Application of multiresolution analysis for automated detection of brain abnormality using MR images: A comparative study

Neurological disorders are abnormalities related to the human nervous system, and comprise electrical, biochemical, or structural changes in the spinal cord, brain, or central nervous system that induce various symptoms. These symptoms may be in the form of muscle weakness, paralysis, and poor coord...

Full description

Saved in:
Bibliographic Details
Published inFuture generation computer systems Vol. 90; pp. 359 - 367
Main Authors Gudigar, Anjan, Raghavendra, U., San, Tan Ru, Ciaccio, Edward J., Acharya, U. Rajendra
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Neurological disorders are abnormalities related to the human nervous system, and comprise electrical, biochemical, or structural changes in the spinal cord, brain, or central nervous system that induce various symptoms. These symptoms may be in the form of muscle weakness, paralysis, and poor coordination, among other factors. Early diagnosis of these changes is important for treatment, to limit disease progression. Magnetic resonance (MR) imaging is a widely used modality for diagnosing brain abnormality. Expert reading and interpretation of MR images is time-consuming, tedious, and subject to interobserver variability. Hence, various automated computer aided diagnosis (CAD) tools have been developed to detect brain abnormalities from MR imaging. Multiresolution analysis involves the transformation of images to capture obscure signatures. In this paper, we compare the performance of three different multi-resolution analysis techniques – the discrete wavelet transform, curvelet transform and shearlet transform – for detecting brain abnormality. Further, textural features extracted from the transformed image are optimally selected using particle swarm optimization (PSO), and classified using a support vector machine (SVM). The proposed method is applied on 83 control images, as well as 529 abnormal images from patients with cerebrovascular, neoplastic, degenerative and inflammatory diseases. For quantitative analysis, a cross validation scheme is implemented to improve system generality. Among the three techniques, the shearlet transform achieves a highest classification accuracy of 97.38% using only fifteen optimally selected features. The proposed system requires testing on a large data set prior to implementation as a standalone system to assist neurologists and radiologists in the early detection of brain abnormality. •Classification of normal and abnormal brain MR images is proposed.•Comparative study based on multiresolution image analysis is employed.•Wavelet, curvelet and shearlet transform based techniques are used.•Harvard Medical School data set of 612 MR images.•Achieved an average accuracy of 97.38% with PSO–SVM model.
AbstractList Neurological disorders are abnormalities related to the human nervous system, and comprise electrical, biochemical, or structural changes in the spinal cord, brain, or central nervous system that induce various symptoms. These symptoms may be in the form of muscle weakness, paralysis, and poor coordination, among other factors. Early diagnosis of these changes is important for treatment, to limit disease progression. Magnetic resonance (MR) imaging is a widely used modality for diagnosing brain abnormality. Expert reading and interpretation of MR images is time-consuming, tedious, and subject to interobserver variability. Hence, various automated computer aided diagnosis (CAD) tools have been developed to detect brain abnormalities from MR imaging. Multiresolution analysis involves the transformation of images to capture obscure signatures. In this paper, we compare the performance of three different multi-resolution analysis techniques – the discrete wavelet transform, curvelet transform and shearlet transform – for detecting brain abnormality. Further, textural features extracted from the transformed image are optimally selected using particle swarm optimization (PSO), and classified using a support vector machine (SVM). The proposed method is applied on 83 control images, as well as 529 abnormal images from patients with cerebrovascular, neoplastic, degenerative and inflammatory diseases. For quantitative analysis, a cross validation scheme is implemented to improve system generality. Among the three techniques, the shearlet transform achieves a highest classification accuracy of 97.38% using only fifteen optimally selected features. The proposed system requires testing on a large data set prior to implementation as a standalone system to assist neurologists and radiologists in the early detection of brain abnormality. •Classification of normal and abnormal brain MR images is proposed.•Comparative study based on multiresolution image analysis is employed.•Wavelet, curvelet and shearlet transform based techniques are used.•Harvard Medical School data set of 612 MR images.•Achieved an average accuracy of 97.38% with PSO–SVM model.
Author Raghavendra, U.
Acharya, U. Rajendra
Ciaccio, Edward J.
San, Tan Ru
Gudigar, Anjan
Author_xml – sequence: 1
  givenname: Anjan
  surname: Gudigar
  fullname: Gudigar, Anjan
  organization: Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India
– sequence: 2
  givenname: U.
  surname: Raghavendra
  fullname: Raghavendra, U.
  email: raghavendra.u@manipal.edu
  organization: Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India
– sequence: 3
  givenname: Tan Ru
  orcidid: 0000-0003-2086-6517
  surname: San
  fullname: San, Tan Ru
  organization: National Heart Centre Singapore, Singapore
– sequence: 4
  givenname: Edward J.
  surname: Ciaccio
  fullname: Ciaccio, Edward J.
  organization: Department of Medicine, Columbia University, USA
– sequence: 5
  givenname: U. Rajendra
  surname: Acharya
  fullname: Acharya, U. Rajendra
  organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Clementi 599489, Singapore
BookMark eNqFkN9KwzAUxoNMcJu-gRd5gdakXZtsF8IY_gNFEAXvQpqejIy2KUk66NubbXrjhcKBA4fvd875vhmadLYDhK4pSSmh5c0u1UMYHKQZoTwlsQg_Q1PKWZYwSosJmkYZS1i-_LxAM-93hBDKcjpF47rvG6NkMLbDVuN2aIJx4G0zHEeyk83ojcfaOiyHYFsZoMY1BFA_TOWkicqqs66VjQkjHrzptvjlDZtWbsGv8Bor2_bSxTt7wD4M9XiJzrVsPFx99zn6uL973zwmz68PT5v1c6JyloVkoShjmpekYFDKEpa8zslC10teMgZVDppWVNWlLsuM07ySSgNwKoksaJERks_R6rRXOeu9Ay2UCUe_If7dCErEIUSxE6cQxSFEQWIRHuHFL7h30ZMb_8NuTxhEY3sDTnhloFNQx2xVELU1fy_4AjqZlDQ
CitedBy_id crossref_primary_10_1007_s13735_019_00174_x
crossref_primary_10_1007_s13246_021_01083_2
crossref_primary_10_1016_j_bspc_2024_107184
crossref_primary_10_3390_ijerph181910003
crossref_primary_10_1016_j_compbiomed_2019_03_017
crossref_primary_10_1007_s10489_022_03252_6
crossref_primary_10_1016_j_cmpb_2021_106450
crossref_primary_10_1155_2022_3264367
crossref_primary_10_36548__jscp_2022_3_005
crossref_primary_10_1016_j_bspc_2023_104675
crossref_primary_10_1109_ACCESS_2022_3179376
crossref_primary_10_1142_S0218348X23401023
crossref_primary_10_1016_j_bbe_2020_08_009
crossref_primary_10_1109_ACCESS_2020_3042594
crossref_primary_10_1109_ACCESS_2024_3504830
crossref_primary_10_1007_s11042_020_10434_2
crossref_primary_10_1016_j_health_2024_100336
crossref_primary_10_1016_j_compmedimag_2019_101656
crossref_primary_10_1007_s11571_020_09655_w
crossref_primary_10_1016_j_cogsys_2018_12_007
crossref_primary_10_1007_s10278_023_00789_x
crossref_primary_10_1016_j_cmpb_2019_05_015
crossref_primary_10_32604_cmc_2024_046461
crossref_primary_10_1007_s11042_020_09676_x
crossref_primary_10_1007_s11042_023_16637_7
crossref_primary_10_1016_j_bspc_2021_103448
crossref_primary_10_1016_j_infrared_2019_103041
crossref_primary_10_54033_cadpedv21n9_025
crossref_primary_10_1186_s12938_024_01250_y
crossref_primary_10_3390_diagnostics13050859
crossref_primary_10_1016_j_patrec_2020_04_018
crossref_primary_10_1007_s11042_020_09306_6
crossref_primary_10_1007_s11042_021_11098_2
crossref_primary_10_1007_s41870_024_01782_5
crossref_primary_10_1016_j_cmpb_2019_06_018
crossref_primary_10_1016_j_artmed_2019_07_006
crossref_primary_10_1590_1678_4324_2021200217
crossref_primary_10_2139_ssrn_4624936
crossref_primary_10_1016_j_jocs_2020_101103
crossref_primary_10_1016_j_cmpb_2019_105134
crossref_primary_10_1109_TNSRE_2020_3022715
crossref_primary_10_32604_cmc_2022_030923
crossref_primary_10_1007_s11042_024_20386_6
crossref_primary_10_1007_s13246_023_01225_8
crossref_primary_10_1016_j_csbj_2022_08_039
crossref_primary_10_1109_ACCESS_2019_2901055
crossref_primary_10_3390_app10103429
crossref_primary_10_1016_j_compbiomed_2023_107063
crossref_primary_10_1016_j_inffus_2022_12_019
crossref_primary_10_1111_exsy_12957
crossref_primary_10_1016_j_compmedimag_2019_101673
crossref_primary_10_1007_s10916_019_1428_9
crossref_primary_10_1007_s13534_019_00103_1
crossref_primary_10_1002_ima_22820
crossref_primary_10_36548_jscp_2022_3_005
crossref_primary_10_3390_cancers15164172
crossref_primary_10_1016_j_bspc_2020_101860
crossref_primary_10_1016_j_cmpb_2019_03_003
crossref_primary_10_1016_j_cmpb_2019_105205
crossref_primary_10_1007_s10278_023_00889_8
crossref_primary_10_1007_s10916_019_1228_2
crossref_primary_10_1109_ACCESS_2020_2989193
crossref_primary_10_3390_s21092998
crossref_primary_10_1007_s12652_019_01386_z
crossref_primary_10_1016_j_knosys_2024_111981
crossref_primary_10_1016_j_iot_2022_100645
Cites_doi 10.1117/12.613494
10.1002/ima.22132
10.3390/app6060169
10.2174/1871527315666161024142036
10.1016/j.compbiomed.2018.06.002
10.1016/S0895-7177(02)00238-8
10.1007/s11042-016-4171-y
10.1016/j.ins.2017.08.050
10.1016/j.compbiomed.2017.10.001
10.1016/j.compbiomed.2017.08.022
10.1016/j.ins.2018.01.051
10.1016/j.neucom.2015.11.034
10.1016/j.knosys.2017.06.026
10.1007/s00521-017-2839-5
10.1016/j.acha.2008.10.004
10.1016/j.patrec.2013.08.017
10.1090/S0002-9947-08-04700-4
10.1007/s11517-014-1180-8
10.1137/05064182X
10.2528/PIER13010105
10.1016/j.bspc.2006.05.002
10.1016/j.dsp.2009.07.002
10.1016/0167-8655(90)90112-F
10.1016/S0146-664X(75)80008-6
10.3390/e17041795
10.1016/j.bspc.2006.12.001
10.1016/j.jfranklin.2008.08.006
10.2528/PIER15040602
10.1016/j.compbiomed.2016.10.022
10.1016/j.future.2018.03.023
10.1016/j.compbiomed.2016.04.009
10.1109/ICNN.1995.488968
10.1016/S0734-189X(87)80186-X
10.1016/j.procs.2018.01.117
10.1109/83.725367
10.1109/TSMC.1973.4309314
10.1016/j.eswa.2011.02.012
10.1016/0734-189X(85)90125-2
10.1109/36.752194
10.1002/j.1538-7305.1948.tb00917.x
10.1016/j.asoc.2007.10.007
10.1515/bmt-2015-0152
10.1016/j.compbiomed.2017.12.023
10.1142/S0218488504003089
10.1016/0167-8655(91)80014-2
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright_xml – notice: 2018 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.future.2018.08.008
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7115
EndPage 367
ExternalDocumentID 10_1016_j_future_2018_08_008
S0167739X18314560
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SES
SEW
SPC
SPCBC
SSV
SSZ
T5K
UHS
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c372t-4c177f86057e6a6e98d304fd98677eb3ef1b1cd6f662813bacfee81a0a5152003
IEDL.DBID .~1
ISSN 0167-739X
IngestDate Thu Apr 24 23:02:22 EDT 2025
Tue Jul 01 01:42:37 EDT 2025
Fri Feb 23 02:45:50 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Shearlet transform
Brain MR images
Support vector machine
Particle swarm optimization
Texture features
Classification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-4c177f86057e6a6e98d304fd98677eb3ef1b1cd6f662813bacfee81a0a5152003
ORCID 0000-0003-2086-6517
PageCount 9
ParticipantIDs crossref_citationtrail_10_1016_j_future_2018_08_008
crossref_primary_10_1016_j_future_2018_08_008
elsevier_sciencedirect_doi_10_1016_j_future_2018_08_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2019
2019-01-00
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: January 2019
PublicationDecade 2010
PublicationTitle Future generation computer systems
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Maitra, Chatterjee (b15) 2006; 1
D. Labate, W.Q. Lim, G. Kutyniok, G. Weiss, Sparse multidimensional representation using shearlets, in: International Society for Optics and Photonics in Curvelet, Directional, and Sparse Representations I 5914, Wavelets XI, 2005, p. 59140U.
Khalila, Ayada, Adib (b10) 2018; 127
Kapur, Sahoo, Wong (b32) 1985; 29
Burges (b47) 1998
El-Dahshan, Honsy, Salem (b3) 2010; 20
Wang, Zhang, Dong, Du, Ji, Yan, Yang, Wang, Feng, Phillips (b6) 2015; 25
Mookiah, Rajendra Acharya, Koh, Chua, Tan, Chandran, Lim, Noronha, Laude, Tong (b20) 2014; 52
Acharya, Fujita, Sudarshan, Oh, Adam, Tan, Koo, Jain, Lim, Chua (b24) 2017; 132
Y. Shi, R. Eberhart, A modified particle swarm optimizer, in: Proceedings of IEEE International CEC, 1998, pp. 69–73.
Raghavendra, Fujita, Bhandary, Gudigar, Hong, Rajendra Acharya (b52) 2018; 441
Haralick, Shanmugam, Dinstein (b36) 1973; 3
Harvard Medical School Data
Westbrook (b1) 2014
Oh, Ng, Tan, Rajendra Acharya (b55) 2018
Kutyniok, Labate (b51) 2009; 361
Nayak, Dash, Majhi (b11) 2018; 77
Tang (b38) 1998; 7
Durak (b25) 2009; 346
.
Kennedy, Eberhart (b42) 1995; 4
Nayak, Dash, Majhi (b9) 2017; 16
Hu, Yu (b35) 2004; 12
Chaplot, Patnaik, Jagannathan (b2) 2006
Zhang, Dong, Liu, Wang, Ji, Zhang, Yang (b12) 2015; 5
Galloway (b39) 1975; 4
Kutyniok, Labate (b29) 2012
Starck, Candès, Donoho (b27) 2002; 11
Renyi (b33) 1961; vol. 1
Pizer, Amburn, Austin, Cromartie, Geselowitz, Greer, Ter Haar Romeny, Zimmerman, Zuiderveld (b48) 1987; 39
Candès, Laurent, Donoho, Ying (b28) 2006; 5
Shannon (b34) 1948; 27
Rajendra Acharya, Oh, Hagiwara, Tan, Adam, Gertych, Tan (b57) 2017; 89
Wang, Phillips, Yang, Sun, Zhang (b7) 2016; 61
Gitta Kutyniok, Morteza Shahram, Xiaosheng Zhuang, SHEARLAB: A Rational Design of A Digital Parabolic Scaling Algorithm.
Tan, Fujita, Sivaprasad, Bhandary, Krishna Rao, Chua, Rajendra Acharya (b54) 2017; 420
Soh, Tsatsoulis (b37) 1999; 37
Acharya, Raghavendra, Fujita, Hagiwara, Koh, Jen Hong, Sudarshan, Vijayananthan, Yeong, Gudigar, Ng (b22) 2016; 79
Rajendra Acharya, Mookiah, Jen Hong Tan, Noronha, Bhandary, Krishna Rao, Hagiwara, Chua (b21) 2016; 73
Acharya, Ng, Rahmat, Sudarshan, Koh, Tan, Hagiwara, Gertych, Fadzli, Yeong, Ng (b23) 2017; 91
Dasarathy, Holder (b41) 1991; 12
Zhang, Wang, Dong, Phillip, Ji, Yang (b17) 2015; 152
Wang, Lu, Dong, Yang, Yang, Zhang (b13) 2016; 6
Huang, Dun (b45) 2008; 8
Chu, Sehgal, Greenleaf (b40) 1990; 11
Schmeelk (b26) 2002; 36
Raghavendra, Shyamasunder Bhat, Gudigar, Rajendra Acharya (b53) 2018; 85
Nayak, Dash, Majhi (b8) 2016; 177
Zhang, Dong, Wu, Wang (b4) 2011; 38
Tan, Hagiwara, Pang, Lim, Oh, Adam, Tan, Chen, Rajendra Acharya (b56) 2018; 94
Zhang, Wang, Ji, Dong (b16) 2013; 2013
Zhang, Dong, Wang, Ji, Yang (b5) 2015; 17
Kecman (b46) 2001
Das, Chowdhury, Kundu (b14) 2013; 137
Guo, Labate, Lim (b50) 2009; 27
Saritha, Joseph, Mathew (b18) 2013; 34
Lim (b49) 2010; 19
Raghavendra, Rajendra Acharya, Gudigar, Shetty, Krishnananda, Pai, Samanth, Nayak (b44) 2017; 28
Galloway (10.1016/j.future.2018.08.008_b39) 1975; 4
Wang (10.1016/j.future.2018.08.008_b13) 2016; 6
Kutyniok (10.1016/j.future.2018.08.008_b29) 2012
Nayak (10.1016/j.future.2018.08.008_b8) 2016; 177
Zhang (10.1016/j.future.2018.08.008_b17) 2015; 152
Pizer (10.1016/j.future.2018.08.008_b48) 1987; 39
Acharya (10.1016/j.future.2018.08.008_b24) 2017; 132
Dasarathy (10.1016/j.future.2018.08.008_b41) 1991; 12
Rajendra Acharya (10.1016/j.future.2018.08.008_b21) 2016; 73
Acharya (10.1016/j.future.2018.08.008_b22) 2016; 79
Oh (10.1016/j.future.2018.08.008_b55) 2018
Raghavendra (10.1016/j.future.2018.08.008_b53) 2018; 85
Haralick (10.1016/j.future.2018.08.008_b36) 1973; 3
Wang (10.1016/j.future.2018.08.008_b7) 2016; 61
Zhang (10.1016/j.future.2018.08.008_b12) 2015; 5
Raghavendra (10.1016/j.future.2018.08.008_b44) 2017; 28
Khalila (10.1016/j.future.2018.08.008_b10) 2018; 127
Raghavendra (10.1016/j.future.2018.08.008_b52) 2018; 441
Candès (10.1016/j.future.2018.08.008_b28) 2006; 5
Guo (10.1016/j.future.2018.08.008_b50) 2009; 27
Durak (10.1016/j.future.2018.08.008_b25) 2009; 346
Zhang (10.1016/j.future.2018.08.008_b4) 2011; 38
Saritha (10.1016/j.future.2018.08.008_b18) 2013; 34
Kapur (10.1016/j.future.2018.08.008_b32) 1985; 29
10.1016/j.future.2018.08.008_b30
10.1016/j.future.2018.08.008_b31
Zhang (10.1016/j.future.2018.08.008_b16) 2013; 2013
Chaplot (10.1016/j.future.2018.08.008_b2) 2006
Das (10.1016/j.future.2018.08.008_b14) 2013; 137
Maitra (10.1016/j.future.2018.08.008_b15) 2006; 1
Schmeelk (10.1016/j.future.2018.08.008_b26) 2002; 36
Soh (10.1016/j.future.2018.08.008_b37) 1999; 37
Kutyniok (10.1016/j.future.2018.08.008_b51) 2009; 361
Nayak (10.1016/j.future.2018.08.008_b11) 2018; 77
Tang (10.1016/j.future.2018.08.008_b38) 1998; 7
Burges (10.1016/j.future.2018.08.008_b47) 1998
Mookiah (10.1016/j.future.2018.08.008_b20) 2014; 52
Kecman (10.1016/j.future.2018.08.008_b46) 2001
Tan (10.1016/j.future.2018.08.008_b56) 2018; 94
Zhang (10.1016/j.future.2018.08.008_b5) 2015; 17
Renyi (10.1016/j.future.2018.08.008_b33) 1961; vol. 1
10.1016/j.future.2018.08.008_b43
Tan (10.1016/j.future.2018.08.008_b54) 2017; 420
Lim (10.1016/j.future.2018.08.008_b49) 2010; 19
Wang (10.1016/j.future.2018.08.008_b6) 2015; 25
Nayak (10.1016/j.future.2018.08.008_b9) 2017; 16
Shannon (10.1016/j.future.2018.08.008_b34) 1948; 27
Kennedy (10.1016/j.future.2018.08.008_b42) 1995; 4
Rajendra Acharya (10.1016/j.future.2018.08.008_b57) 2017; 89
El-Dahshan (10.1016/j.future.2018.08.008_b3) 2010; 20
Chu (10.1016/j.future.2018.08.008_b40) 1990; 11
Acharya (10.1016/j.future.2018.08.008_b23) 2017; 91
Hu (10.1016/j.future.2018.08.008_b35) 2004; 12
Starck (10.1016/j.future.2018.08.008_b27) 2002; 11
Huang (10.1016/j.future.2018.08.008_b45) 2008; 8
Westbrook (10.1016/j.future.2018.08.008_b1) 2014
10.1016/j.future.2018.08.008_b19
References_xml – year: 2012
  ident: b29
  article-title: Introduction to Shearlets. Shearlets: Multiscale Analysis for Multivariate Data
– start-page: 121
  year: 1998
  end-page: 167
  ident: b47
  article-title: A Tutorial on Support Vector Machines for Pattern Recognition Data Min Knowl Discov, 2
– year: 2018
  ident: b55
  article-title: Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats
  publication-title: Comput. Biol. Med.
– start-page: 86
  year: 2006
  end-page: 92
  ident: b2
  article-title: Classification of magnetic resonance brain images using wavelets as input to support vector machine and neural network
  publication-title: Biomed. Signal Process. Control
– volume: 34
  start-page: 2151
  year: 2013
  end-page: 2156
  ident: b18
  article-title: Classification of MRI brain images using combined wavelet entropy based spider web plots and probabilistic neural network
  publication-title: Pattern Recognit. Lett.
– volume: 73
  start-page: 131
  year: 2016
  end-page: 140
  ident: b21
  article-title: Augustinus Laude Novel risk index for the identification of age-related macular degeneration using radon transform and DWT features
  publication-title: Comput. Biol. Med.
– volume: 152
  start-page: 41
  year: 2015
  end-page: 58
  ident: b17
  article-title: Pathological brain detection in magnetic resonance imaging scanning by wavelet entropy and hybridization of biogeography-based optimization and particle swarm optimization
  publication-title: Prog. Electromagn. Res.
– volume: 94
  start-page: 19
  year: 2018
  end-page: 26
  ident: b56
  article-title: Application of stacked convolutional and long short-term memory network for accurate identification of CAD ECG signals
  publication-title: Comput. Biol. Med.
– reference: Gitta Kutyniok, Morteza Shahram, Xiaosheng Zhuang, SHEARLAB: A Rational Design of A Digital Parabolic Scaling Algorithm.
– volume: 4
  start-page: 1942
  year: 1995
  end-page: 1948
  ident: b42
  article-title: Particle swarm optimization
  publication-title: Proc. IEEE Int. Conf. Neural. Netw.
– volume: 91
  start-page: 13
  year: 2017
  end-page: 20
  ident: b23
  article-title: Shear wave elastography for characterization of breast lesions: Shearlet transform and local binary pattern histogram techniques
  publication-title: Comput. Biol. Med.
– volume: 29
  start-page: 273
  year: 1985
  end-page: 285
  ident: b32
  article-title: A new method for gray-level picture thresholding using the entropy of the histogram
  publication-title: Comput. Vis. Graph. Image Process.
– volume: 420
  start-page: 66
  year: 2017
  end-page: 76
  ident: b54
  article-title: Automated segmentation of exudates, haemorrhages, microaneurysms using single convolutional neural network
  publication-title: Inform. Sci.
– volume: 137
  start-page: 1
  year: 2013
  end-page: 17
  ident: b14
  article-title: Brain MR image classification using multiscale geometric analysis of ripplet
  publication-title: Prog. Electromagn. Res.
– volume: 28
  start-page: 2869
  year: 2017
  end-page: 2878
  ident: b44
  article-title: Automated screening of congestive heart failure using variational mode decomposition and texture features extracted from ultrasound images
  publication-title: Neural Comput. Appl.
– volume: 17
  start-page: 1795
  year: 2015
  end-page: 1813
  ident: b5
  article-title: Preclinical diagnosis of magnetic resonance (MR) brain images via discrete wavelet packet transform with Tsallis entropy and generalized eigen value proximal support vector machine (GEPSVM)
  publication-title: Entropy
– volume: 5
  start-page: 1395
  year: 2015
  end-page: 1403
  ident: b12
  article-title: Magnetic resonance brain image classification via stationary wavelet transform and generalized eigenvalue proximal support vector machine
  publication-title: J. Med. Imag. Health Inf.
– reference: Y. Shi, R. Eberhart, A modified particle swarm optimizer, in: Proceedings of IEEE International CEC, 1998, pp. 69–73.
– volume: 19
  year: 2010
  ident: b49
  article-title: The discrete shearlet transform: a new directional transform and compactly supported shearlet frames
  publication-title: IEEE Trans. Image Process.
– volume: 38
  start-page: 10049
  year: 2011
  end-page: 10053
  ident: b4
  article-title: A hybrid method for MRI brain image classification
  publication-title: Expert Syst. Appl.
– volume: 7
  start-page: 1602
  year: 1998
  end-page: 1609
  ident: b38
  article-title: Texture information in run-length matrices
  publication-title: IEEE Trans. Image Process.
– volume: 25
  start-page: 153
  year: 2015
  end-page: 164
  ident: b6
  article-title: Feed-forward neural network optimized by hybridization of pso and abc for abnormal brain detection
  publication-title: Int. J. Imaging Syst. Technol.
– volume: 361
  start-page: 2719
  year: 2009
  end-page: 2754
  ident: b51
  article-title: Resolution of the wavefront set using continuous shearlets
  publication-title: Trans. Amer. Math. Soc.
– volume: 177
  start-page: 188
  year: 2016
  end-page: 197
  ident: b8
  article-title: Brain MR image classification using two-dimensional discrete wavelet transform and AdaBoost with random forests
  publication-title: Neurocomputing
– volume: 16
  start-page: 137
  year: 2017
  end-page: 149
  ident: b9
  article-title: Stationary wavelet transform and adaboost with SVM based pathological brain detection in MRI scanning
  publication-title: CNS Neurol. Disord. Drug Targets
– volume: 36
  start-page: 939
  year: 2002
  end-page: 948
  ident: b26
  article-title: Wavelet transforms on two-dimensional images
  publication-title: Math. Comput. Modelling
– volume: 77
  start-page: 3833
  year: 2018
  end-page: 3856
  ident: b11
  article-title: Pathological brain detection using curvelet features and least squares SVM
  publication-title: Multimed. Tools Appl.
– volume: 2013
  start-page: 1
  year: 2013
  end-page: 9
  ident: b16
  article-title: An MR brain images classifier system via particle swarm optimization and kernel support vector machine
  publication-title: Sci. World J.
– volume: 37
  start-page: 780
  year: 1999
  end-page: 795
  ident: b37
  article-title: Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 132
  start-page: 156
  year: 2017
  end-page: 166
  ident: b24
  article-title: Automated characterization of coronary artery disease, myocardial infarction, and congestive heart failure using contourlet and shearlet transforms of electrocardiogram signal
  publication-title: Knowl.-Based Syst.
– volume: 441
  start-page: 41
  year: 2018
  end-page: 49
  ident: b52
  article-title: Deep convolution neural network for accurate diagnosis of glaucoma using digital fundus images
  publication-title: Inform. Sci.
– volume: 61
  start-page: 431
  year: 2016
  end-page: 441
  ident: b7
  article-title: Magnetic resonance brain classification by a novel binary particle swarm optimization with mutation and time-varying acceleration coefficients
  publication-title: Biomed. Eng. Biomed. Tech.
– volume: 12
  start-page: 575
  year: 2004
  end-page: 589
  ident: b35
  article-title: Entropies of fuzzy indiscernibility relation and its operations
  publication-title: Internat. J. Uncertain. Fuzziness Knowledge-Based Systems
– volume: 20
  start-page: 433
  year: 2010
  end-page: 441
  ident: b3
  article-title: Hybrid intelligent techniques for MRI brain images classification
  publication-title: Digit. Signal Process.
– volume: 1
  start-page: 299
  year: 2006
  end-page: 306
  ident: b15
  article-title: A Slantlet transform based intelligent system for magnetic resonance brain image classification
  publication-title: Biomed. Signal Process. Control
– volume: 12
  start-page: 497
  year: 1991
  end-page: 502
  ident: b41
  article-title: Image characterizations based on joint gray-level run-length distributions
  publication-title: Pattern Recognit. Lett.
– volume: 8
  start-page: 1381
  year: 2008
  end-page: 1391
  ident: b45
  article-title: A distributed PSO–SVM hybrid system with feature selection and parameter optimization
  publication-title: Appl. Soft Comput.
– volume: 27
  start-page: 623
  year: 1948
  end-page: 656
  ident: b34
  article-title: A mathematical theory of communication
  publication-title: Bell. Syst. Tech. J.
– volume: 3
  start-page: 610
  year: 1973
  end-page: 621
  ident: b36
  article-title: Textural features for image classification
  publication-title: IEEE Trans. Syst. Man Cybern.
– volume: 85
  start-page: 184
  year: 2018
  end-page: 189
  ident: b53
  article-title: Automated system for the detection of thoracolumbar fractures using a CNN architecture
  publication-title: Future Gener. Comput. Syst.
– volume: 127
  start-page: 218
  year: 2018
  end-page: 225
  ident: b10
  article-title: Performance evaluation of feature extraction techniques in MR-Brain image classification system
  publication-title: Proc. Comput. Sci.
– reference: Harvard Medical School Data,
– year: 2014
  ident: b1
  article-title: Handbook of MRI Technique
– volume: 11
  start-page: 415
  year: 1990
  end-page: 420
  ident: b40
  article-title: Use of gray value distribution of run lengths for texture analysis
  publication-title: Pattern Recognit. Lett.
– volume: 39
  start-page: 355
  year: 1987
  end-page: 368
  ident: b48
  article-title: Adaptive histogram equalization and its variations
  publication-title: Comput. Vis. Graph Image process.
– volume: 346
  start-page: 136
  year: 2009
  end-page: 146
  ident: b25
  article-title: Shift-invariance of short-time fourier transform in fractional fourier domains
  publication-title: J. Franklin Inst. B
– volume: 6
  start-page: 169
  year: 2016
  ident: b13
  article-title: Dual-tree complex wavelet transform and twin support vector machine for pathological brain detection
  publication-title: Appl. Sci.
– volume: 27
  start-page: 24
  year: 2009
  end-page: 46
  ident: b50
  article-title: Edge analysis and identification using the continuous shearlet transform
  publication-title: Appl. Comput. Harmon. Anal.
– volume: 11
  year: 2002
  ident: b27
  article-title: The curvelet transform for image denoising
  publication-title: IEEE Trans. Image Process.
– volume: 89
  start-page: 389
  year: 2017
  end-page: 396
  ident: b57
  article-title: A deep convolutional neural network model to classify heartbeats
  publication-title: Comput. Biol. Med.
– reference: .
– volume: vol. 1
  start-page: 547
  year: 1961
  end-page: 561
  ident: b33
  article-title: On measures of entropy and information
  publication-title: Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability
– volume: 52
  start-page: 781
  year: 2014
  end-page: 796
  ident: b20
  article-title: Decision support system for age-related macular degeneration using discrete wavelet transform
  publication-title: Med. Biol. Eng. Comput.
– volume: 79
  start-page: 250
  year: 2016
  end-page: 258
  ident: b22
  article-title: Automated characterization of fatty liver disease and cirrhosis using curvelet transform and entropy features extracted from ultrasound images
  publication-title: Comput. Biol. Med.
– volume: 5
  start-page: 861
  year: 2006
  end-page: 899
  ident: b28
  article-title: Fast discrete curvelet transform
  publication-title: Multiscale Model. Simul.
– reference: D. Labate, W.Q. Lim, G. Kutyniok, G. Weiss, Sparse multidimensional representation using shearlets, in: International Society for Optics and Photonics in Curvelet, Directional, and Sparse Representations I 5914, Wavelets XI, 2005, p. 59140U.
– year: 2001
  ident: b46
  article-title: Learning and Soft Computing
– volume: 4
  start-page: 172
  year: 1975
  end-page: 179
  ident: b39
  article-title: Texture analysis using gray level run lengths
  publication-title: Comput. Graph. Image Process.
– ident: 10.1016/j.future.2018.08.008_b30
  doi: 10.1117/12.613494
– volume: 25
  start-page: 153
  issue: 2
  year: 2015
  ident: 10.1016/j.future.2018.08.008_b6
  article-title: Feed-forward neural network optimized by hybridization of pso and abc for abnormal brain detection
  publication-title: Int. J. Imaging Syst. Technol.
  doi: 10.1002/ima.22132
– volume: 6
  start-page: 169
  year: 2016
  ident: 10.1016/j.future.2018.08.008_b13
  article-title: Dual-tree complex wavelet transform and twin support vector machine for pathological brain detection
  publication-title: Appl. Sci.
  doi: 10.3390/app6060169
– ident: 10.1016/j.future.2018.08.008_b19
– volume: 16
  start-page: 137
  year: 2017
  ident: 10.1016/j.future.2018.08.008_b9
  article-title: Stationary wavelet transform and adaboost with SVM based pathological brain detection in MRI scanning
  publication-title: CNS Neurol. Disord. Drug Targets
  doi: 10.2174/1871527315666161024142036
– volume: 5
  start-page: 1395
  issue: 7
  year: 2015
  ident: 10.1016/j.future.2018.08.008_b12
  article-title: Magnetic resonance brain image classification via stationary wavelet transform and generalized eigenvalue proximal support vector machine
  publication-title: J. Med. Imag. Health Inf.
– year: 2018
  ident: 10.1016/j.future.2018.08.008_b55
  article-title: Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.06.002
– year: 2001
  ident: 10.1016/j.future.2018.08.008_b46
– volume: 11
  issue: 6
  year: 2002
  ident: 10.1016/j.future.2018.08.008_b27
  article-title: The curvelet transform for image denoising
  publication-title: IEEE Trans. Image Process.
– volume: 36
  start-page: 939
  issue: 7
  year: 2002
  ident: 10.1016/j.future.2018.08.008_b26
  article-title: Wavelet transforms on two-dimensional images
  publication-title: Math. Comput. Modelling
  doi: 10.1016/S0895-7177(02)00238-8
– volume: 77
  start-page: 3833
  year: 2018
  ident: 10.1016/j.future.2018.08.008_b11
  article-title: Pathological brain detection using curvelet features and least squares SVM
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-016-4171-y
– volume: 420
  start-page: 66
  year: 2017
  ident: 10.1016/j.future.2018.08.008_b54
  article-title: Automated segmentation of exudates, haemorrhages, microaneurysms using single convolutional neural network
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2017.08.050
– volume: 91
  start-page: 13
  year: 2017
  ident: 10.1016/j.future.2018.08.008_b23
  article-title: Shear wave elastography for characterization of breast lesions: Shearlet transform and local binary pattern histogram techniques
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2017.10.001
– volume: 89
  start-page: 389
  year: 2017
  ident: 10.1016/j.future.2018.08.008_b57
  article-title: A deep convolutional neural network model to classify heartbeats
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2017.08.022
– ident: 10.1016/j.future.2018.08.008_b43
– year: 2012
  ident: 10.1016/j.future.2018.08.008_b29
– volume: 441
  start-page: 41
  year: 2018
  ident: 10.1016/j.future.2018.08.008_b52
  article-title: Deep convolution neural network for accurate diagnosis of glaucoma using digital fundus images
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2018.01.051
– volume: 177
  start-page: 188
  year: 2016
  ident: 10.1016/j.future.2018.08.008_b8
  article-title: Brain MR image classification using two-dimensional discrete wavelet transform and AdaBoost with random forests
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.11.034
– volume: 132
  start-page: 156
  year: 2017
  ident: 10.1016/j.future.2018.08.008_b24
  article-title: Automated characterization of coronary artery disease, myocardial infarction, and congestive heart failure using contourlet and shearlet transforms of electrocardiogram signal
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2017.06.026
– volume: 28
  start-page: 2869
  year: 2017
  ident: 10.1016/j.future.2018.08.008_b44
  article-title: Automated screening of congestive heart failure using variational mode decomposition and texture features extracted from ultrasound images
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-017-2839-5
– volume: 27
  start-page: 24
  year: 2009
  ident: 10.1016/j.future.2018.08.008_b50
  article-title: Edge analysis and identification using the continuous shearlet transform
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2008.10.004
– ident: 10.1016/j.future.2018.08.008_b31
– volume: 2013
  start-page: 1
  year: 2013
  ident: 10.1016/j.future.2018.08.008_b16
  article-title: An MR brain images classifier system via particle swarm optimization and kernel support vector machine
  publication-title: Sci. World J.
– volume: 34
  start-page: 2151
  issue: 16
  year: 2013
  ident: 10.1016/j.future.2018.08.008_b18
  article-title: Classification of MRI brain images using combined wavelet entropy based spider web plots and probabilistic neural network
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2013.08.017
– volume: 361
  start-page: 2719
  year: 2009
  ident: 10.1016/j.future.2018.08.008_b51
  article-title: Resolution of the wavefront set using continuous shearlets
  publication-title: Trans. Amer. Math. Soc.
  doi: 10.1090/S0002-9947-08-04700-4
– volume: 52
  start-page: 781
  issue: 9
  year: 2014
  ident: 10.1016/j.future.2018.08.008_b20
  article-title: Decision support system for age-related macular degeneration using discrete wavelet transform
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-014-1180-8
– volume: 5
  start-page: 861
  year: 2006
  ident: 10.1016/j.future.2018.08.008_b28
  article-title: Fast discrete curvelet transform
  publication-title: Multiscale Model. Simul.
  doi: 10.1137/05064182X
– volume: 137
  start-page: 1
  year: 2013
  ident: 10.1016/j.future.2018.08.008_b14
  article-title: Brain MR image classification using multiscale geometric analysis of ripplet
  publication-title: Prog. Electromagn. Res.
  doi: 10.2528/PIER13010105
– start-page: 86
  issue: 1
  year: 2006
  ident: 10.1016/j.future.2018.08.008_b2
  article-title: Classification of magnetic resonance brain images using wavelets as input to support vector machine and neural network
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2006.05.002
– volume: 20
  start-page: 433
  issue: 2
  year: 2010
  ident: 10.1016/j.future.2018.08.008_b3
  article-title: Hybrid intelligent techniques for MRI brain images classification
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2009.07.002
– volume: vol. 1
  start-page: 547
  year: 1961
  ident: 10.1016/j.future.2018.08.008_b33
  article-title: On measures of entropy and information
– volume: 11
  start-page: 415
  year: 1990
  ident: 10.1016/j.future.2018.08.008_b40
  article-title: Use of gray value distribution of run lengths for texture analysis
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/0167-8655(90)90112-F
– volume: 4
  start-page: 172
  year: 1975
  ident: 10.1016/j.future.2018.08.008_b39
  article-title: Texture analysis using gray level run lengths
  publication-title: Comput. Graph. Image Process.
  doi: 10.1016/S0146-664X(75)80008-6
– year: 2014
  ident: 10.1016/j.future.2018.08.008_b1
– volume: 17
  start-page: 1795
  issue: 4
  year: 2015
  ident: 10.1016/j.future.2018.08.008_b5
  article-title: Preclinical diagnosis of magnetic resonance (MR) brain images via discrete wavelet packet transform with Tsallis entropy and generalized eigen value proximal support vector machine (GEPSVM)
  publication-title: Entropy
  doi: 10.3390/e17041795
– volume: 1
  start-page: 299
  issue: 4
  year: 2006
  ident: 10.1016/j.future.2018.08.008_b15
  article-title: A Slantlet transform based intelligent system for magnetic resonance brain image classification
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2006.12.001
– volume: 346
  start-page: 136
  issue: 2
  year: 2009
  ident: 10.1016/j.future.2018.08.008_b25
  article-title: Shift-invariance of short-time fourier transform in fractional fourier domains
  publication-title: J. Franklin Inst. B
  doi: 10.1016/j.jfranklin.2008.08.006
– volume: 152
  start-page: 41
  year: 2015
  ident: 10.1016/j.future.2018.08.008_b17
  article-title: Pathological brain detection in magnetic resonance imaging scanning by wavelet entropy and hybridization of biogeography-based optimization and particle swarm optimization
  publication-title: Prog. Electromagn. Res.
  doi: 10.2528/PIER15040602
– volume: 79
  start-page: 250
  year: 2016
  ident: 10.1016/j.future.2018.08.008_b22
  article-title: Automated characterization of fatty liver disease and cirrhosis using curvelet transform and entropy features extracted from ultrasound images
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2016.10.022
– volume: 85
  start-page: 184
  year: 2018
  ident: 10.1016/j.future.2018.08.008_b53
  article-title: Automated system for the detection of thoracolumbar fractures using a CNN architecture
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2018.03.023
– volume: 73
  start-page: 131
  year: 2016
  ident: 10.1016/j.future.2018.08.008_b21
  article-title: Augustinus Laude Novel risk index for the identification of age-related macular degeneration using radon transform and DWT features
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2016.04.009
– volume: 4
  start-page: 1942
  year: 1995
  ident: 10.1016/j.future.2018.08.008_b42
  article-title: Particle swarm optimization
  publication-title: Proc. IEEE Int. Conf. Neural. Netw.
  doi: 10.1109/ICNN.1995.488968
– volume: 39
  start-page: 355
  year: 1987
  ident: 10.1016/j.future.2018.08.008_b48
  article-title: Adaptive histogram equalization and its variations
  publication-title: Comput. Vis. Graph Image process.
  doi: 10.1016/S0734-189X(87)80186-X
– volume: 127
  start-page: 218
  year: 2018
  ident: 10.1016/j.future.2018.08.008_b10
  article-title: Performance evaluation of feature extraction techniques in MR-Brain image classification system
  publication-title: Proc. Comput. Sci.
  doi: 10.1016/j.procs.2018.01.117
– volume: 7
  start-page: 1602
  issue: 11
  year: 1998
  ident: 10.1016/j.future.2018.08.008_b38
  article-title: Texture information in run-length matrices
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.725367
– volume: 3
  start-page: 610
  year: 1973
  ident: 10.1016/j.future.2018.08.008_b36
  article-title: Textural features for image classification
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMC.1973.4309314
– volume: 38
  start-page: 10049
  issue: 8
  year: 2011
  ident: 10.1016/j.future.2018.08.008_b4
  article-title: A hybrid method for MRI brain image classification
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.02.012
– start-page: 121
  year: 1998
  ident: 10.1016/j.future.2018.08.008_b47
– volume: 19
  issue: 5
  year: 2010
  ident: 10.1016/j.future.2018.08.008_b49
  article-title: The discrete shearlet transform: a new directional transform and compactly supported shearlet frames
  publication-title: IEEE Trans. Image Process.
– volume: 29
  start-page: 273
  year: 1985
  ident: 10.1016/j.future.2018.08.008_b32
  article-title: A new method for gray-level picture thresholding using the entropy of the histogram
  publication-title: Comput. Vis. Graph. Image Process.
  doi: 10.1016/0734-189X(85)90125-2
– volume: 37
  start-page: 780
  issue: 2
  year: 1999
  ident: 10.1016/j.future.2018.08.008_b37
  article-title: Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.752194
– volume: 27
  start-page: 623
  issue: 379–423
  year: 1948
  ident: 10.1016/j.future.2018.08.008_b34
  article-title: A mathematical theory of communication
  publication-title: Bell. Syst. Tech. J.
  doi: 10.1002/j.1538-7305.1948.tb00917.x
– volume: 8
  start-page: 1381
  year: 2008
  ident: 10.1016/j.future.2018.08.008_b45
  article-title: A distributed PSO–SVM hybrid system with feature selection and parameter optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2007.10.007
– volume: 61
  start-page: 431
  issue: 4
  year: 2016
  ident: 10.1016/j.future.2018.08.008_b7
  article-title: Magnetic resonance brain classification by a novel binary particle swarm optimization with mutation and time-varying acceleration coefficients
  publication-title: Biomed. Eng. Biomed. Tech.
  doi: 10.1515/bmt-2015-0152
– volume: 94
  start-page: 19
  year: 2018
  ident: 10.1016/j.future.2018.08.008_b56
  article-title: Application of stacked convolutional and long short-term memory network for accurate identification of CAD ECG signals
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2017.12.023
– volume: 12
  start-page: 575
  year: 2004
  ident: 10.1016/j.future.2018.08.008_b35
  article-title: Entropies of fuzzy indiscernibility relation and its operations
  publication-title: Internat. J. Uncertain. Fuzziness Knowledge-Based Systems
  doi: 10.1142/S0218488504003089
– volume: 12
  start-page: 497
  year: 1991
  ident: 10.1016/j.future.2018.08.008_b41
  article-title: Image characterizations based on joint gray-level run-length distributions
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/0167-8655(91)80014-2
SSID ssj0001731
Score 2.4792438
Snippet Neurological disorders are abnormalities related to the human nervous system, and comprise electrical, biochemical, or structural changes in the spinal cord,...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 359
SubjectTerms Brain MR images
Classification
Particle swarm optimization
Shearlet transform
Support vector machine
Texture features
Title Application of multiresolution analysis for automated detection of brain abnormality using MR images: A comparative study
URI https://dx.doi.org/10.1016/j.future.2018.08.008
Volume 90
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELWqsrDwjSgf1Q2soXETbIctqqgKqB2ASt0i27FREbQVpAMLvx1f4lCQEEiMiXxSdDmf39nP7wg51SjrLbocj_6lK1CYDhItaMBZLmkocxYq3BoYjthgHF9PzicN0qvvwiCt0uf-KqeX2dq_6XhvdhbTaecOCfQ8SiYuKKmDAVi3xzHHKD97X9E8KPc9CV1CwNH19bmS41XpdiDBS5RCnthk8qfl6cuS098iGx4rQlp9zjZpmNkO2az7MICflrvkLV2dQsPcQkkSdGW0jyqQXngEHEAFuSzmDqWaHHJTlDys0kZhqwiQaoYYFqE5ICP-AYa3MH12Oef1AlLQK6lwKHVp98i4f3nfGwS-pUKgI94tglhTzq1wNQw3TDKTiDwKY5snKGvn6mpjqaI6Z5axrqCRktoaI6gMpcM9yGPbJ83ZfGYOCBiqY8aMK8iUiqm2UiSWCo36dioRWrZIVHsy015vHNtePGU1sewxq_yfof8z7IYZihYJPq0Wld7GH-N5_ZOyb3GTuSXhV8vDf1sekXX3lFQbMcekWbwszYmDJoVql7HXJmvp1c1g9AE0cubt
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELWqMsDCN6J8emANjZtgO2xVRVWg7QCt1C2yHQcVQVpBOrDw27lLHAoSAok18UnR5Xy-s5_fI-TMIK23bAk8-lfQoHDjRUYyT_BEMV8l3Ne4NTAY8t44vJlcTGqkU92FQVily_1lTi-ytXvSdN5szqfT5j0C6EUQTSAoGZQB0LevhDB9Ucbg_H2J82DCiRJCRsDh1f25AuRVEncgwksWTJ6oMvnT-vRlzeluknVXLNJ2-T1bpGazbbJRCTFQNy93yFt7eQxNZyktUILQR7uwosoxj1CoUKla5DMoU21CE5sXQKzCRqNWBFU6wyIWa3OKkPgHOrij02dIOq-XtE3NkiucFsS0u2TcvRp1ep7TVPBMIFq5FxomRCqhiRGWK24jmQR-mCYR8tpBY21TpplJeMp5S7JAK5NaK5nyFRQ-CGTbI_Vsltl9Qi0zIecWOjKtQ2ZSJaOUSYMEdzqSRjVIUHkyNo5wHHUvnuIKWfYYl_6P0f8xymH6skG8T6t5Sbjxx3hR_aT4W-DEsCb8annwb8tTstobDfpx_3p4e0jW4E1U7sockXr-srDHUKfk-qSIww-JU-h7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+multiresolution+analysis+for+automated+detection+of+brain+abnormality+using+MR+images%3A+A+comparative+study&rft.jtitle=Future+generation+computer+systems&rft.au=Gudigar%2C+Anjan&rft.au=Raghavendra%2C+U.&rft.au=San%2C+Tan+Ru&rft.au=Ciaccio%2C+Edward+J.&rft.date=2019-01-01&rft.issn=0167-739X&rft.volume=90&rft.spage=359&rft.epage=367&rft_id=info:doi/10.1016%2Fj.future.2018.08.008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_future_2018_08_008
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-739X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-739X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-739X&client=summon