Application of multiresolution analysis for automated detection of brain abnormality using MR images: A comparative study
Neurological disorders are abnormalities related to the human nervous system, and comprise electrical, biochemical, or structural changes in the spinal cord, brain, or central nervous system that induce various symptoms. These symptoms may be in the form of muscle weakness, paralysis, and poor coord...
Saved in:
Published in | Future generation computer systems Vol. 90; pp. 359 - 367 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.01.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Neurological disorders are abnormalities related to the human nervous system, and comprise electrical, biochemical, or structural changes in the spinal cord, brain, or central nervous system that induce various symptoms. These symptoms may be in the form of muscle weakness, paralysis, and poor coordination, among other factors. Early diagnosis of these changes is important for treatment, to limit disease progression. Magnetic resonance (MR) imaging is a widely used modality for diagnosing brain abnormality. Expert reading and interpretation of MR images is time-consuming, tedious, and subject to interobserver variability. Hence, various automated computer aided diagnosis (CAD) tools have been developed to detect brain abnormalities from MR imaging. Multiresolution analysis involves the transformation of images to capture obscure signatures. In this paper, we compare the performance of three different multi-resolution analysis techniques – the discrete wavelet transform, curvelet transform and shearlet transform – for detecting brain abnormality. Further, textural features extracted from the transformed image are optimally selected using particle swarm optimization (PSO), and classified using a support vector machine (SVM). The proposed method is applied on 83 control images, as well as 529 abnormal images from patients with cerebrovascular, neoplastic, degenerative and inflammatory diseases. For quantitative analysis, a cross validation scheme is implemented to improve system generality. Among the three techniques, the shearlet transform achieves a highest classification accuracy of 97.38% using only fifteen optimally selected features. The proposed system requires testing on a large data set prior to implementation as a standalone system to assist neurologists and radiologists in the early detection of brain abnormality.
•Classification of normal and abnormal brain MR images is proposed.•Comparative study based on multiresolution image analysis is employed.•Wavelet, curvelet and shearlet transform based techniques are used.•Harvard Medical School data set of 612 MR images.•Achieved an average accuracy of 97.38% with PSO–SVM model. |
---|---|
AbstractList | Neurological disorders are abnormalities related to the human nervous system, and comprise electrical, biochemical, or structural changes in the spinal cord, brain, or central nervous system that induce various symptoms. These symptoms may be in the form of muscle weakness, paralysis, and poor coordination, among other factors. Early diagnosis of these changes is important for treatment, to limit disease progression. Magnetic resonance (MR) imaging is a widely used modality for diagnosing brain abnormality. Expert reading and interpretation of MR images is time-consuming, tedious, and subject to interobserver variability. Hence, various automated computer aided diagnosis (CAD) tools have been developed to detect brain abnormalities from MR imaging. Multiresolution analysis involves the transformation of images to capture obscure signatures. In this paper, we compare the performance of three different multi-resolution analysis techniques – the discrete wavelet transform, curvelet transform and shearlet transform – for detecting brain abnormality. Further, textural features extracted from the transformed image are optimally selected using particle swarm optimization (PSO), and classified using a support vector machine (SVM). The proposed method is applied on 83 control images, as well as 529 abnormal images from patients with cerebrovascular, neoplastic, degenerative and inflammatory diseases. For quantitative analysis, a cross validation scheme is implemented to improve system generality. Among the three techniques, the shearlet transform achieves a highest classification accuracy of 97.38% using only fifteen optimally selected features. The proposed system requires testing on a large data set prior to implementation as a standalone system to assist neurologists and radiologists in the early detection of brain abnormality.
•Classification of normal and abnormal brain MR images is proposed.•Comparative study based on multiresolution image analysis is employed.•Wavelet, curvelet and shearlet transform based techniques are used.•Harvard Medical School data set of 612 MR images.•Achieved an average accuracy of 97.38% with PSO–SVM model. |
Author | Raghavendra, U. Acharya, U. Rajendra Ciaccio, Edward J. San, Tan Ru Gudigar, Anjan |
Author_xml | – sequence: 1 givenname: Anjan surname: Gudigar fullname: Gudigar, Anjan organization: Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India – sequence: 2 givenname: U. surname: Raghavendra fullname: Raghavendra, U. email: raghavendra.u@manipal.edu organization: Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India – sequence: 3 givenname: Tan Ru orcidid: 0000-0003-2086-6517 surname: San fullname: San, Tan Ru organization: National Heart Centre Singapore, Singapore – sequence: 4 givenname: Edward J. surname: Ciaccio fullname: Ciaccio, Edward J. organization: Department of Medicine, Columbia University, USA – sequence: 5 givenname: U. Rajendra surname: Acharya fullname: Acharya, U. Rajendra organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Clementi 599489, Singapore |
BookMark | eNqFkN9KwzAUxoNMcJu-gRd5gdakXZtsF8IY_gNFEAXvQpqejIy2KUk66NubbXrjhcKBA4fvd875vhmadLYDhK4pSSmh5c0u1UMYHKQZoTwlsQg_Q1PKWZYwSosJmkYZS1i-_LxAM-93hBDKcjpF47rvG6NkMLbDVuN2aIJx4G0zHEeyk83ojcfaOiyHYFsZoMY1BFA_TOWkicqqs66VjQkjHrzptvjlDZtWbsGv8Bor2_bSxTt7wD4M9XiJzrVsPFx99zn6uL973zwmz68PT5v1c6JyloVkoShjmpekYFDKEpa8zslC10teMgZVDppWVNWlLsuM07ySSgNwKoksaJERks_R6rRXOeu9Ay2UCUe_If7dCErEIUSxE6cQxSFEQWIRHuHFL7h30ZMb_8NuTxhEY3sDTnhloFNQx2xVELU1fy_4AjqZlDQ |
CitedBy_id | crossref_primary_10_1007_s13735_019_00174_x crossref_primary_10_1007_s13246_021_01083_2 crossref_primary_10_1016_j_bspc_2024_107184 crossref_primary_10_3390_ijerph181910003 crossref_primary_10_1016_j_compbiomed_2019_03_017 crossref_primary_10_1007_s10489_022_03252_6 crossref_primary_10_1016_j_cmpb_2021_106450 crossref_primary_10_1155_2022_3264367 crossref_primary_10_36548__jscp_2022_3_005 crossref_primary_10_1016_j_bspc_2023_104675 crossref_primary_10_1109_ACCESS_2022_3179376 crossref_primary_10_1142_S0218348X23401023 crossref_primary_10_1016_j_bbe_2020_08_009 crossref_primary_10_1109_ACCESS_2020_3042594 crossref_primary_10_1109_ACCESS_2024_3504830 crossref_primary_10_1007_s11042_020_10434_2 crossref_primary_10_1016_j_health_2024_100336 crossref_primary_10_1016_j_compmedimag_2019_101656 crossref_primary_10_1007_s11571_020_09655_w crossref_primary_10_1016_j_cogsys_2018_12_007 crossref_primary_10_1007_s10278_023_00789_x crossref_primary_10_1016_j_cmpb_2019_05_015 crossref_primary_10_32604_cmc_2024_046461 crossref_primary_10_1007_s11042_020_09676_x crossref_primary_10_1007_s11042_023_16637_7 crossref_primary_10_1016_j_bspc_2021_103448 crossref_primary_10_1016_j_infrared_2019_103041 crossref_primary_10_54033_cadpedv21n9_025 crossref_primary_10_1186_s12938_024_01250_y crossref_primary_10_3390_diagnostics13050859 crossref_primary_10_1016_j_patrec_2020_04_018 crossref_primary_10_1007_s11042_020_09306_6 crossref_primary_10_1007_s11042_021_11098_2 crossref_primary_10_1007_s41870_024_01782_5 crossref_primary_10_1016_j_cmpb_2019_06_018 crossref_primary_10_1016_j_artmed_2019_07_006 crossref_primary_10_1590_1678_4324_2021200217 crossref_primary_10_2139_ssrn_4624936 crossref_primary_10_1016_j_jocs_2020_101103 crossref_primary_10_1016_j_cmpb_2019_105134 crossref_primary_10_1109_TNSRE_2020_3022715 crossref_primary_10_32604_cmc_2022_030923 crossref_primary_10_1007_s11042_024_20386_6 crossref_primary_10_1007_s13246_023_01225_8 crossref_primary_10_1016_j_csbj_2022_08_039 crossref_primary_10_1109_ACCESS_2019_2901055 crossref_primary_10_3390_app10103429 crossref_primary_10_1016_j_compbiomed_2023_107063 crossref_primary_10_1016_j_inffus_2022_12_019 crossref_primary_10_1111_exsy_12957 crossref_primary_10_1016_j_compmedimag_2019_101673 crossref_primary_10_1007_s10916_019_1428_9 crossref_primary_10_1007_s13534_019_00103_1 crossref_primary_10_1002_ima_22820 crossref_primary_10_36548_jscp_2022_3_005 crossref_primary_10_3390_cancers15164172 crossref_primary_10_1016_j_bspc_2020_101860 crossref_primary_10_1016_j_cmpb_2019_03_003 crossref_primary_10_1016_j_cmpb_2019_105205 crossref_primary_10_1007_s10278_023_00889_8 crossref_primary_10_1007_s10916_019_1228_2 crossref_primary_10_1109_ACCESS_2020_2989193 crossref_primary_10_3390_s21092998 crossref_primary_10_1007_s12652_019_01386_z crossref_primary_10_1016_j_knosys_2024_111981 crossref_primary_10_1016_j_iot_2022_100645 |
Cites_doi | 10.1117/12.613494 10.1002/ima.22132 10.3390/app6060169 10.2174/1871527315666161024142036 10.1016/j.compbiomed.2018.06.002 10.1016/S0895-7177(02)00238-8 10.1007/s11042-016-4171-y 10.1016/j.ins.2017.08.050 10.1016/j.compbiomed.2017.10.001 10.1016/j.compbiomed.2017.08.022 10.1016/j.ins.2018.01.051 10.1016/j.neucom.2015.11.034 10.1016/j.knosys.2017.06.026 10.1007/s00521-017-2839-5 10.1016/j.acha.2008.10.004 10.1016/j.patrec.2013.08.017 10.1090/S0002-9947-08-04700-4 10.1007/s11517-014-1180-8 10.1137/05064182X 10.2528/PIER13010105 10.1016/j.bspc.2006.05.002 10.1016/j.dsp.2009.07.002 10.1016/0167-8655(90)90112-F 10.1016/S0146-664X(75)80008-6 10.3390/e17041795 10.1016/j.bspc.2006.12.001 10.1016/j.jfranklin.2008.08.006 10.2528/PIER15040602 10.1016/j.compbiomed.2016.10.022 10.1016/j.future.2018.03.023 10.1016/j.compbiomed.2016.04.009 10.1109/ICNN.1995.488968 10.1016/S0734-189X(87)80186-X 10.1016/j.procs.2018.01.117 10.1109/83.725367 10.1109/TSMC.1973.4309314 10.1016/j.eswa.2011.02.012 10.1016/0734-189X(85)90125-2 10.1109/36.752194 10.1002/j.1538-7305.1948.tb00917.x 10.1016/j.asoc.2007.10.007 10.1515/bmt-2015-0152 10.1016/j.compbiomed.2017.12.023 10.1142/S0218488504003089 10.1016/0167-8655(91)80014-2 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. |
Copyright_xml | – notice: 2018 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.future.2018.08.008 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-7115 |
EndPage | 367 |
ExternalDocumentID | 10_1016_j_future_2018_08_008 S0167739X18314560 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W KOM LG9 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SES SEW SPC SPCBC SSV SSZ T5K UHS WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c372t-4c177f86057e6a6e98d304fd98677eb3ef1b1cd6f662813bacfee81a0a5152003 |
IEDL.DBID | .~1 |
ISSN | 0167-739X |
IngestDate | Thu Apr 24 23:02:22 EDT 2025 Tue Jul 01 01:42:37 EDT 2025 Fri Feb 23 02:45:50 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Shearlet transform Brain MR images Support vector machine Particle swarm optimization Texture features Classification |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-4c177f86057e6a6e98d304fd98677eb3ef1b1cd6f662813bacfee81a0a5152003 |
ORCID | 0000-0003-2086-6517 |
PageCount | 9 |
ParticipantIDs | crossref_citationtrail_10_1016_j_future_2018_08_008 crossref_primary_10_1016_j_future_2018_08_008 elsevier_sciencedirect_doi_10_1016_j_future_2018_08_008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2019 2019-01-00 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – month: 01 year: 2019 text: January 2019 |
PublicationDecade | 2010 |
PublicationTitle | Future generation computer systems |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Maitra, Chatterjee (b15) 2006; 1 D. Labate, W.Q. Lim, G. Kutyniok, G. Weiss, Sparse multidimensional representation using shearlets, in: International Society for Optics and Photonics in Curvelet, Directional, and Sparse Representations I 5914, Wavelets XI, 2005, p. 59140U. Khalila, Ayada, Adib (b10) 2018; 127 Kapur, Sahoo, Wong (b32) 1985; 29 Burges (b47) 1998 El-Dahshan, Honsy, Salem (b3) 2010; 20 Wang, Zhang, Dong, Du, Ji, Yan, Yang, Wang, Feng, Phillips (b6) 2015; 25 Mookiah, Rajendra Acharya, Koh, Chua, Tan, Chandran, Lim, Noronha, Laude, Tong (b20) 2014; 52 Acharya, Fujita, Sudarshan, Oh, Adam, Tan, Koo, Jain, Lim, Chua (b24) 2017; 132 Y. Shi, R. Eberhart, A modified particle swarm optimizer, in: Proceedings of IEEE International CEC, 1998, pp. 69–73. Raghavendra, Fujita, Bhandary, Gudigar, Hong, Rajendra Acharya (b52) 2018; 441 Haralick, Shanmugam, Dinstein (b36) 1973; 3 Harvard Medical School Data Westbrook (b1) 2014 Oh, Ng, Tan, Rajendra Acharya (b55) 2018 Kutyniok, Labate (b51) 2009; 361 Nayak, Dash, Majhi (b11) 2018; 77 Tang (b38) 1998; 7 Durak (b25) 2009; 346 . Kennedy, Eberhart (b42) 1995; 4 Nayak, Dash, Majhi (b9) 2017; 16 Hu, Yu (b35) 2004; 12 Chaplot, Patnaik, Jagannathan (b2) 2006 Zhang, Dong, Liu, Wang, Ji, Zhang, Yang (b12) 2015; 5 Galloway (b39) 1975; 4 Kutyniok, Labate (b29) 2012 Starck, Candès, Donoho (b27) 2002; 11 Renyi (b33) 1961; vol. 1 Pizer, Amburn, Austin, Cromartie, Geselowitz, Greer, Ter Haar Romeny, Zimmerman, Zuiderveld (b48) 1987; 39 Candès, Laurent, Donoho, Ying (b28) 2006; 5 Shannon (b34) 1948; 27 Rajendra Acharya, Oh, Hagiwara, Tan, Adam, Gertych, Tan (b57) 2017; 89 Wang, Phillips, Yang, Sun, Zhang (b7) 2016; 61 Gitta Kutyniok, Morteza Shahram, Xiaosheng Zhuang, SHEARLAB: A Rational Design of A Digital Parabolic Scaling Algorithm. Tan, Fujita, Sivaprasad, Bhandary, Krishna Rao, Chua, Rajendra Acharya (b54) 2017; 420 Soh, Tsatsoulis (b37) 1999; 37 Acharya, Raghavendra, Fujita, Hagiwara, Koh, Jen Hong, Sudarshan, Vijayananthan, Yeong, Gudigar, Ng (b22) 2016; 79 Rajendra Acharya, Mookiah, Jen Hong Tan, Noronha, Bhandary, Krishna Rao, Hagiwara, Chua (b21) 2016; 73 Acharya, Ng, Rahmat, Sudarshan, Koh, Tan, Hagiwara, Gertych, Fadzli, Yeong, Ng (b23) 2017; 91 Dasarathy, Holder (b41) 1991; 12 Zhang, Wang, Dong, Phillip, Ji, Yang (b17) 2015; 152 Wang, Lu, Dong, Yang, Yang, Zhang (b13) 2016; 6 Huang, Dun (b45) 2008; 8 Chu, Sehgal, Greenleaf (b40) 1990; 11 Schmeelk (b26) 2002; 36 Raghavendra, Shyamasunder Bhat, Gudigar, Rajendra Acharya (b53) 2018; 85 Nayak, Dash, Majhi (b8) 2016; 177 Zhang, Dong, Wu, Wang (b4) 2011; 38 Tan, Hagiwara, Pang, Lim, Oh, Adam, Tan, Chen, Rajendra Acharya (b56) 2018; 94 Zhang, Wang, Ji, Dong (b16) 2013; 2013 Zhang, Dong, Wang, Ji, Yang (b5) 2015; 17 Kecman (b46) 2001 Das, Chowdhury, Kundu (b14) 2013; 137 Guo, Labate, Lim (b50) 2009; 27 Saritha, Joseph, Mathew (b18) 2013; 34 Lim (b49) 2010; 19 Raghavendra, Rajendra Acharya, Gudigar, Shetty, Krishnananda, Pai, Samanth, Nayak (b44) 2017; 28 Galloway (10.1016/j.future.2018.08.008_b39) 1975; 4 Wang (10.1016/j.future.2018.08.008_b13) 2016; 6 Kutyniok (10.1016/j.future.2018.08.008_b29) 2012 Nayak (10.1016/j.future.2018.08.008_b8) 2016; 177 Zhang (10.1016/j.future.2018.08.008_b17) 2015; 152 Pizer (10.1016/j.future.2018.08.008_b48) 1987; 39 Acharya (10.1016/j.future.2018.08.008_b24) 2017; 132 Dasarathy (10.1016/j.future.2018.08.008_b41) 1991; 12 Rajendra Acharya (10.1016/j.future.2018.08.008_b21) 2016; 73 Acharya (10.1016/j.future.2018.08.008_b22) 2016; 79 Oh (10.1016/j.future.2018.08.008_b55) 2018 Raghavendra (10.1016/j.future.2018.08.008_b53) 2018; 85 Haralick (10.1016/j.future.2018.08.008_b36) 1973; 3 Wang (10.1016/j.future.2018.08.008_b7) 2016; 61 Zhang (10.1016/j.future.2018.08.008_b12) 2015; 5 Raghavendra (10.1016/j.future.2018.08.008_b44) 2017; 28 Khalila (10.1016/j.future.2018.08.008_b10) 2018; 127 Raghavendra (10.1016/j.future.2018.08.008_b52) 2018; 441 Candès (10.1016/j.future.2018.08.008_b28) 2006; 5 Guo (10.1016/j.future.2018.08.008_b50) 2009; 27 Durak (10.1016/j.future.2018.08.008_b25) 2009; 346 Zhang (10.1016/j.future.2018.08.008_b4) 2011; 38 Saritha (10.1016/j.future.2018.08.008_b18) 2013; 34 Kapur (10.1016/j.future.2018.08.008_b32) 1985; 29 10.1016/j.future.2018.08.008_b30 10.1016/j.future.2018.08.008_b31 Zhang (10.1016/j.future.2018.08.008_b16) 2013; 2013 Chaplot (10.1016/j.future.2018.08.008_b2) 2006 Das (10.1016/j.future.2018.08.008_b14) 2013; 137 Maitra (10.1016/j.future.2018.08.008_b15) 2006; 1 Schmeelk (10.1016/j.future.2018.08.008_b26) 2002; 36 Soh (10.1016/j.future.2018.08.008_b37) 1999; 37 Kutyniok (10.1016/j.future.2018.08.008_b51) 2009; 361 Nayak (10.1016/j.future.2018.08.008_b11) 2018; 77 Tang (10.1016/j.future.2018.08.008_b38) 1998; 7 Burges (10.1016/j.future.2018.08.008_b47) 1998 Mookiah (10.1016/j.future.2018.08.008_b20) 2014; 52 Kecman (10.1016/j.future.2018.08.008_b46) 2001 Tan (10.1016/j.future.2018.08.008_b56) 2018; 94 Zhang (10.1016/j.future.2018.08.008_b5) 2015; 17 Renyi (10.1016/j.future.2018.08.008_b33) 1961; vol. 1 10.1016/j.future.2018.08.008_b43 Tan (10.1016/j.future.2018.08.008_b54) 2017; 420 Lim (10.1016/j.future.2018.08.008_b49) 2010; 19 Wang (10.1016/j.future.2018.08.008_b6) 2015; 25 Nayak (10.1016/j.future.2018.08.008_b9) 2017; 16 Shannon (10.1016/j.future.2018.08.008_b34) 1948; 27 Kennedy (10.1016/j.future.2018.08.008_b42) 1995; 4 Rajendra Acharya (10.1016/j.future.2018.08.008_b57) 2017; 89 El-Dahshan (10.1016/j.future.2018.08.008_b3) 2010; 20 Chu (10.1016/j.future.2018.08.008_b40) 1990; 11 Acharya (10.1016/j.future.2018.08.008_b23) 2017; 91 Hu (10.1016/j.future.2018.08.008_b35) 2004; 12 Starck (10.1016/j.future.2018.08.008_b27) 2002; 11 Huang (10.1016/j.future.2018.08.008_b45) 2008; 8 Westbrook (10.1016/j.future.2018.08.008_b1) 2014 10.1016/j.future.2018.08.008_b19 |
References_xml | – year: 2012 ident: b29 article-title: Introduction to Shearlets. Shearlets: Multiscale Analysis for Multivariate Data – start-page: 121 year: 1998 end-page: 167 ident: b47 article-title: A Tutorial on Support Vector Machines for Pattern Recognition Data Min Knowl Discov, 2 – year: 2018 ident: b55 article-title: Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats publication-title: Comput. Biol. Med. – start-page: 86 year: 2006 end-page: 92 ident: b2 article-title: Classification of magnetic resonance brain images using wavelets as input to support vector machine and neural network publication-title: Biomed. Signal Process. Control – volume: 34 start-page: 2151 year: 2013 end-page: 2156 ident: b18 article-title: Classification of MRI brain images using combined wavelet entropy based spider web plots and probabilistic neural network publication-title: Pattern Recognit. Lett. – volume: 73 start-page: 131 year: 2016 end-page: 140 ident: b21 article-title: Augustinus Laude Novel risk index for the identification of age-related macular degeneration using radon transform and DWT features publication-title: Comput. Biol. Med. – volume: 152 start-page: 41 year: 2015 end-page: 58 ident: b17 article-title: Pathological brain detection in magnetic resonance imaging scanning by wavelet entropy and hybridization of biogeography-based optimization and particle swarm optimization publication-title: Prog. Electromagn. Res. – volume: 94 start-page: 19 year: 2018 end-page: 26 ident: b56 article-title: Application of stacked convolutional and long short-term memory network for accurate identification of CAD ECG signals publication-title: Comput. Biol. Med. – reference: Gitta Kutyniok, Morteza Shahram, Xiaosheng Zhuang, SHEARLAB: A Rational Design of A Digital Parabolic Scaling Algorithm. – volume: 4 start-page: 1942 year: 1995 end-page: 1948 ident: b42 article-title: Particle swarm optimization publication-title: Proc. IEEE Int. Conf. Neural. Netw. – volume: 91 start-page: 13 year: 2017 end-page: 20 ident: b23 article-title: Shear wave elastography for characterization of breast lesions: Shearlet transform and local binary pattern histogram techniques publication-title: Comput. Biol. Med. – volume: 29 start-page: 273 year: 1985 end-page: 285 ident: b32 article-title: A new method for gray-level picture thresholding using the entropy of the histogram publication-title: Comput. Vis. Graph. Image Process. – volume: 420 start-page: 66 year: 2017 end-page: 76 ident: b54 article-title: Automated segmentation of exudates, haemorrhages, microaneurysms using single convolutional neural network publication-title: Inform. Sci. – volume: 137 start-page: 1 year: 2013 end-page: 17 ident: b14 article-title: Brain MR image classification using multiscale geometric analysis of ripplet publication-title: Prog. Electromagn. Res. – volume: 28 start-page: 2869 year: 2017 end-page: 2878 ident: b44 article-title: Automated screening of congestive heart failure using variational mode decomposition and texture features extracted from ultrasound images publication-title: Neural Comput. Appl. – volume: 17 start-page: 1795 year: 2015 end-page: 1813 ident: b5 article-title: Preclinical diagnosis of magnetic resonance (MR) brain images via discrete wavelet packet transform with Tsallis entropy and generalized eigen value proximal support vector machine (GEPSVM) publication-title: Entropy – volume: 5 start-page: 1395 year: 2015 end-page: 1403 ident: b12 article-title: Magnetic resonance brain image classification via stationary wavelet transform and generalized eigenvalue proximal support vector machine publication-title: J. Med. Imag. Health Inf. – reference: Y. Shi, R. Eberhart, A modified particle swarm optimizer, in: Proceedings of IEEE International CEC, 1998, pp. 69–73. – volume: 19 year: 2010 ident: b49 article-title: The discrete shearlet transform: a new directional transform and compactly supported shearlet frames publication-title: IEEE Trans. Image Process. – volume: 38 start-page: 10049 year: 2011 end-page: 10053 ident: b4 article-title: A hybrid method for MRI brain image classification publication-title: Expert Syst. Appl. – volume: 7 start-page: 1602 year: 1998 end-page: 1609 ident: b38 article-title: Texture information in run-length matrices publication-title: IEEE Trans. Image Process. – volume: 25 start-page: 153 year: 2015 end-page: 164 ident: b6 article-title: Feed-forward neural network optimized by hybridization of pso and abc for abnormal brain detection publication-title: Int. J. Imaging Syst. Technol. – volume: 361 start-page: 2719 year: 2009 end-page: 2754 ident: b51 article-title: Resolution of the wavefront set using continuous shearlets publication-title: Trans. Amer. Math. Soc. – volume: 177 start-page: 188 year: 2016 end-page: 197 ident: b8 article-title: Brain MR image classification using two-dimensional discrete wavelet transform and AdaBoost with random forests publication-title: Neurocomputing – volume: 16 start-page: 137 year: 2017 end-page: 149 ident: b9 article-title: Stationary wavelet transform and adaboost with SVM based pathological brain detection in MRI scanning publication-title: CNS Neurol. Disord. Drug Targets – volume: 36 start-page: 939 year: 2002 end-page: 948 ident: b26 article-title: Wavelet transforms on two-dimensional images publication-title: Math. Comput. Modelling – volume: 77 start-page: 3833 year: 2018 end-page: 3856 ident: b11 article-title: Pathological brain detection using curvelet features and least squares SVM publication-title: Multimed. Tools Appl. – volume: 2013 start-page: 1 year: 2013 end-page: 9 ident: b16 article-title: An MR brain images classifier system via particle swarm optimization and kernel support vector machine publication-title: Sci. World J. – volume: 37 start-page: 780 year: 1999 end-page: 795 ident: b37 article-title: Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 132 start-page: 156 year: 2017 end-page: 166 ident: b24 article-title: Automated characterization of coronary artery disease, myocardial infarction, and congestive heart failure using contourlet and shearlet transforms of electrocardiogram signal publication-title: Knowl.-Based Syst. – volume: 441 start-page: 41 year: 2018 end-page: 49 ident: b52 article-title: Deep convolution neural network for accurate diagnosis of glaucoma using digital fundus images publication-title: Inform. Sci. – volume: 61 start-page: 431 year: 2016 end-page: 441 ident: b7 article-title: Magnetic resonance brain classification by a novel binary particle swarm optimization with mutation and time-varying acceleration coefficients publication-title: Biomed. Eng. Biomed. Tech. – volume: 12 start-page: 575 year: 2004 end-page: 589 ident: b35 article-title: Entropies of fuzzy indiscernibility relation and its operations publication-title: Internat. J. Uncertain. Fuzziness Knowledge-Based Systems – volume: 20 start-page: 433 year: 2010 end-page: 441 ident: b3 article-title: Hybrid intelligent techniques for MRI brain images classification publication-title: Digit. Signal Process. – volume: 1 start-page: 299 year: 2006 end-page: 306 ident: b15 article-title: A Slantlet transform based intelligent system for magnetic resonance brain image classification publication-title: Biomed. Signal Process. Control – volume: 12 start-page: 497 year: 1991 end-page: 502 ident: b41 article-title: Image characterizations based on joint gray-level run-length distributions publication-title: Pattern Recognit. Lett. – volume: 8 start-page: 1381 year: 2008 end-page: 1391 ident: b45 article-title: A distributed PSO–SVM hybrid system with feature selection and parameter optimization publication-title: Appl. Soft Comput. – volume: 27 start-page: 623 year: 1948 end-page: 656 ident: b34 article-title: A mathematical theory of communication publication-title: Bell. Syst. Tech. J. – volume: 3 start-page: 610 year: 1973 end-page: 621 ident: b36 article-title: Textural features for image classification publication-title: IEEE Trans. Syst. Man Cybern. – volume: 85 start-page: 184 year: 2018 end-page: 189 ident: b53 article-title: Automated system for the detection of thoracolumbar fractures using a CNN architecture publication-title: Future Gener. Comput. Syst. – volume: 127 start-page: 218 year: 2018 end-page: 225 ident: b10 article-title: Performance evaluation of feature extraction techniques in MR-Brain image classification system publication-title: Proc. Comput. Sci. – reference: Harvard Medical School Data, – year: 2014 ident: b1 article-title: Handbook of MRI Technique – volume: 11 start-page: 415 year: 1990 end-page: 420 ident: b40 article-title: Use of gray value distribution of run lengths for texture analysis publication-title: Pattern Recognit. Lett. – volume: 39 start-page: 355 year: 1987 end-page: 368 ident: b48 article-title: Adaptive histogram equalization and its variations publication-title: Comput. Vis. Graph Image process. – volume: 346 start-page: 136 year: 2009 end-page: 146 ident: b25 article-title: Shift-invariance of short-time fourier transform in fractional fourier domains publication-title: J. Franklin Inst. B – volume: 6 start-page: 169 year: 2016 ident: b13 article-title: Dual-tree complex wavelet transform and twin support vector machine for pathological brain detection publication-title: Appl. Sci. – volume: 27 start-page: 24 year: 2009 end-page: 46 ident: b50 article-title: Edge analysis and identification using the continuous shearlet transform publication-title: Appl. Comput. Harmon. Anal. – volume: 11 year: 2002 ident: b27 article-title: The curvelet transform for image denoising publication-title: IEEE Trans. Image Process. – volume: 89 start-page: 389 year: 2017 end-page: 396 ident: b57 article-title: A deep convolutional neural network model to classify heartbeats publication-title: Comput. Biol. Med. – reference: . – volume: vol. 1 start-page: 547 year: 1961 end-page: 561 ident: b33 article-title: On measures of entropy and information publication-title: Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability – volume: 52 start-page: 781 year: 2014 end-page: 796 ident: b20 article-title: Decision support system for age-related macular degeneration using discrete wavelet transform publication-title: Med. Biol. Eng. Comput. – volume: 79 start-page: 250 year: 2016 end-page: 258 ident: b22 article-title: Automated characterization of fatty liver disease and cirrhosis using curvelet transform and entropy features extracted from ultrasound images publication-title: Comput. Biol. Med. – volume: 5 start-page: 861 year: 2006 end-page: 899 ident: b28 article-title: Fast discrete curvelet transform publication-title: Multiscale Model. Simul. – reference: D. Labate, W.Q. Lim, G. Kutyniok, G. Weiss, Sparse multidimensional representation using shearlets, in: International Society for Optics and Photonics in Curvelet, Directional, and Sparse Representations I 5914, Wavelets XI, 2005, p. 59140U. – year: 2001 ident: b46 article-title: Learning and Soft Computing – volume: 4 start-page: 172 year: 1975 end-page: 179 ident: b39 article-title: Texture analysis using gray level run lengths publication-title: Comput. Graph. Image Process. – ident: 10.1016/j.future.2018.08.008_b30 doi: 10.1117/12.613494 – volume: 25 start-page: 153 issue: 2 year: 2015 ident: 10.1016/j.future.2018.08.008_b6 article-title: Feed-forward neural network optimized by hybridization of pso and abc for abnormal brain detection publication-title: Int. J. Imaging Syst. Technol. doi: 10.1002/ima.22132 – volume: 6 start-page: 169 year: 2016 ident: 10.1016/j.future.2018.08.008_b13 article-title: Dual-tree complex wavelet transform and twin support vector machine for pathological brain detection publication-title: Appl. Sci. doi: 10.3390/app6060169 – ident: 10.1016/j.future.2018.08.008_b19 – volume: 16 start-page: 137 year: 2017 ident: 10.1016/j.future.2018.08.008_b9 article-title: Stationary wavelet transform and adaboost with SVM based pathological brain detection in MRI scanning publication-title: CNS Neurol. Disord. Drug Targets doi: 10.2174/1871527315666161024142036 – volume: 5 start-page: 1395 issue: 7 year: 2015 ident: 10.1016/j.future.2018.08.008_b12 article-title: Magnetic resonance brain image classification via stationary wavelet transform and generalized eigenvalue proximal support vector machine publication-title: J. Med. Imag. Health Inf. – year: 2018 ident: 10.1016/j.future.2018.08.008_b55 article-title: Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2018.06.002 – year: 2001 ident: 10.1016/j.future.2018.08.008_b46 – volume: 11 issue: 6 year: 2002 ident: 10.1016/j.future.2018.08.008_b27 article-title: The curvelet transform for image denoising publication-title: IEEE Trans. Image Process. – volume: 36 start-page: 939 issue: 7 year: 2002 ident: 10.1016/j.future.2018.08.008_b26 article-title: Wavelet transforms on two-dimensional images publication-title: Math. Comput. Modelling doi: 10.1016/S0895-7177(02)00238-8 – volume: 77 start-page: 3833 year: 2018 ident: 10.1016/j.future.2018.08.008_b11 article-title: Pathological brain detection using curvelet features and least squares SVM publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-016-4171-y – volume: 420 start-page: 66 year: 2017 ident: 10.1016/j.future.2018.08.008_b54 article-title: Automated segmentation of exudates, haemorrhages, microaneurysms using single convolutional neural network publication-title: Inform. Sci. doi: 10.1016/j.ins.2017.08.050 – volume: 91 start-page: 13 year: 2017 ident: 10.1016/j.future.2018.08.008_b23 article-title: Shear wave elastography for characterization of breast lesions: Shearlet transform and local binary pattern histogram techniques publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2017.10.001 – volume: 89 start-page: 389 year: 2017 ident: 10.1016/j.future.2018.08.008_b57 article-title: A deep convolutional neural network model to classify heartbeats publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2017.08.022 – ident: 10.1016/j.future.2018.08.008_b43 – year: 2012 ident: 10.1016/j.future.2018.08.008_b29 – volume: 441 start-page: 41 year: 2018 ident: 10.1016/j.future.2018.08.008_b52 article-title: Deep convolution neural network for accurate diagnosis of glaucoma using digital fundus images publication-title: Inform. Sci. doi: 10.1016/j.ins.2018.01.051 – volume: 177 start-page: 188 year: 2016 ident: 10.1016/j.future.2018.08.008_b8 article-title: Brain MR image classification using two-dimensional discrete wavelet transform and AdaBoost with random forests publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.11.034 – volume: 132 start-page: 156 year: 2017 ident: 10.1016/j.future.2018.08.008_b24 article-title: Automated characterization of coronary artery disease, myocardial infarction, and congestive heart failure using contourlet and shearlet transforms of electrocardiogram signal publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2017.06.026 – volume: 28 start-page: 2869 year: 2017 ident: 10.1016/j.future.2018.08.008_b44 article-title: Automated screening of congestive heart failure using variational mode decomposition and texture features extracted from ultrasound images publication-title: Neural Comput. Appl. doi: 10.1007/s00521-017-2839-5 – volume: 27 start-page: 24 year: 2009 ident: 10.1016/j.future.2018.08.008_b50 article-title: Edge analysis and identification using the continuous shearlet transform publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2008.10.004 – ident: 10.1016/j.future.2018.08.008_b31 – volume: 2013 start-page: 1 year: 2013 ident: 10.1016/j.future.2018.08.008_b16 article-title: An MR brain images classifier system via particle swarm optimization and kernel support vector machine publication-title: Sci. World J. – volume: 34 start-page: 2151 issue: 16 year: 2013 ident: 10.1016/j.future.2018.08.008_b18 article-title: Classification of MRI brain images using combined wavelet entropy based spider web plots and probabilistic neural network publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2013.08.017 – volume: 361 start-page: 2719 year: 2009 ident: 10.1016/j.future.2018.08.008_b51 article-title: Resolution of the wavefront set using continuous shearlets publication-title: Trans. Amer. Math. Soc. doi: 10.1090/S0002-9947-08-04700-4 – volume: 52 start-page: 781 issue: 9 year: 2014 ident: 10.1016/j.future.2018.08.008_b20 article-title: Decision support system for age-related macular degeneration using discrete wavelet transform publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-014-1180-8 – volume: 5 start-page: 861 year: 2006 ident: 10.1016/j.future.2018.08.008_b28 article-title: Fast discrete curvelet transform publication-title: Multiscale Model. Simul. doi: 10.1137/05064182X – volume: 137 start-page: 1 year: 2013 ident: 10.1016/j.future.2018.08.008_b14 article-title: Brain MR image classification using multiscale geometric analysis of ripplet publication-title: Prog. Electromagn. Res. doi: 10.2528/PIER13010105 – start-page: 86 issue: 1 year: 2006 ident: 10.1016/j.future.2018.08.008_b2 article-title: Classification of magnetic resonance brain images using wavelets as input to support vector machine and neural network publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2006.05.002 – volume: 20 start-page: 433 issue: 2 year: 2010 ident: 10.1016/j.future.2018.08.008_b3 article-title: Hybrid intelligent techniques for MRI brain images classification publication-title: Digit. Signal Process. doi: 10.1016/j.dsp.2009.07.002 – volume: vol. 1 start-page: 547 year: 1961 ident: 10.1016/j.future.2018.08.008_b33 article-title: On measures of entropy and information – volume: 11 start-page: 415 year: 1990 ident: 10.1016/j.future.2018.08.008_b40 article-title: Use of gray value distribution of run lengths for texture analysis publication-title: Pattern Recognit. Lett. doi: 10.1016/0167-8655(90)90112-F – volume: 4 start-page: 172 year: 1975 ident: 10.1016/j.future.2018.08.008_b39 article-title: Texture analysis using gray level run lengths publication-title: Comput. Graph. Image Process. doi: 10.1016/S0146-664X(75)80008-6 – year: 2014 ident: 10.1016/j.future.2018.08.008_b1 – volume: 17 start-page: 1795 issue: 4 year: 2015 ident: 10.1016/j.future.2018.08.008_b5 article-title: Preclinical diagnosis of magnetic resonance (MR) brain images via discrete wavelet packet transform with Tsallis entropy and generalized eigen value proximal support vector machine (GEPSVM) publication-title: Entropy doi: 10.3390/e17041795 – volume: 1 start-page: 299 issue: 4 year: 2006 ident: 10.1016/j.future.2018.08.008_b15 article-title: A Slantlet transform based intelligent system for magnetic resonance brain image classification publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2006.12.001 – volume: 346 start-page: 136 issue: 2 year: 2009 ident: 10.1016/j.future.2018.08.008_b25 article-title: Shift-invariance of short-time fourier transform in fractional fourier domains publication-title: J. Franklin Inst. B doi: 10.1016/j.jfranklin.2008.08.006 – volume: 152 start-page: 41 year: 2015 ident: 10.1016/j.future.2018.08.008_b17 article-title: Pathological brain detection in magnetic resonance imaging scanning by wavelet entropy and hybridization of biogeography-based optimization and particle swarm optimization publication-title: Prog. Electromagn. Res. doi: 10.2528/PIER15040602 – volume: 79 start-page: 250 year: 2016 ident: 10.1016/j.future.2018.08.008_b22 article-title: Automated characterization of fatty liver disease and cirrhosis using curvelet transform and entropy features extracted from ultrasound images publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2016.10.022 – volume: 85 start-page: 184 year: 2018 ident: 10.1016/j.future.2018.08.008_b53 article-title: Automated system for the detection of thoracolumbar fractures using a CNN architecture publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2018.03.023 – volume: 73 start-page: 131 year: 2016 ident: 10.1016/j.future.2018.08.008_b21 article-title: Augustinus Laude Novel risk index for the identification of age-related macular degeneration using radon transform and DWT features publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2016.04.009 – volume: 4 start-page: 1942 year: 1995 ident: 10.1016/j.future.2018.08.008_b42 article-title: Particle swarm optimization publication-title: Proc. IEEE Int. Conf. Neural. Netw. doi: 10.1109/ICNN.1995.488968 – volume: 39 start-page: 355 year: 1987 ident: 10.1016/j.future.2018.08.008_b48 article-title: Adaptive histogram equalization and its variations publication-title: Comput. Vis. Graph Image process. doi: 10.1016/S0734-189X(87)80186-X – volume: 127 start-page: 218 year: 2018 ident: 10.1016/j.future.2018.08.008_b10 article-title: Performance evaluation of feature extraction techniques in MR-Brain image classification system publication-title: Proc. Comput. Sci. doi: 10.1016/j.procs.2018.01.117 – volume: 7 start-page: 1602 issue: 11 year: 1998 ident: 10.1016/j.future.2018.08.008_b38 article-title: Texture information in run-length matrices publication-title: IEEE Trans. Image Process. doi: 10.1109/83.725367 – volume: 3 start-page: 610 year: 1973 ident: 10.1016/j.future.2018.08.008_b36 article-title: Textural features for image classification publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMC.1973.4309314 – volume: 38 start-page: 10049 issue: 8 year: 2011 ident: 10.1016/j.future.2018.08.008_b4 article-title: A hybrid method for MRI brain image classification publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.02.012 – start-page: 121 year: 1998 ident: 10.1016/j.future.2018.08.008_b47 – volume: 19 issue: 5 year: 2010 ident: 10.1016/j.future.2018.08.008_b49 article-title: The discrete shearlet transform: a new directional transform and compactly supported shearlet frames publication-title: IEEE Trans. Image Process. – volume: 29 start-page: 273 year: 1985 ident: 10.1016/j.future.2018.08.008_b32 article-title: A new method for gray-level picture thresholding using the entropy of the histogram publication-title: Comput. Vis. Graph. Image Process. doi: 10.1016/0734-189X(85)90125-2 – volume: 37 start-page: 780 issue: 2 year: 1999 ident: 10.1016/j.future.2018.08.008_b37 article-title: Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.752194 – volume: 27 start-page: 623 issue: 379–423 year: 1948 ident: 10.1016/j.future.2018.08.008_b34 article-title: A mathematical theory of communication publication-title: Bell. Syst. Tech. J. doi: 10.1002/j.1538-7305.1948.tb00917.x – volume: 8 start-page: 1381 year: 2008 ident: 10.1016/j.future.2018.08.008_b45 article-title: A distributed PSO–SVM hybrid system with feature selection and parameter optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2007.10.007 – volume: 61 start-page: 431 issue: 4 year: 2016 ident: 10.1016/j.future.2018.08.008_b7 article-title: Magnetic resonance brain classification by a novel binary particle swarm optimization with mutation and time-varying acceleration coefficients publication-title: Biomed. Eng. Biomed. Tech. doi: 10.1515/bmt-2015-0152 – volume: 94 start-page: 19 year: 2018 ident: 10.1016/j.future.2018.08.008_b56 article-title: Application of stacked convolutional and long short-term memory network for accurate identification of CAD ECG signals publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2017.12.023 – volume: 12 start-page: 575 year: 2004 ident: 10.1016/j.future.2018.08.008_b35 article-title: Entropies of fuzzy indiscernibility relation and its operations publication-title: Internat. J. Uncertain. Fuzziness Knowledge-Based Systems doi: 10.1142/S0218488504003089 – volume: 12 start-page: 497 year: 1991 ident: 10.1016/j.future.2018.08.008_b41 article-title: Image characterizations based on joint gray-level run-length distributions publication-title: Pattern Recognit. Lett. doi: 10.1016/0167-8655(91)80014-2 |
SSID | ssj0001731 |
Score | 2.4792438 |
Snippet | Neurological disorders are abnormalities related to the human nervous system, and comprise electrical, biochemical, or structural changes in the spinal cord,... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 359 |
SubjectTerms | Brain MR images Classification Particle swarm optimization Shearlet transform Support vector machine Texture features |
Title | Application of multiresolution analysis for automated detection of brain abnormality using MR images: A comparative study |
URI | https://dx.doi.org/10.1016/j.future.2018.08.008 |
Volume | 90 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELWqsrDwjSgf1Q2soXETbIctqqgKqB2ASt0i27FREbQVpAMLvx1f4lCQEEiMiXxSdDmf39nP7wg51SjrLbocj_6lK1CYDhItaMBZLmkocxYq3BoYjthgHF9PzicN0qvvwiCt0uf-KqeX2dq_6XhvdhbTaecOCfQ8SiYuKKmDAVi3xzHHKD97X9E8KPc9CV1CwNH19bmS41XpdiDBS5RCnthk8qfl6cuS098iGx4rQlp9zjZpmNkO2az7MICflrvkLV2dQsPcQkkSdGW0jyqQXngEHEAFuSzmDqWaHHJTlDys0kZhqwiQaoYYFqE5ICP-AYa3MH12Oef1AlLQK6lwKHVp98i4f3nfGwS-pUKgI94tglhTzq1wNQw3TDKTiDwKY5snKGvn6mpjqaI6Z5axrqCRktoaI6gMpcM9yGPbJ83ZfGYOCBiqY8aMK8iUiqm2UiSWCo36dioRWrZIVHsy015vHNtePGU1sewxq_yfof8z7IYZihYJPq0Wld7GH-N5_ZOyb3GTuSXhV8vDf1sekXX3lFQbMcekWbwszYmDJoVql7HXJmvp1c1g9AE0cubt |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELWqMsDCN6J8emANjZtgO2xVRVWg7QCt1C2yHQcVQVpBOrDw27lLHAoSAok18UnR5Xy-s5_fI-TMIK23bAk8-lfQoHDjRUYyT_BEMV8l3Ne4NTAY8t44vJlcTGqkU92FQVily_1lTi-ytXvSdN5szqfT5j0C6EUQTSAoGZQB0LevhDB9Ucbg_H2J82DCiRJCRsDh1f25AuRVEncgwksWTJ6oMvnT-vRlzeluknVXLNJ2-T1bpGazbbJRCTFQNy93yFt7eQxNZyktUILQR7uwosoxj1CoUKla5DMoU21CE5sXQKzCRqNWBFU6wyIWa3OKkPgHOrij02dIOq-XtE3NkiucFsS0u2TcvRp1ep7TVPBMIFq5FxomRCqhiRGWK24jmQR-mCYR8tpBY21TpplJeMp5S7JAK5NaK5nyFRQ-CGTbI_Vsltl9Qi0zIecWOjKtQ2ZSJaOUSYMEdzqSRjVIUHkyNo5wHHUvnuIKWfYYl_6P0f8xymH6skG8T6t5Sbjxx3hR_aT4W-DEsCb8annwb8tTstobDfpx_3p4e0jW4E1U7sockXr-srDHUKfk-qSIww-JU-h7 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+multiresolution+analysis+for+automated+detection+of+brain+abnormality+using+MR+images%3A+A+comparative+study&rft.jtitle=Future+generation+computer+systems&rft.au=Gudigar%2C+Anjan&rft.au=Raghavendra%2C+U.&rft.au=San%2C+Tan+Ru&rft.au=Ciaccio%2C+Edward+J.&rft.date=2019-01-01&rft.issn=0167-739X&rft.volume=90&rft.spage=359&rft.epage=367&rft_id=info:doi/10.1016%2Fj.future.2018.08.008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_future_2018_08_008 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-739X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-739X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-739X&client=summon |