Evaluation and Calibration of In Silico Models of Thrombin Generation Using Experimental Data from Healthy and Haemophilic Subjects
The coagulation cascade comprises numerous chemical reactions between many proteins, that finally lead to the formation of a clot to stop bleeding. Many numerical models have attempted to translate understanding of this cascade into mathematical equations that simulate the chain reactions. However,...
Saved in:
Published in | Bulletin of mathematical biology Vol. 80; no. 8; pp. 1989 - 2025 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.08.2018
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0092-8240 1522-9602 1522-9602 |
DOI | 10.1007/s11538-018-0440-4 |
Cover
Loading…
Abstract | The coagulation cascade comprises numerous chemical reactions between many proteins, that finally lead to the formation of a clot to stop bleeding. Many numerical models have attempted to translate understanding of this cascade into mathematical equations that simulate the chain reactions. However, their predictions have not been validated against clinical data stemming from patients. In this paper, we propose an extensive validation of five available models, by comparing in healthy and haemophilic subjects, thrombin generation measured in vitro to thrombin generation predicted by the models in silico. In order to render the models more predictive, we calibrated the models to have an acceptable agreement between the experimental and estimated data. Optimization processes based on genetic algorithms were developed to search for those calibrated kinetic parameters. Our results show that the thrombin generation kinetics are so complex that they cannot be predicted by a unique set of kinetic parameters for all patients: the calibration of only three parameters in a subject-specific way allows reaching good model estimations for different experimental conditions realized on the same patient. |
---|---|
AbstractList | The coagulation cascade comprises numerous chemical reactions between many proteins, that finally lead to the formation of a clot to stop bleeding. Many numerical models have attempted to translate understanding of this cascade into mathematical equations that simulate the chain reactions. However, their predictions have not been validated against clinical data stemming from patients. In this paper, we propose an extensive validation of five available models, by comparing in healthy and haemophilic subjects, thrombin generation measured in vitro to thrombin generation predicted by the models in silico. In order to render the models more predictive, we calibrated the models to have an acceptable agreement between the experimental and estimated data. Optimization processes based on genetic algorithms were developed to search for those calibrated kinetic parameters. Our results show that the thrombin generation kinetics are so complex that they cannot be predicted by a unique set of kinetic parameters for all patients: the calibration of only three parameters in a subject-specific way allows reaching good model estimations for different experimental conditions realized on the same patient. The coagulation cascade comprises numerous chemical reactions between many proteins, that finally lead to the formation of a clot to stop bleeding. Many numerical models have attempted to translate understanding of this cascade into mathematical equations that simulate the chain reactions. However, their predictions have not been validated against clinical data stemming from patients. In this paper, we propose an extensive validation of five available models, by comparing in healthy and haemophilic subjects, thrombin generation measured in vitro to thrombin generation predicted by the models in silico. In order to render the models more predictive, we calibrated the models to have an acceptable agreement between the experimental and estimated data. Optimization processes based on genetic algorithms were developed to search for those calibrated kinetic parameters. Our results show that the thrombin generation kinetics are so complex that they cannot be predicted by a unique set of kinetic parameters for all patients: the calibration of only three parameters in a subject-specific way allows reaching good model estimations for different experimental conditions realized on the same patient.The coagulation cascade comprises numerous chemical reactions between many proteins, that finally lead to the formation of a clot to stop bleeding. Many numerical models have attempted to translate understanding of this cascade into mathematical equations that simulate the chain reactions. However, their predictions have not been validated against clinical data stemming from patients. In this paper, we propose an extensive validation of five available models, by comparing in healthy and haemophilic subjects, thrombin generation measured in vitro to thrombin generation predicted by the models in silico. In order to render the models more predictive, we calibrated the models to have an acceptable agreement between the experimental and estimated data. Optimization processes based on genetic algorithms were developed to search for those calibrated kinetic parameters. Our results show that the thrombin generation kinetics are so complex that they cannot be predicted by a unique set of kinetic parameters for all patients: the calibration of only three parameters in a subject-specific way allows reaching good model estimations for different experimental conditions realized on the same patient. |
Author | Morin, Claire Montmartin, Aurélie Cournil, Michel Chelle, Pierre Piot, Michèle Tardy-Poncet, Brigitte |
Author_xml | – sequence: 1 givenname: Pierre surname: Chelle fullname: Chelle, Pierre organization: Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS – sequence: 2 givenname: Claire surname: Morin fullname: Morin, Claire email: claire.morin@emse.fr organization: Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS – sequence: 3 givenname: Aurélie surname: Montmartin fullname: Montmartin, Aurélie organization: INSERM, U1059, SAINBIOSE, F-42000, Saint Etienne, Univ Lyon, Univ Jean Monnet, INSERM – sequence: 4 givenname: Michèle surname: Piot fullname: Piot, Michèle organization: INSERM, U1059, SAINBIOSE, F-42000, Saint Etienne, Univ Lyon, Univ Jean Monnet, INSERM – sequence: 5 givenname: Michel surname: Cournil fullname: Cournil, Michel organization: Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS – sequence: 6 givenname: Brigitte surname: Tardy-Poncet fullname: Tardy-Poncet, Brigitte organization: INSERM, U1059, SAINBIOSE, F-42000, Saint Etienne, Univ Lyon, Univ Jean Monnet, INSERM |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29948884$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc9vFCEcxYmpsdvqH-DFkHjxMsqvGeBo1rXbpMZD1zNhGKbLhoEVZhp79h-X6ayaNNEDIZDPe3x57wKchRgsAK8xeo8R4h8yxjUVFcJlMYYq9gyscE1IJRtEzsAKIUkqQRg6Bxc5H1DRSCpfgHMiJRNCsBX4ubnXftKjiwHq0MG19q5Nyzn28DrAW-edifBL7KzP891un-LQugCvbLAn9Ft24Q5ufhxtcoMNo_bwkx417AsKt1b7cf_w6L_VdojH_ewJb6f2YM2YX4LnvfbZvjrtl2D3ebNbb6ubr1fX6483laGcjBUzEjWUdELXmhLToJ52Gtdc05pyzAQWHWVtj5DF1FjDhegJ47wxNRGdZvQSvFtsjyl-n2we1eCysd7rYOOUFUENEryWjBb07RP0EKcUynCFqhkrKUpUqDcnamoH26lj-btOD-p3ugXAC2BSzDnZ_g-CkZobVEuDqjSo5gbVrOFPNMaNjyGPSTv_XyVZlLm8Eu5s-jv0v0W_AFq2rm8 |
CitedBy_id | crossref_primary_10_1007_s10441_019_09372_w crossref_primary_10_1016_j_optlastec_2024_111638 crossref_primary_10_1051_itmconf_20203101005 crossref_primary_10_1111_jth_15716 crossref_primary_10_1007_s10928_021_09752_1 crossref_primary_10_1055_a_1213_2117 crossref_primary_10_1371_journal_pone_0290531 crossref_primary_10_1016_j_jtha_2024_03_009 crossref_primary_10_1007_s11538_021_00890_8 crossref_primary_10_2174_1381612826666200406091807 |
Cites_doi | 10.1016/0303-2647(95)01534-R 10.1016/j.bpj.2010.02.002 10.1016/S0021-9258(18)31537-0 10.1016/j.transci.2007.12.007 10.1161/01.ATV.0000046238.23903.FC 10.1186/1471-2105-7-483 10.1097/MBC.0b013e3282a167bb 10.1142/S0219720013420043 10.1038/srep08493 10.1007/BFb0029787 10.1016/S0021-9258(18)89525-4 10.1016/S1350-4533(02)00047-4 10.1016/S0021-9258(17)31662-9 10.1016/j.epidem.2016.03.003 10.1137/S1052623496303470 10.1016/j.cma.2007.06.030 10.1016/S0049-3848(96)00182-X 10.1093/imammb/dqp011 10.1016/j.mbs.2006.09.005 10.1074/jbc.273.8.4378 10.1016/j.bpj.2011.05.056 10.1088/0266-5611/25/12/123014 10.1111/j.1365-2516.2009.02127.x 10.1111/j.1538-7836.2011.04427.x 10.1016/j.medengphy.2004.01.003 10.1101/gr.1262503 10.1186/1752-0509-7-76 10.1182/blood.V81.3.734.734 10.1016/S0025-5564(01)00079-7 10.1109/TSMCC.2004.841906 10.1016/S0049-3848(96)00197-1 10.1016/S0021-9258(18)35888-5 10.1016/j.bpj.2010.01.027 10.1016/S0006-3495(01)76085-7 10.1016/j.biosystems.2005.06.016 10.1074/jbc.M201173200 10.1186/1742-4682-3-4 10.1016/j.jtbi.2013.07.023 10.1016/j.bpj.2009.12.4331 10.1016/S0010-4825(04)00043-5 10.1038/clpt.2009.87 10.1038/nrm2030 10.1080/03091900410001709079 10.1371/journal.pcbi.1000950 10.1111/j.1538-7836.2007.02824.x 10.1093/imammb/20.1.105 10.1529/biophysj.105.069062 10.1080/10273660412331317415 10.3389/fphys.2012.00266 10.1016/S0049-3848(97)00288-0 10.1016/S0025-5564(02)00130-X 10.1016/j.amc.2010.07.054 10.1016/S0021-9258(19)86294-4 10.1371/journal.pcbi.0030142 |
ContentType | Journal Article |
Copyright | Society for Mathematical Biology 2018 Bulletin of Mathematical Biology is a copyright of Springer, (2018). All Rights Reserved. |
Copyright_xml | – notice: Society for Mathematical Biology 2018 – notice: Bulletin of Mathematical Biology is a copyright of Springer, (2018). All Rights Reserved. |
DBID | AAYXX CITATION NPM 3V. 7SS 7TK 7X7 7XB 88A 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. L6V LK8 M0S M1P M7P M7S P5Z P62 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 |
DOI | 10.1007/s11538-018-0440-4 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Entomology Abstracts (Full archive) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) ProQuest Engineering Collection Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) Technology Collection ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Computer Science Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Mathematics |
EISSN | 1522-9602 |
EndPage | 2025 |
ExternalDocumentID | 29948884 10_1007_s11538_018_0440_4 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --Z -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .GJ .VR 06D 0R~ 0VY 199 1B1 1N0 1RT 1~5 2.D 203 23N 28- 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3O- 3V. 4.4 406 408 40D 40E 4G. 53G 5GY 5RE 5VS 67Z 6J9 6NX 7-5 71M 78A 7X7 88A 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AACTN AAEDT AAHNG AAIAL AAJBT AAJKR AALCJ AALRI AANZL AAQFI AAQXK AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXUO AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMAC ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABWVN ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIHN ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACRPL ACZOJ ADBBV ADFGL ADHIR ADINQ ADKNI ADKPE ADMUD ADNMO ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHHHB AHKAY AHMBA AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AITUG AJBLW AJRNO AJZVZ AKRWK ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBNVY BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DM4 DNIVK DPUIP DU5 EBD EBLON EBS EIOEI EJD EMOBN ESBYG F5P FDB FEDTE FERAY FFXSO FGOYB FIGPU FINBP FIRID FNLPD FRRFC FSGXE FWDCC FYUFA G-2 GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HCIFZ HF~ HG5 HG6 HLV HMCUK HMJXF HRMNR HVGLF HZ~ IHE IJ- IKXTQ ITM IWAJR IXC IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ K6V K7- KDC KOV L6V LG5 LK8 LLZTM LW8 M0L M1P M4Y M7P M7S MA- N2Q NB0 NDZJH NF0 NPVJJ NQJWS NU0 O-L O9- O93 O9G O9I O9J OZT P19 P2P P62 P9R PF0 PKN PQQKQ PROAC PSQYO PT4 PT5 PTHSS Q2X QOK QOS R2- R89 R9I RHV RIG RNI RNS ROL RPX RPZ RSV RZK S16 S1Z S26 S27 S28 S3B SAB SAP SCLPG SDD SDH SDM SEW SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSZ STPWE SV3 SZN T13 T16 TN5 TSG TSK TSV TUC TWZ U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 WUQ XPP XSW YLTOR Z45 Z7U Z83 ZGI ZMT ZMTXR ZWQNP ZXP ~A9 ~EX ~KM AAPKM AAYWO AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIGII AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY PQGLB NPM 7SS 7TK 7XB 8FK AZQEC DWQXO GNUQQ JQ2 K9. PKEHL PQEST PQUKI PRINS 7X8 ACMFV |
ID | FETCH-LOGICAL-c372t-4c90632d8a5a32c60f3da157a353714818d34bf00e13cec788f24776c528da43 |
IEDL.DBID | 7X7 |
ISSN | 0092-8240 1522-9602 |
IngestDate | Thu Jul 10 18:07:01 EDT 2025 Fri Jul 25 19:02:16 EDT 2025 Wed Feb 19 02:34:18 EST 2025 Thu Apr 24 23:07:06 EDT 2025 Wed Aug 13 03:17:35 EDT 2025 Fri Feb 21 02:39:58 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Computational modelling. In vitro assay kinetics . Sensitivity analysis 92C45 Coagulation dynamics |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-4c90632d8a5a32c60f3da157a353714818d34bf00e13cec788f24776c528da43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 ObjectType-Undefined-3 |
PMID | 29948884 |
PQID | 2054493990 |
PQPubID | 55445 |
PageCount | 37 |
ParticipantIDs | proquest_miscellaneous_2060875943 proquest_journals_2054493990 pubmed_primary_29948884 crossref_primary_10_1007_s11538_018_0440_4 crossref_citationtrail_10_1007_s11538_018_0440_4 springer_journals_10_1007_s11538_018_0440_4 |
PublicationCentury | 2000 |
PublicationDate | 20180800 2018-8-00 2018-08-00 20180801 |
PublicationDateYYYYMMDD | 2018-08-01 |
PublicationDate_xml | – month: 8 year: 2018 text: 20180800 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationSubtitle | A Journal Devoted to Research at the Junction of Computational, Theoretical and Experimental Biology Official Journal of The Society for Mathematical Biology |
PublicationTitle | Bulletin of mathematical biology |
PublicationTitleAbbrev | Bull Math Biol |
PublicationTitleAlternate | Bull Math Biol |
PublicationYear | 2018 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Brummel-Ziedins K, Orfeo T, Jenny N, Everse S, Mann K (2003) Wintrobe’s Clinical Hematology, Lippincott Williams & Wilkins, Philidelphia, chap Blood coagulation and fibrinolysis, pp 667–774 LaCroixDA reduced equation mathematical model for blood coagulation and fibrinolysis in quiescent plasmaInt J Struct Changes Solids201242335 MakinJGNarayananSA hybrid-system model of the coagulation cascade: simulation, sensitivity, and validationJ Bioinform Comput Biol2013115134200410.1142/S0219720013420043 HemkerHCGiesenPAlDieriRRegnaultVDe SmedEWagenvoordRLecompteTBéguinSThe calibrated automated thrombogram (CAT): a universal routine test for hyper-and hypocoagulabilityPathophysiol Haemost Thromb2003325–6249253 Subcommittee on Control of Anticoagulation of the SSC of the ISTH (2011) Towards a recommendation for the standardization of the measurement of platelet-dependent thrombin generation. J Thromb Haemost 9:1859–1861. https://doi.org/10.1111/j.1538-7836.2011.04427.x HemkerHCBéguinSPhenotyping the clotting systemThromb Haemost2000845747751 HoffmeisterFBäckTSchwefelHPMännerRGenetic algorithms and evolution strategies: similarities and differencesParallel problem solving from nature1991HeidelbergSpringer45546910.1007/BFb0029787 BungaySModelling the effect of amplification pathway factors on thrombin generation: a comparison of hemophiliasTransfus Apheresis Sci2008381414710.1016/j.transci.2007.12.007 PanteleevMABalandinaANLipetsENOvanesovMVAtaullakhanovFITask-oriented modular decomposition of biological networks: trigger mechanism in blood coagulationBiophys J20109891751176110.1016/j.bpj.2010.01.027 MargariaGRiccomagnoEChappellMJWynnHPDifferential algebra methods for the study of the structural identifiability of rational function state-space models in the biosciencesMath Biosci20011741126186007210.1016/S0025-5564(01)00079-71006.92003 XuCHuXuXZengYWen ChenYSimulation of a mathematical model of the role of the TFPI in the extrinsic pathway of coagulationComput Biol Med200535543544510.1016/S0010-4825(04)00043-5 PanteleevMAOvanesovMVKireevDAShibekoAMSinauridzeEIAnanyevaNMButylinAASaenkoELAtaullakhanovFISpatial propagation and localization of blood coagulation are regulated by intrinsic and protein C pathways, respectivelyBiophys J20069051489150010.1529/biophysj.105.069062 GoldbergDEGenetic algorithms in search, optimization and machine learning1989BostonAddison-Wesley0721.68056 StonebrakerJBolton-MaggsPSoucieJWalkersIBrookerMA study of variations in the reported haemophilia a prevalence around the worldHaemophilia201016203210.1111/j.1365-2516.2009.02127.x ZhuAGuoJNiBJWangSYangQPengYA novel protocol for model calibration in biological wastewater treatmentSci Rep20155849310.1038/srep08493 LagariasJCReedsJAWrightMHWrightPEConvergence properties of the Nelder–Mead simplex method in low dimensionsSIAM J Optim199891112147166256310.1137/S10526234963034701005.90056 BungaySGentryPGentryRA mathematical model of lipid-mediated thrombin generationMath Med Biol200320110512910.1093/imammb/20.1.1051044.92023 PolisettyPKVoitEOGatzkeEPIdentification of metabolic system parameters using global optimization methodsTheor Biol Med Model200631410.1186/1742-4682-3-4 JordanSChaikofESimulated surface-induced thrombin generation in a flow fieldBiophys J2011101227628610.1016/j.bpj.2011.05.056 Hund SJ (2010) A computational model of platelet mediated thrombosis for the evaluation and design of medical devices. PhD thesis, Biomedical Engineering, Carnegie Mellon University DielisACastoldiESpronkHMHVan OerleRHamulyakKTen CateHRosingJCoagulation factors and the protein C system as determinants of thrombin generation in a normal populationJ Thromb Haemost20086112513110.1111/j.1538-7836.2007.02824.x FogelsonALGuyRDImmersed-boundary-type models of intravascular platelet aggregationComput Methods Appl Mech Eng200819725–2820872104241281310.1016/j.cma.2007.06.0301158.76401 ChatterjeeMDenneyWSJingHDiamondSLSystems biology of coagulation initiation: kinetics of thrombin generation in resting and activated human bloodPLOS Comput Biol201069e100095010.1371/journal.pcbi.1000950 QiaoYLiuJZengYA kinetic model for simulation of blood coagulation and inhibition in the intrinsic pathJ Med Eng Technol2005292707410.1080/03091900410001709079 Rodriguez-FernandezMEgeaJBangaJNovel metaheuristic for parameter estimation in nonlinear dynamic biological systemsBMC Bioinform2006748310.1186/1471-2105-7-483 FedosovDACaswellBKarniadakisGEA multiscale red blood cell model with accurate mechanics, rheology, and dynamicsBiophys J201098102215222510.1016/j.bpj.2010.02.002 DanforthCMOrfeoTMannKGBrummel-ZiedinsKEEverseSJThe impact of uncertainty in a blood coagulation modelMath Med Biol2009264323336264779610.1093/imammb/dqp0111178.92013 ZarnitsinaVIPokhilkoAVAtaullakhanovFIA mathematical model for the spatio-temporal dynamics of intrinsic pathway of blood coagulation. II. ResultsThromb Res199684533334410.1016/S0049-3848(96)00197-1 Rodriguez-FernandezMRehbergMKremlingABangaJRSimultaneous model discrimination and parameter estimation in dynamic models of cellular systemsBMC Syst Biol2013717610.1186/1752-0509-7-76 BaughRJRegulation of extrinsic pathway factor Xa formation by tissue factor pathway inhibitorJ Biol Chem199827384378438610.1074/jbc.273.8.4378 BodnarTSequeiraAProsiMOn the shear-thinning and viscoelastic effects of blood flow under various flow ratesAppl Math Comput2011217115055506727691221276.76098 KhaninMARakovDVKoganAEMathematical model for the blood coagulation prothrombin time testThromb Res199889522723210.1016/S0049-3848(97)00288-0 KuharskyALFogelsonALSurface-mediated control of blood coagulation: the role of binding site densities and platelet depositionBiophys J20018031050107410.1016/S0006-3495(01)76085-7 LiBraescuGeorgeTOrbulescuCLeretterMDynamics of thrombin formation using a mathematical model including both intrinsic and extrinsic pathways of blood coagulationDyn Contin Discret I (Series A)200916S175821179.37119 JaqamanKDanuserGLinking data to models: data regressionNat Rev Mol Cell Biol2006781381910.1038/nrm2030 TracyPLLEMannKHuman prothrombinase complex assembly and function on isolated peripheral blood cell populationsJ Biol Chem1985260421192124 ZhuDMathematical modeling of blood coagulation cascade: kinetics of intrinsic and extrinsic pathways in normal and deficient conditionsBlood Coagul Fibrinolysis200718763764610.1097/MBC.0b013e3282a167bb JonesKCMannKGA model for the tissue factor pathway to thrombinJ Biol Chem19942693723,36723,378 XuZLioiJMuJKamockaMMLiuXChenDZRosenEDAlberMA multiscale model of venous thrombus formation with surface-mediated control of blood coagulation cascadeBiophys J20109891723173210.1016/j.bpj.2009.12.4331 Rodriguez-FernandezMMendesPBangaJRA hybrid approach for efficient and robust parameter estimation in biochemical pathwaysBiosystems200683224826510.1016/j.biosystems.2005.06.016(5th International Conference on Systems Biology) StonebrakerJBolton-MaggsPSoucieJWalkersIBrookerMA study of variations in the reported haemophilia b prevalence around the worldHaemophilia2011161203210.1111/j.1365-2516.2009.02127.x TyurinKVKhaninMAHemostasis as an optimal systemMath Biosci20062042167184229009310.1016/j.mbs.2006.09.0051104.92026 QiaoYXuCZengYXuXZhaoHXuHThe kinetic model and simulation of blood coagulation—the kinetic influence of activated protein CMed Eng Phys200426434134710.1016/j.medengphy.2004.01.003 WhiteLJEvansNDLamTJGMSchukkenYHMedleyGFGodfreyKRChappellMJThe structural identifiability and parameter estimation of a multispecies model for the transmission of mastitis in dairy cows with postmilking teat disinfectionMath Biosci200218027591195075810.1016/S0025-5564(02)00130-X1029.92023 ZarnitsinaVIPokhilkoAVAtaullakhanovFIA mathematical model for the spatio-temporal dynamics of intrinsic pathway of blood coagulation. I. The model descriptionThromb Res199684422523610.1016/S0049-3848(96)00182-X WajimaTIsbisterGKDuffullSBA comprehensive model for the humoral coagulation network in humansClin Pharmacol Therap200986329029810.1038/clpt.2009.87 XuCQZengYJGregersenHDynamic model of the role of platelets in the blood coagulation systemMed Eng Phys200224958759310.1016/S1350-4533(02)00047-4 MorrisseyJGail MacikBNeuenschwanderPCompPQuantitation of activated factor vii levels in plasma using a tissue factor mutant selectively deficient in promoting factor vii activationBlood1993813734744 TosenbergerAAtaullakhanovFBessonovNPanteleevMTokarevAVolpertVModelling of thrombus growth in flow with a DPD-PDE methodJ Theor Biol20133373041311531210.1016/j.jtbi.2013.07.0231337.92040 AnandMRajagopalKRajagopalKRA model incorporating some of the mechanical and biochemical factors underlying clot formation and dissolution in flowing bloodJ Theor Med200353–4183218215829010.1080/102736604123313174151078.92017 LollarPParkerETFayPJCoagulant properties of hybrid human/porcine factor VIII moleculesJ Biol Chem1992267332365223657 FayPJHaidarisPJSmudzinTMHuman factor VIIIa subunit structure. Reconstruction of factor VIIIa from the isolated A1/A3-C1-C2 dimer and A2 subunitJ Biol Chem19912661489578962 MolesCGMendesPBangaJRParameter estimation in biochemical pathways: a comparison of global optimization methodsGenome Res200313112467247410.1101/gr.1262503 AbgrallJFPhysiologie de la coagulation1995ParisHematoweb LuanDZaiMVarnerJDComputationally derived points of fragility of a human cascade are consistent with current therapeutic strategiesPLoS Comput Biol200737e14210.1371/journal.pcbi.0030142 BiasettiJSpazziniPGSwedenborgJGasserTCAn integrated fluid-chemical model toward modeling the formation of intra-luminal thrombus in abdominal aortic aneurysmsFrontiers Physiol2012326610.3389/fphys.2012.00266 EnglHWFlammCKüglerPLuJMüllerSSchusterPInverse problems in systems biologyInverse Prob20092512123,014346005010.1088/0266-5611/25/12/1230141193.34001 RittenhouseMARevieCWHurfordAA model for sea lice (Lepeophtheirus salmonis) dynamics in a seasonally changing environmentEpidemics20161681610.1016/j.epidem.2016.03.003 RosingJTansGGovers-RiemslagJZwaalRHemkerHThe A Dielis (440_CR12) 2008; 6 MA Rittenhouse (440_CR42) 2016; 16 F Hoffmeister (440_CR21) 1991 S Bungay (440_CR8) 2008; 38 PJ Fay (440_CR14) 1991; 266 MA Panteleev (440_CR38) 2010; 98 M Anand (440_CR2) 2003; 5 J Stonebraker (440_CR49) 2010; 16 N Saravanan (440_CR48) 1995; 36 CQ Xu (440_CR57) 2002; 24 MF Hockin (440_CR20) 2002; 277 A Zhu (440_CR63) 2015; 5 KG Mann (440_CR33) 2003; 23 LJ White (440_CR56) 2002; 180 VI Zarnitsina (440_CR60) 1996; 84 K Jaqaman (440_CR23) 2006; 7 JC Lagarias (440_CR29) 1998; 9 D LaCroix (440_CR28) 2012; 4 AL Fogelson (440_CR16) 2008; 197 Z Xu (440_CR59) 2010; 98 AL Kuharsky (440_CR27) 2001; 80 D Zhu (440_CR62) 2007; 18 CM Danforth (440_CR11) 2009; 26 D Luan (440_CR31) 2007; 3 KC Jones (440_CR24) 1994; 269 M Chatterjee (440_CR10) 2010; 6 J Biasetti (440_CR4) 2012; 3 S Jordan (440_CR25) 2011; 101 M Rodriguez-Fernandez (440_CR45) 2013; 7 MA Panteleev (440_CR37) 2006; 90 HW Engl (440_CR13) 2009; 25 440_CR51 RJ Baugh (440_CR3) 1998; 273 J Rosing (440_CR46) 1980; 255 J Morrissey (440_CR36) 1993; 81 A Tosenberger (440_CR52) 2013; 337 VI Zarnitsina (440_CR61) 1996; 84 JG Makin (440_CR32) 2013; 11 440_CR7 HC Hemker (440_CR19) 2003; 32 JF Abgrall (440_CR1) 1995 G Margaria (440_CR34) 2001; 174 Y Qiao (440_CR40) 2004; 26 PK Polisetty (440_CR39) 2006; 3 C Xu (440_CR58) 2005; 35 Braescu Li (440_CR6) 2009; 16 P Lollar (440_CR30) 1992; 267 440_CR22 DA Fedosov (440_CR15) 2010; 98 DE Goldberg (440_CR17) 1989 M Rodriguez-Fernandez (440_CR44) 2006; 83 CG Moles (440_CR35) 2003; 13 Y Qiao (440_CR41) 2005; 29 TP Runarsson (440_CR47) 2005; 35 KV Tyurin (440_CR54) 2006; 204 J Stonebraker (440_CR50) 2011; 16 MA Khanin (440_CR26) 1998; 89 M Rodriguez-Fernandez (440_CR43) 2006; 7 T Bodnar (440_CR5) 2011; 217 T Wajima (440_CR55) 2009; 86 P Tracy (440_CR53) 1985; 260 S Bungay (440_CR9) 2003; 20 HC Hemker (440_CR18) 2000; 84 |
References_xml | – reference: BodnarTSequeiraAProsiMOn the shear-thinning and viscoelastic effects of blood flow under various flow ratesAppl Math Comput2011217115055506727691221276.76098 – reference: XuCHuXuXZengYWen ChenYSimulation of a mathematical model of the role of the TFPI in the extrinsic pathway of coagulationComput Biol Med200535543544510.1016/S0010-4825(04)00043-5 – reference: EnglHWFlammCKüglerPLuJMüllerSSchusterPInverse problems in systems biologyInverse Prob20092512123,014346005010.1088/0266-5611/25/12/1230141193.34001 – reference: LaCroixDA reduced equation mathematical model for blood coagulation and fibrinolysis in quiescent plasmaInt J Struct Changes Solids201242335 – reference: XuZLioiJMuJKamockaMMLiuXChenDZRosenEDAlberMA multiscale model of venous thrombus formation with surface-mediated control of blood coagulation cascadeBiophys J20109891723173210.1016/j.bpj.2009.12.4331 – reference: Rodriguez-FernandezMEgeaJBangaJNovel metaheuristic for parameter estimation in nonlinear dynamic biological systemsBMC Bioinform2006748310.1186/1471-2105-7-483 – reference: RunarssonTPYaoXSearch biases in constrained evolutionary optimizationIEEE Trans Syst Man Cybern Part C Appl Rev200535223324310.1109/TSMCC.2004.841906 – reference: BaughRJRegulation of extrinsic pathway factor Xa formation by tissue factor pathway inhibitorJ Biol Chem199827384378438610.1074/jbc.273.8.4378 – reference: ZarnitsinaVIPokhilkoAVAtaullakhanovFIA mathematical model for the spatio-temporal dynamics of intrinsic pathway of blood coagulation. II. ResultsThromb Res199684533334410.1016/S0049-3848(96)00197-1 – reference: PanteleevMABalandinaANLipetsENOvanesovMVAtaullakhanovFITask-oriented modular decomposition of biological networks: trigger mechanism in blood coagulationBiophys J20109891751176110.1016/j.bpj.2010.01.027 – reference: GoldbergDEGenetic algorithms in search, optimization and machine learning1989BostonAddison-Wesley0721.68056 – reference: SaravananNFogelDBNelsonKMA comparison of methods for self-adaptation in evolutionary algorithmsBiosystems199536215716610.1016/0303-2647(95)01534-R – reference: KuharskyALFogelsonALSurface-mediated control of blood coagulation: the role of binding site densities and platelet depositionBiophys J20018031050107410.1016/S0006-3495(01)76085-7 – reference: HockinMFA model for the stoichiometric regulation of blood coagulationJ Biol Chem20022772118,32218,33310.1074/jbc.M201173200 – reference: TracyPLLEMannKHuman prothrombinase complex assembly and function on isolated peripheral blood cell populationsJ Biol Chem1985260421192124 – reference: JonesKCMannKGA model for the tissue factor pathway to thrombinJ Biol Chem19942693723,36723,378 – reference: ZhuAGuoJNiBJWangSYangQPengYA novel protocol for model calibration in biological wastewater treatmentSci Rep20155849310.1038/srep08493 – reference: Brummel-Ziedins K, Orfeo T, Jenny N, Everse S, Mann K (2003) Wintrobe’s Clinical Hematology, Lippincott Williams & Wilkins, Philidelphia, chap Blood coagulation and fibrinolysis, pp 667–774 – reference: HoffmeisterFBäckTSchwefelHPMännerRGenetic algorithms and evolution strategies: similarities and differencesParallel problem solving from nature1991HeidelbergSpringer45546910.1007/BFb0029787 – reference: RittenhouseMARevieCWHurfordAA model for sea lice (Lepeophtheirus salmonis) dynamics in a seasonally changing environmentEpidemics20161681610.1016/j.epidem.2016.03.003 – reference: WajimaTIsbisterGKDuffullSBA comprehensive model for the humoral coagulation network in humansClin Pharmacol Therap200986329029810.1038/clpt.2009.87 – reference: TosenbergerAAtaullakhanovFBessonovNPanteleevMTokarevAVolpertVModelling of thrombus growth in flow with a DPD-PDE methodJ Theor Biol20133373041311531210.1016/j.jtbi.2013.07.0231337.92040 – reference: WhiteLJEvansNDLamTJGMSchukkenYHMedleyGFGodfreyKRChappellMJThe structural identifiability and parameter estimation of a multispecies model for the transmission of mastitis in dairy cows with postmilking teat disinfectionMath Biosci200218027591195075810.1016/S0025-5564(02)00130-X1029.92023 – reference: KhaninMARakovDVKoganAEMathematical model for the blood coagulation prothrombin time testThromb Res199889522723210.1016/S0049-3848(97)00288-0 – reference: MargariaGRiccomagnoEChappellMJWynnHPDifferential algebra methods for the study of the structural identifiability of rational function state-space models in the biosciencesMath Biosci20011741126186007210.1016/S0025-5564(01)00079-71006.92003 – reference: AbgrallJFPhysiologie de la coagulation1995ParisHematoweb – reference: JordanSChaikofESimulated surface-induced thrombin generation in a flow fieldBiophys J2011101227628610.1016/j.bpj.2011.05.056 – reference: MorrisseyJGail MacikBNeuenschwanderPCompPQuantitation of activated factor vii levels in plasma using a tissue factor mutant selectively deficient in promoting factor vii activationBlood1993813734744 – reference: AnandMRajagopalKRajagopalKRA model incorporating some of the mechanical and biochemical factors underlying clot formation and dissolution in flowing bloodJ Theor Med200353–4183218215829010.1080/102736604123313174151078.92017 – reference: LollarPParkerETFayPJCoagulant properties of hybrid human/porcine factor VIII moleculesJ Biol Chem1992267332365223657 – reference: QiaoYXuCZengYXuXZhaoHXuHThe kinetic model and simulation of blood coagulation—the kinetic influence of activated protein CMed Eng Phys200426434134710.1016/j.medengphy.2004.01.003 – reference: Rodriguez-FernandezMMendesPBangaJRA hybrid approach for efficient and robust parameter estimation in biochemical pathwaysBiosystems200683224826510.1016/j.biosystems.2005.06.016(5th International Conference on Systems Biology) – reference: DielisACastoldiESpronkHMHVan OerleRHamulyakKTen CateHRosingJCoagulation factors and the protein C system as determinants of thrombin generation in a normal populationJ Thromb Haemost20086112513110.1111/j.1538-7836.2007.02824.x – reference: PanteleevMAOvanesovMVKireevDAShibekoAMSinauridzeEIAnanyevaNMButylinAASaenkoELAtaullakhanovFISpatial propagation and localization of blood coagulation are regulated by intrinsic and protein C pathways, respectivelyBiophys J20069051489150010.1529/biophysj.105.069062 – reference: HemkerHCBéguinSPhenotyping the clotting systemThromb Haemost2000845747751 – reference: StonebrakerJBolton-MaggsPSoucieJWalkersIBrookerMA study of variations in the reported haemophilia b prevalence around the worldHaemophilia2011161203210.1111/j.1365-2516.2009.02127.x – reference: JaqamanKDanuserGLinking data to models: data regressionNat Rev Mol Cell Biol2006781381910.1038/nrm2030 – reference: QiaoYLiuJZengYA kinetic model for simulation of blood coagulation and inhibition in the intrinsic pathJ Med Eng Technol2005292707410.1080/03091900410001709079 – reference: Hund SJ (2010) A computational model of platelet mediated thrombosis for the evaluation and design of medical devices. PhD thesis, Biomedical Engineering, Carnegie Mellon University – reference: PolisettyPKVoitEOGatzkeEPIdentification of metabolic system parameters using global optimization methodsTheor Biol Med Model200631410.1186/1742-4682-3-4 – reference: XuCQZengYJGregersenHDynamic model of the role of platelets in the blood coagulation systemMed Eng Phys200224958759310.1016/S1350-4533(02)00047-4 – reference: MolesCGMendesPBangaJRParameter estimation in biochemical pathways: a comparison of global optimization methodsGenome Res200313112467247410.1101/gr.1262503 – reference: ChatterjeeMDenneyWSJingHDiamondSLSystems biology of coagulation initiation: kinetics of thrombin generation in resting and activated human bloodPLOS Comput Biol201069e100095010.1371/journal.pcbi.1000950 – reference: FogelsonALGuyRDImmersed-boundary-type models of intravascular platelet aggregationComput Methods Appl Mech Eng200819725–2820872104241281310.1016/j.cma.2007.06.0301158.76401 – reference: Subcommittee on Control of Anticoagulation of the SSC of the ISTH (2011) Towards a recommendation for the standardization of the measurement of platelet-dependent thrombin generation. J Thromb Haemost 9:1859–1861. https://doi.org/10.1111/j.1538-7836.2011.04427.x – reference: HemkerHCGiesenPAlDieriRRegnaultVDe SmedEWagenvoordRLecompteTBéguinSThe calibrated automated thrombogram (CAT): a universal routine test for hyper-and hypocoagulabilityPathophysiol Haemost Thromb2003325–6249253 – reference: RosingJTansGGovers-RiemslagJZwaalRHemkerHThe role of phospholipids and factor Va in the prothrombinase complexJ Biol Chem19802551274283 – reference: StonebrakerJBolton-MaggsPSoucieJWalkersIBrookerMA study of variations in the reported haemophilia a prevalence around the worldHaemophilia201016203210.1111/j.1365-2516.2009.02127.x – reference: BungaySModelling the effect of amplification pathway factors on thrombin generation: a comparison of hemophiliasTransfus Apheresis Sci2008381414710.1016/j.transci.2007.12.007 – reference: LagariasJCReedsJAWrightMHWrightPEConvergence properties of the Nelder–Mead simplex method in low dimensionsSIAM J Optim199891112147166256310.1137/S10526234963034701005.90056 – reference: LiBraescuGeorgeTOrbulescuCLeretterMDynamics of thrombin formation using a mathematical model including both intrinsic and extrinsic pathways of blood coagulationDyn Contin Discret I (Series A)200916S175821179.37119 – reference: ZarnitsinaVIPokhilkoAVAtaullakhanovFIA mathematical model for the spatio-temporal dynamics of intrinsic pathway of blood coagulation. I. The model descriptionThromb Res199684422523610.1016/S0049-3848(96)00182-X – reference: ZhuDMathematical modeling of blood coagulation cascade: kinetics of intrinsic and extrinsic pathways in normal and deficient conditionsBlood Coagul Fibrinolysis200718763764610.1097/MBC.0b013e3282a167bb – reference: FedosovDACaswellBKarniadakisGEA multiscale red blood cell model with accurate mechanics, rheology, and dynamicsBiophys J201098102215222510.1016/j.bpj.2010.02.002 – reference: TyurinKVKhaninMAHemostasis as an optimal systemMath Biosci20062042167184229009310.1016/j.mbs.2006.09.0051104.92026 – reference: LuanDZaiMVarnerJDComputationally derived points of fragility of a human cascade are consistent with current therapeutic strategiesPLoS Comput Biol200737e14210.1371/journal.pcbi.0030142 – reference: BungaySGentryPGentryRA mathematical model of lipid-mediated thrombin generationMath Med Biol200320110512910.1093/imammb/20.1.1051044.92023 – reference: MannKGThe dynamics of thrombin formationArterioscler Thromb Vasc Biol2003231172510.1161/01.ATV.0000046238.23903.FC – reference: MakinJGNarayananSA hybrid-system model of the coagulation cascade: simulation, sensitivity, and validationJ Bioinform Comput Biol2013115134200410.1142/S0219720013420043 – reference: DanforthCMOrfeoTMannKGBrummel-ZiedinsKEEverseSJThe impact of uncertainty in a blood coagulation modelMath Med Biol2009264323336264779610.1093/imammb/dqp0111178.92013 – reference: BiasettiJSpazziniPGSwedenborgJGasserTCAn integrated fluid-chemical model toward modeling the formation of intra-luminal thrombus in abdominal aortic aneurysmsFrontiers Physiol2012326610.3389/fphys.2012.00266 – reference: FayPJHaidarisPJSmudzinTMHuman factor VIIIa subunit structure. Reconstruction of factor VIIIa from the isolated A1/A3-C1-C2 dimer and A2 subunitJ Biol Chem19912661489578962 – reference: Rodriguez-FernandezMRehbergMKremlingABangaJRSimultaneous model discrimination and parameter estimation in dynamic models of cellular systemsBMC Syst Biol2013717610.1186/1752-0509-7-76 – volume: 36 start-page: 157 issue: 2 year: 1995 ident: 440_CR48 publication-title: Biosystems doi: 10.1016/0303-2647(95)01534-R – volume: 98 start-page: 2215 issue: 10 year: 2010 ident: 440_CR15 publication-title: Biophys J doi: 10.1016/j.bpj.2010.02.002 – volume: 266 start-page: 8957 issue: 14 year: 1991 ident: 440_CR14 publication-title: J Biol Chem doi: 10.1016/S0021-9258(18)31537-0 – volume: 84 start-page: 747 issue: 5 year: 2000 ident: 440_CR18 publication-title: Thromb Haemost – volume: 38 start-page: 41 issue: 1 year: 2008 ident: 440_CR8 publication-title: Transfus Apheresis Sci doi: 10.1016/j.transci.2007.12.007 – volume: 23 start-page: 17 issue: 1 year: 2003 ident: 440_CR33 publication-title: Arterioscler Thromb Vasc Biol doi: 10.1161/01.ATV.0000046238.23903.FC – volume: 7 start-page: 483 year: 2006 ident: 440_CR43 publication-title: BMC Bioinform doi: 10.1186/1471-2105-7-483 – volume-title: Genetic algorithms in search, optimization and machine learning year: 1989 ident: 440_CR17 – volume: 18 start-page: 637 issue: 7 year: 2007 ident: 440_CR62 publication-title: Blood Coagul Fibrinolysis doi: 10.1097/MBC.0b013e3282a167bb – volume: 11 start-page: 1342004 issue: 5 year: 2013 ident: 440_CR32 publication-title: J Bioinform Comput Biol doi: 10.1142/S0219720013420043 – volume: 5 start-page: 8493 year: 2015 ident: 440_CR63 publication-title: Sci Rep doi: 10.1038/srep08493 – start-page: 455 volume-title: Parallel problem solving from nature year: 1991 ident: 440_CR21 doi: 10.1007/BFb0029787 – volume: 260 start-page: 2119 issue: 4 year: 1985 ident: 440_CR53 publication-title: J Biol Chem doi: 10.1016/S0021-9258(18)89525-4 – volume: 24 start-page: 587 issue: 9 year: 2002 ident: 440_CR57 publication-title: Med Eng Phys doi: 10.1016/S1350-4533(02)00047-4 – volume: 269 start-page: 23,367 issue: 37 year: 1994 ident: 440_CR24 publication-title: J Biol Chem doi: 10.1016/S0021-9258(17)31662-9 – volume: 16 start-page: 8 year: 2016 ident: 440_CR42 publication-title: Epidemics doi: 10.1016/j.epidem.2016.03.003 – volume: 9 start-page: 112 issue: 1 year: 1998 ident: 440_CR29 publication-title: SIAM J Optim doi: 10.1137/S1052623496303470 – volume: 197 start-page: 2087 issue: 25–28 year: 2008 ident: 440_CR16 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2007.06.030 – volume: 84 start-page: 225 issue: 4 year: 1996 ident: 440_CR60 publication-title: Thromb Res doi: 10.1016/S0049-3848(96)00182-X – volume: 26 start-page: 323 issue: 4 year: 2009 ident: 440_CR11 publication-title: Math Med Biol doi: 10.1093/imammb/dqp011 – volume: 204 start-page: 167 issue: 2 year: 2006 ident: 440_CR54 publication-title: Math Biosci doi: 10.1016/j.mbs.2006.09.005 – volume: 273 start-page: 4378 issue: 8 year: 1998 ident: 440_CR3 publication-title: J Biol Chem doi: 10.1074/jbc.273.8.4378 – volume: 101 start-page: 276 issue: 2 year: 2011 ident: 440_CR25 publication-title: Biophys J doi: 10.1016/j.bpj.2011.05.056 – volume: 25 start-page: 123,014 issue: 12 year: 2009 ident: 440_CR13 publication-title: Inverse Prob doi: 10.1088/0266-5611/25/12/123014 – volume: 16 start-page: 20 year: 2010 ident: 440_CR49 publication-title: Haemophilia doi: 10.1111/j.1365-2516.2009.02127.x – ident: 440_CR51 doi: 10.1111/j.1538-7836.2011.04427.x – volume: 26 start-page: 341 issue: 4 year: 2004 ident: 440_CR40 publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2004.01.003 – volume: 13 start-page: 2467 issue: 11 year: 2003 ident: 440_CR35 publication-title: Genome Res doi: 10.1101/gr.1262503 – volume: 7 start-page: 76 issue: 1 year: 2013 ident: 440_CR45 publication-title: BMC Syst Biol doi: 10.1186/1752-0509-7-76 – volume: 81 start-page: 734 issue: 3 year: 1993 ident: 440_CR36 publication-title: Blood doi: 10.1182/blood.V81.3.734.734 – volume: 174 start-page: 1 issue: 1 year: 2001 ident: 440_CR34 publication-title: Math Biosci doi: 10.1016/S0025-5564(01)00079-7 – volume: 35 start-page: 233 issue: 2 year: 2005 ident: 440_CR47 publication-title: IEEE Trans Syst Man Cybern Part C Appl Rev doi: 10.1109/TSMCC.2004.841906 – volume: 84 start-page: 333 issue: 5 year: 1996 ident: 440_CR61 publication-title: Thromb Res doi: 10.1016/S0049-3848(96)00197-1 – volume: 267 start-page: 23652 issue: 33 year: 1992 ident: 440_CR30 publication-title: J Biol Chem doi: 10.1016/S0021-9258(18)35888-5 – volume: 98 start-page: 1751 issue: 9 year: 2010 ident: 440_CR38 publication-title: Biophys J doi: 10.1016/j.bpj.2010.01.027 – volume: 80 start-page: 1050 issue: 3 year: 2001 ident: 440_CR27 publication-title: Biophys J doi: 10.1016/S0006-3495(01)76085-7 – volume: 83 start-page: 248 issue: 2 year: 2006 ident: 440_CR44 publication-title: Biosystems doi: 10.1016/j.biosystems.2005.06.016 – volume-title: Physiologie de la coagulation year: 1995 ident: 440_CR1 – volume: 277 start-page: 18,322 issue: 21 year: 2002 ident: 440_CR20 publication-title: J Biol Chem doi: 10.1074/jbc.M201173200 – volume: 3 start-page: 4 issue: 1 year: 2006 ident: 440_CR39 publication-title: Theor Biol Med Model doi: 10.1186/1742-4682-3-4 – volume: 337 start-page: 30 year: 2013 ident: 440_CR52 publication-title: J Theor Biol doi: 10.1016/j.jtbi.2013.07.023 – volume: 16 start-page: 75 issue: S1 year: 2009 ident: 440_CR6 publication-title: Dyn Contin Discret I (Series A) – volume: 16 start-page: 20 issue: 1 year: 2011 ident: 440_CR50 publication-title: Haemophilia doi: 10.1111/j.1365-2516.2009.02127.x – volume: 98 start-page: 1723 issue: 9 year: 2010 ident: 440_CR59 publication-title: Biophys J doi: 10.1016/j.bpj.2009.12.4331 – volume: 35 start-page: 435 issue: 5 year: 2005 ident: 440_CR58 publication-title: Comput Biol Med doi: 10.1016/S0010-4825(04)00043-5 – volume: 86 start-page: 290 issue: 3 year: 2009 ident: 440_CR55 publication-title: Clin Pharmacol Therap doi: 10.1038/clpt.2009.87 – volume: 7 start-page: 813 year: 2006 ident: 440_CR23 publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm2030 – volume: 29 start-page: 70 issue: 2 year: 2005 ident: 440_CR41 publication-title: J Med Eng Technol doi: 10.1080/03091900410001709079 – volume: 6 start-page: e1000950 issue: 9 year: 2010 ident: 440_CR10 publication-title: PLOS Comput Biol doi: 10.1371/journal.pcbi.1000950 – ident: 440_CR22 – volume: 6 start-page: 125 issue: 1 year: 2008 ident: 440_CR12 publication-title: J Thromb Haemost doi: 10.1111/j.1538-7836.2007.02824.x – volume: 32 start-page: 249 issue: 5–6 year: 2003 ident: 440_CR19 publication-title: Pathophysiol Haemost Thromb – volume: 20 start-page: 105 issue: 1 year: 2003 ident: 440_CR9 publication-title: Math Med Biol doi: 10.1093/imammb/20.1.105 – volume: 90 start-page: 1489 issue: 5 year: 2006 ident: 440_CR37 publication-title: Biophys J doi: 10.1529/biophysj.105.069062 – volume: 5 start-page: 183 issue: 3–4 year: 2003 ident: 440_CR2 publication-title: J Theor Med doi: 10.1080/10273660412331317415 – volume: 3 start-page: 266 year: 2012 ident: 440_CR4 publication-title: Frontiers Physiol doi: 10.3389/fphys.2012.00266 – volume: 89 start-page: 227 issue: 5 year: 1998 ident: 440_CR26 publication-title: Thromb Res doi: 10.1016/S0049-3848(97)00288-0 – ident: 440_CR7 – volume: 180 start-page: 275 year: 2002 ident: 440_CR56 publication-title: Math Biosci doi: 10.1016/S0025-5564(02)00130-X – volume: 217 start-page: 5055 issue: 11 year: 2011 ident: 440_CR5 publication-title: Appl Math Comput doi: 10.1016/j.amc.2010.07.054 – volume: 4 start-page: 23 year: 2012 ident: 440_CR28 publication-title: Int J Struct Changes Solids – volume: 255 start-page: 274 issue: 1 year: 1980 ident: 440_CR46 publication-title: J Biol Chem doi: 10.1016/S0021-9258(19)86294-4 – volume: 3 start-page: e142 issue: 7 year: 2007 ident: 440_CR31 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.0030142 |
SSID | ssj0007939 |
Score | 2.254682 |
Snippet | The coagulation cascade comprises numerous chemical reactions between many proteins, that finally lead to the formation of a clot to stop bleeding. Many... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1989 |
SubjectTerms | Bleeding Calibration Cascade chemical reactions Cell Biology Computer simulation Genetic algorithms Life Sciences Mathematical and Computational Biology Mathematical models Mathematics Mathematics and Statistics Organic chemistry Original Article Parameters Patients Predictions Proteins Reaction kinetics Thrombin |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB58IOhBfFutsoInJZDsbpLmKFqpgl6s0FvYV1CoiTTtwbN_3NnNo4oP8JBLMtmEzMzOtzuZbwBOheSJzkzPk6GMPE619hLFhScFU4hQqRKOUujuPho88ttROKrruMvmb_cmJelm6nmxm3NOP8DDJiT5IiyHuHS3Zv1IL9rpFw2uwrwJujrGqyaV-dMQX4PRN4T5LTvqgs71BqzXaJFcVOrdhAWTb8FK1T_ybQvW7lrS1XIb3vstczcRuSa27EpWCiZFRm5y8vA8RsUT2_9sXNpzw6dJ8YJrY1KxTztR9xMB6X9i_idXYiqILUQhVdXSmxt_IMxL8Wo3ZBTB-cdu6JQ7MLzuDy8HXt1jwVMsplOPqwRBCtU9EQpGVeRnTIsgjAULLZcfhnPNuMx83wRMGYUL5ozyOI5USHtacLYLS3mRm30gifS10Qj4AsQ0GacyFJmSNNYqiTUXQQf85lunquYft20wxumcOdmqJ0X1pFY9Ke_AWXvLa0W-8Zdwt1FgWvthmVJEpBwNIvE7cNJeRg-yaRGRm2JmZSJL659w1oG9SvHt0zBY4wzXw8HPG0uYD_7rqxz8S_oQVqkzSWuZXViaTmbmCJHOVB47y_4AYfPz7Q priority: 102 providerName: Springer Nature |
Title | Evaluation and Calibration of In Silico Models of Thrombin Generation Using Experimental Data from Healthy and Haemophilic Subjects |
URI | https://link.springer.com/article/10.1007/s11538-018-0440-4 https://www.ncbi.nlm.nih.gov/pubmed/29948884 https://www.proquest.com/docview/2054493990 https://www.proquest.com/docview/2060875943 |
Volume | 80 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BKyR6QKW8FtrKSJxAkRLbeZ3QQrNdWLVCZSuWU-RHIpC2ybbZHnrmjzPjPLaooofEUuw4VmbsednfALxTWqa2LBJPhzryJLfWS41UnlbCoIbKjXKQQien0fRcfl2Ei87h1nTbKvs10S3UtjbkI0cjPZQyRXHqf1xdepQ1iqKrXQqNh7BN0GVkfMWLweAi7LdW_U1x1qPo6qOa7uicm-p-gBeFN-W_cumOsnknUOrkz2QXnnSKIxu3lH4KD4pqDx61qSRv9mDnZMBfbZ7Bn2wA8WaqsoxOYOmW1qwu2ZeKff-9RB5glApt2dCz-a-r-gLNZNYCUbumbj8By24lAWBHaq0YnUlh7QGmG9f_VBUX9Yp8M4bhUkS-neY5zCfZ_PPU69IteEbEfO1Jk6K-wm2iQiW4ifxSWBWEsRIhwfqhZLdC6tL3i0CYwqDtXHIZx5EJeWKVFC9gq6qr4hWwVPu2sKj7BajelJLrUJVG89iaNLZSBSPw-3-dmw6KnDJiLPMNiDKRJ0fy5ESeXI7g_fDKqsXhuK_xfk_AvJuSTb5hoBG8HapxMlGERFVFfU1tIkL4T6UYwcuW8MPXUG7jYpdg5x96Tth0_t-hvL5_KG_gMXc8SKy4D1vrq-viALWctT50rIz3ZHJ8CNvj45-zjMrZ2Y8Zlp-y029nWHvOx38BWl_-Gg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIgQcKiiv0AKLBBeQJXt3_TpUCNGEhDa9EKTerH1ZIKV2qFOhnPk9_MfOrGMHVNFbD77Y6_HK8-08dnZmAN4oLXNbuizQsU4Cya0NciNVoJUwaKFyo3xJoelJMv4mv5zGp1vwp8uFoWOVnUz0gtrWhvbI0UmPpcxRnYYfFj8D6hpF0dWuhUYLiyO3-oUuW3MwOUT-vuV8NJx9GgfrrgKBESlfBtLkqJa5zVSsBDdJWAqrojhVIqbqdajArJC6DEMXCeMMuogll2mamJhnVkmBZG_BbSlETicIs9HnXvAj1FtrO0chg5qyC6L6TD0vWcIIL4qmyn_V4BXb9kpc1qu70QPYWdup7GMLrIew5apduNN2rlztwv1pX-61eQS_h33NcKYqyyjhS7fQYnXJJhX7-mOOkGPUeW3e0L3Z9_P6DL1y1ta99kP98QU2_KvnADtUS8UoBYa1-VIrT3-s3Fm9oK0gw1Dy0VZS8xhmN8GHJ7Bd1ZV7BizXoXUWTc0IralSch2r0mieWpOnVqpoAGH3rwuzrnxODTjmxaZmM7GnQPYUxJ5CDuBd_8qiLftx3eD9joHFWgI0xQavA3jdP8a1SwEZVbn6gsYk1FAgl2IAT1vG919DMwFla4bE33dI2BD_71SeXz-VV3B3PJseF8eTk6M9uMc9HgmW-7C9PL9wL9DAWuqXHtYMihteRpe0ezI3 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT5xAEJ-0Nm3ah0bt17Vqt0mf2hBhd4Hj0ehdTqvGpGfiG9kv0iYnXAQffO4_3hkWOI21iQ-8wDIQZnbmt8zObwC-Ki0zW7hxoGOdBJJbG2RGqkArYRChcqNaSqGT02R2Lo8u4ouuz2nd73bvU5K-poFYmspmd2mL3VXhWztRwwgPSk7Kp_AMvXFEe7rO-d7gitH4PP7NcNpj7OrTmv8ScTcw3UOb9zKlbQCarsPrDjmyPa_qDXjiyk147ntJ3mzCq5OBgLV-A38mA4s3U6VlVIKlvbJZVbDDkv38vUAjYNQLbVHTufmvq-oS18nMM1G3Q9sNBWxyqwsAO1CNYlSUwnwF000rf6bcZbWknzOGoS-inzv1W5hPJ_P9WdD1WwiMSHkTSJMhYOF2rGIluEnCQlgVxakSMfH6YWi3QuoiDF0kjDO4eC64TNPExHxslRTvYK2sSvcBWKZD6yyCvwjxTSG5jlVhNE-tyVIrVTSCsP_Wuem4yKklxiJfsSiTenJUT07qyeUIvg23LD0Rx_8Gb_UKzLs5Wecc0alEg8jCEXwZLuNsohSJKl11TWMSovjPpBjBe6_44WkYuNHbjVH4994SVsIffJWPjxr9GV6cHUzz48PTH5_gJW-tk4x0C9aaq2u3jQCo0Tutkf8FSFD7HA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+and+Calibration+of+In+Silico+Models+of+Thrombin+Generation+Using+Experimental+Data+from+Healthy+and+Haemophilic+Subjects&rft.jtitle=Bulletin+of+mathematical+biology&rft.au=Chelle%2C+Pierre&rft.au=Morin%2C+Claire&rft.au=Montmartin%2C+Aur%C3%A9lie&rft.au=Piot%2C+Mich%C3%A8le&rft.date=2018-08-01&rft.pub=Springer+Nature+B.V&rft.issn=0092-8240&rft.eissn=1522-9602&rft.volume=80&rft.issue=8&rft.spage=1989&rft.epage=2025&rft_id=info:doi/10.1007%2Fs11538-018-0440-4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8240&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8240&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8240&client=summon |