Research and progress of laser cladding on engineering alloys: A review

Engineering alloys are widely applied as important functional structural materials in aerospace, electronics, metallurgy, and other high-end engineering industries due to their superior properties. However, their further application remains notably restricted by numerous inherent limitations, includ...

Full description

Saved in:
Bibliographic Details
Published inJournal of manufacturing processes Vol. 66; pp. 341 - 363
Main Authors Liu, Yanan, Ding, Ye, Yang, Lijun, Sun, Ronglu, Zhang, Tiangang, Yang, Xuejiao
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.06.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Engineering alloys are widely applied as important functional structural materials in aerospace, electronics, metallurgy, and other high-end engineering industries due to their superior properties. However, their further application remains notably restricted by numerous inherent limitations, including low hardness, terrible wear and high-temperature oxidation resistance. In response to this problem, the development of laser cladding (LC) technology has provided new approaches for surface modification of engineering alloys. In this review paper, the recent progress made in the preparation of engineering alloys by LC technology is thoroughly investigated. The elementary knowledge in this field is provided to establish the internal relationships among the laser processing parameters, microstructure, and significant mechanical properties. The LC processing methods and material systems are reviewed, and the critical functional coatings related to this field are also summarised and explored in detail. Furthermore, the current challenges and future efforts are presented, identifying the existing knowledge and technology gaps while also attempting to determine future research directions.
AbstractList Engineering alloys are widely applied as important functional structural materials in aerospace, electronics, metallurgy, and other high-end engineering industries due to their superior properties. However, their further application remains notably restricted by numerous inherent limitations, including low hardness, terrible wear and high-temperature oxidation resistance. In response to this problem, the development of laser cladding (LC) technology has provided new approaches for surface modification of engineering alloys. In this review paper, the recent progress made in the preparation of engineering alloys by LC technology is thoroughly investigated. The elementary knowledge in this field is provided to establish the internal relationships among the laser processing parameters, microstructure, and significant mechanical properties. The LC processing methods and material systems are reviewed, and the critical functional coatings related to this field are also summarised and explored in detail. Furthermore, the current challenges and future efforts are presented, identifying the existing knowledge and technology gaps while also attempting to determine future research directions.
Author Sun, Ronglu
Yang, Xuejiao
Zhang, Tiangang
Yang, Lijun
Ding, Ye
Liu, Yanan
Author_xml – sequence: 1
  givenname: Yanan
  surname: Liu
  fullname: Liu, Yanan
  organization: School of Mechatronics Engineering, Harbin Institute of Technology, Heilongjiang, Harbin 150001, China
– sequence: 2
  givenname: Ye
  surname: Ding
  fullname: Ding, Ye
  email: dy1992hit@hit.edu.cn
  organization: School of Mechatronics Engineering, Harbin Institute of Technology, Heilongjiang, Harbin 150001, China
– sequence: 3
  givenname: Lijun
  surname: Yang
  fullname: Yang, Lijun
  email: yljtj@hit.edu.cn
  organization: School of Mechatronics Engineering, Harbin Institute of Technology, Heilongjiang, Harbin 150001, China
– sequence: 4
  givenname: Ronglu
  surname: Sun
  fullname: Sun, Ronglu
  email: rlsun@tjpu.edu.cn
  organization: School of Mechanical Engineering, Tiangong University, Tianjin 300387, China
– sequence: 5
  givenname: Tiangang
  surname: Zhang
  fullname: Zhang, Tiangang
  organization: Engineering Technology Training Center, Civil Aviation University of China, Tianjin 300300, China
– sequence: 6
  givenname: Xuejiao
  surname: Yang
  fullname: Yang, Xuejiao
  organization: School of Mechanical Engineering, Tiangong University, Tianjin 300387, China
BookMark eNqFkM1KAzEUhYNUsK2-gYu8wIz5mUybLoRStAoFQXQd8nNbM0yTkgxK396UunKhq8vl8B043wSNQgyA0C0lNSW0vevqbq8PKdaMMFoTXpOWXqAxY5RVTUvbERpTwdqqpUxcoUnOHSGUNYSO0foVMuhkP7AODpeOXYKccdziXmdI2PbaOR92OAYMYecDQDq9uu_jMS_wEif49PB1jS63us9w83On6P3x4W31VG1e1s-r5aayfMaGqjGCSzmzYIQzLddzRzifC0ENk8YIyaWVhlpJbEnEDKzRwlgijS2hc4ZPUXPutSnmnGCrDsnvdToqStRJhurUWYY6yVCEqyKjYItfmPWDHnwMQ9K-_w--P8NQhpWxSWXrIVhwPoEdlIv-74JvYiOAaw
CitedBy_id crossref_primary_10_1007_s11837_024_06537_y
crossref_primary_10_1007_s11665_025_10864_9
crossref_primary_10_1007_s11665_023_08670_2
crossref_primary_10_1088_1742_6596_2566_1_012068
crossref_primary_10_3390_ma16196444
crossref_primary_10_13168_cs_2024_0016
crossref_primary_10_1016_j_surfcoat_2022_128760
crossref_primary_10_1016_j_mtcomm_2024_109944
crossref_primary_10_1007_s12540_024_01744_3
crossref_primary_10_1016_j_jmrt_2022_01_160
crossref_primary_10_1016_j_surfcoat_2024_131147
crossref_primary_10_2351_7_0001540
crossref_primary_10_2351_7_0000451
crossref_primary_10_1007_s11666_024_01899_w
crossref_primary_10_1016_j_jallcom_2024_178215
crossref_primary_10_1007_s11665_024_09945_y
crossref_primary_10_1016_j_matlet_2023_134044
crossref_primary_10_3390_ma17020399
crossref_primary_10_1016_j_surfcoat_2021_127848
crossref_primary_10_1016_j_optlastec_2024_111609
crossref_primary_10_1016_j_jmrt_2023_03_066
crossref_primary_10_1088_2053_1591_ad99a7
crossref_primary_10_1016_j_wear_2024_205611
crossref_primary_10_3390_nano15010018
crossref_primary_10_1016_j_optlastec_2024_110993
crossref_primary_10_3390_coatings12071004
crossref_primary_10_1016_j_matlet_2023_134856
crossref_primary_10_1016_j_surfcoat_2023_129342
crossref_primary_10_1016_j_surfcoat_2023_129584
crossref_primary_10_1016_j_heliyon_2024_e32715
crossref_primary_10_1007_s42114_024_00953_z
crossref_primary_10_1016_j_optlastec_2021_107843
crossref_primary_10_1016_j_mtcomm_2024_110259
crossref_primary_10_1007_s11837_024_06668_2
crossref_primary_10_1016_j_surfcoat_2022_128195
crossref_primary_10_1007_s12666_022_02731_1
crossref_primary_10_1007_s11665_023_09017_7
crossref_primary_10_1007_s11837_023_06161_2
crossref_primary_10_1007_s40964_022_00312_8
crossref_primary_10_1016_j_apsusc_2024_162019
crossref_primary_10_1016_j_jmapro_2023_04_022
crossref_primary_10_1016_j_jnoncrysol_2022_121648
crossref_primary_10_1016_j_matchemphys_2023_127383
crossref_primary_10_1016_j_ijmecsci_2022_108034
crossref_primary_10_1016_j_surfcoat_2024_130834
crossref_primary_10_1080_17452759_2024_2397815
crossref_primary_10_1016_j_optlastec_2023_110238
crossref_primary_10_3390_met13010146
crossref_primary_10_1016_j_jmapro_2022_11_046
crossref_primary_10_1016_j_matchemphys_2022_126678
crossref_primary_10_3390_photonics12030265
crossref_primary_10_1016_j_jnucmat_2023_154345
crossref_primary_10_1016_j_physb_2025_417084
crossref_primary_10_1016_j_wear_2025_205929
crossref_primary_10_2139_ssrn_4802859
crossref_primary_10_1016_j_surfcoat_2024_131014
crossref_primary_10_3390_ma16145059
crossref_primary_10_1007_s11837_022_05427_5
crossref_primary_10_1016_j_triboint_2022_107549
crossref_primary_10_1088_2053_1591_ac4e3d
crossref_primary_10_1016_j_apsadv_2023_100439
crossref_primary_10_1007_s00170_023_12103_8
crossref_primary_10_3390_ma16010284
crossref_primary_10_1016_j_jmrt_2025_03_139
crossref_primary_10_3390_ma15165522
crossref_primary_10_1016_j_apsusc_2024_160618
crossref_primary_10_1007_s40684_025_00722_3
crossref_primary_10_1016_j_ijrmhm_2024_106610
crossref_primary_10_1007_s00170_025_15349_6
crossref_primary_10_1080_10589759_2024_2338187
crossref_primary_10_1515_mt_2023_0152
crossref_primary_10_2139_ssrn_4120082
crossref_primary_10_1016_j_wear_2021_204174
crossref_primary_10_1016_j_jnucmat_2023_154284
crossref_primary_10_1016_j_optlastec_2022_108232
crossref_primary_10_1016_j_optlastec_2023_109387
crossref_primary_10_3390_coatings12101444
crossref_primary_10_1016_j_jmapro_2023_04_052
crossref_primary_10_3390_coatings13050949
crossref_primary_10_1007_s00170_024_14476_w
crossref_primary_10_1007_s11837_023_05861_z
crossref_primary_10_1016_j_matchar_2022_111962
crossref_primary_10_1007_s11666_024_01734_2
crossref_primary_10_1016_j_matchar_2023_113408
crossref_primary_10_1016_j_ceramint_2022_03_152
crossref_primary_10_1016_j_jallcom_2022_168305
crossref_primary_10_1016_j_mtcomm_2023_106939
crossref_primary_10_1016_j_surfcoat_2022_128667
crossref_primary_10_1016_j_jmrt_2022_12_112
crossref_primary_10_20964_2022_09_14
crossref_primary_10_1016_j_surfcoat_2023_129354
crossref_primary_10_1016_j_matpr_2023_11_015
crossref_primary_10_1016_j_surfcoat_2024_131289
crossref_primary_10_1088_1674_1056_ad7672
crossref_primary_10_1016_j_jmrt_2021_11_032
crossref_primary_10_1016_j_surfcoat_2022_129073
crossref_primary_10_3390_coatings14101334
crossref_primary_10_1016_j_jallcom_2023_171560
crossref_primary_10_1088_2631_8695_ad7fb7
crossref_primary_10_1007_s10704_024_00814_2
crossref_primary_10_1016_j_matchar_2022_112123
crossref_primary_10_1007_s40735_024_00874_w
crossref_primary_10_1088_1742_6596_2064_1_012079
crossref_primary_10_3390_coatings13050842
crossref_primary_10_1007_s10853_024_09567_8
crossref_primary_10_1007_s11665_024_09294_w
crossref_primary_10_3390_coatings13050841
crossref_primary_10_1016_j_ijleo_2022_169887
crossref_primary_10_1016_j_jmrt_2023_10_261
crossref_primary_10_3390_app14010085
crossref_primary_10_1007_s00170_024_13376_3
crossref_primary_10_1007_s00170_024_14706_1
crossref_primary_10_3390_ma16196356
crossref_primary_10_1088_2053_1591_acc447
crossref_primary_10_1016_j_mtcomm_2022_103357
crossref_primary_10_1002_adem_202402323
crossref_primary_10_1016_j_surfcoat_2022_128534
crossref_primary_10_3390_coatings14040484
crossref_primary_10_1016_j_jmrt_2024_06_045
crossref_primary_10_1016_j_jmapro_2023_10_066
crossref_primary_10_1016_j_jallcom_2024_176761
crossref_primary_10_1016_j_triboint_2024_109329
crossref_primary_10_1007_s12540_023_01504_9
crossref_primary_10_1016_j_apsusc_2023_157920
crossref_primary_10_1016_j_mtcomm_2022_104417
crossref_primary_10_1016_j_mtcomm_2022_104779
crossref_primary_10_1016_j_surfcoat_2022_129217
crossref_primary_10_1016_j_ijrmhm_2021_105720
crossref_primary_10_3390_lubricants11110482
crossref_primary_10_1016_j_surfcoat_2025_131824
crossref_primary_10_3390_coatings12101382
crossref_primary_10_1002_lpor_202300588
crossref_primary_10_2139_ssrn_4055824
crossref_primary_10_35193_bseufbd_1072385
crossref_primary_10_1016_j_triboint_2023_108870
crossref_primary_10_1088_1402_4896_ace0e4
crossref_primary_10_3788_CJL231161
crossref_primary_10_3390_ma14154203
crossref_primary_10_1016_j_jmst_2024_03_083
crossref_primary_10_1016_j_jmapro_2023_10_003
crossref_primary_10_1007_s11666_024_01795_3
crossref_primary_10_1111_str_12457
crossref_primary_10_1016_j_jmst_2022_11_054
crossref_primary_10_1016_j_optlastec_2023_109412
crossref_primary_10_1016_j_jmapro_2022_04_014
crossref_primary_10_1007_s11665_023_08821_5
crossref_primary_10_1016_j_jallcom_2021_162086
crossref_primary_10_1007_s11665_024_10406_9
crossref_primary_10_1080_01694243_2022_2085499
crossref_primary_10_2351_7_0001364
crossref_primary_10_1016_j_jmapro_2024_12_027
crossref_primary_10_1016_j_surfcoat_2025_131840
crossref_primary_10_1016_j_triboint_2023_108525
crossref_primary_10_1016_j_corsci_2022_110539
crossref_primary_10_1007_s12666_022_02701_7
crossref_primary_10_1016_j_surfcoat_2025_131966
crossref_primary_10_1007_s11665_024_09174_3
crossref_primary_10_1016_j_optlastec_2024_111906
crossref_primary_10_1007_s11837_024_07015_1
crossref_primary_10_1016_j_mtcomm_2024_111080
crossref_primary_10_1108_ILT_08_2024_0304
crossref_primary_10_3390_coatings14060713
crossref_primary_10_1016_j_jmapro_2023_07_063
crossref_primary_10_1016_j_jmrt_2023_05_037
crossref_primary_10_1016_j_engfailanal_2024_108129
crossref_primary_10_1364_AO_516603
crossref_primary_10_3390_lubricants11070282
crossref_primary_10_1142_S0218625X24300144
crossref_primary_10_1016_j_surfcoat_2024_131536
crossref_primary_10_1002_maco_202213228
crossref_primary_10_1016_j_heliyon_2023_e13855
crossref_primary_10_3390_coatings15010083
crossref_primary_10_1016_j_ijleo_2022_170279
crossref_primary_10_1016_j_mtcomm_2024_110184
crossref_primary_10_1088_1742_6596_2785_1_012127
crossref_primary_10_1007_s10853_023_08577_2
crossref_primary_10_1016_j_ijleo_2022_169930
crossref_primary_10_1016_j_jnoncrysol_2023_122559
crossref_primary_10_3390_ma17010264
crossref_primary_10_1016_j_mtcomm_2024_109746
crossref_primary_10_1007_s11665_024_09359_w
crossref_primary_10_1016_j_surfcoat_2024_131585
crossref_primary_10_1007_s42247_024_00881_0
crossref_primary_10_1016_j_jmrt_2023_11_138
crossref_primary_10_1016_j_jmrt_2022_08_107
crossref_primary_10_1007_s00170_021_08042_x
crossref_primary_10_1007_s11666_024_01786_4
crossref_primary_10_1016_j_jmapro_2022_08_047
crossref_primary_10_1021_acsnano_2c07829
crossref_primary_10_1016_j_jmapro_2022_11_067
crossref_primary_10_3390_coatings12070876
crossref_primary_10_1016_j_optlastec_2024_111802
crossref_primary_10_1016_j_surfcoat_2024_131479
crossref_primary_10_1016_j_jmrt_2023_02_067
crossref_primary_10_3390_ma14206183
crossref_primary_10_3390_ma16083263
crossref_primary_10_1002_adem_202401779
crossref_primary_10_1016_j_intermet_2025_108654
crossref_primary_10_1016_j_jmapro_2021_06_041
crossref_primary_10_1007_s12666_022_02734_y
crossref_primary_10_1016_j_ijfatigue_2022_107180
crossref_primary_10_3390_coatings14010113
crossref_primary_10_1016_j_ijrmhm_2023_106273
crossref_primary_10_1016_j_wear_2024_205444
crossref_primary_10_1016_j_optlastec_2024_111137
crossref_primary_10_1134_S1029959924010016
crossref_primary_10_1016_j_wear_2023_204830
crossref_primary_10_1002_adem_202401887
crossref_primary_10_1016_j_ceramint_2022_05_399
crossref_primary_10_1016_j_heliyon_2024_e38429
crossref_primary_10_1016_j_jmrt_2023_03_070
crossref_primary_10_1007_s40516_021_00161_3
crossref_primary_10_1016_j_mtcomm_2024_108430
crossref_primary_10_1142_S0218625X25500520
crossref_primary_10_1016_j_jallcom_2024_175164
crossref_primary_10_3390_lubricants13030111
crossref_primary_10_1080_10402004_2023_2275680
crossref_primary_10_3389_fenrg_2023_1149446
crossref_primary_10_1016_j_surfcoat_2022_128811
crossref_primary_10_1016_j_ymssp_2021_108514
crossref_primary_10_1016_j_optlastec_2024_110611
crossref_primary_10_1016_j_surfcoat_2024_131575
crossref_primary_10_1016_j_ceramint_2024_10_384
Cites_doi 10.1002/adem.200300567
10.1016/j.jallcom.2014.02.121
10.1016/j.jmbbm.2013.09.006
10.1016/j.jmbbm.2015.11.015
10.1016/j.pmatsci.2020.100638
10.1016/j.jmbbm.2007.07.001
10.1016/j.surfcoat.2009.09.024
10.1016/j.surfcoat.2018.12.083
10.1016/j.matdes.2014.01.077
10.1016/j.optlastec.2018.01.058
10.1016/j.ceramint.2020.09.063
10.1016/j.jallcom.2017.08.248
10.1016/j.colsurfb.2015.01.016
10.1016/j.jmatprotec.2008.05.017
10.1016/j.surfcoat.2020.126445
10.1016/j.nucengdes.2010.05.040
10.1016/j.optlastec.2010.03.001
10.1016/j.pmatsci.2017.10.003
10.1016/j.procir.2017.12.099
10.1111/j.1151-2916.1984.tb19740.x
10.1016/j.jallcom.2016.04.037
10.1016/j.optlaseng.2010.03.017
10.1016/j.jallcom.2020.154245
10.1016/j.jmapro.2020.01.028
10.1016/j.matpr.2017.01.084
10.1016/j.jallcom.2017.08.153
10.1016/j.jallcom.2019.152986
10.2351/1.4943910
10.1016/j.apsusc.2018.08.264
10.1016/j.apsusc.2014.08.052
10.1016/j.surfcoat.2018.08.044
10.1016/j.optlastec.2021.106915
10.1016/j.apsusc.2014.05.196
10.1557/mrc.2014.11
10.1016/j.optlastec.2018.06.030
10.1016/j.optlastec.2014.07.003
10.1016/j.ijrmhm.2019.105112
10.1016/j.surfcoat.2018.11.034
10.1016/j.surfcoat.2017.04.008
10.1016/j.ceramint.2016.10.026
10.1016/j.surfcoat.2014.03.019
10.1016/j.matdes.2019.108295
10.1016/j.ceramint.2017.04.103
10.1016/j.apsusc.2010.08.094
10.1016/j.surfcoat.2008.11.012
10.1016/j.surfcoat.2017.12.058
10.1016/j.surfcoat.2020.126778
10.1016/S0257-8972(00)00732-5
10.1016/j.jallcom.2012.09.091
10.1016/j.optlaseng.2012.01.018
10.1016/j.matdes.2012.04.049
10.1016/j.ceramint.2018.08.083
10.1016/j.matlet.2014.11.058
10.1002/widm.1125
10.1016/j.apsusc.2015.12.059
10.1016/j.surfcoat.2019.125248
10.1016/j.actbio.2012.01.018
10.1016/j.optlaseng.2020.106041
10.1016/j.matdes.2010.12.001
10.1016/j.actamat.2019.12.015
10.1016/j.matlet.2017.02.076
10.1016/j.phpro.2010.08.060
10.1016/S0043-1648(03)00283-7
10.1016/j.surfcoat.2018.10.100
10.1016/S0257-8972(02)00006-3
10.1016/j.surfcoat.2007.04.003
10.1016/j.surfcoat.2013.05.052
10.1016/S0030-3992(98)00048-6
10.1016/j.apsusc.2015.04.030
10.1016/j.surfcoat.2010.08.087
10.1016/j.optlaseng.2019.05.026
10.1016/j.pmatsci.2008.06.004
10.1016/j.intermet.2020.106722
10.1016/j.jma.2020.02.003
10.1016/j.phpro.2011.03.039
10.1016/j.surfcoat.2019.125198
10.1016/j.matpr.2018.10.006
10.1016/j.optlastec.2016.09.044
10.1038/srep41463
10.3390/ma11010058
10.1016/S0921-5093(02)00076-X
10.1016/j.optlaseng.2018.02.004
10.1016/j.ijmachtools.2017.04.008
10.1016/j.actamat.2016.12.070
10.1016/j.matchemphys.2019.122522
10.1108/RPJ-12-2014-0167
10.1016/j.optlaseng.2019.03.001
10.1016/j.actbio.2012.06.037
10.1016/j.actbio.2018.10.036
10.1016/j.jmatprotec.2010.09.007
10.1016/j.optlastec.2019.03.048
10.1016/j.coche.2020.03.001
10.1016/j.actbio.2012.02.004
10.1016/j.surfcoat.2012.03.082
10.1016/j.apsusc.2010.02.078
10.1016/j.ijrmhm.2016.06.019
10.1016/j.optlastec.2019.105572
10.1016/j.optlastec.2019.05.006
10.1016/j.surfcoat.2019.125272
10.1016/j.surfcoat.2017.04.035
10.1016/j.apsusc.2015.03.152
10.2351/1.1771167
10.1016/j.scriptamat.2008.02.017
10.1016/j.optlastec.2019.01.017
10.1016/j.optlastec.2020.106619
10.1016/j.apsusc.2010.03.106
10.1016/j.matdes.2018.07.045
10.1016/j.biomaterials.2016.01.012
10.1016/j.jallcom.2016.09.071
10.1016/j.surfcoat.2011.08.063
10.1016/j.surfcoat.2018.05.053
10.1016/j.jallcom.2020.155449
10.1007/s00170-016-8743-9
10.1016/j.jmatprotec.2004.12.009
10.1016/j.ceramint.2018.08.090
10.1016/j.surfcoat.2015.02.050
10.1016/j.optlastec.2018.09.022
10.1016/j.surfcoat.2017.01.012
10.1016/j.surfcoat.2019.01.044
10.1016/j.vacuum.2020.109305
10.1016/j.surfcoat.2018.10.086
10.1016/j.ceramint.2020.02.159
10.1016/j.ijrmhm.2019.105091
10.1016/j.optlaseng.2016.08.005
10.1016/j.surfcoat.2018.03.035
10.1016/j.ceramint.2017.11.013
10.1016/j.matlet.2019.01.133
10.1007/s40516-016-0025-8
10.1016/j.pmatsci.2019.100578
10.1016/j.jallcom.2013.10.254
10.1016/j.optlastec.2020.106077
10.1016/j.surfcoat.2005.04.059
10.1016/j.msec.2011.07.009
10.1016/j.optlaseng.2009.08.003
10.1016/j.jallcom.2016.12.196
10.1016/j.surfcoat.2019.125249
10.1016/j.surfcoat.2019.125166
10.1016/S1002-0721(16)60061-3
10.1016/j.jallcom.2011.01.199
10.1016/j.rinp.2019.102160
10.1016/j.msec.2018.12.056
10.1016/j.jmatprotec.2020.116736
10.1016/j.matdes.2019.107959
10.1016/j.jallcom.2012.11.100
10.1038/s41467-019-13874-z
10.1016/j.ijrmhm.2014.05.010
10.1016/S1003-6326(11)61371-X
10.1016/j.jmapro.2020.03.048
10.1016/j.surfcoat.2021.126964
10.1016/j.jeurceramsoc.2007.11.011
10.1016/j.bioactmat.2019.12.004
10.1016/j.jallcom.2018.09.004
10.1016/j.surfcoat.2020.125876
10.1016/j.surfcoat.2019.124933
ContentType Journal Article
Copyright 2021 The Society of Manufacturing Engineers
Copyright_xml – notice: 2021 The Society of Manufacturing Engineers
DBID AAYXX
CITATION
DOI 10.1016/j.jmapro.2021.03.061
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2212-4616
EndPage 363
ExternalDocumentID 10_1016_j_jmapro_2021_03_061
S152661252100236X
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29K
3V.
4.4
457
4G.
5GY
5VS
7-5
71M
7WY
883
88I
8AO
8FE
8FG
8FL
8FW
8P~
8R4
8R5
9M8
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJCF
ABJNI
ABMAC
ABUWG
ABXDB
ABYKQ
ACDAQ
ACGFS
ACGOD
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKRA
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BENPR
BEZIV
BGLVJ
BJAXD
BKOJK
BLXMC
BPHCQ
CCPQU
CS3
D-I
DU5
DWQXO
E3Z
EBS
EFJIC
EFLBG
EJD
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FRNLG
FYGXN
GBLVA
GNUQQ
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
HCIFZ
HVGLF
HZ~
H~9
J1W
JJJVA
K60
K6~
KOM
L6V
M0C
M0F
M2P
M41
M7S
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQBIZ
PQQKQ
PROAC
PTHSS
Q2X
Q38
R2-
RIG
RNS
ROL
RWL
S0X
SDF
SES
SPC
SPCBC
SST
SSZ
T5K
TAE
TN5
U5U
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
PHGZM
PHGZT
PQBZA
SSH
ID FETCH-LOGICAL-c372t-4b53997ceb5db63a8d0338551b29bb5939c9b1c90c8d057ecba5bc09bcb59ddb3
IEDL.DBID .~1
ISSN 1526-6125
IngestDate Tue Jul 01 02:23:36 EDT 2025
Thu Apr 24 23:02:37 EDT 2025
Fri Feb 23 02:45:21 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Mechanical properties
Surface modification
Engineering alloys
Research status
Laser cladding
Development trend
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-4b53997ceb5db63a8d0338551b29bb5939c9b1c90c8d057ecba5bc09bcb59ddb3
PageCount 23
ParticipantIDs crossref_primary_10_1016_j_jmapro_2021_03_061
crossref_citationtrail_10_1016_j_jmapro_2021_03_061
elsevier_sciencedirect_doi_10_1016_j_jmapro_2021_03_061
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2021
2021-06-00
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: June 2021
PublicationDecade 2020
PublicationTitle Journal of manufacturing processes
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Li, Li, Luo (bib0610) 2015; 65
Emamian, Corbin, Khajepour (bib0255) 2010; 205
Zakaria, Sulong, Muhamad, Raza, Ramli (bib0030) 2019; 97
Yang, Serpersu, He, Paital, Dahotre (bib0765) 2011; 31
Todaro, Easton, Qiu, Zhang, Bermingham, Lui (bib0825) 2020; 11
Zhang, Zhou, Yu, Li (bib0540) 2017; 311
Behera, Hasan, Sankar, Pandey (bib0770) 2018; 352
Isik, Niinomi, Cho, Nakai, Liu, Yilmazer (bib0740) 2016; 59
Wang, Sun, Lu, Chen, Lan, Bi (bib0235) 2021; 408
Gao, Zhao, Liu, Wang, Zhou, Lin (bib0305) 2014; 248
Hu, Cong (bib0805) 2018; 44
Bobbio, Otis, Borgonia, Dillon, Shapiro, Liu (bib0790) 2017; 127
Qi, Zhan, Gao, Liu, Song, Li (bib0455) 2019; 119
Yang, Miao, Wang, Yang (bib0415) 2014; 46
Liu, Sun, Niu, Zhang, Tan (bib0675) 2019; 46
Sun, Lei, Niu (bib0370) 2009; 203
Sun, Hao (bib0285) 2012; 50
Guo, Li, Zeng, Wang, Deng, Wang (bib0590) 2020; 242
Wang, Zhang, Qu (bib0620) 2010; 48
An, Chen, Tao, Ming, Chen (bib0065) 2020; 86
Toyserkani, Khajepour, Corbin (bib0100) 2006
Hu, Wang, Yao, Xia, Li, Liu (bib0205) 2020; 383
Diao, Zhang (bib0425) 2015; 352
Feng, Tang, Zhang, Wang (bib0400) 2012; 22
Bandyopadhyay, Zhang, Bose (bib0025) 2020; 28
Zhang, Tian, Yin, Niu, Wu, Wang (bib0585) 2020; 119
Ryabchikov, Kashkarov, Shevelev, Syrtanov (bib0060) 2020; 383
Xiang, Liu, Ren, Luo, Shi, Chen (bib0685) 2014; 313
Aboulkhair, Simonelli, Parry, Ashcroft, Tuck, Hague (bib0020) 2019; 106
Riquelme, Escalera-Rodríguez, Rodrigo, Otero, Rams (bib0445) 2017; 727
Schopphoven, Gasser, Wissenbach, Poprawe (bib0105) 2016; 28
Chen, Hsu (bib0200) 1998; 30
Wang, Liu (bib0715) 2002; 338
Quazi, Fazal, Haseeb, Yusof, Masjuki, Arslan (bib0595) 2016; 34
Aramian, Razavi, Sadeghian, Berto (bib0835) 2020; 33
Sun, Mao, Yang (bib0345) 2002; 155
Meng, Geng, Zhang (bib0355) 2006; 200
Sun, Lei, Niu (bib0320) 2009; 203
Han, Lingling, Chaoqun, Sun, Zhang (bib0535) 2017; 46
Liu, Liu, Chen, Hao (bib0570) 2019; 361
Zhang, Lu, Ma, Liaw, Tang, Cheng (bib0480) 2014; 4
Chen, Wu, Li, Liu (bib0295) 2019; 116
Niinomi, Nakai, Hieda (bib0745) 2012; 8
Weng, Chen, Yu (bib0340) 2014; 58
Yanan, Lijun, Xuejiao, Tiangang, Ronglu (bib0045) 2021; 47
Ning, Cong (bib0160) 2020; 51
Huang, Zhou, Xu, Huo, He, Meng (bib0815) 2020; 395
Zhai, Ban, Zhang (bib0215) 2019; 114
Sun, Fu, Ping, Guo, Lin, Lei (bib0635) 2019; 359
Wu, Fahy, Kim, Kim, Zhao, Pilato (bib0840) 2020; 111
Li, Chen, Lin, Squartini (bib0390) 2011; 509
Ni, Shi, Liu, Huang (bib0560) 2018; 105
Zhao, Yu, Sun, Jiang (bib0080) 2020; 86
Feng, Feng, Yao, Li (bib0645) 2019; 181
Muvvala, Patra Karmakar, Nath (bib0135) 2017; 88
Wu, Guo, Ma, Niu (bib0180) 2015; 141
Weng, Yu, Chen, Liu, Zhao, Dai (bib0325) 2017; 692
Zhou, Lei, Dai, Guo, Gu, Pan (bib0430) 2016; 60
Yan, Qin, Chen, Zhong (bib0050) 2020; 56
Li, Zhang, Lei, Chen, Chen (bib0315) 2001; 137
Li, Lei, Fu (bib0660) 2014; 316
Daram, Banjongprasert (bib0055) 2020; 384
Dong, Wang (bib0365) 2009; 204
Silva, Ribeiro, Bracarense, Pessoa (bib0230) 2012
Hofman, de Lange, Pathiraj, Meijer (bib0140) 2011; 211
Wen, Cui, Jin, Zhang, Zhang, Zhang (bib0175) 2020; 835
Yue, Xie, Lin, Yang, Meng (bib0525) 2014; 587
Zhang, Lei (bib0350) 2003; 255
Zhou, Dai (bib0380) 2010; 256
Feng, Feng, Yao, Li, Sun (bib0650) 2018; 157
Zhu, Yang, Xin, Wang, Meng, Ning (bib0170) 2021; 410
Hermawan, Ramdan, Djuansjah (bib0735) 2011
Chen, Liu, Wu, Wang (bib0630) 2017; 11
Zhai, Ban, Zhang, Yao (bib0210) 2019; 243
Khorram, Davoodi Jamaloei, Paidar, Cao (bib0280) 2019; 378
Fashu, Lototskyy, Davids, Pickering, Linkov, Tai (bib0015) 2020; 186
Das, Bhattacharya, Dittrick, Mandal, Balla, Sampath Kumar, Bandyopadhyay, Manna (bib0410) 2014; 29
Obadele, Andrews, Olubambi, Mathew, Pityana (bib0720) 2015; 66
Weisheit, Rittinghaus, Dutta, Majumdar (bib0810) 2020; 131
Wang, Xu, Zhou, Xu, Leary, Choong (bib0260) 2016; 83
Qiu, Zhang, He, Liu (bib0510) 2013; 549
Zhu, Xue, Lan, Meng, Ren, Yang (bib0115) 2021; 138
Obadele, Andrews, Mathew, Olubambi, Pityana (bib0420) 2015; 345
Zhang, Shi, Kutsuna, Xu (bib0605) 2010; 240
Chouirfa, Bouloussa, Migonney, Falentin Daudré (bib0035) 2019; 83
McAndrew, Colegrove, Bühr, Flipo, Vairis (bib0040) 2018; 92
Liu, Li, Cheng, Wang (bib0245) 2017; 325
Li, Chen, Squartini, He (bib0385) 2010; 257
Karunakaran, Ortgies, Tamayol, Bobaru, Sealy (bib0830) 2020; 5
Toyserkani, Khajepour, Corbin (bib0240) 2004
Huang, Zeng (bib0615) 2010; 256
Zhang, Wu, He, Li, Guo (bib0530) 2016; 363
Shu, Li, Zhang, Yao, Li, Dai (bib0600) 2017; 195
Song, She, Chen, Pan (bib0005) 2020; 8
Siddiqui, Dubey (bib0120) 2021; 134
Gu, Xi, Sun (bib0580) 2020; 819
Amuda, Akinlabi, Moolla (bib0440) 2017; 4
Huang, Zhang, Shen, Vilar (bib0490) 2011; 206
Yang, Cheng, Tang, Tian, Liu (bib0655) 2018; 337
Shao, Khonsari, Guo, Meng, Li (bib0010) 2019; 29
Vallauri, Atías Adrián, Chrysanthou (bib0665) 2008; 28
Yang, Zhang, Yan, Zheng (bib0375) 2010; 48
Ramirez, Qian, Davis, Wilks, StJohn (bib0195) 2008; 59
Devojno, Feldshtein, Kardapolava, Lutsko (bib0130) 2018; 106
Zhang, Ashida, Shono, Matsuda (bib0225) 2006; 174
Salcedo-Sanz, Rojo-Álvarez, Martínez-Ramón, Camps-Valls (bib0290) 2014; 4
Zhu, Zhang, Yu, Yan, Li, Wu (bib0085) 2020; 383
Yeh, Chen, Lin, Gan, Chin, Shun (bib0470) 2004; 6
Zhang, He, Pan, Guo (bib0520) 2014; 600
Lv, Li, Tao, Hu (bib0435) 2016; 679
Quazi, Fazal, Haseeb, Yusof, Masjuki, Arslan (bib0680) 2016; 3
Toyserkani, Corbin, Khajepour (bib0075) 2005
Farayibi, Abioye, Clare (bib0265) 2016; 87
Yan, Liu, Zhang, Zhao, Qin, Lu (bib0700) 2020; 126
Li, Wang, Chen, Weng (bib0775) 2015; 127
Kumar, Mandal, Das, Dixit (bib0275) 2018; 349
Xu, Lu, Luo, Yao, Xu, Lu (bib0335) 2020; 284
Zhai, Liu, Qiao, Wang, Lu, Wang (bib0690) 2017; 89
Young (bib0705) 2008
Li, Xiong, Li, Chen, Gao, Zou (bib0795) 2017; 43
Biesiekierski, Wang, Gepreel, Wen (bib0755) 2012; 8
Bourahima, Helbert, Rege, Ji, Solas, Baudin (bib0485) 2019; 771
Wen, Jin, Cui, Feng, Lu, Cai (bib0110) 2019; 111
Ye, Ma, Cao, Liu, Ye, Gu (bib0500) 2011; 12
Qiu, Liu (bib0515) 2013; 553
Shu, Zhang, Liu, Sui, Liu, He (bib0575) 2019; 358
Qu, Li, Juan, Shao, Song, Bai (bib0695) 2019; 357
Liu, Liu, Chen, Yang (bib0725) 2019; 118
Liang, Yin, Lin, Chen, Liu, Wang (bib0820) 2020; 176
Ramiro, Alberdi, Ortiz, Lamikiz, Ukar (bib0310) 2018; 68
Yang, Li, Zhang, Wei, Wang, Kang (bib0465) 2020; 383
Adesina, Obadele, Farotade, Isadare, Adediran, Ikubanni (bib0090) 2020; 827
Ruirun, Deshuang, Tengfei, Hongsheng, Yanqing, Jingjie (bib0190) 2017; 7
Wang, Jin, Yang, Sun (bib0405) 2013; 236
Tamanna, Crouch, Naher (bib0125) 2019; 122
Kaushal, Singh, Gupta, Bhowmick (bib0450) 2018; 5
Zhang, Zhao, Wang, Liu, Ying (bib0165) 2020; 403
Hu, Ning, Cong, Li, Wang, Wang (bib0800) 2018; 44
Guo, Shang, Liu (bib0555) 2018; 344
Zhai, Ban, Zhang (bib0220) 2019; 358
SORRELL, BERATAN, BRADT, STUBICAN (bib0670) 1984; 67
Niu, Wu, Ma, Zhou, Zhang (bib0785) 2015; 21
Riquelme, Rodrigo, Escalera-Rodríguez, Rams (bib0460) 2019; 13
Dutta Majumdar, Manna, Kumar, Bhargava, Nath (bib0330) 2009; 209
Yanan, Ronglu, Wei, Tiangang, Yiwen (bib0070) 2019; 120
Pereira, Zambrano, Tobar, Yañez, Amigó (bib0710) 2015; 270
Ma, Yan, Wu, Miao, Liu, Niu (bib0185) 2017; 43
Lu, McCormick, Zhao, Fan, Huang (bib0250) 2018; 44
Li, Huang, Zhu, Li (bib0395) 2012; 206
Zhang, Pan, He (bib0495) 2011; 32
Cong, Ning (bib0155) 2017; 121
Huang, Zhang, Vilar, Shen (bib0505) 2012; 41
Nagay, Cordeiro, Barão (bib0730) 2020
Geetha, Singh, Asokamani, Gogia (bib0760) 2009; 54
Maliutina, Si-Mohand, Sijobert, Bertrand, Lazurenko, Bataev (bib0095) 2017; 319
Zhao, Niinomi, Nakai, Hieda (bib0780) 2012; 8
Anandkumar, Almeida, Colaço, Vilar, Ocelik, De Hosson (bib0360) 2007; 201
Xin, hai, Min, jiang, Hong (bib0300) 2010; 42
Shu, Liu, Zhao, He, Sui, Zhang (bib0550) 2018; 731
Ibarra-Medina, Pinkerton (bib0150) 2010; 5
George, Curtin, Tasan (bib0475) 2020; 188
Wu, Zhang, Zhang, Zhang, Dong (bib0545) 2017; 698
Liu, Sun, Zhang, Niu (bib0640) 2019; 48
Niinomi (bib0750) 2008; 1
Hung, Lin (bib0145) 2004; 16
Yu, Yang, Zhao, Sun, Li (bib0270) 2018; 108
Juan, Li, Jiang, Jia, Lu (bib0565) 2019; 465
Zhang, Zhuang, Zhang, Yao, Yang (bib0625) 2020; 46
Vallauri (10.1016/j.jmapro.2021.03.061_bib0665) 2008; 28
Weng (10.1016/j.jmapro.2021.03.061_bib0340) 2014; 58
SORRELL (10.1016/j.jmapro.2021.03.061_bib0670) 1984; 67
McAndrew (10.1016/j.jmapro.2021.03.061_bib0040) 2018; 92
Ibarra-Medina (10.1016/j.jmapro.2021.03.061_bib0150) 2010; 5
Liang (10.1016/j.jmapro.2021.03.061_bib0820) 2020; 176
Isik (10.1016/j.jmapro.2021.03.061_bib0740) 2016; 59
Adesina (10.1016/j.jmapro.2021.03.061_bib0090) 2020; 827
Quazi (10.1016/j.jmapro.2021.03.061_bib0680) 2016; 3
Sun (10.1016/j.jmapro.2021.03.061_bib0345) 2002; 155
Ye (10.1016/j.jmapro.2021.03.061_bib0500) 2011; 12
Ramirez (10.1016/j.jmapro.2021.03.061_bib0195) 2008; 59
Toyserkani (10.1016/j.jmapro.2021.03.061_bib0240) 2004
Li (10.1016/j.jmapro.2021.03.061_bib0395) 2012; 206
Sun (10.1016/j.jmapro.2021.03.061_bib0285) 2012; 50
Wang (10.1016/j.jmapro.2021.03.061_bib0405) 2013; 236
Farayibi (10.1016/j.jmapro.2021.03.061_bib0265) 2016; 87
Yeh (10.1016/j.jmapro.2021.03.061_bib0470) 2004; 6
Yanan (10.1016/j.jmapro.2021.03.061_bib0070) 2019; 120
Qiu (10.1016/j.jmapro.2021.03.061_bib0510) 2013; 549
Wen (10.1016/j.jmapro.2021.03.061_bib0110) 2019; 111
Yan (10.1016/j.jmapro.2021.03.061_bib0700) 2020; 126
Sun (10.1016/j.jmapro.2021.03.061_bib0320) 2009; 203
Quazi (10.1016/j.jmapro.2021.03.061_bib0595) 2016; 34
Hu (10.1016/j.jmapro.2021.03.061_bib0205) 2020; 383
An (10.1016/j.jmapro.2021.03.061_bib0065) 2020; 86
Guo (10.1016/j.jmapro.2021.03.061_bib0555) 2018; 344
Sun (10.1016/j.jmapro.2021.03.061_bib0370) 2009; 203
Shu (10.1016/j.jmapro.2021.03.061_bib0575) 2019; 358
Weng (10.1016/j.jmapro.2021.03.061_bib0325) 2017; 692
Diao (10.1016/j.jmapro.2021.03.061_bib0425) 2015; 352
Hu (10.1016/j.jmapro.2021.03.061_bib0800) 2018; 44
Hofman (10.1016/j.jmapro.2021.03.061_bib0140) 2011; 211
Obadele (10.1016/j.jmapro.2021.03.061_bib0420) 2015; 345
Yang (10.1016/j.jmapro.2021.03.061_bib0765) 2011; 31
Niinomi (10.1016/j.jmapro.2021.03.061_bib0750) 2008; 1
Yan (10.1016/j.jmapro.2021.03.061_bib0050) 2020; 56
Pereira (10.1016/j.jmapro.2021.03.061_bib0710) 2015; 270
Biesiekierski (10.1016/j.jmapro.2021.03.061_bib0755) 2012; 8
Wu (10.1016/j.jmapro.2021.03.061_bib0545) 2017; 698
Maliutina (10.1016/j.jmapro.2021.03.061_bib0095) 2017; 319
Siddiqui (10.1016/j.jmapro.2021.03.061_bib0120) 2021; 134
Zhai (10.1016/j.jmapro.2021.03.061_bib0690) 2017; 89
Nagay (10.1016/j.jmapro.2021.03.061_bib0730) 2020
Zhai (10.1016/j.jmapro.2021.03.061_bib0215) 2019; 114
Toyserkani (10.1016/j.jmapro.2021.03.061_bib0100) 2006
Liu (10.1016/j.jmapro.2021.03.061_bib0725) 2019; 118
Geetha (10.1016/j.jmapro.2021.03.061_bib0760) 2009; 54
Wang (10.1016/j.jmapro.2021.03.061_bib0235) 2021; 408
Zhang (10.1016/j.jmapro.2021.03.061_bib0585) 2020; 119
Huang (10.1016/j.jmapro.2021.03.061_bib0505) 2012; 41
Yang (10.1016/j.jmapro.2021.03.061_bib0415) 2014; 46
Guo (10.1016/j.jmapro.2021.03.061_bib0590) 2020; 242
Lu (10.1016/j.jmapro.2021.03.061_bib0250) 2018; 44
Li (10.1016/j.jmapro.2021.03.061_bib0385) 2010; 257
George (10.1016/j.jmapro.2021.03.061_bib0475) 2020; 188
Wang (10.1016/j.jmapro.2021.03.061_bib0715) 2002; 338
Fashu (10.1016/j.jmapro.2021.03.061_bib0015) 2020; 186
Behera (10.1016/j.jmapro.2021.03.061_bib0770) 2018; 352
Riquelme (10.1016/j.jmapro.2021.03.061_bib0460) 2019; 13
Zhang (10.1016/j.jmapro.2021.03.061_bib0495) 2011; 32
Karunakaran (10.1016/j.jmapro.2021.03.061_bib0830) 2020; 5
Ruirun (10.1016/j.jmapro.2021.03.061_bib0190) 2017; 7
Hu (10.1016/j.jmapro.2021.03.061_bib0805) 2018; 44
Ryabchikov (10.1016/j.jmapro.2021.03.061_bib0060) 2020; 383
Salcedo-Sanz (10.1016/j.jmapro.2021.03.061_bib0290) 2014; 4
Das (10.1016/j.jmapro.2021.03.061_bib0410) 2014; 29
Liu (10.1016/j.jmapro.2021.03.061_bib0640) 2019; 48
Niinomi (10.1016/j.jmapro.2021.03.061_bib0745) 2012; 8
Anandkumar (10.1016/j.jmapro.2021.03.061_bib0360) 2007; 201
Meng (10.1016/j.jmapro.2021.03.061_bib0355) 2006; 200
Li (10.1016/j.jmapro.2021.03.061_bib0315) 2001; 137
Yue (10.1016/j.jmapro.2021.03.061_bib0525) 2014; 587
Ma (10.1016/j.jmapro.2021.03.061_bib0185) 2017; 43
Wu (10.1016/j.jmapro.2021.03.061_bib0180) 2015; 141
Huang (10.1016/j.jmapro.2021.03.061_bib0615) 2010; 256
Zhang (10.1016/j.jmapro.2021.03.061_bib0225) 2006; 174
Li (10.1016/j.jmapro.2021.03.061_bib0610) 2015; 65
Zhao (10.1016/j.jmapro.2021.03.061_bib0780) 2012; 8
Kumar (10.1016/j.jmapro.2021.03.061_bib0275) 2018; 349
Chen (10.1016/j.jmapro.2021.03.061_bib0295) 2019; 116
Sun (10.1016/j.jmapro.2021.03.061_bib0635) 2019; 359
Qu (10.1016/j.jmapro.2021.03.061_bib0695) 2019; 357
Riquelme (10.1016/j.jmapro.2021.03.061_bib0445) 2017; 727
Zhang (10.1016/j.jmapro.2021.03.061_bib0540) 2017; 311
Zhou (10.1016/j.jmapro.2021.03.061_bib0380) 2010; 256
Zhai (10.1016/j.jmapro.2021.03.061_bib0210) 2019; 243
Silva (10.1016/j.jmapro.2021.03.061_bib0230) 2012
Zhou (10.1016/j.jmapro.2021.03.061_bib0430) 2016; 60
Juan (10.1016/j.jmapro.2021.03.061_bib0565) 2019; 465
Liu (10.1016/j.jmapro.2021.03.061_bib0570) 2019; 361
Ning (10.1016/j.jmapro.2021.03.061_bib0160) 2020; 51
Zhu (10.1016/j.jmapro.2021.03.061_bib0085) 2020; 383
Yang (10.1016/j.jmapro.2021.03.061_bib0465) 2020; 383
Huang (10.1016/j.jmapro.2021.03.061_bib0815) 2020; 395
Schopphoven (10.1016/j.jmapro.2021.03.061_bib0105) 2016; 28
Hermawan (10.1016/j.jmapro.2021.03.061_bib0735) 2011
Song (10.1016/j.jmapro.2021.03.061_bib0005) 2020; 8
Hung (10.1016/j.jmapro.2021.03.061_bib0145) 2004; 16
Zakaria (10.1016/j.jmapro.2021.03.061_bib0030) 2019; 97
Dutta Majumdar (10.1016/j.jmapro.2021.03.061_bib0330) 2009; 209
Han (10.1016/j.jmapro.2021.03.061_bib0535) 2017; 46
Shu (10.1016/j.jmapro.2021.03.061_bib0550) 2018; 731
Chen (10.1016/j.jmapro.2021.03.061_bib0200) 1998; 30
Zhang (10.1016/j.jmapro.2021.03.061_bib0165) 2020; 403
Yang (10.1016/j.jmapro.2021.03.061_bib0375) 2010; 48
Bandyopadhyay (10.1016/j.jmapro.2021.03.061_bib0025) 2020; 28
Yang (10.1016/j.jmapro.2021.03.061_bib0655) 2018; 337
Kaushal (10.1016/j.jmapro.2021.03.061_bib0450) 2018; 5
Aramian (10.1016/j.jmapro.2021.03.061_bib0835) 2020; 33
Zhang (10.1016/j.jmapro.2021.03.061_bib0350) 2003; 255
Cong (10.1016/j.jmapro.2021.03.061_bib0155) 2017; 121
Xu (10.1016/j.jmapro.2021.03.061_bib0335) 2020; 284
Muvvala (10.1016/j.jmapro.2021.03.061_bib0135) 2017; 88
Wang (10.1016/j.jmapro.2021.03.061_bib0260) 2016; 83
Niu (10.1016/j.jmapro.2021.03.061_bib0785) 2015; 21
Shu (10.1016/j.jmapro.2021.03.061_bib0600) 2017; 195
Tamanna (10.1016/j.jmapro.2021.03.061_bib0125) 2019; 122
Gao (10.1016/j.jmapro.2021.03.061_bib0305) 2014; 248
Li (10.1016/j.jmapro.2021.03.061_bib0795) 2017; 43
Zhu (10.1016/j.jmapro.2021.03.061_bib0170) 2021; 410
Yu (10.1016/j.jmapro.2021.03.061_bib0270) 2018; 108
Lv (10.1016/j.jmapro.2021.03.061_bib0435) 2016; 679
Liu (10.1016/j.jmapro.2021.03.061_bib0675) 2019; 46
Li (10.1016/j.jmapro.2021.03.061_bib0775) 2015; 127
Ni (10.1016/j.jmapro.2021.03.061_bib0560) 2018; 105
Todaro (10.1016/j.jmapro.2021.03.061_bib0825) 2020; 11
Toyserkani (10.1016/j.jmapro.2021.03.061_bib0075) 2005
Gu (10.1016/j.jmapro.2021.03.061_bib0580) 2020; 819
Feng (10.1016/j.jmapro.2021.03.061_bib0645) 2019; 181
Zhao (10.1016/j.jmapro.2021.03.061_bib0080) 2020; 86
Zhang (10.1016/j.jmapro.2021.03.061_bib0530) 2016; 363
Emamian (10.1016/j.jmapro.2021.03.061_bib0255) 2010; 205
Zhang (10.1016/j.jmapro.2021.03.061_bib0625) 2020; 46
Feng (10.1016/j.jmapro.2021.03.061_bib0650) 2018; 157
Huang (10.1016/j.jmapro.2021.03.061_bib0490) 2011; 206
Shao (10.1016/j.jmapro.2021.03.061_bib0010) 2019; 29
Aboulkhair (10.1016/j.jmapro.2021.03.061_bib0020) 2019; 106
Obadele (10.1016/j.jmapro.2021.03.061_bib0720) 2015; 66
Yanan (10.1016/j.jmapro.2021.03.061_bib0045) 2021; 47
Wang (10.1016/j.jmapro.2021.03.061_bib0620) 2010; 48
Amuda (10.1016/j.jmapro.2021.03.061_bib0440) 2017; 4
Bobbio (10.1016/j.jmapro.2021.03.061_bib0790) 2017; 127
Chouirfa (10.1016/j.jmapro.2021.03.061_bib0035) 2019; 83
Daram (10.1016/j.jmapro.2021.03.061_bib0055) 2020; 384
Zhang (10.1016/j.jmapro.2021.03.061_bib0520) 2014; 600
Zhang (10.1016/j.jmapro.2021.03.061_bib0605) 2010; 240
Chen (10.1016/j.jmapro.2021.03.061_bib0630) 2017; 11
Zhai (10.1016/j.jmapro.2021.03.061_bib0220) 2019; 358
Li (10.1016/j.jmapro.2021.03.061_bib0390) 2011; 509
Ramiro (10.1016/j.jmapro.2021.03.061_bib0310) 2018; 68
Xin (10.1016/j.jmapro.2021.03.061_bib0300) 2010; 42
Xiang (10.1016/j.jmapro.2021.03.061_bib0685) 2014; 313
Qiu (10.1016/j.jmapro.2021.03.061_bib0515) 2013; 553
Feng (10.1016/j.jmapro.2021.03.061_bib0400) 2012; 22
Khorram (10.1016/j.jmapro.2021.03.061_bib0280) 2019; 378
Young (10.1016/j.jmapro.2021.03.061_bib0705) 2008
Bourahima (10.1016/j.jmapro.2021.03.061_bib0485) 2019; 771
Wu (10.1016/j.jmapro.2021.03.061_bib0840) 2020; 111
Wen (10.1016/j.jmapro.2021.03.061_bib0175) 2020; 835
Zhu (10.1016/j.jmapro.2021.03.061_bib0115) 2021; 138
Li (10.1016/j.jmapro.2021.03.061_bib0660) 2014; 316
Liu (10.1016/j.jmapro.2021.03.061_bib0245) 2017; 325
Devojno (10.1016/j.jmapro.2021.03.061_bib0130) 2018; 106
Weisheit (10.1016/j.jmapro.2021.03.061_bib0810) 2020; 131
Qi (10.1016/j.jmapro.2021.03.061_bib0455) 2019; 119
Dong (10.1016/j.jmapro.2021.03.061_bib0365) 2009; 204
Zhang (10.1016/j.jmapro.2021.03.061_bib0480) 2014; 4
References_xml – volume: 771
  start-page: 1018
  year: 2019
  end-page: 1028
  ident: bib0485
  article-title: Laser cladding of Ni based powder on a Cu-Ni-Al glassmold: influence of the process parameters on bonding quality and coating geometry
  publication-title: J Alloys Compd
– volume: 255
  start-page: 129
  year: 2003
  end-page: 133
  ident: bib0350
  article-title: The microstructure and erosive–corrosive wear performance of laser-clad Ni–Cr
  publication-title: Wear
– volume: 119
  year: 2020
  ident: bib0585
  article-title: Effect of Fe on microstructure and properties of AlCoCrFe
  publication-title: Intermetallics
– volume: 47
  start-page: 2230
  year: 2021
  end-page: 2243
  ident: bib0045
  article-title: Optimization of microstructure and properties of composite coatings by laser cladding on titanium alloy
  publication-title: Ceram Int
– volume: 127
  start-page: 15
  year: 2015
  end-page: 21
  ident: bib0775
  article-title: Effect of CeO
  publication-title: Colloids Surf B Biointerfaces
– year: 2004
  ident: bib0240
  article-title: Laser cladding
– volume: 209
  start-page: 2237
  year: 2009
  end-page: 2243
  ident: bib0330
  article-title: Direct laser cladding of Co on Ti–6Al–4V with a compositionally graded interface
  publication-title: J Mater Process Technol
– volume: 44
  start-page: 20599
  year: 2018
  end-page: 20612
  ident: bib0805
  article-title: A review on laser deposition-additive manufacturing of ceramics and ceramic reinforced metal matrix composites
  publication-title: Ceram Int
– volume: 408
  year: 2021
  ident: bib0235
  article-title: High-performance Ti-6Al-4V with graded microstructure and superior properties fabricated by powder feeding underwater laser metal deposition
  publication-title: Surf Coat Technol
– volume: 121
  start-page: 61
  year: 2017
  end-page: 69
  ident: bib0155
  article-title: A fundamental investigation on ultrasonic vibration-assisted laser engineered net shaping of stainless steel
  publication-title: Int J Mach Tools Manuf
– volume: 4
  start-page: 763
  year: 2017
  end-page: 773
  ident: bib0440
  article-title: Microstructure evolution in Ti6Al4V alloy laser cladded with Premix Ti+TiB
  publication-title: Mater Today Proc
– volume: 835
  year: 2020
  ident: bib0175
  article-title: Design and characterization of FeCrCoAlMn0.5Mo0.1 high-entropy alloy coating by ultrasonic assisted laser cladding
  publication-title: J Alloys Compd
– volume: 114
  start-page: 81
  year: 2019
  end-page: 88
  ident: bib0215
  article-title: Investigation on laser cladding Ni-base coating assisted by electromagnetic field
  publication-title: Opt Laser Technol
– volume: 1
  start-page: 30
  year: 2008
  end-page: 42
  ident: bib0750
  article-title: Mechanical biocompatibilities of titanium alloys for biomedical applications
  publication-title: J Mech Behav Biomed Mater
– volume: 131
  year: 2020
  ident: bib0810
  article-title: Studies on the effect of composition and pre-heating on microstructure and mechanical properties of direct laser clad titanium aluminide
  publication-title: Opt Lasers Eng
– volume: 211
  start-page: 187
  year: 2011
  end-page: 196
  ident: bib0140
  article-title: FEM modeling and experimental verification for dilution control in laser cladding
  publication-title: J Mater Process Technol
– volume: 141
  start-page: 207
  year: 2015
  end-page: 209
  ident: bib0180
  article-title: Dilution characteristics of ultrasonic assisted laser clad yttria-stabilized zirconia coating
  publication-title: Mater Lett
– volume: 60
  start-page: 17
  year: 2016
  end-page: 27
  ident: bib0430
  article-title: A comparative study of the structure and wear resistance of NiCrBSi/50 wt.% WC composite coatings by laser cladding and laser induction hybrid cladding
  publication-title: Int J Refract Metals Hard Mater
– volume: 43
  start-page: 9622
  year: 2017
  end-page: 9629
  ident: bib0185
  article-title: Microstructure evolution and mechanical properties of ultrasonic assisted laser clad yttria stabilized zirconia coating
  publication-title: Ceram Int
– volume: 86
  year: 2020
  ident: bib0080
  article-title: Microstructure and properties of laser cladded B
  publication-title: Int J Refract Metals Hard Mater
– volume: 134
  year: 2021
  ident: bib0120
  article-title: Recent trends in laser cladding and surface alloying
  publication-title: Opt Laser Technol
– volume: 83
  start-page: 37
  year: 2019
  end-page: 54
  ident: bib0035
  article-title: Review of titanium surface modification techniques and coatings for antibacterial applications
  publication-title: Acta Biomater
– volume: 727
  start-page: 671
  year: 2017
  end-page: 682
  ident: bib0445
  article-title: Effect of alloy elements added on microstructure and hardening of Al/SiC laser clad coatings
  publication-title: J Alloys Compd
– year: 2005
  ident: bib0075
  article-title: Laser cladding
– volume: 325
  start-page: 352
  year: 2017
  end-page: 359
  ident: bib0245
  article-title: Effect of dilution and macrosegregation on corrosion resistance of laser clad AerMet100 steel coating on 300M steel substrate
  publication-title: Surf Coat Technol
– volume: 157
  start-page: 258
  year: 2018
  end-page: 272
  ident: bib0650
  article-title: Microstructure and properties of in-situ synthesized (Ti
  publication-title: Mater Des
– volume: 270
  start-page: 243
  year: 2015
  end-page: 248
  ident: bib0710
  article-title: High temperature oxidation behavior of laser cladding MCrAlY coatings on austenitic stainless steel
  publication-title: Surf Coat Technol
– volume: 48
  start-page: 123
  year: 2019
  end-page: 132
  ident: bib0640
  article-title: Microstructures and properties of laser cladding coating on Ti811 alloy surface
  publication-title: Surf Technol
– volume: 126
  year: 2020
  ident: bib0700
  article-title: Fabrication and tribological behaviors of Ti
  publication-title: Opt Laser Technol
– volume: 174
  start-page: 34
  year: 2006
  end-page: 41
  ident: bib0225
  article-title: Effect of shielding conditions of local dry cavity on weld quality in underwater Nd:YAG laser welding
  publication-title: J Mater Process Technol
– volume: 106
  year: 2019
  ident: bib0020
  article-title: 3D printing of aluminium alloys: additive manufacturing of aluminium alloys using selective laser melting
  publication-title: Prog Mater Sci
– volume: 48
  start-page: 119
  year: 2010
  end-page: 124
  ident: bib0375
  article-title: Microstructure and wear properties of TiCN/Ti coatings on titanium alloy by laser cladding
  publication-title: Opt Lasers Eng
– volume: 4
  start-page: 57
  year: 2014
  end-page: 62
  ident: bib0480
  article-title: Guidelines in predicting phase formation of high-entropy alloys
  publication-title: MRS Commun
– volume: 127
  start-page: 133
  year: 2017
  end-page: 142
  ident: bib0790
  article-title: Additive manufacturing of a functionally graded material from Ti-6Al-4V to Invar: experimental characterization and thermodynamic calculations
  publication-title: Acta Mater
– volume: 240
  start-page: 2691
  year: 2010
  end-page: 2696
  ident: bib0605
  article-title: Laser cladding of Colmonoy 6 powder on AISI316L austenitic stainless steel
  publication-title: Nucl Eng Des
– volume: 358
  start-page: 667
  year: 2019
  end-page: 675
  ident: bib0575
  article-title: Effects of laser power on microstructure and properties of laser cladded CoCrBFeNiSi high-entropy alloy amorphous coatings
  publication-title: Surf Coat Technol
– volume: 68
  start-page: 381
  year: 2018
  end-page: 386
  ident: bib0310
  article-title: Characteristics of Fe-, Ni- and Co-based powder coatings fabricated by laser metal deposition without preheating the base material
  publication-title: Procedia CIRP
– volume: 257
  start-page: 1550
  year: 2010
  end-page: 1555
  ident: bib0385
  article-title: A study on wear resistance and microcrack of the Ti
  publication-title: Appl Surf Sci
– volume: 155
  start-page: 203
  year: 2002
  end-page: 207
  ident: bib0345
  article-title: Microscopic morphology and distribution of TiC phase in laser clad NiCrBSiC–TiC layer on titanium alloy substrate
  publication-title: Surf Coat Technol
– volume: 83
  start-page: 127
  year: 2016
  end-page: 141
  ident: bib0260
  article-title: Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review
  publication-title: Biomaterials
– volume: 137
  start-page: 122
  year: 2001
  end-page: 135
  ident: bib0315
  article-title: Comparison of laser-clad and furnace-melted Ni-based alloy microstructures
  publication-title: Surf Coat Technol
– volume: 549
  start-page: 195
  year: 2013
  end-page: 199
  ident: bib0510
  article-title: Microstructure and corrosion resistance of AlCrFeCuCo high entropy alloy
  publication-title: J Alloys Compd
– volume: 97
  start-page: 884
  year: 2019
  end-page: 895
  ident: bib0030
  article-title: Incorporation of wollastonite bioactive ceramic with titanium for medical applications: an overview
  publication-title: Mater Sci Eng C
– volume: 54
  start-page: 397
  year: 2009
  end-page: 425
  ident: bib0760
  article-title: Ti based biomaterials, the ultimate choice for orthopaedic implants-a review
  publication-title: Prog Mater Sci
– volume: 22
  start-page: 1667
  year: 2012
  end-page: 1673
  ident: bib0400
  article-title: Microstructure and wear resistance of laser clad TiB–TiC/TiNi–Ti
  publication-title: Trans Nonferrous Met Soc China
– volume: 383
  year: 2020
  ident: bib0085
  article-title: Microstructure and wide temperature range self-lubricating properties of laser cladding NiCrAlY/Ag
  publication-title: Surf Coat Technol
– volume: 384
  year: 2020
  ident: bib0055
  article-title: The influence of post treatments on the microstructure and corrosion behavior of thermally sprayed NiCrMoAl alloy coating
  publication-title: Surf Coat Technol
– volume: 181
  year: 2019
  ident: bib0645
  article-title: Effect of LaB
  publication-title: Mater Des
– volume: 316
  start-page: 610
  year: 2014
  end-page: 616
  ident: bib0660
  article-title: Growth mechanism, distribution characteristics and reinforcing behavior of (Ti, Nb)C particle in laser cladded Fe-based composite coating
  publication-title: Appl Surf Sci
– volume: 8
  start-page: 1990
  year: 2012
  end-page: 1997
  ident: bib0780
  article-title: Beta type Ti–Mo alloys with changeable Young’s modulus for spinal fixation applications
  publication-title: Acta Biomater
– volume: 361
  start-page: 63
  year: 2019
  end-page: 74
  ident: bib0570
  article-title: Microstructural characterization and corrosion behaviour of AlCoCrFeNiTi
  publication-title: Surf Coat Technol
– volume: 30
  start-page: 263
  year: 1998
  end-page: 273
  ident: bib0200
  article-title: In-process vibration-assisted high power Nd:YAG pulsed laser ceramic–metal composite cladding on Al-alloys
  publication-title: Opt Laser Technol
– volume: 284
  year: 2020
  ident: bib0335
  article-title: Mechanical properties and electrochemical corrosion resistance of multilayer laser cladded Fe-based composite coatings on 4Cr5MoSiV1 steel
  publication-title: J Mater Process Technol
– volume: 119
  year: 2019
  ident: bib0455
  article-title: The influence of the pre-placed powder layers on the morphology, microscopic characteristics and microhardness of Ti-6Al-4V/WC MMC coatings during laser cladding
  publication-title: Opt Laser Technol
– volume: 66
  year: 2015
  ident: bib0720
  article-title: Tribocorrosion behaviour of laser cladded biomedical grade titanium alloy
  publication-title: Mater Corros
– volume: 236
  start-page: 45
  year: 2013
  end-page: 51
  ident: bib0405
  article-title: Directional growth whisker reinforced Ti-base composites fabricated by laser cladding
  publication-title: Surf Coat Technol
– volume: 819
  year: 2020
  ident: bib0580
  article-title: Microstructure and properties of laser cladding and CoCr
  publication-title: J Alloys Compd
– volume: 28
  year: 2016
  ident: bib0105
  article-title: Investigations on ultra-high-speed laser material deposition as alternative for hard chrome plating and thermal spraying
  publication-title: J Laser Appl
– year: 2006
  ident: bib0100
  article-title: System and method for closed-loop control of laser cladding by powder injection
  publication-title: US
– volume: 8
  start-page: 3888
  year: 2012
  ident: bib0745
  article-title: Development of new metallic alloys for biomedical applications
  publication-title: Acta Biomater
– volume: 5
  start-page: 337
  year: 2010
  end-page: 346
  ident: bib0150
  article-title: A CFD model of the laser, coaxial powder stream and substrate interaction in laser cladding
  publication-title: Phys Procedia
– volume: 51
  start-page: 174
  year: 2020
  end-page: 190
  ident: bib0160
  article-title: Ultrasonic vibration-assisted (UV-A) manufacturing processes: state of the art and future perspectives
  publication-title: J Manuf Process
– volume: 32
  start-page: 1910
  year: 2011
  end-page: 1915
  ident: bib0495
  article-title: Synthesis and characterization of FeCoNiCrCu high-entropy alloy coating by laser cladding
  publication-title: Mater Des
– volume: 122
  start-page: 151
  year: 2019
  end-page: 163
  ident: bib0125
  article-title: Progress in numerical simulation of the laser cladding process
  publication-title: Opt Lasers Eng
– volume: 92
  start-page: 225
  year: 2018
  end-page: 257
  ident: bib0040
  article-title: A literature review of Ti-6Al-4V linear friction welding
  publication-title: Prog Mater Sci
– volume: 5
  start-page: 27718
  year: 2018
  end-page: 27725
  ident: bib0450
  article-title: On the development and characterization of microwave processed Ni + 30% SiC based composite clads
  publication-title: Mater Today Proc
– volume: 587
  start-page: 588
  year: 2014
  end-page: 593
  ident: bib0525
  article-title: Solidification behaviour in laser cladding of AlCoCrCuFeNi high-entropy alloy on magnesium substrates
  publication-title: J Alloys Compd
– volume: 46
  start-page: 58
  year: 2014
  end-page: 64
  ident: bib0415
  article-title: Influence of Mn additions on the microstructure and magnetic properties of FeNiCr/60% WC composite coating produced by laser cladding
  publication-title: Int J Refract Metals Hard Mater
– year: 2008
  ident: bib0705
  article-title: High temperature oxidation and corrosion of metals, corrosion series
– volume: 118
  start-page: 140
  year: 2019
  end-page: 150
  ident: bib0725
  article-title: Microstructure and high temperature wear behaviour of in-situ TiC reinforced AlCoCrFeNi-based high-entropy alloy composite coatings fabricated by laser cladding
  publication-title: Opt Laser Technol
– volume: 8
  start-page: 1
  year: 2020
  end-page: 41
  ident: bib0005
  article-title: Latest research advances on magnesium and magnesium alloys worldwide
  publication-title: J Magnes Alloys
– volume: 403
  year: 2020
  ident: bib0165
  article-title: Microstructure evolution and properties of in-situ ceramic particles reinforced Fe-based composite coating produced by ultrasonic vibration assisted laser cladding processing
  publication-title: Surf Coat Technol
– volume: 195
  start-page: 178
  year: 2017
  end-page: 181
  ident: bib0600
  article-title: In situ synthesized high volume fraction WC reinforced Ni-based coating by laser cladding
  publication-title: Mater Lett
– volume: 256
  start-page: 5985
  year: 2010
  end-page: 5992
  ident: bib0615
  article-title: Investigation on cracking behavior of Ni-based coating by laser-induction hybrid cladding
  publication-title: Appl Surf Sci
– volume: 248
  start-page: 54
  year: 2014
  end-page: 62
  ident: bib0305
  article-title: Effect of defocus manner on laser cladding of Fe-based alloy powder
  publication-title: Surf Coat Technol
– volume: 89
  start-page: 97
  year: 2017
  end-page: 107
  ident: bib0690
  article-title: Characteristics of laser clad α-Ti/TiC+(Ti,W)C
  publication-title: Opt Laser Technol
– volume: 7
  start-page: 41463
  year: 2017
  ident: bib0190
  article-title: Effects of ultrasonic vibration on the microstructure and mechanical properties of high alloying TiAl
  publication-title: Sci Rep
– volume: 731
  start-page: 662
  year: 2018
  end-page: 666
  ident: bib0550
  article-title: Structure and high-temperature property of amorphous composite coating synthesized by laser cladding FeCrCoNiSiB high-entropy alloy powder
  publication-title: J Alloys Compd
– volume: 138
  year: 2021
  ident: bib0115
  article-title: Recent research and development status of laser cladding: a review
  publication-title: Opt Laser Technol
– volume: 28
  start-page: 96
  year: 2020
  end-page: 104
  ident: bib0025
  article-title: Recent developments in metal additive manufacturing
  publication-title: Curr Opin Chem Eng
– volume: 11
  year: 2017
  ident: bib0630
  article-title: Effect of CeO
  publication-title: Materials
– volume: 204
  start-page: 731
  year: 2009
  end-page: 735
  ident: bib0365
  article-title: Microstructure and dry sliding wear resistance of laser clad TiC reinforced Ti–Ni–Si intermetallic composite coating
  publication-title: Surf Coat Technol
– volume: 256
  start-page: 4708
  year: 2010
  end-page: 4714
  ident: bib0380
  article-title: Laser induction hybrid rapid cladding of WC particles reinforced NiCrBSi composite coatings
  publication-title: Appl Surf Sci
– volume: 827
  year: 2020
  ident: bib0090
  article-title: Influence of phase composition and microstructure on corrosion behavior of laser based Ti–Co–Ni ternary coatings on Ti–6Al–4V alloy
  publication-title: J Alloys Compd
– volume: 692
  start-page: 989
  year: 2017
  end-page: 996
  ident: bib0325
  article-title: Effect of process parameters on the microstructure evolution and wear property of the laser cladding coatings on Ti-6Al-4V alloy
  publication-title: J Alloys Compd
– volume: 201
  start-page: 9497
  year: 2007
  end-page: 9505
  ident: bib0360
  article-title: Microstructure and wear studies of laser clad Al-Si/SiC(p) composite coatings
  publication-title: Surf Coat Technol
– volume: 46
  start-page: 13711
  year: 2020
  end-page: 13723
  ident: bib0625
  article-title: Influence of Y
  publication-title: Ceram Int
– volume: 33
  year: 2020
  ident: bib0835
  article-title: A review of additive manufacturing of cermets
  publication-title: Addit Manuf
– volume: 679
  start-page: 202
  year: 2016
  end-page: 212
  ident: bib0435
  article-title: Oxidation behaviors of the TiNi/Ti
  publication-title: J Alloys Compd
– volume: 206
  start-page: 4021
  year: 2012
  end-page: 4026
  ident: bib0395
  article-title: Effect of heat input on the microstructure of in-situ synthesized TiN–TiB/Ti based composite coating by laser cladding
  publication-title: Surf Coat Technol
– volume: 111
  year: 2020
  ident: bib0840
  article-title: Recent developments in polymers/polymer nanocomposites for additive manufacturing
  publication-title: Prog Mater Sci
– volume: 357
  start-page: 811
  year: 2019
  end-page: 821
  ident: bib0695
  article-title: Effects of the content of MoS
  publication-title: Surf Coat Technol
– volume: 88
  start-page: 139
  year: 2017
  end-page: 152
  ident: bib0135
  article-title: Online monitoring of thermo-cycles and its correlation with microstructure in laser cladding of nickel based super alloy
  publication-title: Opt Lasers Eng
– volume: 59
  start-page: 226
  year: 2016
  end-page: 235
  ident: bib0740
  article-title: Microstructural evolution and mechanical properties of biomedical Co-Cr-Mo alloy subjected to high-pressure torsion
  publication-title: J Mech Behav Biomed Mater
– volume: 108
  start-page: 321
  year: 2018
  end-page: 332
  ident: bib0270
  article-title: Experimental research and multi-response multi-parameter optimization of laser cladding Fe313
  publication-title: Opt Laser Technol
– volume: 509
  start-page: 4882
  year: 2011
  end-page: 4886
  ident: bib0390
  article-title: Phase constituents and microstructure of laser cladding Al
  publication-title: J Alloys Compd
– volume: 41
  start-page: 338
  year: 2012
  end-page: 343
  ident: bib0505
  article-title: Dry sliding wear behavior of laser clad TiVCrAlSi high entropy alloy coatings on Ti–6Al–4V substrate
  publication-title: Mater Des
– volume: 313
  start-page: 243
  year: 2014
  end-page: 250
  ident: bib0685
  article-title: Investigation of laser cladding high temperature anti-wear composite coatings on Ti6Al4V alloy with the addition of self-lubricant CaF
  publication-title: Appl Surf Sci
– volume: 553
  start-page: 216
  year: 2013
  end-page: 220
  ident: bib0515
  article-title: Microstructure and properties of Al2CrFeCoCuTiNix high-entropy alloys prepared by laser cladding
  publication-title: J Alloys Compd
– volume: 4
  start-page: 234
  year: 2014
  end-page: 267
  ident: bib0290
  article-title: Support vector machines in engineering: an overview
  publication-title: WIREs Data Min Knowl Discov
– volume: 337
  start-page: 97
  year: 2018
  end-page: 103
  ident: bib0655
  article-title: Influence of microstructures and wear behaviors of the microalloyed coatings on TC11 alloy surface using laser cladding technique
  publication-title: Surf Coat Technol
– volume: 67
  start-page: 190
  year: 1984
  end-page: 194
  ident: bib0670
  article-title: Directional solidification of (Ti, Zr) carbide-(Ti, Zr) diboride eutectics
  publication-title: J Am Ceram Soc
– volume: 600
  start-page: 210
  year: 2014
  end-page: 214
  ident: bib0520
  article-title: Thermally stable laser cladded CoCrCuFeNi high-entropy alloy coating with low stacking fault energy
  publication-title: J Alloys Compd
– volume: 395
  year: 2020
  ident: bib0815
  article-title: Microstructure and wear resistance of electromagnetic field assisted multi-layer laser clad Fe901 coating
  publication-title: Surf Coat Technol
– volume: 16
  start-page: 140
  year: 2004
  end-page: 146
  ident: bib0145
  article-title: Solidification model of laser cladding with wire feeding technique
  publication-title: J Laser Appl
– volume: 87
  start-page: 3349
  year: 2016
  end-page: 3358
  ident: bib0265
  article-title: A parametric study on laser cladding of Ti-6Al-4V wire and WC/W
  publication-title: Int J Adv Manuf Technol
– year: 2011
  ident: bib0735
  article-title: Metals for biomedical applications
– volume: 59
  start-page: 19
  year: 2008
  end-page: 22
  ident: bib0195
  article-title: Potency of high-intensity ultrasonic treatment for grain refinement of magnesium alloys
  publication-title: Scr Mater
– volume: 358
  start-page: 531
  year: 2019
  end-page: 538
  ident: bib0220
  article-title: Microstructure, microhardness and corrosion resistance of NiCrBSi coatings under electromagnetic field auxiliary laser cladding
  publication-title: Surf Coat Technol
– volume: 56
  start-page: 295
  year: 2020
  end-page: 305
  ident: bib0050
  article-title: Hybrid laser welding of dissimilar aluminum alloys: welding processing, microstructure, properties and modelling
  publication-title: J Manuf Process
– volume: 383
  year: 2020
  ident: bib0060
  article-title: High-intensity chromium ion implantation into Zr-1Nb alloy
  publication-title: Surf Coat Technol
– volume: 8
  start-page: 1661
  year: 2012
  end-page: 1669
  ident: bib0755
  article-title: A new look at biomedical Ti-based shape memory alloys
  publication-title: Acta Biomater
– volume: 206
  start-page: 1389
  year: 2011
  end-page: 1395
  ident: bib0490
  article-title: Thermal stability and oxidation resistance of laser clad TiVCrAlSi high entropy alloy coatings on Ti–6Al–4V alloy
  publication-title: Surf Coat Technol
– volume: 338
  start-page: 126
  year: 2002
  end-page: 132
  ident: bib0715
  article-title: Microstructure and wear resistance of laser clad Ti
  publication-title: Mater Sci Eng A
– volume: 3
  start-page: 67
  year: 2016
  end-page: 99
  ident: bib0680
  article-title: A review to the laser cladding of self-lubricating composite coatings
  publication-title: Lasers Manuf Mater Process
– volume: 344
  start-page: 353
  year: 2018
  end-page: 358
  ident: bib0555
  article-title: Microstructure and properties of in-situ TiN reinforced laser cladding CoCr
  publication-title: Surf Coat Technol
– start-page: 159
  year: 2020
  end-page: 189
  ident: bib0730
  article-title: Alloy materials for biomedical applications
  publication-title: Alloy materials and their allied applications
– volume: 352
  start-page: 420
  year: 2018
  end-page: 436
  ident: bib0770
  article-title: Laser cladding with HA and functionally graded TiO
  publication-title: Surf Coat Technol
– volume: 31
  start-page: 1643
  year: 2011
  end-page: 1652
  ident: bib0765
  article-title: Osteoblast interaction with laser cladded HA and SiO
  publication-title: Mater Sci Eng C
– volume: 176
  year: 2020
  ident: bib0820
  article-title: Microstructure and wear behaviors of laser cladding in-situ synthetic (TiB
  publication-title: Vacuum
– volume: 243
  start-page: 195
  year: 2019
  end-page: 198
  ident: bib0210
  article-title: Characteristics of dilution and microstructure in laser cladding Ni-Cr-B-Si coating assisted by electromagnetic compound field
  publication-title: Mater Lett
– volume: 345
  start-page: 99
  year: 2015
  end-page: 108
  ident: bib0420
  article-title: Improving the tribocorrosion resistance of Ti6Al4V surface by laser surface cladding with TiNiZrO
  publication-title: Appl Surf Sci
– volume: 5
  start-page: 44
  year: 2020
  end-page: 54
  ident: bib0830
  article-title: Additive manufacturing of magnesium alloys
  publication-title: Bioact Mater
– volume: 186
  year: 2020
  ident: bib0015
  article-title: A review on crucibles for induction melting of titanium alloys
  publication-title: Mater Des
– volume: 28
  start-page: 1697
  year: 2008
  end-page: 1713
  ident: bib0665
  article-title: TiC–TiB
  publication-title: J Eur Ceram Soc
– volume: 383
  year: 2020
  ident: bib0205
  article-title: Effects of electromagnetic compound field on the escape behavior of pores in molten pool during laser cladding
  publication-title: Surf Coat Technol
– volume: 188
  start-page: 435
  year: 2020
  end-page: 474
  ident: bib0475
  article-title: High entropy alloys: a focused review of mechanical properties and deformation mechanisms
  publication-title: Acta Mater
– volume: 43
  start-page: 961
  year: 2017
  end-page: 967
  ident: bib0795
  article-title: Mechanical properties and formation mechanism of Ti/SiC system gradient materials fabricated by in-situ reaction laser cladding
  publication-title: Ceram Int
– volume: 42
  start-page: 1154
  year: 2010
  end-page: 1161
  ident: bib0300
  article-title: Thermal fatigue resistance of non-smooth cast iron treated by laser cladding with different self-fluxing alloys
  publication-title: Opt Laser Technol
– volume: 311
  start-page: 321
  year: 2017
  end-page: 329
  ident: bib0540
  article-title: Synthesis and characterization of refractory TiZrNbWMo high-entropy alloy coating by laser cladding
  publication-title: Surf Coat Technol
– volume: 50
  start-page: 985
  year: 2012
  end-page: 995
  ident: bib0285
  article-title: Statistical analysis and optimization of process parameters in Ti6Al4V laser cladding using Nd:YAG laser
  publication-title: Opt Lasers Eng
– volume: 44
  start-page: 2752
  year: 2018
  end-page: 2760
  ident: bib0800
  article-title: Ultrasonic vibration-assisted laser engineering net shaping of ZrO
  publication-title: Ceram Int
– volume: 203
  start-page: 1395
  year: 2009
  end-page: 1399
  ident: bib0370
  article-title: Laser clad TiC reinforced NiCrBSi composite coatings on Ti–6Al–4V alloy using a CW CO
  publication-title: Surf Coat Technol
– volume: 34
  start-page: 549
  year: 2016
  end-page: 564
  ident: bib0595
  article-title: Effect of rare earth elements and their oxides on tribo-mechanical performance of laser claddings: a review
  publication-title: J Rare Earths
– volume: 65
  start-page: 66
  year: 2015
  end-page: 75
  ident: bib0610
  article-title: Effects of post-heat treatment on microstructure and properties of laser cladded composite coatings on titanium alloy substrate
  publication-title: Opt Laser Technol
– volume: 352
  start-page: 163
  year: 2015
  end-page: 168
  ident: bib0425
  article-title: Microstructure and corrosion resistance of TC2 Ti alloy by laser cladding with Ti/TiC/TiB
  publication-title: Appl Surf Sci
– volume: 203
  start-page: 1395
  year: 2009
  end-page: 1399
  ident: bib0320
  article-title: Laser clad TiC reinforced NiCrBSi composite coatings on Ti-6Al-4V alloy using a CW CO
  publication-title: Surf Coat Technol
– volume: 46
  start-page: 226
  year: 2017
  end-page: 231
  ident: bib0535
  article-title: Microstructure and properties of laser cladding AlB
  publication-title: Surf Technol
– volume: 242
  year: 2020
  ident: bib0590
  article-title: In-situ TiC reinforced CoCrCuFeNiSi
  publication-title: Mater Chem Phys
– volume: 349
  start-page: 37
  year: 2018
  end-page: 49
  ident: bib0275
  article-title: Parametric study and characterization of AlN-Ni-Ti6Al4V composite cladding on titanium alloy
  publication-title: Surf Coat Technol
– volume: 200
  start-page: 4923
  year: 2006
  end-page: 4928
  ident: bib0355
  article-title: Laser cladding of Ni-base composite coatings onto Ti–6Al–4V substrates with pre-placed B
  publication-title: Surf Coat Technol
– volume: 359
  start-page: 300
  year: 2019
  end-page: 313
  ident: bib0635
  article-title: Effect of CeO
  publication-title: Surf Coat Technol
– year: 2012
  ident: bib0230
  article-title: Effect of the hydrostatic pressure in the diffusible hydrogen at the underwater wet welding
– volume: 116
  start-page: 345
  year: 2019
  end-page: 355
  ident: bib0295
  article-title: Laser cladding of nanoparticle TiC ceramic powder: effects of process parameters on the quality characteristics of the coatings and its prediction model
  publication-title: Opt Laser Technol
– volume: 698
  start-page: 761
  year: 2017
  end-page: 770
  ident: bib0545
  article-title: Phase evolution and cavitation erosion-corrosion behavior of FeCoCrAlNiTi
  publication-title: J Alloys Compd
– volume: 378
  year: 2019
  ident: bib0280
  article-title: Laser cladding of Inconel 718 with 75Cr3C2+25(80Ni20Cr) powder: statistical modeling and optimization
  publication-title: Surf Coat Technol
– volume: 363
  start-page: 543
  year: 2016
  end-page: 547
  ident: bib0530
  article-title: Formation of core–shell structure in high entropy alloy coating by laser cladding
  publication-title: Appl Surf Sci
– volume: 21
  start-page: 201
  year: 2015
  end-page: 206
  ident: bib0785
  article-title: Effect of second-phase doping on laser deposited Al
  publication-title: Rapid Prototyp J
– volume: 106
  start-page: 32
  year: 2018
  end-page: 38
  ident: bib0130
  article-title: On the formation features, microstructure and microhardness of single laser tracks formed by laser cladding of a NiCrBSi self-fluxing alloy
  publication-title: Opt Lasers Eng
– volume: 58
  start-page: 412
  year: 2014
  end-page: 425
  ident: bib0340
  article-title: Research status of laser cladding on titanium and its alloys: a review
  publication-title: Mater Des
– volume: 86
  year: 2020
  ident: bib0065
  article-title: Experimental investigation on tool wear characteristics of PVD and CVD coatings during face milling of Ti6242S and Ti-555 titanium alloys
  publication-title: Int J Refract Metals Hard Mater
– volume: 383
  year: 2020
  ident: bib0465
  article-title: In-situ TiC-Al
  publication-title: Surf Coat Technol
– volume: 29
  start-page: 259
  year: 2014
  end-page: 271
  ident: bib0410
  article-title: In situ synthesized TiB–TiN reinforced Ti6Al4V alloy composite coatings: microstructure, tribological and in-vitro biocompatibility
  publication-title: J Mech Behav Biomed Mater
– volume: 465
  start-page: 700
  year: 2019
  end-page: 714
  ident: bib0565
  article-title: Modified criterions for phase prediction in the multi-component laser-clad coatings and investigations into microstructural evolution/wear resistance of FeCrCoNiAlMo
  publication-title: Appl Surf Sci
– volume: 11
  start-page: 142
  year: 2020
  ident: bib0825
  article-title: Grain structure control during metal 3D printing by high-intensity ultrasound
  publication-title: Nat Commun
– volume: 111
  start-page: 814
  year: 2019
  end-page: 824
  ident: bib0110
  article-title: Underwater wet laser cladding on 316L stainless steel: a protective material assisted method
  publication-title: Opt Laser Technol
– volume: 205
  start-page: 2007
  year: 2010
  end-page: 2015
  ident: bib0255
  article-title: Effect of laser cladding process parameters on clad quality and in-situ formed microstructure of Fe–TiC composite coatings
  publication-title: Surf Coat Technol
– volume: 13
  year: 2019
  ident: bib0460
  article-title: Characterisation and mechanical properties of Al/SiC metal matrix composite coatings formed on ZE41 magnesium alloys by laser cladding
  publication-title: Results Phys
– volume: 410
  year: 2021
  ident: bib0170
  article-title: Microstructure and mechanical properties of parts formed by ultrasonic vibration-assisted laser cladding of Inconel 718
  publication-title: Surf Coat Technol
– volume: 44
  start-page: 20851
  year: 2018
  end-page: 20861
  ident: bib0250
  article-title: Laser deposition of compositionally graded titanium oxide on Ti6Al4V alloy
  publication-title: Ceram Int
– volume: 105
  start-page: 257
  year: 2018
  end-page: 263
  ident: bib0560
  article-title: Characterization of Al0.5FeCu0.7NiCoCr high-entropy alloy coating on aluminum alloy by laser cladding
  publication-title: Opt Laser Technol
– volume: 120
  start-page: 84
  year: 2019
  end-page: 94
  ident: bib0070
  article-title: Effects of CeO
  publication-title: Opt Lasers Eng
– volume: 29
  year: 2019
  ident: bib0010
  article-title: Overview: additive manufacturing enabled accelerated design of Ni-based alloys for improved fatigue life
  publication-title: Addit Manuf
– volume: 46
  year: 2019
  ident: bib0675
  article-title: Microstructure and friction and wear resistance of laser cladding composite coating on Ti811 surface
  publication-title: Chin J Lasers
– volume: 6
  start-page: 299
  year: 2004
  end-page: 303
  ident: bib0470
  article-title: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes
  publication-title: Adv Eng Mater
– volume: 12
  start-page: 303
  year: 2011
  end-page: 312
  ident: bib0500
  article-title: The property research on high-entropy alloy AlxFeCoNiCuCr coating by laser cladding
  publication-title: Phys Procedia
– volume: 48
  start-page: 893
  year: 2010
  end-page: 898
  ident: bib0620
  article-title: Development and characterization of (Ti, Mo)C carbides reinforced Fe-based surface composite coating produced by laser cladding
  publication-title: Opt Lasers Eng
– volume: 319
  start-page: 136
  year: 2017
  end-page: 144
  ident: bib0095
  article-title: Structure and oxidation behavior of γ-TiAl coating produced by laser cladding on titanium alloy
  publication-title: Surf Coat Technol
– volume: 6
  start-page: 299
  issue: 5
  year: 2004
  ident: 10.1016/j.jmapro.2021.03.061_bib0470
  article-title: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes
  publication-title: Adv Eng Mater
  doi: 10.1002/adem.200300567
– volume: 600
  start-page: 210
  year: 2014
  ident: 10.1016/j.jmapro.2021.03.061_bib0520
  article-title: Thermally stable laser cladded CoCrCuFeNi high-entropy alloy coating with low stacking fault energy
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2014.02.121
– volume: 29
  start-page: 259
  year: 2014
  ident: 10.1016/j.jmapro.2021.03.061_bib0410
  article-title: In situ synthesized TiB–TiN reinforced Ti6Al4V alloy composite coatings: microstructure, tribological and in-vitro biocompatibility
  publication-title: J Mech Behav Biomed Mater
  doi: 10.1016/j.jmbbm.2013.09.006
– volume: 59
  start-page: 226
  year: 2016
  ident: 10.1016/j.jmapro.2021.03.061_bib0740
  article-title: Microstructural evolution and mechanical properties of biomedical Co-Cr-Mo alloy subjected to high-pressure torsion
  publication-title: J Mech Behav Biomed Mater
  doi: 10.1016/j.jmbbm.2015.11.015
– volume: 66
  year: 2015
  ident: 10.1016/j.jmapro.2021.03.061_bib0720
  article-title: Tribocorrosion behaviour of laser cladded biomedical grade titanium alloy
  publication-title: Mater Corros
– volume: 111
  year: 2020
  ident: 10.1016/j.jmapro.2021.03.061_bib0840
  article-title: Recent developments in polymers/polymer nanocomposites for additive manufacturing
  publication-title: Prog Mater Sci
  doi: 10.1016/j.pmatsci.2020.100638
– volume: 1
  start-page: 30
  issue: 1
  year: 2008
  ident: 10.1016/j.jmapro.2021.03.061_bib0750
  article-title: Mechanical biocompatibilities of titanium alloys for biomedical applications
  publication-title: J Mech Behav Biomed Mater
  doi: 10.1016/j.jmbbm.2007.07.001
– volume: 204
  start-page: 731
  issue: 5
  year: 2009
  ident: 10.1016/j.jmapro.2021.03.061_bib0365
  article-title: Microstructure and dry sliding wear resistance of laser clad TiC reinforced Ti–Ni–Si intermetallic composite coating
  publication-title: Surf Coat Technol
  doi: 10.1016/j.surfcoat.2009.09.024
– volume: 359
  start-page: 300
  year: 2019
  ident: 10.1016/j.jmapro.2021.03.061_bib0635
  article-title: Effect of CeO2 addition on microstructure and mechanical properties of in-situ (Ti, Nb)C/Ni coating
  publication-title: Surf Coat Technol
  doi: 10.1016/j.surfcoat.2018.12.083
– volume: 58
  start-page: 412
  year: 2014
  ident: 10.1016/j.jmapro.2021.03.061_bib0340
  article-title: Research status of laser cladding on titanium and its alloys: a review
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2014.01.077
– volume: 105
  start-page: 257
  year: 2018
  ident: 10.1016/j.jmapro.2021.03.061_bib0560
  article-title: Characterization of Al0.5FeCu0.7NiCoCr high-entropy alloy coating on aluminum alloy by laser cladding
  publication-title: Opt Laser Technol
  doi: 10.1016/j.optlastec.2018.01.058
– volume: 47
  start-page: 2230
  issue: 2
  year: 2021
  ident: 10.1016/j.jmapro.2021.03.061_bib0045
  article-title: Optimization of microstructure and properties of composite coatings by laser cladding on titanium alloy
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2020.09.063
– volume: 731
  start-page: 662
  year: 2018
  ident: 10.1016/j.jmapro.2021.03.061_bib0550
  article-title: Structure and high-temperature property of amorphous composite coating synthesized by laser cladding FeCrCoNiSiB high-entropy alloy powder
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2017.08.248
– volume: 127
  start-page: 15
  year: 2015
  ident: 10.1016/j.jmapro.2021.03.061_bib0775
  article-title: Effect of CeO2 and Y2O3 on microstructure, bioactivity and degradability of laser cladding CaO-SiO2 coating on titanium alloy
  publication-title: Colloids Surf B Biointerfaces
  doi: 10.1016/j.colsurfb.2015.01.016
– volume: 209
  start-page: 2237
  issue: 5
  year: 2009
  ident: 10.1016/j.jmapro.2021.03.061_bib0330
  article-title: Direct laser cladding of Co on Ti–6Al–4V with a compositionally graded interface
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2008.05.017
– volume: 403
  year: 2020
  ident: 10.1016/j.jmapro.2021.03.061_bib0165
  article-title: Microstructure evolution and properties of in-situ ceramic particles reinforced Fe-based composite coating produced by ultrasonic vibration assisted laser cladding processing
  publication-title: Surf Coat Technol
  doi: 10.1016/j.surfcoat.2020.126445
– volume: 240
  start-page: 2691
  issue: 10
  year: 2010
  ident: 10.1016/j.jmapro.2021.03.061_bib0605
  article-title: Laser cladding of Colmonoy 6 powder on AISI316L austenitic stainless steel
  publication-title: Nucl Eng Des
  doi: 10.1016/j.nucengdes.2010.05.040
– volume: 42
  start-page: 1154
  issue: 7
  year: 2010
  ident: 10.1016/j.jmapro.2021.03.061_bib0300
  article-title: Thermal fatigue resistance of non-smooth cast iron treated by laser cladding with different self-fluxing alloys
  publication-title: Opt Laser Technol
  doi: 10.1016/j.optlastec.2010.03.001
– volume: 92
  start-page: 225
  year: 2018
  ident: 10.1016/j.jmapro.2021.03.061_bib0040
  article-title: A literature review of Ti-6Al-4V linear friction welding
  publication-title: Prog Mater Sci
  doi: 10.1016/j.pmatsci.2017.10.003
– volume: 68
  start-page: 381
  year: 2018
  ident: 10.1016/j.jmapro.2021.03.061_bib0310
  article-title: Characteristics of Fe-, Ni- and Co-based powder coatings fabricated by laser metal deposition without preheating the base material
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2017.12.099
– volume: 67
  start-page: 190
  issue: 3
  year: 1984
  ident: 10.1016/j.jmapro.2021.03.061_bib0670
  article-title: Directional solidification of (Ti, Zr) carbide-(Ti, Zr) diboride eutectics
  publication-title: J Am Ceram Soc
  doi: 10.1111/j.1151-2916.1984.tb19740.x
– volume: 679
  start-page: 202
  year: 2016
  ident: 10.1016/j.jmapro.2021.03.061_bib0435
  article-title: Oxidation behaviors of the TiNi/Ti2Ni matrix composite coatings with different contents of TaC addition fabricated on Ti6Al4V by laser cladding
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2016.04.037
– volume: 48
  start-page: 893
  issue: 9
  year: 2010
  ident: 10.1016/j.jmapro.2021.03.061_bib0620
  article-title: Development and characterization of (Ti, Mo)C carbides reinforced Fe-based surface composite coating produced by laser cladding
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2010.03.017
– volume: 827
  year: 2020
  ident: 10.1016/j.jmapro.2021.03.061_bib0090
  article-title: Influence of phase composition and microstructure on corrosion behavior of laser based Ti–Co–Ni ternary coatings on Ti–6Al–4V alloy
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2020.154245
– volume: 51
  start-page: 174
  year: 2020
  ident: 10.1016/j.jmapro.2021.03.061_bib0160
  article-title: Ultrasonic vibration-assisted (UV-A) manufacturing processes: state of the art and future perspectives
  publication-title: J Manuf Process
  doi: 10.1016/j.jmapro.2020.01.028
– volume: 4
  start-page: 763
  issue: 2, Part A
  year: 2017
  ident: 10.1016/j.jmapro.2021.03.061_bib0440
  article-title: Microstructure evolution in Ti6Al4V alloy laser cladded with Premix Ti+TiB2 powders
  publication-title: Mater Today Proc
  doi: 10.1016/j.matpr.2017.01.084
– volume: 727
  start-page: 671
  year: 2017
  ident: 10.1016/j.jmapro.2021.03.061_bib0445
  article-title: Effect of alloy elements added on microstructure and hardening of Al/SiC laser clad coatings
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2017.08.153
– volume: 819
  year: 2020
  ident: 10.1016/j.jmapro.2021.03.061_bib0580
  article-title: Microstructure and properties of laser cladding and CoCr2.5FeNi2Tix high-entropy alloy composite coatings
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2019.152986
– year: 2012
  ident: 10.1016/j.jmapro.2021.03.061_bib0230
– year: 2008
  ident: 10.1016/j.jmapro.2021.03.061_bib0705
– volume: 28
  issue: 2
  year: 2016
  ident: 10.1016/j.jmapro.2021.03.061_bib0105
  article-title: Investigations on ultra-high-speed laser material deposition as alternative for hard chrome plating and thermal spraying
  publication-title: J Laser Appl
  doi: 10.2351/1.4943910
– volume: 465
  start-page: 700
  year: 2019
  ident: 10.1016/j.jmapro.2021.03.061_bib0565
  article-title: Modified criterions for phase prediction in the multi-component laser-clad coatings and investigations into microstructural evolution/wear resistance of FeCrCoNiAlMox laser-clad coatings
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2018.08.264
– volume: 316
  start-page: 610
  year: 2014
  ident: 10.1016/j.jmapro.2021.03.061_bib0660
  article-title: Growth mechanism, distribution characteristics and reinforcing behavior of (Ti, Nb)C particle in laser cladded Fe-based composite coating
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2014.08.052
– volume: 352
  start-page: 420
  year: 2018
  ident: 10.1016/j.jmapro.2021.03.061_bib0770
  article-title: Laser cladding with HA and functionally graded TiO2-HA precursors on Ti–6Al–4V alloy for enhancing bioactivity and cyto-compatibility
  publication-title: Surf Coat Technol
  doi: 10.1016/j.surfcoat.2018.08.044
– volume: 138
  year: 2021
  ident: 10.1016/j.jmapro.2021.03.061_bib0115
  article-title: Recent research and development status of laser cladding: a review
  publication-title: Opt Laser Technol
  doi: 10.1016/j.optlastec.2021.106915
– volume: 313
  start-page: 243
  year: 2014
  ident: 10.1016/j.jmapro.2021.03.061_bib0685
  article-title: Investigation of laser cladding high temperature anti-wear composite coatings on Ti6Al4V alloy with the addition of self-lubricant CaF2
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2014.05.196
– volume: 4
  start-page: 57
  year: 2014
  ident: 10.1016/j.jmapro.2021.03.061_bib0480
  article-title: Guidelines in predicting phase formation of high-entropy alloys
  publication-title: MRS Commun
  doi: 10.1557/mrc.2014.11
– year: 2004
  ident: 10.1016/j.jmapro.2021.03.061_bib0240
– volume: 108
  start-page: 321
  year: 2018
  ident: 10.1016/j.jmapro.2021.03.061_bib0270
  article-title: Experimental research and multi-response multi-parameter optimization of laser cladding Fe313
  publication-title: Opt Laser Technol
  doi: 10.1016/j.optlastec.2018.06.030
– volume: 65
  start-page: 66
  year: 2015
  ident: 10.1016/j.jmapro.2021.03.061_bib0610
  article-title: Effects of post-heat treatment on microstructure and properties of laser cladded composite coatings on titanium alloy substrate
  publication-title: Opt Laser Technol
  doi: 10.1016/j.optlastec.2014.07.003
– volume: 86
  year: 2020
  ident: 10.1016/j.jmapro.2021.03.061_bib0080
  article-title: Microstructure and properties of laser cladded B4C/TiC/Ni-based composite coating
  publication-title: Int J Refract Metals Hard Mater
  doi: 10.1016/j.ijrmhm.2019.105112
– volume: 358
  start-page: 531
  year: 2019
  ident: 10.1016/j.jmapro.2021.03.061_bib0220
  article-title: Microstructure, microhardness and corrosion resistance of NiCrBSi coatings under electromagnetic field auxiliary laser cladding
  publication-title: Surf Coat Technol
  doi: 10.1016/j.surfcoat.2018.11.034
– volume: 319
  start-page: 136
  year: 2017
  ident: 10.1016/j.jmapro.2021.03.061_bib0095
  article-title: Structure and oxidation behavior of γ-TiAl coating produced by laser cladding on titanium alloy
  publication-title: Surf Coat Technol
  doi: 10.1016/j.surfcoat.2017.04.008
– volume: 43
  start-page: 961
  issue: 1, Part B
  year: 2017
  ident: 10.1016/j.jmapro.2021.03.061_bib0795
  article-title: Mechanical properties and formation mechanism of Ti/SiC system gradient materials fabricated by in-situ reaction laser cladding
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2016.10.026
– volume: 46
  start-page: 226
  issue: 6
  year: 2017
  ident: 10.1016/j.jmapro.2021.03.061_bib0535
  article-title: Microstructure and properties of laser cladding AlBxCoCrNiTi high-entropy alloy coating on titanium alloys
  publication-title: Surf Technol
– volume: 248
  start-page: 54
  year: 2014
  ident: 10.1016/j.jmapro.2021.03.061_bib0305
  article-title: Effect of defocus manner on laser cladding of Fe-based alloy powder
  publication-title: Surf Coat Technol
  doi: 10.1016/j.surfcoat.2014.03.019
– volume: 186
  year: 2020
  ident: 10.1016/j.jmapro.2021.03.061_bib0015
  article-title: A review on crucibles for induction melting of titanium alloys
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2019.108295
– volume: 43
  start-page: 9622
  issue: 13
  year: 2017
  ident: 10.1016/j.jmapro.2021.03.061_bib0185
  article-title: Microstructure evolution and mechanical properties of ultrasonic assisted laser clad yttria stabilized zirconia coating
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2017.04.103
– volume: 257
  start-page: 1550
  issue: 5
  year: 2010
  ident: 10.1016/j.jmapro.2021.03.061_bib0385
  article-title: A study on wear resistance and microcrack of the Ti3Al/TiAl+TiC ceramic layer deposited by laser cladding on Ti–6Al–4V alloy
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2010.08.094
– year: 2005
  ident: 10.1016/j.jmapro.2021.03.061_bib0075
– volume: 203
  start-page: 1395
  issue: 10–11
  year: 2009
  ident: 10.1016/j.jmapro.2021.03.061_bib0320
  article-title: Laser clad TiC reinforced NiCrBSi composite coatings on Ti-6Al-4V alloy using a CW CO2 laser
  publication-title: Surf Coat Technol
  doi: 10.1016/j.surfcoat.2008.11.012
– volume: 337
  start-page: 97
  year: 2018
  ident: 10.1016/j.jmapro.2021.03.061_bib0655
  article-title: Influence of microstructures and wear behaviors of the microalloyed coatings on TC11 alloy surface using laser cladding technique
  publication-title: Surf Coat Technol
  doi: 10.1016/j.surfcoat.2017.12.058
– volume: 46
  issue: 1
  year: 2019
  ident: 10.1016/j.jmapro.2021.03.061_bib0675
  article-title: Microstructure and friction and wear resistance of laser cladding composite coating on Ti811 surface
  publication-title: Chin J Lasers
– volume: 408
  year: 2021
  ident: 10.1016/j.jmapro.2021.03.061_bib0235
  article-title: High-performance Ti-6Al-4V with graded microstructure and superior properties fabricated by powder feeding underwater laser metal deposition
  publication-title: Surf Coat Technol
  doi: 10.1016/j.surfcoat.2020.126778
– volume: 137
  start-page: 122
  issue: 2
  year: 2001
  ident: 10.1016/j.jmapro.2021.03.061_bib0315
  article-title: Comparison of laser-clad and furnace-melted Ni-based alloy microstructures
  publication-title: Surf Coat Technol
  doi: 10.1016/S0257-8972(00)00732-5
– volume: 549
  start-page: 195
  year: 2013
  ident: 10.1016/j.jmapro.2021.03.061_bib0510
  article-title: Microstructure and corrosion resistance of AlCrFeCuCo high entropy alloy
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2012.09.091
– volume: 50
  start-page: 985
  issue: 7
  year: 2012
  ident: 10.1016/j.jmapro.2021.03.061_bib0285
  article-title: Statistical analysis and optimization of process parameters in Ti6Al4V laser cladding using Nd:YAG laser
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2012.01.018
– volume: 41
  start-page: 338
  year: 2012
  ident: 10.1016/j.jmapro.2021.03.061_bib0505
  article-title: Dry sliding wear behavior of laser clad TiVCrAlSi high entropy alloy coatings on Ti–6Al–4V substrate
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2012.04.049
– volume: 44
  start-page: 20599
  issue: 17
  year: 2018
  ident: 10.1016/j.jmapro.2021.03.061_bib0805
  article-title: A review on laser deposition-additive manufacturing of ceramics and ceramic reinforced metal matrix composites
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2018.08.083
– volume: 141
  start-page: 207
  year: 2015
  ident: 10.1016/j.jmapro.2021.03.061_bib0180
  article-title: Dilution characteristics of ultrasonic assisted laser clad yttria-stabilized zirconia coating
  publication-title: Mater Lett
  doi: 10.1016/j.matlet.2014.11.058
– volume: 4
  start-page: 234
  issue: 3
  year: 2014
  ident: 10.1016/j.jmapro.2021.03.061_bib0290
  article-title: Support vector machines in engineering: an overview
  publication-title: WIREs Data Min Knowl Discov
  doi: 10.1002/widm.1125
– volume: 363
  start-page: 543
  year: 2016
  ident: 10.1016/j.jmapro.2021.03.061_bib0530
  article-title: Formation of core–shell structure in high entropy alloy coating by laser cladding
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2015.12.059
– volume: 383
  year: 2020
  ident: 10.1016/j.jmapro.2021.03.061_bib0085
  article-title: Microstructure and wide temperature range self-lubricating properties of laser cladding NiCrAlY/Ag2O/Ta2O5 composite coating
  publication-title: Surf Coat Technol
  doi: 10.1016/j.surfcoat.2019.125248
– volume: 8
  start-page: 1661
  issue: 5
  year: 2012
  ident: 10.1016/j.jmapro.2021.03.061_bib0755
  article-title: A new look at biomedical Ti-based shape memory alloys
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2012.01.018
– volume: 131
  year: 2020
  ident: 10.1016/j.jmapro.2021.03.061_bib0810
  article-title: Studies on the effect of composition and pre-heating on microstructure and mechanical properties of direct laser clad titanium aluminide
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2020.106041
– volume: 32
  start-page: 1910
  issue: 4
  year: 2011
  ident: 10.1016/j.jmapro.2021.03.061_bib0495
  article-title: Synthesis and characterization of FeCoNiCrCu high-entropy alloy coating by laser cladding
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2010.12.001
– volume: 188
  start-page: 435
  year: 2020
  ident: 10.1016/j.jmapro.2021.03.061_bib0475
  article-title: High entropy alloys: a focused review of mechanical properties and deformation mechanisms
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2019.12.015
– volume: 195
  start-page: 178
  year: 2017
  ident: 10.1016/j.jmapro.2021.03.061_bib0600
  article-title: In situ synthesized high volume fraction WC reinforced Ni-based coating by laser cladding
  publication-title: Mater Lett
  doi: 10.1016/j.matlet.2017.02.076
– volume: 29
  year: 2019
  ident: 10.1016/j.jmapro.2021.03.061_bib0010
  article-title: Overview: additive manufacturing enabled accelerated design of Ni-based alloys for improved fatigue life
  publication-title: Addit Manuf
– volume: 5
  start-page: 337
  year: 2010
  ident: 10.1016/j.jmapro.2021.03.061_bib0150
  article-title: A CFD model of the laser, coaxial powder stream and substrate interaction in laser cladding
  publication-title: Phys Procedia
  doi: 10.1016/j.phpro.2010.08.060
– volume: 255
  start-page: 129
  issue: 1
  year: 2003
  ident: 10.1016/j.jmapro.2021.03.061_bib0350
  article-title: The microstructure and erosive–corrosive wear performance of laser-clad Ni–Cr3C2 composite coating
  publication-title: Wear
  doi: 10.1016/S0043-1648(03)00283-7
– volume: 357
  start-page: 811
  year: 2019
  ident: 10.1016/j.jmapro.2021.03.061_bib0695
  article-title: Effects of the content of MoS2 on microstructural evolution and wear behaviors of the laser-clad coatings
  publication-title: Surf Coat Technol
  doi: 10.1016/j.surfcoat.2018.10.100
– volume: 155
  start-page: 203
  issue: 2
  year: 2002
  ident: 10.1016/j.jmapro.2021.03.061_bib0345
  article-title: Microscopic morphology and distribution of TiC phase in laser clad NiCrBSiC–TiC layer on titanium alloy substrate
  publication-title: Surf Coat Technol
  doi: 10.1016/S0257-8972(02)00006-3
– volume: 201
  start-page: 9497
  issue: 24
  year: 2007
  ident: 10.1016/j.jmapro.2021.03.061_bib0360
  article-title: Microstructure and wear studies of laser clad Al-Si/SiC(p) composite coatings
  publication-title: Surf Coat Technol
  doi: 10.1016/j.surfcoat.2007.04.003
– volume: 236
  start-page: 45
  year: 2013
  ident: 10.1016/j.jmapro.2021.03.061_bib0405
  article-title: Directional growth whisker reinforced Ti-base composites fabricated by laser cladding
  publication-title: Surf Coat Technol
  doi: 10.1016/j.surfcoat.2013.05.052
– volume: 30
  start-page: 263
  issue: 5
  year: 1998
  ident: 10.1016/j.jmapro.2021.03.061_bib0200
  article-title: In-process vibration-assisted high power Nd:YAG pulsed laser ceramic–metal composite cladding on Al-alloys
  publication-title: Opt Laser Technol
  doi: 10.1016/S0030-3992(98)00048-6
– volume: 352
  start-page: 163
  year: 2015
  ident: 10.1016/j.jmapro.2021.03.061_bib0425
  article-title: Microstructure and corrosion resistance of TC2 Ti alloy by laser cladding with Ti/TiC/TiB2 powders
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2015.04.030
– volume: 205
  start-page: 2007
  issue: 7
  year: 2010
  ident: 10.1016/j.jmapro.2021.03.061_bib0255
  article-title: Effect of laser cladding process parameters on clad quality and in-situ formed microstructure of Fe–TiC composite coatings
  publication-title: Surf Coat Technol
  doi: 10.1016/j.surfcoat.2010.08.087
– volume: 122
  start-page: 151
  year: 2019
  ident: 10.1016/j.jmapro.2021.03.061_bib0125
  article-title: Progress in numerical simulation of the laser cladding process
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2019.05.026
– volume: 33
  year: 2020
  ident: 10.1016/j.jmapro.2021.03.061_bib0835
  article-title: A review of additive manufacturing of cermets
  publication-title: Addit Manuf
– year: 2006
  ident: 10.1016/j.jmapro.2021.03.061_bib0100
  article-title: System and method for closed-loop control of laser cladding by powder injection
  publication-title: US
– volume: 54
  start-page: 397
  issue: 3
  year: 2009
  ident: 10.1016/j.jmapro.2021.03.061_bib0760
  article-title: Ti based biomaterials, the ultimate choice for orthopaedic implants-a review
  publication-title: Prog Mater Sci
  doi: 10.1016/j.pmatsci.2008.06.004
– volume: 203
  start-page: 1395
  issue: 10
  year: 2009
  ident: 10.1016/j.jmapro.2021.03.061_bib0370
  article-title: Laser clad TiC reinforced NiCrBSi composite coatings on Ti–6Al–4V alloy using a CW CO2 laser
  publication-title: Surf Coat Technol
  doi: 10.1016/j.surfcoat.2008.11.012
– volume: 119
  year: 2020
  ident: 10.1016/j.jmapro.2021.03.061_bib0585
  article-title: Effect of Fe on microstructure and properties of AlCoCrFexNi (x=1.5, 2.5) high entropy alloy coatings prepared by laser cladding
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2020.106722
– volume: 8
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.jmapro.2021.03.061_bib0005
  article-title: Latest research advances on magnesium and magnesium alloys worldwide
  publication-title: J Magnes Alloys
  doi: 10.1016/j.jma.2020.02.003
– volume: 12
  start-page: 303
  year: 2011
  ident: 10.1016/j.jmapro.2021.03.061_bib0500
  article-title: The property research on high-entropy alloy AlxFeCoNiCuCr coating by laser cladding
  publication-title: Phys Procedia
  doi: 10.1016/j.phpro.2011.03.039
– volume: 383
  year: 2020
  ident: 10.1016/j.jmapro.2021.03.061_bib0205
  article-title: Effects of electromagnetic compound field on the escape behavior of pores in molten pool during laser cladding
  publication-title: Surf Coat Technol
  doi: 10.1016/j.surfcoat.2019.125198
– volume: 5
  start-page: 27718
  issue: 14, Part 2
  year: 2018
  ident: 10.1016/j.jmapro.2021.03.061_bib0450
  article-title: On the development and characterization of microwave processed Ni + 30% SiC based composite clads
  publication-title: Mater Today Proc
  doi: 10.1016/j.matpr.2018.10.006
– volume: 89
  start-page: 97
  year: 2017
  ident: 10.1016/j.jmapro.2021.03.061_bib0690
  article-title: Characteristics of laser clad α-Ti/TiC+(Ti,W)C1−x/Ti2SC+TiS composite coatings on TA2 titanium alloy
  publication-title: Opt Laser Technol
  doi: 10.1016/j.optlastec.2016.09.044
– volume: 7
  start-page: 41463
  issue: 1
  year: 2017
  ident: 10.1016/j.jmapro.2021.03.061_bib0190
  article-title: Effects of ultrasonic vibration on the microstructure and mechanical properties of high alloying TiAl
  publication-title: Sci Rep
  doi: 10.1038/srep41463
– volume: 11
  issue: 1
  year: 2017
  ident: 10.1016/j.jmapro.2021.03.061_bib0630
  article-title: Effect of CeO2 on microstructure and wear resistance of TiC bioinert coatings on Ti6Al4V alloy by laser cladding
  publication-title: Materials
  doi: 10.3390/ma11010058
– start-page: 159
  year: 2020
  ident: 10.1016/j.jmapro.2021.03.061_bib0730
  article-title: Alloy materials for biomedical applications
– volume: 338
  start-page: 126
  issue: 1
  year: 2002
  ident: 10.1016/j.jmapro.2021.03.061_bib0715
  article-title: Microstructure and wear resistance of laser clad Ti5Si3/NiTi2 intermetallic composite coating on titanium alloy
  publication-title: Mater Sci Eng A
  doi: 10.1016/S0921-5093(02)00076-X
– volume: 106
  start-page: 32
  year: 2018
  ident: 10.1016/j.jmapro.2021.03.061_bib0130
  article-title: On the formation features, microstructure and microhardness of single laser tracks formed by laser cladding of a NiCrBSi self-fluxing alloy
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2018.02.004
– volume: 121
  start-page: 61
  year: 2017
  ident: 10.1016/j.jmapro.2021.03.061_bib0155
  article-title: A fundamental investigation on ultrasonic vibration-assisted laser engineered net shaping of stainless steel
  publication-title: Int J Mach Tools Manuf
  doi: 10.1016/j.ijmachtools.2017.04.008
– volume: 127
  start-page: 133
  year: 2017
  ident: 10.1016/j.jmapro.2021.03.061_bib0790
  article-title: Additive manufacturing of a functionally graded material from Ti-6Al-4V to Invar: experimental characterization and thermodynamic calculations
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2016.12.070
– volume: 242
  year: 2020
  ident: 10.1016/j.jmapro.2021.03.061_bib0590
  article-title: In-situ TiC reinforced CoCrCuFeNiSi0.2 high-entropy alloy coatings designed for enhanced wear performance by laser cladding
  publication-title: Mater Chem Phys
  doi: 10.1016/j.matchemphys.2019.122522
– volume: 21
  start-page: 201
  issue: 2
  year: 2015
  ident: 10.1016/j.jmapro.2021.03.061_bib0785
  article-title: Effect of second-phase doping on laser deposited Al2O3 ceramics
  publication-title: Rapid Prototyp J
  doi: 10.1108/RPJ-12-2014-0167
– volume: 120
  start-page: 84
  year: 2019
  ident: 10.1016/j.jmapro.2021.03.061_bib0070
  article-title: Effects of CeO2 on microstructure and properties of TiC/Ti2Ni reinforced Ti-based laser cladding composite coatings
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2019.03.001
– volume: 8
  start-page: 3888
  issue: 11
  year: 2012
  ident: 10.1016/j.jmapro.2021.03.061_bib0745
  article-title: Development of new metallic alloys for biomedical applications
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2012.06.037
– volume: 83
  start-page: 37
  year: 2019
  ident: 10.1016/j.jmapro.2021.03.061_bib0035
  article-title: Review of titanium surface modification techniques and coatings for antibacterial applications
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2018.10.036
– volume: 211
  start-page: 187
  issue: 2
  year: 2011
  ident: 10.1016/j.jmapro.2021.03.061_bib0140
  article-title: FEM modeling and experimental verification for dilution control in laser cladding
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2010.09.007
– volume: 116
  start-page: 345
  year: 2019
  ident: 10.1016/j.jmapro.2021.03.061_bib0295
  article-title: Laser cladding of nanoparticle TiC ceramic powder: effects of process parameters on the quality characteristics of the coatings and its prediction model
  publication-title: Opt Laser Technol
  doi: 10.1016/j.optlastec.2019.03.048
– volume: 28
  start-page: 96
  year: 2020
  ident: 10.1016/j.jmapro.2021.03.061_bib0025
  article-title: Recent developments in metal additive manufacturing
  publication-title: Curr Opin Chem Eng
  doi: 10.1016/j.coche.2020.03.001
– volume: 8
  start-page: 1990
  issue: 5
  year: 2012
  ident: 10.1016/j.jmapro.2021.03.061_bib0780
  article-title: Beta type Ti–Mo alloys with changeable Young’s modulus for spinal fixation applications
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2012.02.004
– volume: 206
  start-page: 4021
  issue: 19
  year: 2012
  ident: 10.1016/j.jmapro.2021.03.061_bib0395
  article-title: Effect of heat input on the microstructure of in-situ synthesized TiN–TiB/Ti based composite coating by laser cladding
  publication-title: Surf Coat Technol
  doi: 10.1016/j.surfcoat.2012.03.082
– volume: 256
  start-page: 4708
  issue: 14
  year: 2010
  ident: 10.1016/j.jmapro.2021.03.061_bib0380
  article-title: Laser induction hybrid rapid cladding of WC particles reinforced NiCrBSi composite coatings
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2010.02.078
– volume: 60
  start-page: 17
  year: 2016
  ident: 10.1016/j.jmapro.2021.03.061_bib0430
  article-title: A comparative study of the structure and wear resistance of NiCrBSi/50 wt.% WC composite coatings by laser cladding and laser induction hybrid cladding
  publication-title: Int J Refract Metals Hard Mater
  doi: 10.1016/j.ijrmhm.2016.06.019
– volume: 119
  year: 2019
  ident: 10.1016/j.jmapro.2021.03.061_bib0455
  article-title: The influence of the pre-placed powder layers on the morphology, microscopic characteristics and microhardness of Ti-6Al-4V/WC MMC coatings during laser cladding
  publication-title: Opt Laser Technol
  doi: 10.1016/j.optlastec.2019.105572
– volume: 118
  start-page: 140
  year: 2019
  ident: 10.1016/j.jmapro.2021.03.061_bib0725
  article-title: Microstructure and high temperature wear behaviour of in-situ TiC reinforced AlCoCrFeNi-based high-entropy alloy composite coatings fabricated by laser cladding
  publication-title: Opt Laser Technol
  doi: 10.1016/j.optlastec.2019.05.006
– volume: 383
  year: 2020
  ident: 10.1016/j.jmapro.2021.03.061_bib0060
  article-title: High-intensity chromium ion implantation into Zr-1Nb alloy
  publication-title: Surf Coat Technol
  doi: 10.1016/j.surfcoat.2019.125272
– volume: 325
  start-page: 352
  year: 2017
  ident: 10.1016/j.jmapro.2021.03.061_bib0245
  article-title: Effect of dilution and macrosegregation on corrosion resistance of laser clad AerMet100 steel coating on 300M steel substrate
  publication-title: Surf Coat Technol
  doi: 10.1016/j.surfcoat.2017.04.035
– volume: 345
  start-page: 99
  year: 2015
  ident: 10.1016/j.jmapro.2021.03.061_bib0420
  article-title: Improving the tribocorrosion resistance of Ti6Al4V surface by laser surface cladding with TiNiZrO2 composite coating
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2015.03.152
– volume: 16
  start-page: 140
  issue: 3
  year: 2004
  ident: 10.1016/j.jmapro.2021.03.061_bib0145
  article-title: Solidification model of laser cladding with wire feeding technique
  publication-title: J Laser Appl
  doi: 10.2351/1.1771167
– volume: 59
  start-page: 19
  issue: 1
  year: 2008
  ident: 10.1016/j.jmapro.2021.03.061_bib0195
  article-title: Potency of high-intensity ultrasonic treatment for grain refinement of magnesium alloys
  publication-title: Scr Mater
  doi: 10.1016/j.scriptamat.2008.02.017
– volume: 114
  start-page: 81
  year: 2019
  ident: 10.1016/j.jmapro.2021.03.061_bib0215
  article-title: Investigation on laser cladding Ni-base coating assisted by electromagnetic field
  publication-title: Opt Laser Technol
  doi: 10.1016/j.optlastec.2019.01.017
– volume: 134
  year: 2021
  ident: 10.1016/j.jmapro.2021.03.061_bib0120
  article-title: Recent trends in laser cladding and surface alloying
  publication-title: Opt Laser Technol
  doi: 10.1016/j.optlastec.2020.106619
– volume: 256
  start-page: 5985
  issue: 20
  year: 2010
  ident: 10.1016/j.jmapro.2021.03.061_bib0615
  article-title: Investigation on cracking behavior of Ni-based coating by laser-induction hybrid cladding
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2010.03.106
– volume: 157
  start-page: 258
  year: 2018
  ident: 10.1016/j.jmapro.2021.03.061_bib0650
  article-title: Microstructure and properties of in-situ synthesized (Ti3Al + TiB)/Ti composites by laser cladding
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2018.07.045
– volume: 83
  start-page: 127
  year: 2016
  ident: 10.1016/j.jmapro.2021.03.061_bib0260
  article-title: Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2016.01.012
– volume: 692
  start-page: 989
  year: 2017
  ident: 10.1016/j.jmapro.2021.03.061_bib0325
  article-title: Effect of process parameters on the microstructure evolution and wear property of the laser cladding coatings on Ti-6Al-4V alloy
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2016.09.071
– volume: 206
  start-page: 1389
  issue: 6
  year: 2011
  ident: 10.1016/j.jmapro.2021.03.061_bib0490
  article-title: Thermal stability and oxidation resistance of laser clad TiVCrAlSi high entropy alloy coatings on Ti–6Al–4V alloy
  publication-title: Surf Coat Technol
  doi: 10.1016/j.surfcoat.2011.08.063
– volume: 349
  start-page: 37
  year: 2018
  ident: 10.1016/j.jmapro.2021.03.061_bib0275
  article-title: Parametric study and characterization of AlN-Ni-Ti6Al4V composite cladding on titanium alloy
  publication-title: Surf Coat Technol
  doi: 10.1016/j.surfcoat.2018.05.053
– volume: 835
  year: 2020
  ident: 10.1016/j.jmapro.2021.03.061_bib0175
  article-title: Design and characterization of FeCrCoAlMn0.5Mo0.1 high-entropy alloy coating by ultrasonic assisted laser cladding
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2020.155449
– volume: 87
  start-page: 3349
  issue: 9–12
  year: 2016
  ident: 10.1016/j.jmapro.2021.03.061_bib0265
  article-title: A parametric study on laser cladding of Ti-6Al-4V wire and WC/W2C powder
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-016-8743-9
– volume: 174
  start-page: 34
  issue: 1
  year: 2006
  ident: 10.1016/j.jmapro.2021.03.061_bib0225
  article-title: Effect of shielding conditions of local dry cavity on weld quality in underwater Nd:YAG laser welding
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2004.12.009
– volume: 44
  start-page: 20851
  issue: 17
  year: 2018
  ident: 10.1016/j.jmapro.2021.03.061_bib0250
  article-title: Laser deposition of compositionally graded titanium oxide on Ti6Al4V alloy
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2018.08.090
– volume: 270
  start-page: 243
  year: 2015
  ident: 10.1016/j.jmapro.2021.03.061_bib0710
  article-title: High temperature oxidation behavior of laser cladding MCrAlY coatings on austenitic stainless steel
  publication-title: Surf Coat Technol
  doi: 10.1016/j.surfcoat.2015.02.050
– volume: 111
  start-page: 814
  year: 2019
  ident: 10.1016/j.jmapro.2021.03.061_bib0110
  article-title: Underwater wet laser cladding on 316L stainless steel: a protective material assisted method
  publication-title: Opt Laser Technol
  doi: 10.1016/j.optlastec.2018.09.022
– volume: 311
  start-page: 321
  year: 2017
  ident: 10.1016/j.jmapro.2021.03.061_bib0540
  article-title: Synthesis and characterization of refractory TiZrNbWMo high-entropy alloy coating by laser cladding
  publication-title: Surf Coat Technol
  doi: 10.1016/j.surfcoat.2017.01.012
– year: 2011
  ident: 10.1016/j.jmapro.2021.03.061_bib0735
– volume: 361
  start-page: 63
  year: 2019
  ident: 10.1016/j.jmapro.2021.03.061_bib0570
  article-title: Microstructural characterization and corrosion behaviour of AlCoCrFeNiTix high-entropy alloy coatings fabricated by laser cladding
  publication-title: Surf Coat Technol
  doi: 10.1016/j.surfcoat.2019.01.044
– volume: 176
  year: 2020
  ident: 10.1016/j.jmapro.2021.03.061_bib0820
  article-title: Microstructure and wear behaviors of laser cladding in-situ synthetic (TiBx+TiC)/(Ti2Ni+TiNi) gradient composite coatings
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2020.109305
– volume: 358
  start-page: 667
  year: 2019
  ident: 10.1016/j.jmapro.2021.03.061_bib0575
  article-title: Effects of laser power on microstructure and properties of laser cladded CoCrBFeNiSi high-entropy alloy amorphous coatings
  publication-title: Surf Coat Technol
  doi: 10.1016/j.surfcoat.2018.10.086
– volume: 46
  start-page: 13711
  issue: 9
  year: 2020
  ident: 10.1016/j.jmapro.2021.03.061_bib0625
  article-title: Influence of Y2O3 on the microstructure and tribological properties of Ti-based wear-resistant laser-clad layers on TC4 alloy
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2020.02.159
– volume: 86
  year: 2020
  ident: 10.1016/j.jmapro.2021.03.061_bib0065
  article-title: Experimental investigation on tool wear characteristics of PVD and CVD coatings during face milling of Ti6242S and Ti-555 titanium alloys
  publication-title: Int J Refract Metals Hard Mater
  doi: 10.1016/j.ijrmhm.2019.105091
– volume: 88
  start-page: 139
  year: 2017
  ident: 10.1016/j.jmapro.2021.03.061_bib0135
  article-title: Online monitoring of thermo-cycles and its correlation with microstructure in laser cladding of nickel based super alloy
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2016.08.005
– volume: 344
  start-page: 353
  year: 2018
  ident: 10.1016/j.jmapro.2021.03.061_bib0555
  article-title: Microstructure and properties of in-situ TiN reinforced laser cladding CoCr2FeNiTix high-entropy alloy composite coatings
  publication-title: Surf Coat Technol
  doi: 10.1016/j.surfcoat.2018.03.035
– volume: 44
  start-page: 2752
  issue: 3
  year: 2018
  ident: 10.1016/j.jmapro.2021.03.061_bib0800
  article-title: Ultrasonic vibration-assisted laser engineering net shaping of ZrO2-Al2O3 bulk parts: effects on crack suppression, microstructure, and mechanical properties
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2017.11.013
– volume: 243
  start-page: 195
  year: 2019
  ident: 10.1016/j.jmapro.2021.03.061_bib0210
  article-title: Characteristics of dilution and microstructure in laser cladding Ni-Cr-B-Si coating assisted by electromagnetic compound field
  publication-title: Mater Lett
  doi: 10.1016/j.matlet.2019.01.133
– volume: 3
  start-page: 67
  issue: 2
  year: 2016
  ident: 10.1016/j.jmapro.2021.03.061_bib0680
  article-title: A review to the laser cladding of self-lubricating composite coatings
  publication-title: Lasers Manuf Mater Process
  doi: 10.1007/s40516-016-0025-8
– volume: 106
  year: 2019
  ident: 10.1016/j.jmapro.2021.03.061_bib0020
  article-title: 3D printing of aluminium alloys: additive manufacturing of aluminium alloys using selective laser melting
  publication-title: Prog Mater Sci
  doi: 10.1016/j.pmatsci.2019.100578
– volume: 587
  start-page: 588
  year: 2014
  ident: 10.1016/j.jmapro.2021.03.061_bib0525
  article-title: Solidification behaviour in laser cladding of AlCoCrCuFeNi high-entropy alloy on magnesium substrates
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2013.10.254
– volume: 126
  year: 2020
  ident: 10.1016/j.jmapro.2021.03.061_bib0700
  article-title: Fabrication and tribological behaviors of Ti3SiC2/Ti5Si3/TiC/Ni-based composite coatings by laser cladding for self-lubricating applications
  publication-title: Opt Laser Technol
  doi: 10.1016/j.optlastec.2020.106077
– volume: 200
  start-page: 4923
  issue: 16
  year: 2006
  ident: 10.1016/j.jmapro.2021.03.061_bib0355
  article-title: Laser cladding of Ni-base composite coatings onto Ti–6Al–4V substrates with pre-placed B4C+NiCrBSi powders
  publication-title: Surf Coat Technol
  doi: 10.1016/j.surfcoat.2005.04.059
– volume: 31
  start-page: 1643
  issue: 8
  year: 2011
  ident: 10.1016/j.jmapro.2021.03.061_bib0765
  article-title: Osteoblast interaction with laser cladded HA and SiO2-HA coatings on Ti–6Al–4V
  publication-title: Mater Sci Eng C
  doi: 10.1016/j.msec.2011.07.009
– volume: 48
  start-page: 119
  issue: 1
  year: 2010
  ident: 10.1016/j.jmapro.2021.03.061_bib0375
  article-title: Microstructure and wear properties of TiCN/Ti coatings on titanium alloy by laser cladding
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2009.08.003
– volume: 698
  start-page: 761
  year: 2017
  ident: 10.1016/j.jmapro.2021.03.061_bib0545
  article-title: Phase evolution and cavitation erosion-corrosion behavior of FeCoCrAlNiTix high entropy alloy coatings on 304 stainless steel by laser surface alloying
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2016.12.196
– volume: 383
  year: 2020
  ident: 10.1016/j.jmapro.2021.03.061_bib0465
  article-title: In-situ TiC-Al3Ti reinforced Al-Mg composites with Y2O3 addition formed by laser cladding on AZ91D
  publication-title: Surf Coat Technol
  doi: 10.1016/j.surfcoat.2019.125249
– volume: 384
  year: 2020
  ident: 10.1016/j.jmapro.2021.03.061_bib0055
  article-title: The influence of post treatments on the microstructure and corrosion behavior of thermally sprayed NiCrMoAl alloy coating
  publication-title: Surf Coat Technol
  doi: 10.1016/j.surfcoat.2019.125166
– volume: 34
  start-page: 549
  issue: 6
  year: 2016
  ident: 10.1016/j.jmapro.2021.03.061_bib0595
  article-title: Effect of rare earth elements and their oxides on tribo-mechanical performance of laser claddings: a review
  publication-title: J Rare Earths
  doi: 10.1016/S1002-0721(16)60061-3
– volume: 509
  start-page: 4882
  issue: 14
  year: 2011
  ident: 10.1016/j.jmapro.2021.03.061_bib0390
  article-title: Phase constituents and microstructure of laser cladding Al2O3/Ti3Al reinforced ceramic layer on titanium alloy
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2011.01.199
– volume: 13
  year: 2019
  ident: 10.1016/j.jmapro.2021.03.061_bib0460
  article-title: Characterisation and mechanical properties of Al/SiC metal matrix composite coatings formed on ZE41 magnesium alloys by laser cladding
  publication-title: Results Phys
  doi: 10.1016/j.rinp.2019.102160
– volume: 97
  start-page: 884
  year: 2019
  ident: 10.1016/j.jmapro.2021.03.061_bib0030
  article-title: Incorporation of wollastonite bioactive ceramic with titanium for medical applications: an overview
  publication-title: Mater Sci Eng C
  doi: 10.1016/j.msec.2018.12.056
– volume: 284
  year: 2020
  ident: 10.1016/j.jmapro.2021.03.061_bib0335
  article-title: Mechanical properties and electrochemical corrosion resistance of multilayer laser cladded Fe-based composite coatings on 4Cr5MoSiV1 steel
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2020.116736
– volume: 181
  year: 2019
  ident: 10.1016/j.jmapro.2021.03.061_bib0645
  article-title: Effect of LaB6 addition on the microstructure and properties of (Ti3Al + TiB)/Ti composites by laser cladding
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2019.107959
– volume: 553
  start-page: 216
  year: 2013
  ident: 10.1016/j.jmapro.2021.03.061_bib0515
  article-title: Microstructure and properties of Al2CrFeCoCuTiNix high-entropy alloys prepared by laser cladding
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2012.11.100
– volume: 11
  start-page: 142
  issue: 1
  year: 2020
  ident: 10.1016/j.jmapro.2021.03.061_bib0825
  article-title: Grain structure control during metal 3D printing by high-intensity ultrasound
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-13874-z
– volume: 46
  start-page: 58
  year: 2014
  ident: 10.1016/j.jmapro.2021.03.061_bib0415
  article-title: Influence of Mn additions on the microstructure and magnetic properties of FeNiCr/60% WC composite coating produced by laser cladding
  publication-title: Int J Refract Metals Hard Mater
  doi: 10.1016/j.ijrmhm.2014.05.010
– volume: 48
  start-page: 123
  issue: 2
  year: 2019
  ident: 10.1016/j.jmapro.2021.03.061_bib0640
  article-title: Microstructures and properties of laser cladding coating on Ti811 alloy surface
  publication-title: Surf Technol
– volume: 22
  start-page: 1667
  issue: 7
  year: 2012
  ident: 10.1016/j.jmapro.2021.03.061_bib0400
  article-title: Microstructure and wear resistance of laser clad TiB–TiC/TiNi–Ti2Ni intermetallic coating on titanium alloy
  publication-title: Trans Nonferrous Met Soc China
  doi: 10.1016/S1003-6326(11)61371-X
– volume: 56
  start-page: 295
  year: 2020
  ident: 10.1016/j.jmapro.2021.03.061_bib0050
  article-title: Hybrid laser welding of dissimilar aluminum alloys: welding processing, microstructure, properties and modelling
  publication-title: J Manuf Process
  doi: 10.1016/j.jmapro.2020.03.048
– volume: 410
  year: 2021
  ident: 10.1016/j.jmapro.2021.03.061_bib0170
  article-title: Microstructure and mechanical properties of parts formed by ultrasonic vibration-assisted laser cladding of Inconel 718
  publication-title: Surf Coat Technol
  doi: 10.1016/j.surfcoat.2021.126964
– volume: 28
  start-page: 1697
  issue: 8
  year: 2008
  ident: 10.1016/j.jmapro.2021.03.061_bib0665
  article-title: TiC–TiB2 composites: a review of phase relationships, processing and properties
  publication-title: J Eur Ceram Soc
  doi: 10.1016/j.jeurceramsoc.2007.11.011
– volume: 5
  start-page: 44
  issue: 1
  year: 2020
  ident: 10.1016/j.jmapro.2021.03.061_bib0830
  article-title: Additive manufacturing of magnesium alloys
  publication-title: Bioact Mater
  doi: 10.1016/j.bioactmat.2019.12.004
– volume: 771
  start-page: 1018
  year: 2019
  ident: 10.1016/j.jmapro.2021.03.061_bib0485
  article-title: Laser cladding of Ni based powder on a Cu-Ni-Al glassmold: influence of the process parameters on bonding quality and coating geometry
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2018.09.004
– volume: 395
  year: 2020
  ident: 10.1016/j.jmapro.2021.03.061_bib0815
  article-title: Microstructure and wear resistance of electromagnetic field assisted multi-layer laser clad Fe901 coating
  publication-title: Surf Coat Technol
  doi: 10.1016/j.surfcoat.2020.125876
– volume: 378
  year: 2019
  ident: 10.1016/j.jmapro.2021.03.061_bib0280
  article-title: Laser cladding of Inconel 718 with 75Cr3C2+25(80Ni20Cr) powder: statistical modeling and optimization
  publication-title: Surf Coat Technol
  doi: 10.1016/j.surfcoat.2019.124933
SSID ssj0012401
Score 2.6233685
SecondaryResourceType review_article
Snippet Engineering alloys are widely applied as important functional structural materials in aerospace, electronics, metallurgy, and other high-end engineering...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 341
SubjectTerms Development trend
Engineering alloys
Laser cladding
Mechanical properties
Research status
Surface modification
Title Research and progress of laser cladding on engineering alloys: A review
URI https://dx.doi.org/10.1016/j.jmapro.2021.03.061
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NSwMxEA2lXvQgfmL9KDl4jd1NNknjrRRrVehFC72FnSSVlrottR68-NtN9qNWEAWPu8nA8hjeTNg3LwhdQps7bp0kVNiIJBwkSU0yJpAyyXjbceVytcVA9IfJ_YiPaqhbzcIEWWXJ_QWn52xdvmmVaLYWk0nr0VceEeozjXMb9FGYYE9kyPKrj7XMw5evqPBMpYKE3dX4XK7xmr6knqf8KZHGudWpiH8uTxslp7eHdsteEXeKz9lHNZcdoJ0NB8FDdFsp53CaWZyLrTx14fkY-67YLbGZBcFQ9oznGXZfgTj8bn9_vcYdXMyuHKFh7-ap2yfl3QjEMElXJIFgKSuNA25BsLRtI3_Y9O0PUAXAFVNGQWxUZPwKl85AysFECoxftBbYMapn88ydIAzUWUYhUkaMPVg-3MSxSqi0inInXAOxChJtSuPwcH_FTFcKsakugNQBSB0x7YFsILKOWhTGGX_slxXa-lsCaM_tv0ae_jvyDG2Hp0L5dY7qq-Wbu_A9xgqaeRI10Vbn7qE_-ARm09HN
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60HtSD-MT6zMFr6G6y2W28lWJdX73YQm9hJ0nFUrei9eC_N9mHVhAFrzv7QfgIMxPyzReAM2wLK4xNKItNQCOBCc10NKaY8YSLthXSFmqLfpwOo-uRGC1Bt56F8bLKKveXOb3I1tWXVsVm6_nxsXXvKk_s6zMLCxv00TKseHcq0YCVztVN2v-8THBFq7RNZTH1gHqCrpB5TZ4yl6rcQZGFhdtpHP5coRaqTm8TNqp2kXTKFW3Bks23YX3BRHAHLmvxHMlyQwq9lcteZDYmrjG2L0RPvWYofyCznNgvIPE37u-v56RDyvGVXRj2LgbdlFbPI1DNEzanEXpX2URbFAZjnrVN4M6brgNCJhGF5FJLDLUMtIuIxGrMBOpAonZBY5DvQSOf5XYfCDJrOMNA6njsyHJwHYYyYomRTNjYNoHXlChdeYf7JyymqhaJTVRJpPJEqoArR2QT6CfqufTO-OP_pGZbfdsDyqX3X5EH_0aewmo6uLtVt1f9m0NY85FSCHYEjfnLmz12LcccT6ot9QGmStR-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+and+progress+of+laser+cladding+on+engineering+alloys%3A+A+review&rft.jtitle=Journal+of+manufacturing+processes&rft.au=Liu%2C+Yanan&rft.au=Ding%2C+Ye&rft.au=Yang%2C+Lijun&rft.au=Sun%2C+Ronglu&rft.date=2021-06-01&rft.issn=1526-6125&rft.volume=66&rft.spage=341&rft.epage=363&rft_id=info:doi/10.1016%2Fj.jmapro.2021.03.061&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jmapro_2021_03_061
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1526-6125&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1526-6125&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1526-6125&client=summon