAzXtViueKy_EDOY1wzxvIuzsifW9oH2OCbD6-094GOwY_wAsl6R31PJ6cxJLAu7aj2LgXbTQkN7XZ0hBlMGOzvvXxBrRunRA0kWNCNNzjQmMKk0xRwQcEZqmGwXdirr7d5N4c7M5Fh-gbZLf7M9nvaupdLctrDEPHjcV6QH1_vv989Lp-_PTzd3T4vddWUaSl5qbtWd73JIbTIoGoMSrHqoK2qeoUcK93UWLesM0IjZ0bKkhvJhQZdS1FdkKuDb37_14QxqY2NGocBHPopqnIOrGl4LbP081EKMf-T03PaRjUGu4GwU-WqKhsp2qz7ctDp4GMM2Ctt0_7fFMAOijM1N6bW6tiYmhtTjKvcWKblf_S_A-9xNwcOc1pbi0FFbTGXaGxAnZTx9h2Hvxd8vFY |
CitedBy_id | crossref_primary_10_3390_w9110895 crossref_primary_10_3390_su141912201 crossref_primary_10_1061__ASCE_HE_1943_5584_0001095 crossref_primary_10_1175_JHM_D_19_0233_1 crossref_primary_10_3390_w13212947 crossref_primary_10_3390_w8050178 crossref_primary_10_1016_j_scitotenv_2020_137131 crossref_primary_10_3390_su10040941 crossref_primary_10_1016_j_catena_2017_04_010 crossref_primary_10_2134_jeq2013_11_0450 crossref_primary_10_3390_agronomy9050241 crossref_primary_10_1016_j_scitotenv_2016_06_202 crossref_primary_10_1007_s12205_014_0098_x crossref_primary_10_1016_j_marpolbul_2021_112163 crossref_primary_10_3390_w15234094 crossref_primary_10_1016_j_jhydrol_2018_09_024 crossref_primary_10_1016_j_envsoft_2025_106425 crossref_primary_10_1016_j_envsoft_2017_12_014 crossref_primary_10_1016_j_jhydrol_2016_05_001 crossref_primary_10_1016_j_watres_2020_115767 crossref_primary_10_1007_s11431_020_1752_0 crossref_primary_10_2166_nh_2017_272 crossref_primary_10_3390_hydrology1010089 crossref_primary_10_1016_j_envsoft_2015_09_006 crossref_primary_10_1016_j_jhydrol_2018_10_041 crossref_primary_10_1007_s40710_020_00468_x crossref_primary_10_1016_j_jes_2016_11_021 crossref_primary_10_1016_j_jhydrol_2016_05_009 crossref_primary_10_1016_j_envsoft_2017_03_031 crossref_primary_10_3390_w11081707 crossref_primary_10_1016_j_ecoleng_2018_07_014 crossref_primary_10_1016_j_ejrh_2021_100982 crossref_primary_10_1016_j_jhydrol_2019_03_054 crossref_primary_10_1016_j_jhydrol_2022_128304 crossref_primary_10_1002_gch2_202200041 crossref_primary_10_1016_j_jhydrol_2018_08_070 crossref_primary_10_3390_w9030196 crossref_primary_10_1016_j_jhydrol_2015_09_034 crossref_primary_10_1016_j_agee_2017_06_019 crossref_primary_10_1016_j_jhydrol_2018_10_050 crossref_primary_10_1007_s10980_018_0667_3 crossref_primary_10_1007_s11269_019_02424_3 crossref_primary_10_1007_s00477_015_1047_z crossref_primary_10_1002_rra_3249 crossref_primary_10_1016_j_jhydrol_2016_08_022 crossref_primary_10_1016_j_jenvman_2020_111506 crossref_primary_10_2166_wcc_2024_319 crossref_primary_10_1016_j_envsoft_2015_06_008 crossref_primary_10_1016_j_jhydrol_2019_124114 crossref_primary_10_3390_app112411791 crossref_primary_10_1016_j_envsoft_2016_08_017 crossref_primary_10_1016_j_envsoft_2020_104831 crossref_primary_10_1016_j_envsoft_2015_02_010 crossref_primary_10_1002_hyp_10536 crossref_primary_10_1016_j_jenvman_2023_117280 crossref_primary_10_3390_w11081681 crossref_primary_10_1016_j_scitotenv_2018_08_097 crossref_primary_10_1016_j_advwatres_2018_04_006 crossref_primary_10_1021_es5049557 crossref_primary_10_1016_j_jhydrol_2020_124556 crossref_primary_10_3390_w15122209 crossref_primary_10_1016_j_envsoft_2022_105451 crossref_primary_10_3390_w10050621 crossref_primary_10_3390_w11040812 crossref_primary_10_1016_j_cageo_2014_07_017 crossref_primary_10_3390_su11102845 crossref_primary_10_1088_1748_9326_ace637 crossref_primary_10_1016_j_earscirev_2021_103828 crossref_primary_10_3390_w11030420 crossref_primary_10_2139_ssrn_4160418 crossref_primary_10_1088_1742_6596_1791_1_012043 crossref_primary_10_1016_j_envsoft_2023_105785 crossref_primary_10_1111_1752_1688_12428 crossref_primary_10_3390_w10111655 crossref_primary_10_1016_j_jhydrol_2021_125974 crossref_primary_10_1155_2022_1826942 crossref_primary_10_3390_hydrology7040085 crossref_primary_10_1111_1752_1688_12394 crossref_primary_10_1007_s11269_014_0865_y crossref_primary_10_1016_j_pce_2022_103162 crossref_primary_10_1016_j_jhydrol_2023_130110 crossref_primary_10_3390_su12104023 crossref_primary_10_1016_j_envsoft_2014_05_006 crossref_primary_10_1016_j_envsoft_2020_104857 crossref_primary_10_1016_j_catena_2017_12_040 crossref_primary_10_1016_j_envsoft_2022_105553 crossref_primary_10_1016_j_jhydrol_2018_07_035 crossref_primary_10_3390_w8040164 crossref_primary_10_1016_j_envsoft_2018_03_011 crossref_primary_10_1016_j_envpol_2023_122537 crossref_primary_10_2134_jeq2015_10_0508 crossref_primary_10_1016_j_scitotenv_2017_09_179 crossref_primary_10_1016_j_jhydrol_2015_04_076 crossref_primary_10_1061__ASCE_HE_1943_5584_0001975 crossref_primary_10_1029_2020WR029433 crossref_primary_10_3390_w9020076 crossref_primary_10_1016_j_ejrh_2019_100608 crossref_primary_10_1016_j_jenvman_2023_119955 crossref_primary_10_1016_j_envsoft_2018_08_006 crossref_primary_10_1111_1752_1688_12401 crossref_primary_10_1016_j_scitotenv_2023_162906 crossref_primary_10_1007_s11600_023_01270_7 crossref_primary_10_3390_su15043337 crossref_primary_10_2134_jeq2013_03_0110 crossref_primary_10_1016_j_jhydrol_2015_10_058 crossref_primary_10_1016_j_eng_2022_06_007 crossref_primary_10_1007_s00477_020_01814_z crossref_primary_10_3390_hydrology8040154 crossref_primary_10_3390_w10060690 crossref_primary_10_1007_s11356_018_2113_0 crossref_primary_10_1007_s11831_020_09473_7 crossref_primary_10_1016_j_envsoft_2022_105499 crossref_primary_10_1016_j_envsoft_2019_03_013 crossref_primary_10_1016_j_jhydrol_2017_07_036 crossref_primary_10_1016_j_catena_2016_11_009 crossref_primary_10_1029_2022WR033673 crossref_primary_10_2134_jeq2016_06_0239 crossref_primary_10_1061__ASCE_HE_1943_5584_0001119 crossref_primary_10_1016_j_scitotenv_2017_09_235 crossref_primary_10_1007_s13762_022_04202_y |
Cites_doi | 10.13031/2013.27886 10.1016/j.envsoft.2008.12.006 10.1029/2005WR004745 10.1016/j.jhydrol.2004.03.037 10.1007/s10661-009-1296-8 10.1016/j.envsoft.2008.12.012 10.1016/j.jhydrol.2008.05.012 10.1111/j.1752-1688.1998.tb05961.x 10.13031/2013.40671 10.13031/2013.34948 10.13031/2013.23153 10.1029/2010WR009204 10.1029/WR016i002p00430 10.1016/j.advwatres.2005.11.013 10.13031/2013.34915 10.1016/S0022-1694(98)00198-X 10.2134/jeq2010.0466 10.13031/2013.42256 10.1002/hyp.5624 10.13031/2013.34913 10.13031/2013.34901 10.13031/2013.34898 10.1016/j.envsoft.2012.12.010 10.13031/2013.25243 10.1016/j.envsoft.2008.11.002 10.1515/IJNSNS.2009.10.3.273 10.1029/WS006p0049 10.1029/2008WR007154 10.5194/hess-6-655-2002 10.1061/(ASCE)HE.1943-5584.0000529 10.13031/2013.34912 10.2166/wst.2006.005 10.1016/0022-1694(70)90255-6 10.1029/91WR02985 10.2134/jeq2002.1184 10.1016/j.advwatres.2006.11.014 10.1016/j.jhydrol.2007.01.043 10.13031/2013.20488 10.13031/2013.23637 10.13031/2013.20415 10.13031/2013.34903 10.1016/j.envsoft.2012.09.007 10.1002/hyp.3360060305 10.2134/jeq1993.00472425002200010005x 10.1016/0309-1708(93)90028-E 10.13031/2013.27398 10.1016/j.envsoft.2007.04.013 10.1016/j.envsoft.2011.10.005 10.2166/hydro.2007.104 10.1016/0022-1694(93)90004-S 10.1016/j.envsoft.2013.03.012 10.1016/S0022-1694(01)00421-8 10.1016/j.jhydrol.2011.11.014 10.1016/j.envsoft.2006.06.007 10.13031/2013.29502 10.1029/2007WR006735 10.1007/s10533-008-9273-9 10.1029/2005WR004723 |
ContentType | Journal Article |
Copyright | 2014 Elsevier Ltd 2015 INIST-CNRS |
Copyright_xml | – notice: 2014 Elsevier Ltd – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7S9 L.6 |
DOI | 10.1016/j.envsoft.2014.01.004 |
DatabaseName | CrossRef Pascal-Francis AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Ecology Computer Science Environmental Sciences |
EndPage | 221 |
ExternalDocumentID | 28327549 10_1016_j_envsoft_2014_01_004 S1364815214000139 |
GeographicLocations | Indiana |
GeographicLocations_xml | – name: Indiana |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO AAYFN AAYOK ABBOA ABFNM ABFYP ABJNI ABLST ABMAC ABXDB ACDAQ ACGFS ACIWK ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEKER AENEX AFJKZ AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSJ SSV SSZ T5K UHS ~02 ~G- AATTM AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH IQODW 7S9 L.6 |
ID | FETCH-LOGICAL-c372t-512cb9cbfd1019e0a37de548ba93368e1e3c76e690bd4ce10d5521d514cac6543 |
IEDL.DBID | .~1 |
ISSN | 1364-8152 1873-6726 |
IngestDate | Fri Jul 11 07:49:25 EDT 2025 Wed Apr 02 07:26:05 EDT 2025 Tue Jul 01 01:20:12 EDT 2025 Thu Apr 24 22:50:42 EDT 2025 Thu Nov 14 02:16:24 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | SWAT model Model calibration Bayesian Model Averaging Uncertainty analysis Error propagation Uncertainty Propagation Analysis Watershed Error Parameterization Modeling |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-512cb9cbfd1019e0a37de548ba93368e1e3c76e690bd4ce10d5521d514cac6543 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2000177165 |
PQPubID | 24069 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2000177165 pascalfrancis_primary_28327549 crossref_citationtrail_10_1016_j_envsoft_2014_01_004 crossref_primary_10_1016_j_envsoft_2014_01_004 elsevier_sciencedirect_doi_10_1016_j_envsoft_2014_01_004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-04-01 |
PublicationDateYYYYMMDD | 2014-04-01 |
PublicationDate_xml | – month: 04 year: 2014 text: 2014-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Environmental modelling & software : with environment data news |
PublicationYear | 2014 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Loosvelt, Pauwels, Cornelis, De Lannoy, Verhoest (bib43) 2011; 47 Green, Tomer, Luzio, Arnold (bib26) 2006; 49 Kavetski, Kuczera, Franks (bib38) 2006; 42 Gassman, Reyes, Green, Arnold (bib23) 2007; 50 Chiang, Chaubey, Gitau, Arnold (bib15) 2010; 53 Arnold, Srinivasan, Muttiah, Williams (bib8) 1998; 34 Nelson, Monke, Bottcher, Sommers (bib50) 1979 Tolson, Shoemaker (bib64) 2007; 43 Duan, Sorooshian, Gupta (bib21) 1992; 28 Sorooshian, Dracup (bib59) 1980; 16 Nash, Sutcliffe (bib49) 1970; 10 Refsgaard, van der Sluijs, Brown, van der Keur (bib57) 2006; 29 Clark, Slater, Rupp, Woods, Vrugt, Gupta, Wagener, Hay (bib16) 2008; 44 NRCS (bib74) 2010 Schilling (bib58) 2002; 31 Ajami, Duan, Sorooshian (bib3) 2007; 43 Du, Arnold, Saleh, Jaynes (bib19) 2005; 48 Kavetski, Franks, Kuczera (bib37) 2002; 6 Wang (bib69) 2008; 23 Yang, Reichert, Abbaspour, Xia, Yang (bib72) 2008; 358 Joseph, Guillaume (bib36) 2013; 46 Georgakakos, Seo, Gupta, Schake, Butts (bib24) 2004; 298 Kuczera, Parent (bib42) 1998; 211 Kavetski, Kuczera, Franks (bib39) 2006; 42 Osidele, Zeng, Beck (bib53) 2006; 53 Moriasi, Arnold, Van Liew, Bingner, Harmel, Veith (bib48) 2007; 50 Harmel, Cooper, Slade, Haney, Arnold (bib29) 2006; 49 Beven, Binley (bib14) 1992; 6 Amatya, Jha (bib5) 2011; 54 Arnold, Allen, Bernhardt (bib6) 1993; 142 Kim, Shin, Lee (bib41) 2010; 53 Vrugt, Braak, Diks, Robinson, Hyman, Higdon (bib68) 2009; 10 Harmel, Smith, King, Slade (bib31) 2009; 24 Jayakrishnan, Srinivasan, Santhi, Arnold (bib35) 2005; 19 Haan (bib27) 2002 Topping (bib65) 1972 Rasmussen, Hamilton (bib56) 2012; 29 van Griensven, Meixner (bib67) 2007; 9 Beven, Freer (bib13) 2001; 249 Srinivasan, Zhang, Arnold (bib60) 2010; 53 Sui, Frankenberger (bib63) 2008; 51 Ale, Bowling, Youssef, Brouder (bib4) 2012; 41 Gallagher, Doherty (bib22) 2007; 22 David, Del Grosso, Hu, Marshall, McIsaac, Parton, Tonitto, Youssef (bib17) 2009; 93 Arnold, Allen, Volk, Williams, Bosch (bib7) 2010; 53 Raftery, Gneiting, Balabdaoui, Polakowski (bib55) 2005 Arnold, Moriasi, Gassman, Abbaspour, White, Srinivasan, Santhi, Harmel, van Griensven, Van Liew, Kannan, Jha (bib9) 2012; 55 Ullrich, Volk (bib66) 2010; 171 Douglas-Mankin, Srinivasan, Arnold (bib18) 2010; 53 Minunno, van Oijen, Cameron, Cerasoli, Pereira, Tomé (bib46) 2013; 42 Harmel, Smith (bib30) 2007; 337 Meng, Sexton, Maddox, Sood, Brown, Ferraro, Murtugudde (bib45) 2010; 26 Haan, Allred, Storm, Sabbagh, Prabhu (bib28) 1995; 38 Moriasi, Arnold, Engel, Rossi (bib47) 2009; 52 Williams, Kannan, Wang, Santhi, Arnold (bib70) 2012; 17 Lucey, Goolsby (bib44) 1993; 22 Bai, Wagener, Reed (bib10) 2009; 24 Duan, Ajami, Gao, Sorooshian (bib20) 2007; 30 Strauch, Bernhofer, Koide, Volk, Lorz, Makeschin (bib62) 2012; 414–415 Keesman, Norton, Croke, Newham, Jakeman (bib40) 2013; 40 Hassan, Bekhit, Chapman (bib33) 2009; 24 Wöhling, Vrugt (bib71) 2008; 44 Yen (bib73) 2012 Abrahart, See (bib1) 2002; 6 Ahmadi (bib2) 2012 Newman (bib52) 1997 Harmel, Smith, Migliaccio (bib32) 2010; 53 Ghebremichael, Veith, Watzin (bib25) 2010; 53 Beven (bib12) 1993; 16 Duan (10.1016/j.envsoft.2014.01.004_bib21) 1992; 28 Ajami (10.1016/j.envsoft.2014.01.004_bib3) 2007; 43 Duan (10.1016/j.envsoft.2014.01.004_bib20) 2007; 30 Douglas-Mankin (10.1016/j.envsoft.2014.01.004_bib18) 2010; 53 Moriasi (10.1016/j.envsoft.2014.01.004_bib48) 2007; 50 Harmel (10.1016/j.envsoft.2014.01.004_bib29) 2006; 49 Du (10.1016/j.envsoft.2014.01.004_bib19) 2005; 48 Amatya (10.1016/j.envsoft.2014.01.004_bib5) 2011; 54 Ghebremichael (10.1016/j.envsoft.2014.01.004_bib25) 2010; 53 Jayakrishnan (10.1016/j.envsoft.2014.01.004_bib35) 2005; 19 Harmel (10.1016/j.envsoft.2014.01.004_bib30) 2007; 337 Topping (10.1016/j.envsoft.2014.01.004_bib65) 1972 Yang (10.1016/j.envsoft.2014.01.004_bib72) 2008; 358 Harmel (10.1016/j.envsoft.2014.01.004_bib32) 2010; 53 Joseph (10.1016/j.envsoft.2014.01.004_bib36) 2013; 46 Haan (10.1016/j.envsoft.2014.01.004_bib28) 1995; 38 Raftery (10.1016/j.envsoft.2014.01.004_bib55) 2005 Beven (10.1016/j.envsoft.2014.01.004_bib14) 1992; 6 Sui (10.1016/j.envsoft.2014.01.004_bib63) 2008; 51 Sorooshian (10.1016/j.envsoft.2014.01.004_bib59) 1980; 16 Meng (10.1016/j.envsoft.2014.01.004_bib45) 2010; 26 Gassman (10.1016/j.envsoft.2014.01.004_bib23) 2007; 50 Green (10.1016/j.envsoft.2014.01.004_bib26) 2006; 49 Keesman (10.1016/j.envsoft.2014.01.004_bib40) 2013; 40 Ahmadi (10.1016/j.envsoft.2014.01.004_bib2) 2012 Abrahart (10.1016/j.envsoft.2014.01.004_bib1) 2002; 6 David (10.1016/j.envsoft.2014.01.004_bib17) 2009; 93 Nash (10.1016/j.envsoft.2014.01.004_bib49) 1970; 10 van Griensven (10.1016/j.envsoft.2014.01.004_bib67) 2007; 9 Williams (10.1016/j.envsoft.2014.01.004_bib70) 2012; 17 Georgakakos (10.1016/j.envsoft.2014.01.004_bib24) 2004; 298 Gallagher (10.1016/j.envsoft.2014.01.004_bib22) 2007; 22 Minunno (10.1016/j.envsoft.2014.01.004_bib46) 2013; 42 Loosvelt (10.1016/j.envsoft.2014.01.004_bib43) 2011; 47 Kavetski (10.1016/j.envsoft.2014.01.004_bib39) 2006; 42 Strauch (10.1016/j.envsoft.2014.01.004_bib62) 2012; 414–415 Arnold (10.1016/j.envsoft.2014.01.004_bib9) 2012; 55 Clark (10.1016/j.envsoft.2014.01.004_bib16) 2008; 44 Rasmussen (10.1016/j.envsoft.2014.01.004_bib56) 2012; 29 Harmel (10.1016/j.envsoft.2014.01.004_bib31) 2009; 24 Nelson (10.1016/j.envsoft.2014.01.004_bib50) 1979 Schilling (10.1016/j.envsoft.2014.01.004_bib58) 2002; 31 Chiang (10.1016/j.envsoft.2014.01.004_bib15) 2010; 53 Hassan (10.1016/j.envsoft.2014.01.004_bib33) 2009; 24 Kavetski (10.1016/j.envsoft.2014.01.004_bib37) 2002; 6 Tolson (10.1016/j.envsoft.2014.01.004_bib64) 2007; 43 Arnold (10.1016/j.envsoft.2014.01.004_bib7) 2010; 53 Srinivasan (10.1016/j.envsoft.2014.01.004_bib60) 2010; 53 Ullrich (10.1016/j.envsoft.2014.01.004_bib66) 2010; 171 Kim (10.1016/j.envsoft.2014.01.004_bib41) 2010; 53 Ale (10.1016/j.envsoft.2014.01.004_bib4) 2012; 41 Refsgaard (10.1016/j.envsoft.2014.01.004_bib57) 2006; 29 Yen (10.1016/j.envsoft.2014.01.004_bib73) 2012 Moriasi (10.1016/j.envsoft.2014.01.004_bib47) 2009; 52 Newman (10.1016/j.envsoft.2014.01.004_bib52) 1997 Haan (10.1016/j.envsoft.2014.01.004_bib27) 2002 Vrugt (10.1016/j.envsoft.2014.01.004_bib68) 2009; 10 Kavetski (10.1016/j.envsoft.2014.01.004_bib38) 2006; 42 Kuczera (10.1016/j.envsoft.2014.01.004_bib42) 1998; 211 Lucey (10.1016/j.envsoft.2014.01.004_bib44) 1993; 22 Wöhling (10.1016/j.envsoft.2014.01.004_bib71) 2008; 44 Beven (10.1016/j.envsoft.2014.01.004_bib12) 1993; 16 Osidele (10.1016/j.envsoft.2014.01.004_bib53) 2006; 53 Wang (10.1016/j.envsoft.2014.01.004_bib69) 2008; 23 NRCS (10.1016/j.envsoft.2014.01.004_bib74) 2010 Arnold (10.1016/j.envsoft.2014.01.004_bib6) 1993; 142 Arnold (10.1016/j.envsoft.2014.01.004_bib8) 1998; 34 Beven (10.1016/j.envsoft.2014.01.004_bib13) 2001; 249 Bai (10.1016/j.envsoft.2014.01.004_bib10) 2009; 24 |
References_xml | – volume: 43 start-page: 1 year: 2007 end-page: 19 ident: bib3 article-title: An integrated hydrologic Bayesian multimodel combination framework: confronting input, parameter, and model structural uncertainty in hydrologic prediction publication-title: Water Resour. Res. – volume: 142 start-page: 47 year: 1993 end-page: 69 ident: bib6 article-title: A comprehensive surface-groundwater flow model publication-title: J. Hydrol. – year: 2010 ident: bib74 article-title: Keys to Soil Taxonomy – volume: 16 start-page: 41 year: 1993 end-page: 51 ident: bib12 article-title: Prophecy, reality and uncertainty in distributed hydrological modelling publication-title: Adv. Water Resour. – volume: 38 start-page: 725 year: 1995 end-page: 733 ident: bib28 article-title: Statistical procedure for evaluating hydrologic/water quality models publication-title: Trans. ASAE – volume: 211 start-page: 69 year: 1998 end-page: 85 ident: bib42 article-title: Monte Carlo assessment of parameter uncertainty in conceptual catchment models: the Metropolis algorithm publication-title: J. Hydrol. – volume: 171 start-page: 513 year: 2010 end-page: 527 ident: bib66 article-title: Influence of different nitrate-N monitoring strategies on load estimation as a base for model calibration and evaluation publication-title: Environ. Monit. Assess. – volume: 24 start-page: 749 year: 2009 end-page: 763 ident: bib33 article-title: Using Markov Chain Monte Carlo to quantify parameter uncertainty and its effect on predictions of a groundwater flow model publication-title: Environ. Model. Softw. – volume: 54 start-page: 2151 year: 2011 end-page: 2163 ident: bib5 article-title: Evaluating the SWAT model for a low-gradient forested watershed in coastal South Carolina publication-title: Trans. ASABE – volume: 44 start-page: 1 year: 2008 end-page: 14 ident: bib16 article-title: Framework for Understanding Structural Errors (FUSE): a modular framework to diagnose differences between hydrological models publication-title: Water Resour. Res. – volume: 50 start-page: 885 year: 2007 end-page: 900 ident: bib48 article-title: Model evaluation guidelines for systematic quantification of accuracy in watershed simulations publication-title: Trans. ASABE – volume: 29 start-page: 1586 year: 2006 end-page: 1597 ident: bib57 article-title: A framework for dealing with uncertainty due to model structure error publication-title: Adv. Water Resour. – volume: 47 start-page: 1 year: 2011 end-page: 16 ident: bib43 article-title: Impact of soil hydraulic parameter uncertainty on soil moisture modeling publication-title: Water Resour. Res. – volume: 6 start-page: 49 year: 2002 end-page: 68 ident: bib37 article-title: Confronting input uncertainty in environmental modeling publication-title: Water Sci. Appl. – volume: 53 start-page: 1533 year: 2010 end-page: 1546 ident: bib60 article-title: SWAT ungauged: hydrological budget and crop yield predictions in the Upper Mississippi River Basin publication-title: Trans. ASABE – volume: 42 start-page: 99 year: 2013 end-page: 115 ident: bib46 article-title: Using a Bayesian framework and global sensitivity analysis to identify strengths and weaknesses of two process-based models differing in representation of autotrophic respiration publication-title: Environ. Model. Softw. – year: 1972 ident: bib65 article-title: Errors of Observation and Their Treatment – volume: 28 start-page: 1015 year: 1992 end-page: 1031 ident: bib21 article-title: Effective and efficient global optimization for conceptual rainfall-runoff models publication-title: Water Resour. Res. – volume: 49 start-page: 413 year: 2006 end-page: 422 ident: bib26 article-title: Hydrologic evaluation of the soil and water assessment tool for a large tile-drianed watershed in Iowa publication-title: Trans. ASABE – volume: 42 start-page: 1 year: 2006 end-page: 9 ident: bib38 article-title: Bayesian analysis of input uncertainty in hydrological modeling: 1. Theory publication-title: Water Resour. Res. – volume: 51 start-page: 1263 year: 2008 end-page: 1272 ident: bib63 article-title: Nitrate loss from subsurface drains in an agricultural watershed using SWAT2005 publication-title: Trans. ASABE – volume: 414–415 start-page: 413 year: 2012 end-page: 424 ident: bib62 article-title: Using precipitation data ensemble for uncertainty analysis in SWAT streamflow simulation publication-title: J. Hydrol. – volume: 9 start-page: 277 year: 2007 ident: bib67 article-title: A global and efficient multi-objective auto-calibration and uncertainty estimation method for water quality catchment models publication-title: J. Hydroinformatics – year: 2012 ident: bib73 article-title: Confronting Input, Parameter, Structural, and Measurement Uncertainty in Multi-site Multiple Responses Watershed Modeling Using Bayesian Inferences – volume: 40 start-page: 171 year: 2013 end-page: 180 ident: bib40 article-title: Set-membership approach for identification of parameter and prediction uncertainty in power-law relationships: the case of sediment yield publication-title: Environ. Model. Softw. – volume: 53 start-page: 1457 year: 2010 end-page: 1468 ident: bib41 article-title: Effects of streamflow routing schemes on water quality with SWAT publication-title: Trans. ASABE – volume: 10 start-page: 271 year: 2009 end-page: 288 ident: bib68 article-title: Accelerating Markov Chain Monte Carlo simulation by differential evolution with self-adaptive randomized subspace sampling publication-title: Int. J. Nonlinear Sci. Numer. Simul. – volume: 49 start-page: 689 year: 2006 end-page: 701 ident: bib29 article-title: Cumulative uncertainty in measured streamflow and water quality data for small watersheds publication-title: Trans. ASABE – volume: 19 start-page: 749 year: 2005 end-page: 762 ident: bib35 article-title: Advances in the application of the SWAT model for water resources management publication-title: Hydrol. Process. – year: 2012 ident: bib2 article-title: A Multi Criteria Decision Support System for Watershed Management under Uncertain Conditions – volume: 53 start-page: 1595 year: 2010 end-page: 1604 ident: bib25 article-title: Determination of critical source areas for phosphorus loss: Lake Champlain Basin, Vermont publication-title: Trans. ASABE – volume: 24 start-page: 901 year: 2009 end-page: 916 ident: bib10 article-title: A top-down framework for watershed model evaluation and selection under uncertainty publication-title: Environ. Model. Softw. – volume: 17 start-page: 1221 year: 2012 end-page: 1229 ident: bib70 article-title: Evolution of the SCS runoff curve number method and its application to continuous runoff simulation publication-title: J. Hydrol. Eng. – volume: 31 start-page: 1846 year: 2002 end-page: 1851 ident: bib58 article-title: Chemical transport from paired agricultural and restored prairie Watersheds publication-title: J. Environ. Qual. – volume: 358 start-page: 1 year: 2008 end-page: 23 ident: bib72 article-title: Comparing uncertainty analysis techniques for a SWAT application to the Chaohe Basin in China publication-title: J. Hydrol. – volume: 6 start-page: 655 year: 2002 end-page: 670 ident: bib1 article-title: Multi-model data fusion for river flow forecasting: an evaluation of six alternative methods based on two contrasting catchments publication-title: Hydrol. Earth Syst. Sci. – year: 1997 ident: bib52 article-title: Our changing climate publication-title: The Natural Heritage of Indiana – volume: 24 start-page: 832 year: 2009 end-page: 842 ident: bib31 article-title: Estimating storm discharge and water quality data uncertainty: a software tool for monitoring and modeling applications publication-title: Environ. Model. Softw. – volume: 93 start-page: 7 year: 2009 end-page: 30 ident: bib17 article-title: Modeling denitrification in a tile-drained, corn and soybean agroecosystem of Illinois, USA publication-title: Biogeochemistry – volume: 53 start-page: 55 year: 2010 end-page: 63 ident: bib32 article-title: Modifying goodness-of-fit indicators to incorporate both measurement and model uncertainty in model calibration and validation publication-title: Trans. ASABE – volume: 55 start-page: 1491 year: 2012 end-page: 1508 ident: bib9 article-title: SWAT: model use, calibration, and validation publication-title: Trans. ASABE – volume: 44 start-page: 1 year: 2008 end-page: 18 ident: bib71 article-title: Combining multiobjective optimization and Bayesian model averaging to calibrate forecast ensembles of soil hydraulic models publication-title: Water Resour. Res. – volume: 50 start-page: 1211 year: 2007 end-page: 1250 ident: bib23 article-title: The soil and water assessment tool: historical development, applications, and future directions publication-title: Trans. ASABE – volume: 53 start-page: 1569 year: 2010 end-page: 1584 ident: bib15 article-title: Differentiating impacts of land use changes from pasture management in a CEAP watershed using the SWAT model publication-title: Trans. ASABE – volume: 52 start-page: 771 year: 2009 end-page: 784 ident: bib47 article-title: Incorporation of a new shallow water table depth algorithm into SWAT2005 publication-title: Trans. ASABE – volume: 22 start-page: 1000 year: 2007 end-page: 1020 ident: bib22 article-title: Parameter estimation and uncertainty analysis for a watershed model publication-title: Environ. Model. Softw. – volume: 26 start-page: 795 year: 2010 end-page: 806 ident: bib45 article-title: Modelling Rappahannock river basin using SWAT – Pilot for Chesapeake Bay watershed publication-title: Appl. Eng. Agric. – volume: 53 start-page: 33 year: 2006 ident: bib53 article-title: A random search methodology for examining parametric uncertainty in water quality models publication-title: Water Sci. Technol. – volume: 16 start-page: 430 year: 1980 ident: bib59 article-title: Stochastic parameter estimation procedures for hydrologic rainfall-runoff models: correlated and heteroscedastic error cases publication-title: Water Resour. Res. – start-page: 1155 year: 2005 end-page: 1174 ident: bib55 article-title: Using Bayesian Model Averaging to calibrate forecast ensembles publication-title: Am. Meteorol. Soc. – volume: 53 start-page: 1433 year: 2010 end-page: 1443 ident: bib7 article-title: Assessment of different representations of spatial variability on SWAT model performance publication-title: Trans. ASABE – volume: 337 start-page: 326 year: 2007 end-page: 336 ident: bib30 article-title: Consideration of measurement uncertainty in the evaluation of goodness-of-fit in hydrologic and water quality modeling publication-title: J. Hydrol. – volume: 42 start-page: 1 year: 2006 end-page: 10 ident: bib39 article-title: Bayesian analysis of input uncertainty in hydrological modeling: 2. Application publication-title: Water Resour. Res. – volume: 249 start-page: 11 year: 2001 end-page: 29 ident: bib13 article-title: Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology publication-title: J. Hydrol. – volume: 298 start-page: 222 year: 2004 end-page: 241 ident: bib24 article-title: Characterizing streamflow simulation uncertainty through multimodel ensembles publication-title: J. Hydrol. – volume: 53 start-page: 1423 year: 2010 end-page: 1431 ident: bib18 article-title: Soil and Water Assessment Tool (SWAT) model: current developments and applications publication-title: Trans. ASABE – start-page: 491 year: 1979 end-page: 505 ident: bib50 article-title: Sediment and nutrient contributions to the Maumee River from an agricultural watershed publication-title: Best Management Practices for Agriculture and Silviculture – volume: 46 start-page: 292 year: 2013 end-page: 298 ident: bib36 article-title: Using a parallelized MCMC algorithm in R to identify appropriate likelihood functions for SWAT publication-title: Environ. Model. Softw. – volume: 22 start-page: 38 year: 1993 end-page: 46 ident: bib44 article-title: Effects of climatic variations over 11 years on nitrate nitrogen concentrations in the Raccoon River, Iowa publication-title: J. Environ. Qual. – volume: 29 start-page: 1 year: 2012 end-page: 10 ident: bib56 article-title: An approximate Bayesian computation approach for estimating parameters of complex environmental processes in a cellular automata publication-title: Environ. Model. Softw. – volume: 30 start-page: 1371 year: 2007 end-page: 1386 ident: bib20 article-title: Multi-model ensemble hydrologic prediction using Bayesian model averaging publication-title: Adv. Water Resour. – volume: 34 start-page: 73 year: 1998 end-page: 89 ident: bib8 article-title: Large area hydrologic modeling and assessment. I. Model development publication-title: J. Am. Water Resour. Assoc. – volume: 48 year: 2005 ident: bib19 article-title: Development and application of SWAT to landscapes with tiles and potholes publication-title: Trans. ASABE – volume: 10 start-page: 282 year: 1970 end-page: 290 ident: bib49 article-title: River flow forecasting through conceptual models, part I: a discussion of principles publication-title: J. Hydrol. – volume: 43 start-page: 1 year: 2007 end-page: 16 ident: bib64 article-title: Dynamically dimensioned search algorithm for computationally efficient watershed model calibration publication-title: Water Resour. Res. – volume: 6 start-page: 279 year: 1992 end-page: 298 ident: bib14 article-title: The future of distributed models: model calibration and uncertainty prediction publication-title: Hydrol. Process. – year: 2002 ident: bib27 article-title: Statistical Methods in Hydrology – volume: 23 start-page: 412 year: 2008 end-page: 421 ident: bib69 article-title: A Bayesian method for multi-site stochastic data generation: dealing with non-concurrent and missing data, variable transformation and parameter uncertainty publication-title: Environ. Model. Softw. – volume: 41 start-page: 217 year: 2012 end-page: 228 ident: bib4 article-title: Evaluation of simulated strategies for reducing nitrate-nitrogen losses through subsurface drainage systems publication-title: J. Environ. Qual. – volume: 38 start-page: 725 issue: 3 year: 1995 ident: 10.1016/j.envsoft.2014.01.004_bib28 article-title: Statistical procedure for evaluating hydrologic/water quality models publication-title: Trans. ASAE doi: 10.13031/2013.27886 – year: 2012 ident: 10.1016/j.envsoft.2014.01.004_bib73 – volume: 24 start-page: 832 issue: 7 year: 2009 ident: 10.1016/j.envsoft.2014.01.004_bib31 article-title: Estimating storm discharge and water quality data uncertainty: a software tool for monitoring and modeling applications publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2008.12.006 – volume: 43 start-page: 1 issue: 1 year: 2007 ident: 10.1016/j.envsoft.2014.01.004_bib3 article-title: An integrated hydrologic Bayesian multimodel combination framework: confronting input, parameter, and model structural uncertainty in hydrologic prediction publication-title: Water Resour. Res. doi: 10.1029/2005WR004745 – volume: 298 start-page: 222 issue: 1–4 year: 2004 ident: 10.1016/j.envsoft.2014.01.004_bib24 article-title: Characterizing streamflow simulation uncertainty through multimodel ensembles publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2004.03.037 – volume: 171 start-page: 513 year: 2010 ident: 10.1016/j.envsoft.2014.01.004_bib66 article-title: Influence of different nitrate-N monitoring strategies on load estimation as a base for model calibration and evaluation publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-009-1296-8 – volume: 24 start-page: 901 issue: 8 year: 2009 ident: 10.1016/j.envsoft.2014.01.004_bib10 article-title: A top-down framework for watershed model evaluation and selection under uncertainty publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2008.12.012 – volume: 358 start-page: 1 issue: 1–2 year: 2008 ident: 10.1016/j.envsoft.2014.01.004_bib72 article-title: Comparing uncertainty analysis techniques for a SWAT application to the Chaohe Basin in China publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2008.05.012 – volume: 34 start-page: 73 issue: 1 year: 1998 ident: 10.1016/j.envsoft.2014.01.004_bib8 article-title: Large area hydrologic modeling and assessment. I. Model development publication-title: J. Am. Water Resour. Assoc. doi: 10.1111/j.1752-1688.1998.tb05961.x – volume: 54 start-page: 2151 issue: 6 year: 2011 ident: 10.1016/j.envsoft.2014.01.004_bib5 article-title: Evaluating the SWAT model for a low-gradient forested watershed in coastal South Carolina publication-title: Trans. ASABE doi: 10.13031/2013.40671 – volume: 26 start-page: 795 issue: 5 year: 2010 ident: 10.1016/j.envsoft.2014.01.004_bib45 article-title: Modelling Rappahannock river basin using SWAT – Pilot for Chesapeake Bay watershed publication-title: Appl. Eng. Agric. doi: 10.13031/2013.34948 – volume: 48 issue: 3 year: 2005 ident: 10.1016/j.envsoft.2014.01.004_bib19 article-title: Development and application of SWAT to landscapes with tiles and potholes publication-title: Trans. ASABE – volume: 50 start-page: 885 issue: 3 year: 2007 ident: 10.1016/j.envsoft.2014.01.004_bib48 article-title: Model evaluation guidelines for systematic quantification of accuracy in watershed simulations publication-title: Trans. ASABE doi: 10.13031/2013.23153 – volume: 47 start-page: 1 issue: 3 year: 2011 ident: 10.1016/j.envsoft.2014.01.004_bib43 article-title: Impact of soil hydraulic parameter uncertainty on soil moisture modeling publication-title: Water Resour. Res. doi: 10.1029/2010WR009204 – volume: 16 start-page: 430 issue: 2 year: 1980 ident: 10.1016/j.envsoft.2014.01.004_bib59 article-title: Stochastic parameter estimation procedures for hydrologic rainfall-runoff models: correlated and heteroscedastic error cases publication-title: Water Resour. Res. doi: 10.1029/WR016i002p00430 – volume: 29 start-page: 1586 issue: 11 year: 2006 ident: 10.1016/j.envsoft.2014.01.004_bib57 article-title: A framework for dealing with uncertainty due to model structure error publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2005.11.013 – volume: 53 start-page: 1423 issue: 5 year: 2010 ident: 10.1016/j.envsoft.2014.01.004_bib18 article-title: Soil and Water Assessment Tool (SWAT) model: current developments and applications publication-title: Trans. ASABE doi: 10.13031/2013.34915 – volume: 211 start-page: 69 issue: 1–4 year: 1998 ident: 10.1016/j.envsoft.2014.01.004_bib42 article-title: Monte Carlo assessment of parameter uncertainty in conceptual catchment models: the Metropolis algorithm publication-title: J. Hydrol. doi: 10.1016/S0022-1694(98)00198-X – volume: 41 start-page: 217 year: 2012 ident: 10.1016/j.envsoft.2014.01.004_bib4 article-title: Evaluation of simulated strategies for reducing nitrate-nitrogen losses through subsurface drainage systems publication-title: J. Environ. Qual. doi: 10.2134/jeq2010.0466 – volume: 55 start-page: 1491 issue: 4 year: 2012 ident: 10.1016/j.envsoft.2014.01.004_bib9 article-title: SWAT: model use, calibration, and validation publication-title: Trans. ASABE doi: 10.13031/2013.42256 – volume: 19 start-page: 749 issue: 3 year: 2005 ident: 10.1016/j.envsoft.2014.01.004_bib35 article-title: Advances in the application of the SWAT model for water resources management publication-title: Hydrol. Process. doi: 10.1002/hyp.5624 – volume: 53 start-page: 1433 issue: 5 year: 2010 ident: 10.1016/j.envsoft.2014.01.004_bib7 article-title: Assessment of different representations of spatial variability on SWAT model performance publication-title: Trans. ASABE doi: 10.13031/2013.34913 – volume: 53 start-page: 1569 issue: 2 year: 2010 ident: 10.1016/j.envsoft.2014.01.004_bib15 article-title: Differentiating impacts of land use changes from pasture management in a CEAP watershed using the SWAT model publication-title: Trans. ASABE doi: 10.13031/2013.34901 – volume: 53 start-page: 1595 issue: 5 year: 2010 ident: 10.1016/j.envsoft.2014.01.004_bib25 article-title: Determination of critical source areas for phosphorus loss: Lake Champlain Basin, Vermont publication-title: Trans. ASABE doi: 10.13031/2013.34898 – volume: 42 start-page: 99 year: 2013 ident: 10.1016/j.envsoft.2014.01.004_bib46 article-title: Using a Bayesian framework and global sensitivity analysis to identify strengths and weaknesses of two process-based models differing in representation of autotrophic respiration publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2012.12.010 – volume: 51 start-page: 1263 issue: 4 year: 2008 ident: 10.1016/j.envsoft.2014.01.004_bib63 article-title: Nitrate loss from subsurface drains in an agricultural watershed using SWAT2005 publication-title: Trans. ASABE doi: 10.13031/2013.25243 – volume: 24 start-page: 749 issue: 6 year: 2009 ident: 10.1016/j.envsoft.2014.01.004_bib33 article-title: Using Markov Chain Monte Carlo to quantify parameter uncertainty and its effect on predictions of a groundwater flow model publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2008.11.002 – year: 2012 ident: 10.1016/j.envsoft.2014.01.004_bib2 – volume: 10 start-page: 271 year: 2009 ident: 10.1016/j.envsoft.2014.01.004_bib68 article-title: Accelerating Markov Chain Monte Carlo simulation by differential evolution with self-adaptive randomized subspace sampling publication-title: Int. J. Nonlinear Sci. Numer. Simul. doi: 10.1515/IJNSNS.2009.10.3.273 – year: 2010 ident: 10.1016/j.envsoft.2014.01.004_bib74 – volume: 6 start-page: 49 year: 2002 ident: 10.1016/j.envsoft.2014.01.004_bib37 article-title: Confronting input uncertainty in environmental modeling publication-title: Water Sci. Appl. doi: 10.1029/WS006p0049 – volume: 44 start-page: 1 issue: 12 year: 2008 ident: 10.1016/j.envsoft.2014.01.004_bib71 article-title: Combining multiobjective optimization and Bayesian model averaging to calibrate forecast ensembles of soil hydraulic models publication-title: Water Resour. Res. doi: 10.1029/2008WR007154 – volume: 6 start-page: 655 issue: 4 year: 2002 ident: 10.1016/j.envsoft.2014.01.004_bib1 article-title: Multi-model data fusion for river flow forecasting: an evaluation of six alternative methods based on two contrasting catchments publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-6-655-2002 – year: 1997 ident: 10.1016/j.envsoft.2014.01.004_bib52 article-title: Our changing climate – volume: 17 start-page: 1221 issue: 11 year: 2012 ident: 10.1016/j.envsoft.2014.01.004_bib70 article-title: Evolution of the SCS runoff curve number method and its application to continuous runoff simulation publication-title: J. Hydrol. Eng. doi: 10.1061/(ASCE)HE.1943-5584.0000529 – volume: 53 start-page: 1457 issue: 5 year: 2010 ident: 10.1016/j.envsoft.2014.01.004_bib41 article-title: Effects of streamflow routing schemes on water quality with SWAT publication-title: Trans. ASABE doi: 10.13031/2013.34912 – volume: 53 start-page: 33 issue: 1 year: 2006 ident: 10.1016/j.envsoft.2014.01.004_bib53 article-title: A random search methodology for examining parametric uncertainty in water quality models publication-title: Water Sci. Technol. doi: 10.2166/wst.2006.005 – volume: 10 start-page: 282 issue: 3 year: 1970 ident: 10.1016/j.envsoft.2014.01.004_bib49 article-title: River flow forecasting through conceptual models, part I: a discussion of principles publication-title: J. Hydrol. doi: 10.1016/0022-1694(70)90255-6 – start-page: 1155 year: 2005 ident: 10.1016/j.envsoft.2014.01.004_bib55 article-title: Using Bayesian Model Averaging to calibrate forecast ensembles publication-title: Am. Meteorol. Soc. – volume: 28 start-page: 1015 issue: 4 year: 1992 ident: 10.1016/j.envsoft.2014.01.004_bib21 article-title: Effective and efficient global optimization for conceptual rainfall-runoff models publication-title: Water Resour. Res. doi: 10.1029/91WR02985 – volume: 31 start-page: 1846 year: 2002 ident: 10.1016/j.envsoft.2014.01.004_bib58 article-title: Chemical transport from paired agricultural and restored prairie Watersheds publication-title: J. Environ. Qual. doi: 10.2134/jeq2002.1184 – year: 1972 ident: 10.1016/j.envsoft.2014.01.004_bib65 – volume: 30 start-page: 1371 issue: 5 year: 2007 ident: 10.1016/j.envsoft.2014.01.004_bib20 article-title: Multi-model ensemble hydrologic prediction using Bayesian model averaging publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2006.11.014 – volume: 42 start-page: 1 issue: 3 year: 2006 ident: 10.1016/j.envsoft.2014.01.004_bib39 article-title: Bayesian analysis of input uncertainty in hydrological modeling: 2. Application publication-title: Water Resour. Res. – volume: 337 start-page: 326 issue: 3–4 year: 2007 ident: 10.1016/j.envsoft.2014.01.004_bib30 article-title: Consideration of measurement uncertainty in the evaluation of goodness-of-fit in hydrologic and water quality modeling publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2007.01.043 – volume: 42 start-page: 1 issue: 3 year: 2006 ident: 10.1016/j.envsoft.2014.01.004_bib38 article-title: Bayesian analysis of input uncertainty in hydrological modeling: 1. Theory publication-title: Water Resour. Res. – volume: 49 start-page: 689 issue: 3 year: 2006 ident: 10.1016/j.envsoft.2014.01.004_bib29 article-title: Cumulative uncertainty in measured streamflow and water quality data for small watersheds publication-title: Trans. ASABE doi: 10.13031/2013.20488 – volume: 50 start-page: 1211 issue: 4 year: 2007 ident: 10.1016/j.envsoft.2014.01.004_bib23 article-title: The soil and water assessment tool: historical development, applications, and future directions publication-title: Trans. ASABE doi: 10.13031/2013.23637 – volume: 49 start-page: 413 issue: 2 year: 2006 ident: 10.1016/j.envsoft.2014.01.004_bib26 article-title: Hydrologic evaluation of the soil and water assessment tool for a large tile-drianed watershed in Iowa publication-title: Trans. ASABE doi: 10.13031/2013.20415 – volume: 53 start-page: 1533 issue: 5 year: 2010 ident: 10.1016/j.envsoft.2014.01.004_bib60 article-title: SWAT ungauged: hydrological budget and crop yield predictions in the Upper Mississippi River Basin publication-title: Trans. ASABE doi: 10.13031/2013.34903 – volume: 40 start-page: 171 year: 2013 ident: 10.1016/j.envsoft.2014.01.004_bib40 article-title: Set-membership approach for identification of parameter and prediction uncertainty in power-law relationships: the case of sediment yield publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2012.09.007 – start-page: 491 year: 1979 ident: 10.1016/j.envsoft.2014.01.004_bib50 article-title: Sediment and nutrient contributions to the Maumee River from an agricultural watershed – volume: 6 start-page: 279 year: 1992 ident: 10.1016/j.envsoft.2014.01.004_bib14 article-title: The future of distributed models: model calibration and uncertainty prediction publication-title: Hydrol. Process. doi: 10.1002/hyp.3360060305 – volume: 22 start-page: 38 year: 1993 ident: 10.1016/j.envsoft.2014.01.004_bib44 article-title: Effects of climatic variations over 11 years on nitrate nitrogen concentrations in the Raccoon River, Iowa publication-title: J. Environ. Qual. doi: 10.2134/jeq1993.00472425002200010005x – volume: 16 start-page: 41 year: 1993 ident: 10.1016/j.envsoft.2014.01.004_bib12 article-title: Prophecy, reality and uncertainty in distributed hydrological modelling publication-title: Adv. Water Resour. doi: 10.1016/0309-1708(93)90028-E – volume: 52 start-page: 771 issue: 3 year: 2009 ident: 10.1016/j.envsoft.2014.01.004_bib47 article-title: Incorporation of a new shallow water table depth algorithm into SWAT2005 publication-title: Trans. ASABE doi: 10.13031/2013.27398 – volume: 23 start-page: 412 issue: 4 year: 2008 ident: 10.1016/j.envsoft.2014.01.004_bib69 article-title: A Bayesian method for multi-site stochastic data generation: dealing with non-concurrent and missing data, variable transformation and parameter uncertainty publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2007.04.013 – year: 2002 ident: 10.1016/j.envsoft.2014.01.004_bib27 – volume: 29 start-page: 1 issue: 1 year: 2012 ident: 10.1016/j.envsoft.2014.01.004_bib56 article-title: An approximate Bayesian computation approach for estimating parameters of complex environmental processes in a cellular automata publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2011.10.005 – volume: 9 start-page: 277 issue: 4 year: 2007 ident: 10.1016/j.envsoft.2014.01.004_bib67 article-title: A global and efficient multi-objective auto-calibration and uncertainty estimation method for water quality catchment models publication-title: J. Hydroinformatics doi: 10.2166/hydro.2007.104 – volume: 142 start-page: 47 year: 1993 ident: 10.1016/j.envsoft.2014.01.004_bib6 article-title: A comprehensive surface-groundwater flow model publication-title: J. Hydrol. doi: 10.1016/0022-1694(93)90004-S – volume: 46 start-page: 292 year: 2013 ident: 10.1016/j.envsoft.2014.01.004_bib36 article-title: Using a parallelized MCMC algorithm in R to identify appropriate likelihood functions for SWAT publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2013.03.012 – volume: 249 start-page: 11 year: 2001 ident: 10.1016/j.envsoft.2014.01.004_bib13 article-title: Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology publication-title: J. Hydrol. doi: 10.1016/S0022-1694(01)00421-8 – volume: 414–415 start-page: 413 year: 2012 ident: 10.1016/j.envsoft.2014.01.004_bib62 article-title: Using precipitation data ensemble for uncertainty analysis in SWAT streamflow simulation publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2011.11.014 – volume: 22 start-page: 1000 issue: 7 year: 2007 ident: 10.1016/j.envsoft.2014.01.004_bib22 article-title: Parameter estimation and uncertainty analysis for a watershed model publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2006.06.007 – volume: 53 start-page: 55 issue: 1 year: 2010 ident: 10.1016/j.envsoft.2014.01.004_bib32 article-title: Modifying goodness-of-fit indicators to incorporate both measurement and model uncertainty in model calibration and validation publication-title: Trans. ASABE doi: 10.13031/2013.29502 – volume: 44 start-page: 1 year: 2008 ident: 10.1016/j.envsoft.2014.01.004_bib16 article-title: Framework for Understanding Structural Errors (FUSE): a modular framework to diagnose differences between hydrological models publication-title: Water Resour. Res. doi: 10.1029/2007WR006735 – volume: 93 start-page: 7 year: 2009 ident: 10.1016/j.envsoft.2014.01.004_bib17 article-title: Modeling denitrification in a tile-drained, corn and soybean agroecosystem of Illinois, USA publication-title: Biogeochemistry doi: 10.1007/s10533-008-9273-9 – volume: 43 start-page: 1 issue: 1 year: 2007 ident: 10.1016/j.envsoft.2014.01.004_bib64 article-title: Dynamically dimensioned search algorithm for computationally efficient watershed model calibration publication-title: Water Resour. Res. doi: 10.1029/2005WR004723 |
SSID | ssj0001524 |
Score | 2.455077 |
Snippet | Failure to consider major sources of uncertainty may bias model predictions in simulating watershed behavior. A framework entitled the Integrated Parameter... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 211 |
SubjectTerms | Animal, plant and microbial ecology Bayesian Model Averaging Biological and medical sciences Error propagation Fundamental and applied biological sciences. Psychology General aspects. Techniques hydrologic data hydrologic models Indiana Methods and techniques (sampling, tagging, trapping, modelling...) Model calibration parameter uncertainty prediction SWAT model Uncertainty analysis watershed hydrology watersheds |
Title | A framework for propagation of uncertainty contributed by parameterization, input data, model structure, and calibration/validation data in watershed modeling |
URI | https://dx.doi.org/10.1016/j.envsoft.2014.01.004 https://www.proquest.com/docview/2000177165 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9NAEB-OE0ERP6qH9aOs4GPTNNnNbvJYjh5V8V704N7CfgV7nGmxPaUv_in-rc5sNlcPhQMfE3aSzc7s7Az5zfwA3mbOFYWWLhGWm0TkukoqXaikqZSXpdEY9VKB88dTuTgT78-L8wM47mthCFYZfX_n04O3jnfSuJrperlMP2VcUqeRHFOEEMhQBbtQBOub_NzDPHBAR2wrRUKj91U86cXEt9836O0I4SVC987I1_aP8-nBWm9w1ZqO7uIvzx2Oo5PH8DDGkWzWTfUJHPh2AI96jgYWt-wA7s5DW-rdAO7_0XpwAEfzfYUbPieO3zyFXzPW9IAthhEtwxmg0wkKZKuG4TnYoQi2OxZw7kSY5R0zO0ZtxL8SvCbWdo7ZssXpMEKhjlng3GFdv9qrb37MdOsYfivl6zQ6RZtfdgxPQQKF2Q9NzT-_4OODNM78GZydzD8fL5JI4pBYrvJtggGFNZU1jcM1r_xUc-U8pklGV5zL0meeWyU9JunGCeuzKdpOnjmM46y2VPh6BIftqvXPgVkuZWllqYxTQmtHuab2Tc4r3UyV1EMQvepqGzucE9HGZd1D2S7qqPGaNF5Psxo1PoTJtdi6a_Fxm0DZ20V9w1ZrPIZuEx3dsKPrFxJjlMJcfQhvesOqcaPT3xvd-tXVhvhC0Xtielu8-P_3v4R7dNVBj17BIercv8aoamtGYduM4M7s3YfF6W_wECe7 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VVAgQ4hGoCI-ySBzjOn6t7WNUpUppmwut1NtqXxapwIlICsqf4bcys7tOqUCqxNXesdc7s7Mz8sz3AXxMjCkKyU2U60xFeSrrqJZFGTV1aXmlJEa91OB8NuPTi_zTZXG5A4ddLwyVVQbf732689bhShxWM17O5_HnJOOENJJiiuACmXuwS-hUeQ92x8cn09nWIeMYz23L84gEbhp54qsD2_5YocOjIq_cAXgGyrZ_HFGPl3KFC9d4xou_nLc7kY6ewZMQSrKxn-1z2LFtH552NA0s7No-3J84ZOpNHx79gT7Yh73JTZMbPieMX72AX2PWdDVbDINahjNAv-N0yBYNw6PQFxKsN8yVuhNnljVMbRghiX-jCpvQ3jlk8xanw6gQdcgc7Q7zkLXX3-2QydYw_FZK2Wl0jGY_9yRPTgKF2U9J-J9f8PFOGmf-Ei6OJueH0yjwOEQ6K9N1hDGFVrVWjcE1r-1IZqWxmCkpWWcZr2xiM11yi3m6Mrm2yQjNJ00MhnJaaup93YNeu2jtK2A647zSvCqVKXMpDaWb0jZpVstmVHI5gLxTndAB5Jy4Nr6KrprtSgSNC9K4GCUCNT6Ag63Y0qN83CVQdXYhbpmrwJPoLtH9W3a0fSGRRpWYrg_gQ2dYAvc6_cCRrV1cr4gyFB0oZrjF6_9__3t4MD0_OxWnx7OTN_CQ7vhKpLfQQ_3bdxhkrdV-2ES_Aey3Kmw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+framework+for+propagation+of+uncertainty+contributed+by+parameterization%2C+input+data%2C+model+structure%2C+and+calibration%2Fvalidation+data+in+watershed+modeling&rft.jtitle=Environmental+modelling+%26+software+%3A+with+environment+data+news&rft.au=Yen%2C+Haw&rft.au=Wang%2C+Xiuying&rft.au=Fontane%2C+Darrell+G.&rft.au=Harmel%2C+R.+Daren&rft.date=2014-04-01&rft.issn=1364-8152&rft.volume=54&rft.spage=211&rft.epage=221&rft_id=info:doi/10.1016%2Fj.envsoft.2014.01.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_envsoft_2014_01_004 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-8152&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-8152&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-8152&client=summon |