Research and progress of laser cladding on engineering alloys: A review
Engineering alloys are widely applied as important functional structural materials in aerospace, electronics, metallurgy, and other high-end engineering industries due to their superior properties. However, their further application remains notably restricted by numerous inherent limitations, includ...
Saved in:
Published in | Journal of manufacturing processes Vol. 66; pp. 341 - 363 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.06.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Engineering alloys are widely applied as important functional structural materials in aerospace, electronics, metallurgy, and other high-end engineering industries due to their superior properties. However, their further application remains notably restricted by numerous inherent limitations, including low hardness, terrible wear and high-temperature oxidation resistance. In response to this problem, the development of laser cladding (LC) technology has provided new approaches for surface modification of engineering alloys. In this review paper, the recent progress made in the preparation of engineering alloys by LC technology is thoroughly investigated. The elementary knowledge in this field is provided to establish the internal relationships among the laser processing parameters, microstructure, and significant mechanical properties. The LC processing methods and material systems are reviewed, and the critical functional coatings related to this field are also summarised and explored in detail. Furthermore, the current challenges and future efforts are presented, identifying the existing knowledge and technology gaps while also attempting to determine future research directions. |
---|---|
AbstractList | Engineering alloys are widely applied as important functional structural materials in aerospace, electronics, metallurgy, and other high-end engineering industries due to their superior properties. However, their further application remains notably restricted by numerous inherent limitations, including low hardness, terrible wear and high-temperature oxidation resistance. In response to this problem, the development of laser cladding (LC) technology has provided new approaches for surface modification of engineering alloys. In this review paper, the recent progress made in the preparation of engineering alloys by LC technology is thoroughly investigated. The elementary knowledge in this field is provided to establish the internal relationships among the laser processing parameters, microstructure, and significant mechanical properties. The LC processing methods and material systems are reviewed, and the critical functional coatings related to this field are also summarised and explored in detail. Furthermore, the current challenges and future efforts are presented, identifying the existing knowledge and technology gaps while also attempting to determine future research directions. |
Author | Sun, Ronglu Yang, Xuejiao Zhang, Tiangang Yang, Lijun Ding, Ye Liu, Yanan |
Author_xml | – sequence: 1 givenname: Yanan surname: Liu fullname: Liu, Yanan organization: School of Mechatronics Engineering, Harbin Institute of Technology, Heilongjiang, Harbin 150001, China – sequence: 2 givenname: Ye surname: Ding fullname: Ding, Ye email: dy1992hit@hit.edu.cn organization: School of Mechatronics Engineering, Harbin Institute of Technology, Heilongjiang, Harbin 150001, China – sequence: 3 givenname: Lijun surname: Yang fullname: Yang, Lijun email: yljtj@hit.edu.cn organization: School of Mechatronics Engineering, Harbin Institute of Technology, Heilongjiang, Harbin 150001, China – sequence: 4 givenname: Ronglu surname: Sun fullname: Sun, Ronglu email: rlsun@tjpu.edu.cn organization: School of Mechanical Engineering, Tiangong University, Tianjin 300387, China – sequence: 5 givenname: Tiangang surname: Zhang fullname: Zhang, Tiangang organization: Engineering Technology Training Center, Civil Aviation University of China, Tianjin 300300, China – sequence: 6 givenname: Xuejiao surname: Yang fullname: Yang, Xuejiao organization: School of Mechanical Engineering, Tiangong University, Tianjin 300387, China |
BookMark | eNqFkM1KAzEUhYNUsK2-gYu8wIz5mUybLoRStAoFQXQd8nNbM0yTkgxK396UunKhq8vl8B043wSNQgyA0C0lNSW0vevqbq8PKdaMMFoTXpOWXqAxY5RVTUvbERpTwdqqpUxcoUnOHSGUNYSO0foVMuhkP7AODpeOXYKccdziXmdI2PbaOR92OAYMYecDQDq9uu_jMS_wEif49PB1jS63us9w83On6P3x4W31VG1e1s-r5aayfMaGqjGCSzmzYIQzLddzRzifC0ENk8YIyaWVhlpJbEnEDKzRwlgijS2hc4ZPUXPutSnmnGCrDsnvdToqStRJhurUWYY6yVCEqyKjYItfmPWDHnwMQ9K-_w--P8NQhpWxSWXrIVhwPoEdlIv-74JvYiOAaw |
CitedBy_id | crossref_primary_10_1007_s11837_024_06537_y crossref_primary_10_1007_s11665_025_10864_9 crossref_primary_10_1007_s11665_023_08670_2 crossref_primary_10_1088_1742_6596_2566_1_012068 crossref_primary_10_3390_ma16196444 crossref_primary_10_13168_cs_2024_0016 crossref_primary_10_1016_j_surfcoat_2022_128760 crossref_primary_10_1016_j_mtcomm_2024_109944 crossref_primary_10_1007_s12540_024_01744_3 crossref_primary_10_1016_j_jmrt_2022_01_160 crossref_primary_10_1016_j_surfcoat_2024_131147 crossref_primary_10_2351_7_0001540 crossref_primary_10_2351_7_0000451 crossref_primary_10_1007_s11666_024_01899_w crossref_primary_10_1016_j_jallcom_2024_178215 crossref_primary_10_1007_s11665_024_09945_y crossref_primary_10_1016_j_matlet_2023_134044 crossref_primary_10_3390_ma17020399 crossref_primary_10_1016_j_surfcoat_2021_127848 crossref_primary_10_1016_j_optlastec_2024_111609 crossref_primary_10_1016_j_jmrt_2023_03_066 crossref_primary_10_1088_2053_1591_ad99a7 crossref_primary_10_1016_j_wear_2024_205611 crossref_primary_10_3390_nano15010018 crossref_primary_10_1016_j_optlastec_2024_110993 crossref_primary_10_3390_coatings12071004 crossref_primary_10_1016_j_matlet_2023_134856 crossref_primary_10_1016_j_surfcoat_2023_129342 crossref_primary_10_1016_j_surfcoat_2023_129584 crossref_primary_10_1016_j_heliyon_2024_e32715 crossref_primary_10_1007_s42114_024_00953_z crossref_primary_10_1016_j_optlastec_2021_107843 crossref_primary_10_1016_j_mtcomm_2024_110259 crossref_primary_10_1007_s11837_024_06668_2 crossref_primary_10_1016_j_surfcoat_2022_128195 crossref_primary_10_1007_s12666_022_02731_1 crossref_primary_10_1007_s11665_023_09017_7 crossref_primary_10_1007_s11837_023_06161_2 crossref_primary_10_1007_s40964_022_00312_8 crossref_primary_10_1016_j_apsusc_2024_162019 crossref_primary_10_1016_j_jmapro_2023_04_022 crossref_primary_10_1016_j_jnoncrysol_2022_121648 crossref_primary_10_1016_j_matchemphys_2023_127383 crossref_primary_10_1016_j_ijmecsci_2022_108034 crossref_primary_10_1016_j_surfcoat_2024_130834 crossref_primary_10_1080_17452759_2024_2397815 crossref_primary_10_1016_j_optlastec_2023_110238 crossref_primary_10_3390_met13010146 crossref_primary_10_1016_j_jmapro_2022_11_046 crossref_primary_10_1016_j_matchemphys_2022_126678 crossref_primary_10_3390_photonics12030265 crossref_primary_10_1016_j_jnucmat_2023_154345 crossref_primary_10_1016_j_physb_2025_417084 crossref_primary_10_1016_j_wear_2025_205929 crossref_primary_10_2139_ssrn_4802859 crossref_primary_10_1016_j_surfcoat_2024_131014 crossref_primary_10_3390_ma16145059 crossref_primary_10_1007_s11837_022_05427_5 crossref_primary_10_1016_j_triboint_2022_107549 crossref_primary_10_1088_2053_1591_ac4e3d crossref_primary_10_1016_j_apsadv_2023_100439 crossref_primary_10_1007_s00170_023_12103_8 crossref_primary_10_3390_ma16010284 crossref_primary_10_1016_j_jmrt_2025_03_139 crossref_primary_10_3390_ma15165522 crossref_primary_10_1016_j_apsusc_2024_160618 crossref_primary_10_1007_s40684_025_00722_3 crossref_primary_10_1016_j_ijrmhm_2024_106610 crossref_primary_10_1007_s00170_025_15349_6 crossref_primary_10_1080_10589759_2024_2338187 crossref_primary_10_1515_mt_2023_0152 crossref_primary_10_2139_ssrn_4120082 crossref_primary_10_1016_j_wear_2021_204174 crossref_primary_10_1016_j_jnucmat_2023_154284 crossref_primary_10_1016_j_optlastec_2022_108232 crossref_primary_10_1016_j_optlastec_2023_109387 crossref_primary_10_3390_coatings12101444 crossref_primary_10_1016_j_jmapro_2023_04_052 crossref_primary_10_3390_coatings13050949 crossref_primary_10_1007_s00170_024_14476_w crossref_primary_10_1007_s11837_023_05861_z crossref_primary_10_1016_j_matchar_2022_111962 crossref_primary_10_1007_s11666_024_01734_2 crossref_primary_10_1016_j_matchar_2023_113408 crossref_primary_10_1016_j_ceramint_2022_03_152 crossref_primary_10_1016_j_jallcom_2022_168305 crossref_primary_10_1016_j_mtcomm_2023_106939 crossref_primary_10_1016_j_surfcoat_2022_128667 crossref_primary_10_1016_j_jmrt_2022_12_112 crossref_primary_10_20964_2022_09_14 crossref_primary_10_1016_j_surfcoat_2023_129354 crossref_primary_10_1016_j_matpr_2023_11_015 crossref_primary_10_1016_j_surfcoat_2024_131289 crossref_primary_10_1088_1674_1056_ad7672 crossref_primary_10_1016_j_jmrt_2021_11_032 crossref_primary_10_1016_j_surfcoat_2022_129073 crossref_primary_10_3390_coatings14101334 crossref_primary_10_1016_j_jallcom_2023_171560 crossref_primary_10_1088_2631_8695_ad7fb7 crossref_primary_10_1007_s10704_024_00814_2 crossref_primary_10_1016_j_matchar_2022_112123 crossref_primary_10_1007_s40735_024_00874_w crossref_primary_10_1088_1742_6596_2064_1_012079 crossref_primary_10_3390_coatings13050842 crossref_primary_10_1007_s10853_024_09567_8 crossref_primary_10_1007_s11665_024_09294_w crossref_primary_10_3390_coatings13050841 crossref_primary_10_1016_j_ijleo_2022_169887 crossref_primary_10_1016_j_jmrt_2023_10_261 crossref_primary_10_3390_app14010085 crossref_primary_10_1007_s00170_024_13376_3 crossref_primary_10_1007_s00170_024_14706_1 crossref_primary_10_3390_ma16196356 crossref_primary_10_1088_2053_1591_acc447 crossref_primary_10_1016_j_mtcomm_2022_103357 crossref_primary_10_1002_adem_202402323 crossref_primary_10_1016_j_surfcoat_2022_128534 crossref_primary_10_3390_coatings14040484 crossref_primary_10_1016_j_jmrt_2024_06_045 crossref_primary_10_1016_j_jmapro_2023_10_066 crossref_primary_10_1016_j_jallcom_2024_176761 crossref_primary_10_1016_j_triboint_2024_109329 crossref_primary_10_1007_s12540_023_01504_9 crossref_primary_10_1016_j_apsusc_2023_157920 crossref_primary_10_1016_j_mtcomm_2022_104417 crossref_primary_10_1016_j_mtcomm_2022_104779 crossref_primary_10_1016_j_surfcoat_2022_129217 crossref_primary_10_1016_j_ijrmhm_2021_105720 crossref_primary_10_3390_lubricants11110482 crossref_primary_10_1016_j_surfcoat_2025_131824 crossref_primary_10_3390_coatings12101382 crossref_primary_10_1002_lpor_202300588 crossref_primary_10_2139_ssrn_4055824 crossref_primary_10_35193_bseufbd_1072385 crossref_primary_10_1016_j_triboint_2023_108870 crossref_primary_10_1088_1402_4896_ace0e4 crossref_primary_10_3788_CJL231161 crossref_primary_10_3390_ma14154203 crossref_primary_10_1016_j_jmst_2024_03_083 crossref_primary_10_1016_j_jmapro_2023_10_003 crossref_primary_10_1007_s11666_024_01795_3 crossref_primary_10_1111_str_12457 crossref_primary_10_1016_j_jmst_2022_11_054 crossref_primary_10_1016_j_optlastec_2023_109412 crossref_primary_10_1016_j_jmapro_2022_04_014 crossref_primary_10_1007_s11665_023_08821_5 crossref_primary_10_1016_j_jallcom_2021_162086 crossref_primary_10_1007_s11665_024_10406_9 crossref_primary_10_1080_01694243_2022_2085499 crossref_primary_10_2351_7_0001364 crossref_primary_10_1016_j_jmapro_2024_12_027 crossref_primary_10_1016_j_surfcoat_2025_131840 crossref_primary_10_1016_j_triboint_2023_108525 crossref_primary_10_1016_j_corsci_2022_110539 crossref_primary_10_1007_s12666_022_02701_7 crossref_primary_10_1016_j_surfcoat_2025_131966 crossref_primary_10_1007_s11665_024_09174_3 crossref_primary_10_1016_j_optlastec_2024_111906 crossref_primary_10_1007_s11837_024_07015_1 crossref_primary_10_1016_j_mtcomm_2024_111080 crossref_primary_10_1108_ILT_08_2024_0304 crossref_primary_10_3390_coatings14060713 crossref_primary_10_1016_j_jmapro_2023_07_063 crossref_primary_10_1016_j_jmrt_2023_05_037 crossref_primary_10_1016_j_engfailanal_2024_108129 crossref_primary_10_1364_AO_516603 crossref_primary_10_3390_lubricants11070282 crossref_primary_10_1142_S0218625X24300144 crossref_primary_10_1016_j_surfcoat_2024_131536 crossref_primary_10_1002_maco_202213228 crossref_primary_10_1016_j_heliyon_2023_e13855 crossref_primary_10_3390_coatings15010083 crossref_primary_10_1016_j_ijleo_2022_170279 crossref_primary_10_1016_j_mtcomm_2024_110184 crossref_primary_10_1088_1742_6596_2785_1_012127 crossref_primary_10_1007_s10853_023_08577_2 crossref_primary_10_1016_j_ijleo_2022_169930 crossref_primary_10_1016_j_jnoncrysol_2023_122559 crossref_primary_10_3390_ma17010264 crossref_primary_10_1016_j_mtcomm_2024_109746 crossref_primary_10_1007_s11665_024_09359_w crossref_primary_10_1016_j_surfcoat_2024_131585 crossref_primary_10_1007_s42247_024_00881_0 crossref_primary_10_1016_j_jmrt_2023_11_138 crossref_primary_10_1016_j_jmrt_2022_08_107 crossref_primary_10_1007_s00170_021_08042_x crossref_primary_10_1007_s11666_024_01786_4 crossref_primary_10_1016_j_jmapro_2022_08_047 crossref_primary_10_1021_acsnano_2c07829 crossref_primary_10_1016_j_jmapro_2022_11_067 crossref_primary_10_3390_coatings12070876 crossref_primary_10_1016_j_optlastec_2024_111802 crossref_primary_10_1016_j_surfcoat_2024_131479 crossref_primary_10_1016_j_jmrt_2023_02_067 crossref_primary_10_3390_ma14206183 crossref_primary_10_3390_ma16083263 crossref_primary_10_1002_adem_202401779 crossref_primary_10_1016_j_intermet_2025_108654 crossref_primary_10_1016_j_jmapro_2021_06_041 crossref_primary_10_1007_s12666_022_02734_y crossref_primary_10_1016_j_ijfatigue_2022_107180 crossref_primary_10_3390_coatings14010113 crossref_primary_10_1016_j_ijrmhm_2023_106273 crossref_primary_10_1016_j_wear_2024_205444 crossref_primary_10_1016_j_optlastec_2024_111137 crossref_primary_10_1134_S1029959924010016 crossref_primary_10_1016_j_wear_2023_204830 crossref_primary_10_1002_adem_202401887 crossref_primary_10_1016_j_ceramint_2022_05_399 crossref_primary_10_1016_j_heliyon_2024_e38429 crossref_primary_10_1016_j_jmrt_2023_03_070 crossref_primary_10_1007_s40516_021_00161_3 crossref_primary_10_1016_j_mtcomm_2024_108430 crossref_primary_10_1142_S0218625X25500520 crossref_primary_10_1016_j_jallcom_2024_175164 crossref_primary_10_3390_lubricants13030111 crossref_primary_10_1080_10402004_2023_2275680 crossref_primary_10_3389_fenrg_2023_1149446 crossref_primary_10_1016_j_surfcoat_2022_128811 crossref_primary_10_1016_j_ymssp_2021_108514 crossref_primary_10_1016_j_optlastec_2024_110611 crossref_primary_10_1016_j_surfcoat_2024_131575 crossref_primary_10_1016_j_ceramint_2024_10_384 |
Cites_doi | 10.1002/adem.200300567 10.1016/j.jallcom.2014.02.121 10.1016/j.jmbbm.2013.09.006 10.1016/j.jmbbm.2015.11.015 10.1016/j.pmatsci.2020.100638 10.1016/j.jmbbm.2007.07.001 10.1016/j.surfcoat.2009.09.024 10.1016/j.surfcoat.2018.12.083 10.1016/j.matdes.2014.01.077 10.1016/j.optlastec.2018.01.058 10.1016/j.ceramint.2020.09.063 10.1016/j.jallcom.2017.08.248 10.1016/j.colsurfb.2015.01.016 10.1016/j.jmatprotec.2008.05.017 10.1016/j.surfcoat.2020.126445 10.1016/j.nucengdes.2010.05.040 10.1016/j.optlastec.2010.03.001 10.1016/j.pmatsci.2017.10.003 10.1016/j.procir.2017.12.099 10.1111/j.1151-2916.1984.tb19740.x 10.1016/j.jallcom.2016.04.037 10.1016/j.optlaseng.2010.03.017 10.1016/j.jallcom.2020.154245 10.1016/j.jmapro.2020.01.028 10.1016/j.matpr.2017.01.084 10.1016/j.jallcom.2017.08.153 10.1016/j.jallcom.2019.152986 10.2351/1.4943910 10.1016/j.apsusc.2018.08.264 10.1016/j.apsusc.2014.08.052 10.1016/j.surfcoat.2018.08.044 10.1016/j.optlastec.2021.106915 10.1016/j.apsusc.2014.05.196 10.1557/mrc.2014.11 10.1016/j.optlastec.2018.06.030 10.1016/j.optlastec.2014.07.003 10.1016/j.ijrmhm.2019.105112 10.1016/j.surfcoat.2018.11.034 10.1016/j.surfcoat.2017.04.008 10.1016/j.ceramint.2016.10.026 10.1016/j.surfcoat.2014.03.019 10.1016/j.matdes.2019.108295 10.1016/j.ceramint.2017.04.103 10.1016/j.apsusc.2010.08.094 10.1016/j.surfcoat.2008.11.012 10.1016/j.surfcoat.2017.12.058 10.1016/j.surfcoat.2020.126778 10.1016/S0257-8972(00)00732-5 10.1016/j.jallcom.2012.09.091 10.1016/j.optlaseng.2012.01.018 10.1016/j.matdes.2012.04.049 10.1016/j.ceramint.2018.08.083 10.1016/j.matlet.2014.11.058 10.1002/widm.1125 10.1016/j.apsusc.2015.12.059 10.1016/j.surfcoat.2019.125248 10.1016/j.actbio.2012.01.018 10.1016/j.optlaseng.2020.106041 10.1016/j.matdes.2010.12.001 10.1016/j.actamat.2019.12.015 10.1016/j.matlet.2017.02.076 10.1016/j.phpro.2010.08.060 10.1016/S0043-1648(03)00283-7 10.1016/j.surfcoat.2018.10.100 10.1016/S0257-8972(02)00006-3 10.1016/j.surfcoat.2007.04.003 10.1016/j.surfcoat.2013.05.052 10.1016/S0030-3992(98)00048-6 10.1016/j.apsusc.2015.04.030 10.1016/j.surfcoat.2010.08.087 10.1016/j.optlaseng.2019.05.026 10.1016/j.pmatsci.2008.06.004 10.1016/j.intermet.2020.106722 10.1016/j.jma.2020.02.003 10.1016/j.phpro.2011.03.039 10.1016/j.surfcoat.2019.125198 10.1016/j.matpr.2018.10.006 10.1016/j.optlastec.2016.09.044 10.1038/srep41463 10.3390/ma11010058 10.1016/S0921-5093(02)00076-X 10.1016/j.optlaseng.2018.02.004 10.1016/j.ijmachtools.2017.04.008 10.1016/j.actamat.2016.12.070 10.1016/j.matchemphys.2019.122522 10.1108/RPJ-12-2014-0167 10.1016/j.optlaseng.2019.03.001 10.1016/j.actbio.2012.06.037 10.1016/j.actbio.2018.10.036 10.1016/j.jmatprotec.2010.09.007 10.1016/j.optlastec.2019.03.048 10.1016/j.coche.2020.03.001 10.1016/j.actbio.2012.02.004 10.1016/j.surfcoat.2012.03.082 10.1016/j.apsusc.2010.02.078 10.1016/j.ijrmhm.2016.06.019 10.1016/j.optlastec.2019.105572 10.1016/j.optlastec.2019.05.006 10.1016/j.surfcoat.2019.125272 10.1016/j.surfcoat.2017.04.035 10.1016/j.apsusc.2015.03.152 10.2351/1.1771167 10.1016/j.scriptamat.2008.02.017 10.1016/j.optlastec.2019.01.017 10.1016/j.optlastec.2020.106619 10.1016/j.apsusc.2010.03.106 10.1016/j.matdes.2018.07.045 10.1016/j.biomaterials.2016.01.012 10.1016/j.jallcom.2016.09.071 10.1016/j.surfcoat.2011.08.063 10.1016/j.surfcoat.2018.05.053 10.1016/j.jallcom.2020.155449 10.1007/s00170-016-8743-9 10.1016/j.jmatprotec.2004.12.009 10.1016/j.ceramint.2018.08.090 10.1016/j.surfcoat.2015.02.050 10.1016/j.optlastec.2018.09.022 10.1016/j.surfcoat.2017.01.012 10.1016/j.surfcoat.2019.01.044 10.1016/j.vacuum.2020.109305 10.1016/j.surfcoat.2018.10.086 10.1016/j.ceramint.2020.02.159 10.1016/j.ijrmhm.2019.105091 10.1016/j.optlaseng.2016.08.005 10.1016/j.surfcoat.2018.03.035 10.1016/j.ceramint.2017.11.013 10.1016/j.matlet.2019.01.133 10.1007/s40516-016-0025-8 10.1016/j.pmatsci.2019.100578 10.1016/j.jallcom.2013.10.254 10.1016/j.optlastec.2020.106077 10.1016/j.surfcoat.2005.04.059 10.1016/j.msec.2011.07.009 10.1016/j.optlaseng.2009.08.003 10.1016/j.jallcom.2016.12.196 10.1016/j.surfcoat.2019.125249 10.1016/j.surfcoat.2019.125166 10.1016/S1002-0721(16)60061-3 10.1016/j.jallcom.2011.01.199 10.1016/j.rinp.2019.102160 10.1016/j.msec.2018.12.056 10.1016/j.jmatprotec.2020.116736 10.1016/j.matdes.2019.107959 10.1016/j.jallcom.2012.11.100 10.1038/s41467-019-13874-z 10.1016/j.ijrmhm.2014.05.010 10.1016/S1003-6326(11)61371-X 10.1016/j.jmapro.2020.03.048 10.1016/j.surfcoat.2021.126964 10.1016/j.jeurceramsoc.2007.11.011 10.1016/j.bioactmat.2019.12.004 10.1016/j.jallcom.2018.09.004 10.1016/j.surfcoat.2020.125876 10.1016/j.surfcoat.2019.124933 |
ContentType | Journal Article |
Copyright | 2021 The Society of Manufacturing Engineers |
Copyright_xml | – notice: 2021 The Society of Manufacturing Engineers |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jmapro.2021.03.061 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2212-4616 |
EndPage | 363 |
ExternalDocumentID | 10_1016_j_jmapro_2021_03_061 S152661252100236X |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29K 3V. 4.4 457 4G. 5GY 5VS 7-5 71M 7WY 883 88I 8AO 8FE 8FG 8FL 8FW 8P~ 8R4 8R5 9M8 AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJCF ABJNI ABMAC ABUWG ABXDB ABYKQ ACDAQ ACGFS ACGOD ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKRA AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN AZQEC BENPR BEZIV BGLVJ BJAXD BKOJK BLXMC BPHCQ CCPQU CS3 D-I DU5 DWQXO E3Z EBS EFJIC EFLBG EJD EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FRNLG FYGXN GBLVA GNUQQ GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH HCIFZ HVGLF HZ~ H~9 J1W JJJVA K60 K6~ KOM L6V M0C M0F M2P M41 M7S MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQBIZ PQQKQ PROAC PTHSS Q2X Q38 R2- RIG RNS ROL RWL S0X SDF SES SPC SPCBC SST SSZ T5K TAE TN5 U5U ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION PHGZM PHGZT PQBZA SSH |
ID | FETCH-LOGICAL-c372t-4b53997ceb5db63a8d0338551b29bb5939c9b1c90c8d057ecba5bc09bcb59ddb3 |
IEDL.DBID | .~1 |
ISSN | 1526-6125 |
IngestDate | Tue Jul 01 02:23:36 EDT 2025 Thu Apr 24 23:02:37 EDT 2025 Fri Feb 23 02:45:21 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Mechanical properties Surface modification Engineering alloys Research status Laser cladding Development trend |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-4b53997ceb5db63a8d0338551b29bb5939c9b1c90c8d057ecba5bc09bcb59ddb3 |
PageCount | 23 |
ParticipantIDs | crossref_primary_10_1016_j_jmapro_2021_03_061 crossref_citationtrail_10_1016_j_jmapro_2021_03_061 elsevier_sciencedirect_doi_10_1016_j_jmapro_2021_03_061 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2021 2021-06-00 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: June 2021 |
PublicationDecade | 2020 |
PublicationTitle | Journal of manufacturing processes |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Li, Li, Luo (bib0610) 2015; 65 Emamian, Corbin, Khajepour (bib0255) 2010; 205 Zakaria, Sulong, Muhamad, Raza, Ramli (bib0030) 2019; 97 Yang, Serpersu, He, Paital, Dahotre (bib0765) 2011; 31 Todaro, Easton, Qiu, Zhang, Bermingham, Lui (bib0825) 2020; 11 Zhang, Zhou, Yu, Li (bib0540) 2017; 311 Behera, Hasan, Sankar, Pandey (bib0770) 2018; 352 Isik, Niinomi, Cho, Nakai, Liu, Yilmazer (bib0740) 2016; 59 Wang, Sun, Lu, Chen, Lan, Bi (bib0235) 2021; 408 Gao, Zhao, Liu, Wang, Zhou, Lin (bib0305) 2014; 248 Hu, Cong (bib0805) 2018; 44 Bobbio, Otis, Borgonia, Dillon, Shapiro, Liu (bib0790) 2017; 127 Qi, Zhan, Gao, Liu, Song, Li (bib0455) 2019; 119 Yang, Miao, Wang, Yang (bib0415) 2014; 46 Liu, Sun, Niu, Zhang, Tan (bib0675) 2019; 46 Sun, Lei, Niu (bib0370) 2009; 203 Sun, Hao (bib0285) 2012; 50 Guo, Li, Zeng, Wang, Deng, Wang (bib0590) 2020; 242 Wang, Zhang, Qu (bib0620) 2010; 48 An, Chen, Tao, Ming, Chen (bib0065) 2020; 86 Toyserkani, Khajepour, Corbin (bib0100) 2006 Hu, Wang, Yao, Xia, Li, Liu (bib0205) 2020; 383 Diao, Zhang (bib0425) 2015; 352 Feng, Tang, Zhang, Wang (bib0400) 2012; 22 Bandyopadhyay, Zhang, Bose (bib0025) 2020; 28 Zhang, Tian, Yin, Niu, Wu, Wang (bib0585) 2020; 119 Ryabchikov, Kashkarov, Shevelev, Syrtanov (bib0060) 2020; 383 Xiang, Liu, Ren, Luo, Shi, Chen (bib0685) 2014; 313 Aboulkhair, Simonelli, Parry, Ashcroft, Tuck, Hague (bib0020) 2019; 106 Riquelme, Escalera-Rodríguez, Rodrigo, Otero, Rams (bib0445) 2017; 727 Schopphoven, Gasser, Wissenbach, Poprawe (bib0105) 2016; 28 Chen, Hsu (bib0200) 1998; 30 Wang, Liu (bib0715) 2002; 338 Quazi, Fazal, Haseeb, Yusof, Masjuki, Arslan (bib0595) 2016; 34 Aramian, Razavi, Sadeghian, Berto (bib0835) 2020; 33 Sun, Mao, Yang (bib0345) 2002; 155 Meng, Geng, Zhang (bib0355) 2006; 200 Sun, Lei, Niu (bib0320) 2009; 203 Han, Lingling, Chaoqun, Sun, Zhang (bib0535) 2017; 46 Liu, Liu, Chen, Hao (bib0570) 2019; 361 Zhang, Lu, Ma, Liaw, Tang, Cheng (bib0480) 2014; 4 Chen, Wu, Li, Liu (bib0295) 2019; 116 Niinomi, Nakai, Hieda (bib0745) 2012; 8 Weng, Chen, Yu (bib0340) 2014; 58 Yanan, Lijun, Xuejiao, Tiangang, Ronglu (bib0045) 2021; 47 Ning, Cong (bib0160) 2020; 51 Huang, Zhou, Xu, Huo, He, Meng (bib0815) 2020; 395 Zhai, Ban, Zhang (bib0215) 2019; 114 Sun, Fu, Ping, Guo, Lin, Lei (bib0635) 2019; 359 Wu, Fahy, Kim, Kim, Zhao, Pilato (bib0840) 2020; 111 Li, Chen, Lin, Squartini (bib0390) 2011; 509 Ni, Shi, Liu, Huang (bib0560) 2018; 105 Zhao, Yu, Sun, Jiang (bib0080) 2020; 86 Feng, Feng, Yao, Li (bib0645) 2019; 181 Muvvala, Patra Karmakar, Nath (bib0135) 2017; 88 Wu, Guo, Ma, Niu (bib0180) 2015; 141 Weng, Yu, Chen, Liu, Zhao, Dai (bib0325) 2017; 692 Zhou, Lei, Dai, Guo, Gu, Pan (bib0430) 2016; 60 Yan, Qin, Chen, Zhong (bib0050) 2020; 56 Li, Zhang, Lei, Chen, Chen (bib0315) 2001; 137 Li, Lei, Fu (bib0660) 2014; 316 Daram, Banjongprasert (bib0055) 2020; 384 Dong, Wang (bib0365) 2009; 204 Silva, Ribeiro, Bracarense, Pessoa (bib0230) 2012 Hofman, de Lange, Pathiraj, Meijer (bib0140) 2011; 211 Wen, Cui, Jin, Zhang, Zhang, Zhang (bib0175) 2020; 835 Yue, Xie, Lin, Yang, Meng (bib0525) 2014; 587 Zhang, Lei (bib0350) 2003; 255 Zhou, Dai (bib0380) 2010; 256 Feng, Feng, Yao, Li, Sun (bib0650) 2018; 157 Zhu, Yang, Xin, Wang, Meng, Ning (bib0170) 2021; 410 Hermawan, Ramdan, Djuansjah (bib0735) 2011 Chen, Liu, Wu, Wang (bib0630) 2017; 11 Zhai, Ban, Zhang, Yao (bib0210) 2019; 243 Khorram, Davoodi Jamaloei, Paidar, Cao (bib0280) 2019; 378 Fashu, Lototskyy, Davids, Pickering, Linkov, Tai (bib0015) 2020; 186 Das, Bhattacharya, Dittrick, Mandal, Balla, Sampath Kumar, Bandyopadhyay, Manna (bib0410) 2014; 29 Obadele, Andrews, Olubambi, Mathew, Pityana (bib0720) 2015; 66 Weisheit, Rittinghaus, Dutta, Majumdar (bib0810) 2020; 131 Wang, Xu, Zhou, Xu, Leary, Choong (bib0260) 2016; 83 Qiu, Zhang, He, Liu (bib0510) 2013; 549 Zhu, Xue, Lan, Meng, Ren, Yang (bib0115) 2021; 138 Obadele, Andrews, Mathew, Olubambi, Pityana (bib0420) 2015; 345 Zhang, Shi, Kutsuna, Xu (bib0605) 2010; 240 Chouirfa, Bouloussa, Migonney, Falentin Daudré (bib0035) 2019; 83 McAndrew, Colegrove, Bühr, Flipo, Vairis (bib0040) 2018; 92 Liu, Li, Cheng, Wang (bib0245) 2017; 325 Li, Chen, Squartini, He (bib0385) 2010; 257 Karunakaran, Ortgies, Tamayol, Bobaru, Sealy (bib0830) 2020; 5 Toyserkani, Khajepour, Corbin (bib0240) 2004 Huang, Zeng (bib0615) 2010; 256 Zhang, Wu, He, Li, Guo (bib0530) 2016; 363 Shu, Li, Zhang, Yao, Li, Dai (bib0600) 2017; 195 Song, She, Chen, Pan (bib0005) 2020; 8 Siddiqui, Dubey (bib0120) 2021; 134 Gu, Xi, Sun (bib0580) 2020; 819 Amuda, Akinlabi, Moolla (bib0440) 2017; 4 Huang, Zhang, Shen, Vilar (bib0490) 2011; 206 Yang, Cheng, Tang, Tian, Liu (bib0655) 2018; 337 Shao, Khonsari, Guo, Meng, Li (bib0010) 2019; 29 Vallauri, Atías Adrián, Chrysanthou (bib0665) 2008; 28 Yang, Zhang, Yan, Zheng (bib0375) 2010; 48 Ramirez, Qian, Davis, Wilks, StJohn (bib0195) 2008; 59 Devojno, Feldshtein, Kardapolava, Lutsko (bib0130) 2018; 106 Zhang, Ashida, Shono, Matsuda (bib0225) 2006; 174 Salcedo-Sanz, Rojo-Álvarez, Martínez-Ramón, Camps-Valls (bib0290) 2014; 4 Zhu, Zhang, Yu, Yan, Li, Wu (bib0085) 2020; 383 Yeh, Chen, Lin, Gan, Chin, Shun (bib0470) 2004; 6 Zhang, He, Pan, Guo (bib0520) 2014; 600 Lv, Li, Tao, Hu (bib0435) 2016; 679 Quazi, Fazal, Haseeb, Yusof, Masjuki, Arslan (bib0680) 2016; 3 Toyserkani, Corbin, Khajepour (bib0075) 2005 Farayibi, Abioye, Clare (bib0265) 2016; 87 Yan, Liu, Zhang, Zhao, Qin, Lu (bib0700) 2020; 126 Li, Wang, Chen, Weng (bib0775) 2015; 127 Kumar, Mandal, Das, Dixit (bib0275) 2018; 349 Xu, Lu, Luo, Yao, Xu, Lu (bib0335) 2020; 284 Zhai, Liu, Qiao, Wang, Lu, Wang (bib0690) 2017; 89 Young (bib0705) 2008 Li, Xiong, Li, Chen, Gao, Zou (bib0795) 2017; 43 Biesiekierski, Wang, Gepreel, Wen (bib0755) 2012; 8 Bourahima, Helbert, Rege, Ji, Solas, Baudin (bib0485) 2019; 771 Wen, Jin, Cui, Feng, Lu, Cai (bib0110) 2019; 111 Ye, Ma, Cao, Liu, Ye, Gu (bib0500) 2011; 12 Qiu, Liu (bib0515) 2013; 553 Shu, Zhang, Liu, Sui, Liu, He (bib0575) 2019; 358 Qu, Li, Juan, Shao, Song, Bai (bib0695) 2019; 357 Liu, Liu, Chen, Yang (bib0725) 2019; 118 Liang, Yin, Lin, Chen, Liu, Wang (bib0820) 2020; 176 Ramiro, Alberdi, Ortiz, Lamikiz, Ukar (bib0310) 2018; 68 Yang, Li, Zhang, Wei, Wang, Kang (bib0465) 2020; 383 Adesina, Obadele, Farotade, Isadare, Adediran, Ikubanni (bib0090) 2020; 827 Ruirun, Deshuang, Tengfei, Hongsheng, Yanqing, Jingjie (bib0190) 2017; 7 Wang, Jin, Yang, Sun (bib0405) 2013; 236 Tamanna, Crouch, Naher (bib0125) 2019; 122 Kaushal, Singh, Gupta, Bhowmick (bib0450) 2018; 5 Zhang, Zhao, Wang, Liu, Ying (bib0165) 2020; 403 Hu, Ning, Cong, Li, Wang, Wang (bib0800) 2018; 44 Guo, Shang, Liu (bib0555) 2018; 344 Zhai, Ban, Zhang (bib0220) 2019; 358 SORRELL, BERATAN, BRADT, STUBICAN (bib0670) 1984; 67 Niu, Wu, Ma, Zhou, Zhang (bib0785) 2015; 21 Riquelme, Rodrigo, Escalera-Rodríguez, Rams (bib0460) 2019; 13 Dutta Majumdar, Manna, Kumar, Bhargava, Nath (bib0330) 2009; 209 Yanan, Ronglu, Wei, Tiangang, Yiwen (bib0070) 2019; 120 Pereira, Zambrano, Tobar, Yañez, Amigó (bib0710) 2015; 270 Ma, Yan, Wu, Miao, Liu, Niu (bib0185) 2017; 43 Lu, McCormick, Zhao, Fan, Huang (bib0250) 2018; 44 Li, Huang, Zhu, Li (bib0395) 2012; 206 Zhang, Pan, He (bib0495) 2011; 32 Cong, Ning (bib0155) 2017; 121 Huang, Zhang, Vilar, Shen (bib0505) 2012; 41 Nagay, Cordeiro, Barão (bib0730) 2020 Geetha, Singh, Asokamani, Gogia (bib0760) 2009; 54 Maliutina, Si-Mohand, Sijobert, Bertrand, Lazurenko, Bataev (bib0095) 2017; 319 Zhao, Niinomi, Nakai, Hieda (bib0780) 2012; 8 Anandkumar, Almeida, Colaço, Vilar, Ocelik, De Hosson (bib0360) 2007; 201 Xin, hai, Min, jiang, Hong (bib0300) 2010; 42 Shu, Liu, Zhao, He, Sui, Zhang (bib0550) 2018; 731 Ibarra-Medina, Pinkerton (bib0150) 2010; 5 George, Curtin, Tasan (bib0475) 2020; 188 Wu, Zhang, Zhang, Zhang, Dong (bib0545) 2017; 698 Liu, Sun, Zhang, Niu (bib0640) 2019; 48 Niinomi (bib0750) 2008; 1 Hung, Lin (bib0145) 2004; 16 Yu, Yang, Zhao, Sun, Li (bib0270) 2018; 108 Juan, Li, Jiang, Jia, Lu (bib0565) 2019; 465 Zhang, Zhuang, Zhang, Yao, Yang (bib0625) 2020; 46 Vallauri (10.1016/j.jmapro.2021.03.061_bib0665) 2008; 28 Weng (10.1016/j.jmapro.2021.03.061_bib0340) 2014; 58 SORRELL (10.1016/j.jmapro.2021.03.061_bib0670) 1984; 67 McAndrew (10.1016/j.jmapro.2021.03.061_bib0040) 2018; 92 Ibarra-Medina (10.1016/j.jmapro.2021.03.061_bib0150) 2010; 5 Liang (10.1016/j.jmapro.2021.03.061_bib0820) 2020; 176 Isik (10.1016/j.jmapro.2021.03.061_bib0740) 2016; 59 Adesina (10.1016/j.jmapro.2021.03.061_bib0090) 2020; 827 Quazi (10.1016/j.jmapro.2021.03.061_bib0680) 2016; 3 Sun (10.1016/j.jmapro.2021.03.061_bib0345) 2002; 155 Ye (10.1016/j.jmapro.2021.03.061_bib0500) 2011; 12 Ramirez (10.1016/j.jmapro.2021.03.061_bib0195) 2008; 59 Toyserkani (10.1016/j.jmapro.2021.03.061_bib0240) 2004 Li (10.1016/j.jmapro.2021.03.061_bib0395) 2012; 206 Sun (10.1016/j.jmapro.2021.03.061_bib0285) 2012; 50 Wang (10.1016/j.jmapro.2021.03.061_bib0405) 2013; 236 Farayibi (10.1016/j.jmapro.2021.03.061_bib0265) 2016; 87 Yeh (10.1016/j.jmapro.2021.03.061_bib0470) 2004; 6 Yanan (10.1016/j.jmapro.2021.03.061_bib0070) 2019; 120 Qiu (10.1016/j.jmapro.2021.03.061_bib0510) 2013; 549 Wen (10.1016/j.jmapro.2021.03.061_bib0110) 2019; 111 Yan (10.1016/j.jmapro.2021.03.061_bib0700) 2020; 126 Sun (10.1016/j.jmapro.2021.03.061_bib0320) 2009; 203 Quazi (10.1016/j.jmapro.2021.03.061_bib0595) 2016; 34 Hu (10.1016/j.jmapro.2021.03.061_bib0205) 2020; 383 An (10.1016/j.jmapro.2021.03.061_bib0065) 2020; 86 Guo (10.1016/j.jmapro.2021.03.061_bib0555) 2018; 344 Sun (10.1016/j.jmapro.2021.03.061_bib0370) 2009; 203 Shu (10.1016/j.jmapro.2021.03.061_bib0575) 2019; 358 Weng (10.1016/j.jmapro.2021.03.061_bib0325) 2017; 692 Diao (10.1016/j.jmapro.2021.03.061_bib0425) 2015; 352 Hu (10.1016/j.jmapro.2021.03.061_bib0800) 2018; 44 Hofman (10.1016/j.jmapro.2021.03.061_bib0140) 2011; 211 Obadele (10.1016/j.jmapro.2021.03.061_bib0420) 2015; 345 Yang (10.1016/j.jmapro.2021.03.061_bib0765) 2011; 31 Niinomi (10.1016/j.jmapro.2021.03.061_bib0750) 2008; 1 Yan (10.1016/j.jmapro.2021.03.061_bib0050) 2020; 56 Pereira (10.1016/j.jmapro.2021.03.061_bib0710) 2015; 270 Biesiekierski (10.1016/j.jmapro.2021.03.061_bib0755) 2012; 8 Wu (10.1016/j.jmapro.2021.03.061_bib0545) 2017; 698 Maliutina (10.1016/j.jmapro.2021.03.061_bib0095) 2017; 319 Siddiqui (10.1016/j.jmapro.2021.03.061_bib0120) 2021; 134 Zhai (10.1016/j.jmapro.2021.03.061_bib0690) 2017; 89 Nagay (10.1016/j.jmapro.2021.03.061_bib0730) 2020 Zhai (10.1016/j.jmapro.2021.03.061_bib0215) 2019; 114 Toyserkani (10.1016/j.jmapro.2021.03.061_bib0100) 2006 Liu (10.1016/j.jmapro.2021.03.061_bib0725) 2019; 118 Geetha (10.1016/j.jmapro.2021.03.061_bib0760) 2009; 54 Wang (10.1016/j.jmapro.2021.03.061_bib0235) 2021; 408 Zhang (10.1016/j.jmapro.2021.03.061_bib0585) 2020; 119 Huang (10.1016/j.jmapro.2021.03.061_bib0505) 2012; 41 Yang (10.1016/j.jmapro.2021.03.061_bib0415) 2014; 46 Guo (10.1016/j.jmapro.2021.03.061_bib0590) 2020; 242 Lu (10.1016/j.jmapro.2021.03.061_bib0250) 2018; 44 Li (10.1016/j.jmapro.2021.03.061_bib0385) 2010; 257 George (10.1016/j.jmapro.2021.03.061_bib0475) 2020; 188 Wang (10.1016/j.jmapro.2021.03.061_bib0715) 2002; 338 Fashu (10.1016/j.jmapro.2021.03.061_bib0015) 2020; 186 Behera (10.1016/j.jmapro.2021.03.061_bib0770) 2018; 352 Riquelme (10.1016/j.jmapro.2021.03.061_bib0460) 2019; 13 Zhang (10.1016/j.jmapro.2021.03.061_bib0495) 2011; 32 Karunakaran (10.1016/j.jmapro.2021.03.061_bib0830) 2020; 5 Ruirun (10.1016/j.jmapro.2021.03.061_bib0190) 2017; 7 Hu (10.1016/j.jmapro.2021.03.061_bib0805) 2018; 44 Ryabchikov (10.1016/j.jmapro.2021.03.061_bib0060) 2020; 383 Salcedo-Sanz (10.1016/j.jmapro.2021.03.061_bib0290) 2014; 4 Das (10.1016/j.jmapro.2021.03.061_bib0410) 2014; 29 Liu (10.1016/j.jmapro.2021.03.061_bib0640) 2019; 48 Niinomi (10.1016/j.jmapro.2021.03.061_bib0745) 2012; 8 Anandkumar (10.1016/j.jmapro.2021.03.061_bib0360) 2007; 201 Meng (10.1016/j.jmapro.2021.03.061_bib0355) 2006; 200 Li (10.1016/j.jmapro.2021.03.061_bib0315) 2001; 137 Yue (10.1016/j.jmapro.2021.03.061_bib0525) 2014; 587 Ma (10.1016/j.jmapro.2021.03.061_bib0185) 2017; 43 Wu (10.1016/j.jmapro.2021.03.061_bib0180) 2015; 141 Huang (10.1016/j.jmapro.2021.03.061_bib0615) 2010; 256 Zhang (10.1016/j.jmapro.2021.03.061_bib0225) 2006; 174 Li (10.1016/j.jmapro.2021.03.061_bib0610) 2015; 65 Zhao (10.1016/j.jmapro.2021.03.061_bib0780) 2012; 8 Kumar (10.1016/j.jmapro.2021.03.061_bib0275) 2018; 349 Chen (10.1016/j.jmapro.2021.03.061_bib0295) 2019; 116 Sun (10.1016/j.jmapro.2021.03.061_bib0635) 2019; 359 Qu (10.1016/j.jmapro.2021.03.061_bib0695) 2019; 357 Riquelme (10.1016/j.jmapro.2021.03.061_bib0445) 2017; 727 Zhang (10.1016/j.jmapro.2021.03.061_bib0540) 2017; 311 Zhou (10.1016/j.jmapro.2021.03.061_bib0380) 2010; 256 Zhai (10.1016/j.jmapro.2021.03.061_bib0210) 2019; 243 Silva (10.1016/j.jmapro.2021.03.061_bib0230) 2012 Zhou (10.1016/j.jmapro.2021.03.061_bib0430) 2016; 60 Juan (10.1016/j.jmapro.2021.03.061_bib0565) 2019; 465 Liu (10.1016/j.jmapro.2021.03.061_bib0570) 2019; 361 Ning (10.1016/j.jmapro.2021.03.061_bib0160) 2020; 51 Zhu (10.1016/j.jmapro.2021.03.061_bib0085) 2020; 383 Yang (10.1016/j.jmapro.2021.03.061_bib0465) 2020; 383 Huang (10.1016/j.jmapro.2021.03.061_bib0815) 2020; 395 Schopphoven (10.1016/j.jmapro.2021.03.061_bib0105) 2016; 28 Hermawan (10.1016/j.jmapro.2021.03.061_bib0735) 2011 Song (10.1016/j.jmapro.2021.03.061_bib0005) 2020; 8 Hung (10.1016/j.jmapro.2021.03.061_bib0145) 2004; 16 Zakaria (10.1016/j.jmapro.2021.03.061_bib0030) 2019; 97 Dutta Majumdar (10.1016/j.jmapro.2021.03.061_bib0330) 2009; 209 Han (10.1016/j.jmapro.2021.03.061_bib0535) 2017; 46 Shu (10.1016/j.jmapro.2021.03.061_bib0550) 2018; 731 Chen (10.1016/j.jmapro.2021.03.061_bib0200) 1998; 30 Zhang (10.1016/j.jmapro.2021.03.061_bib0165) 2020; 403 Yang (10.1016/j.jmapro.2021.03.061_bib0375) 2010; 48 Bandyopadhyay (10.1016/j.jmapro.2021.03.061_bib0025) 2020; 28 Yang (10.1016/j.jmapro.2021.03.061_bib0655) 2018; 337 Kaushal (10.1016/j.jmapro.2021.03.061_bib0450) 2018; 5 Aramian (10.1016/j.jmapro.2021.03.061_bib0835) 2020; 33 Zhang (10.1016/j.jmapro.2021.03.061_bib0350) 2003; 255 Cong (10.1016/j.jmapro.2021.03.061_bib0155) 2017; 121 Xu (10.1016/j.jmapro.2021.03.061_bib0335) 2020; 284 Muvvala (10.1016/j.jmapro.2021.03.061_bib0135) 2017; 88 Wang (10.1016/j.jmapro.2021.03.061_bib0260) 2016; 83 Niu (10.1016/j.jmapro.2021.03.061_bib0785) 2015; 21 Shu (10.1016/j.jmapro.2021.03.061_bib0600) 2017; 195 Tamanna (10.1016/j.jmapro.2021.03.061_bib0125) 2019; 122 Gao (10.1016/j.jmapro.2021.03.061_bib0305) 2014; 248 Li (10.1016/j.jmapro.2021.03.061_bib0795) 2017; 43 Zhu (10.1016/j.jmapro.2021.03.061_bib0170) 2021; 410 Yu (10.1016/j.jmapro.2021.03.061_bib0270) 2018; 108 Lv (10.1016/j.jmapro.2021.03.061_bib0435) 2016; 679 Liu (10.1016/j.jmapro.2021.03.061_bib0675) 2019; 46 Li (10.1016/j.jmapro.2021.03.061_bib0775) 2015; 127 Ni (10.1016/j.jmapro.2021.03.061_bib0560) 2018; 105 Todaro (10.1016/j.jmapro.2021.03.061_bib0825) 2020; 11 Toyserkani (10.1016/j.jmapro.2021.03.061_bib0075) 2005 Gu (10.1016/j.jmapro.2021.03.061_bib0580) 2020; 819 Feng (10.1016/j.jmapro.2021.03.061_bib0645) 2019; 181 Zhao (10.1016/j.jmapro.2021.03.061_bib0080) 2020; 86 Zhang (10.1016/j.jmapro.2021.03.061_bib0530) 2016; 363 Emamian (10.1016/j.jmapro.2021.03.061_bib0255) 2010; 205 Zhang (10.1016/j.jmapro.2021.03.061_bib0625) 2020; 46 Feng (10.1016/j.jmapro.2021.03.061_bib0650) 2018; 157 Huang (10.1016/j.jmapro.2021.03.061_bib0490) 2011; 206 Shao (10.1016/j.jmapro.2021.03.061_bib0010) 2019; 29 Aboulkhair (10.1016/j.jmapro.2021.03.061_bib0020) 2019; 106 Obadele (10.1016/j.jmapro.2021.03.061_bib0720) 2015; 66 Yanan (10.1016/j.jmapro.2021.03.061_bib0045) 2021; 47 Wang (10.1016/j.jmapro.2021.03.061_bib0620) 2010; 48 Amuda (10.1016/j.jmapro.2021.03.061_bib0440) 2017; 4 Bobbio (10.1016/j.jmapro.2021.03.061_bib0790) 2017; 127 Chouirfa (10.1016/j.jmapro.2021.03.061_bib0035) 2019; 83 Daram (10.1016/j.jmapro.2021.03.061_bib0055) 2020; 384 Zhang (10.1016/j.jmapro.2021.03.061_bib0520) 2014; 600 Zhang (10.1016/j.jmapro.2021.03.061_bib0605) 2010; 240 Chen (10.1016/j.jmapro.2021.03.061_bib0630) 2017; 11 Zhai (10.1016/j.jmapro.2021.03.061_bib0220) 2019; 358 Li (10.1016/j.jmapro.2021.03.061_bib0390) 2011; 509 Ramiro (10.1016/j.jmapro.2021.03.061_bib0310) 2018; 68 Xin (10.1016/j.jmapro.2021.03.061_bib0300) 2010; 42 Xiang (10.1016/j.jmapro.2021.03.061_bib0685) 2014; 313 Qiu (10.1016/j.jmapro.2021.03.061_bib0515) 2013; 553 Feng (10.1016/j.jmapro.2021.03.061_bib0400) 2012; 22 Khorram (10.1016/j.jmapro.2021.03.061_bib0280) 2019; 378 Young (10.1016/j.jmapro.2021.03.061_bib0705) 2008 Bourahima (10.1016/j.jmapro.2021.03.061_bib0485) 2019; 771 Wu (10.1016/j.jmapro.2021.03.061_bib0840) 2020; 111 Wen (10.1016/j.jmapro.2021.03.061_bib0175) 2020; 835 Zhu (10.1016/j.jmapro.2021.03.061_bib0115) 2021; 138 Li (10.1016/j.jmapro.2021.03.061_bib0660) 2014; 316 Liu (10.1016/j.jmapro.2021.03.061_bib0245) 2017; 325 Devojno (10.1016/j.jmapro.2021.03.061_bib0130) 2018; 106 Weisheit (10.1016/j.jmapro.2021.03.061_bib0810) 2020; 131 Qi (10.1016/j.jmapro.2021.03.061_bib0455) 2019; 119 Dong (10.1016/j.jmapro.2021.03.061_bib0365) 2009; 204 Zhang (10.1016/j.jmapro.2021.03.061_bib0480) 2014; 4 |
References_xml | – volume: 771 start-page: 1018 year: 2019 end-page: 1028 ident: bib0485 article-title: Laser cladding of Ni based powder on a Cu-Ni-Al glassmold: influence of the process parameters on bonding quality and coating geometry publication-title: J Alloys Compd – volume: 255 start-page: 129 year: 2003 end-page: 133 ident: bib0350 article-title: The microstructure and erosive–corrosive wear performance of laser-clad Ni–Cr publication-title: Wear – volume: 119 year: 2020 ident: bib0585 article-title: Effect of Fe on microstructure and properties of AlCoCrFe publication-title: Intermetallics – volume: 47 start-page: 2230 year: 2021 end-page: 2243 ident: bib0045 article-title: Optimization of microstructure and properties of composite coatings by laser cladding on titanium alloy publication-title: Ceram Int – volume: 127 start-page: 15 year: 2015 end-page: 21 ident: bib0775 article-title: Effect of CeO publication-title: Colloids Surf B Biointerfaces – year: 2004 ident: bib0240 article-title: Laser cladding – volume: 209 start-page: 2237 year: 2009 end-page: 2243 ident: bib0330 article-title: Direct laser cladding of Co on Ti–6Al–4V with a compositionally graded interface publication-title: J Mater Process Technol – volume: 44 start-page: 20599 year: 2018 end-page: 20612 ident: bib0805 article-title: A review on laser deposition-additive manufacturing of ceramics and ceramic reinforced metal matrix composites publication-title: Ceram Int – volume: 408 year: 2021 ident: bib0235 article-title: High-performance Ti-6Al-4V with graded microstructure and superior properties fabricated by powder feeding underwater laser metal deposition publication-title: Surf Coat Technol – volume: 121 start-page: 61 year: 2017 end-page: 69 ident: bib0155 article-title: A fundamental investigation on ultrasonic vibration-assisted laser engineered net shaping of stainless steel publication-title: Int J Mach Tools Manuf – volume: 4 start-page: 763 year: 2017 end-page: 773 ident: bib0440 article-title: Microstructure evolution in Ti6Al4V alloy laser cladded with Premix Ti+TiB publication-title: Mater Today Proc – volume: 835 year: 2020 ident: bib0175 article-title: Design and characterization of FeCrCoAlMn0.5Mo0.1 high-entropy alloy coating by ultrasonic assisted laser cladding publication-title: J Alloys Compd – volume: 114 start-page: 81 year: 2019 end-page: 88 ident: bib0215 article-title: Investigation on laser cladding Ni-base coating assisted by electromagnetic field publication-title: Opt Laser Technol – volume: 1 start-page: 30 year: 2008 end-page: 42 ident: bib0750 article-title: Mechanical biocompatibilities of titanium alloys for biomedical applications publication-title: J Mech Behav Biomed Mater – volume: 131 year: 2020 ident: bib0810 article-title: Studies on the effect of composition and pre-heating on microstructure and mechanical properties of direct laser clad titanium aluminide publication-title: Opt Lasers Eng – volume: 211 start-page: 187 year: 2011 end-page: 196 ident: bib0140 article-title: FEM modeling and experimental verification for dilution control in laser cladding publication-title: J Mater Process Technol – volume: 141 start-page: 207 year: 2015 end-page: 209 ident: bib0180 article-title: Dilution characteristics of ultrasonic assisted laser clad yttria-stabilized zirconia coating publication-title: Mater Lett – volume: 60 start-page: 17 year: 2016 end-page: 27 ident: bib0430 article-title: A comparative study of the structure and wear resistance of NiCrBSi/50 wt.% WC composite coatings by laser cladding and laser induction hybrid cladding publication-title: Int J Refract Metals Hard Mater – volume: 43 start-page: 9622 year: 2017 end-page: 9629 ident: bib0185 article-title: Microstructure evolution and mechanical properties of ultrasonic assisted laser clad yttria stabilized zirconia coating publication-title: Ceram Int – volume: 86 year: 2020 ident: bib0080 article-title: Microstructure and properties of laser cladded B publication-title: Int J Refract Metals Hard Mater – volume: 134 year: 2021 ident: bib0120 article-title: Recent trends in laser cladding and surface alloying publication-title: Opt Laser Technol – volume: 83 start-page: 37 year: 2019 end-page: 54 ident: bib0035 article-title: Review of titanium surface modification techniques and coatings for antibacterial applications publication-title: Acta Biomater – volume: 727 start-page: 671 year: 2017 end-page: 682 ident: bib0445 article-title: Effect of alloy elements added on microstructure and hardening of Al/SiC laser clad coatings publication-title: J Alloys Compd – year: 2005 ident: bib0075 article-title: Laser cladding – volume: 325 start-page: 352 year: 2017 end-page: 359 ident: bib0245 article-title: Effect of dilution and macrosegregation on corrosion resistance of laser clad AerMet100 steel coating on 300M steel substrate publication-title: Surf Coat Technol – volume: 157 start-page: 258 year: 2018 end-page: 272 ident: bib0650 article-title: Microstructure and properties of in-situ synthesized (Ti publication-title: Mater Des – volume: 270 start-page: 243 year: 2015 end-page: 248 ident: bib0710 article-title: High temperature oxidation behavior of laser cladding MCrAlY coatings on austenitic stainless steel publication-title: Surf Coat Technol – volume: 48 start-page: 123 year: 2019 end-page: 132 ident: bib0640 article-title: Microstructures and properties of laser cladding coating on Ti811 alloy surface publication-title: Surf Technol – volume: 126 year: 2020 ident: bib0700 article-title: Fabrication and tribological behaviors of Ti publication-title: Opt Laser Technol – volume: 174 start-page: 34 year: 2006 end-page: 41 ident: bib0225 article-title: Effect of shielding conditions of local dry cavity on weld quality in underwater Nd:YAG laser welding publication-title: J Mater Process Technol – volume: 106 year: 2019 ident: bib0020 article-title: 3D printing of aluminium alloys: additive manufacturing of aluminium alloys using selective laser melting publication-title: Prog Mater Sci – volume: 48 start-page: 119 year: 2010 end-page: 124 ident: bib0375 article-title: Microstructure and wear properties of TiCN/Ti coatings on titanium alloy by laser cladding publication-title: Opt Lasers Eng – volume: 4 start-page: 57 year: 2014 end-page: 62 ident: bib0480 article-title: Guidelines in predicting phase formation of high-entropy alloys publication-title: MRS Commun – volume: 127 start-page: 133 year: 2017 end-page: 142 ident: bib0790 article-title: Additive manufacturing of a functionally graded material from Ti-6Al-4V to Invar: experimental characterization and thermodynamic calculations publication-title: Acta Mater – volume: 240 start-page: 2691 year: 2010 end-page: 2696 ident: bib0605 article-title: Laser cladding of Colmonoy 6 powder on AISI316L austenitic stainless steel publication-title: Nucl Eng Des – volume: 358 start-page: 667 year: 2019 end-page: 675 ident: bib0575 article-title: Effects of laser power on microstructure and properties of laser cladded CoCrBFeNiSi high-entropy alloy amorphous coatings publication-title: Surf Coat Technol – volume: 68 start-page: 381 year: 2018 end-page: 386 ident: bib0310 article-title: Characteristics of Fe-, Ni- and Co-based powder coatings fabricated by laser metal deposition without preheating the base material publication-title: Procedia CIRP – volume: 257 start-page: 1550 year: 2010 end-page: 1555 ident: bib0385 article-title: A study on wear resistance and microcrack of the Ti publication-title: Appl Surf Sci – volume: 155 start-page: 203 year: 2002 end-page: 207 ident: bib0345 article-title: Microscopic morphology and distribution of TiC phase in laser clad NiCrBSiC–TiC layer on titanium alloy substrate publication-title: Surf Coat Technol – volume: 83 start-page: 127 year: 2016 end-page: 141 ident: bib0260 article-title: Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review publication-title: Biomaterials – volume: 137 start-page: 122 year: 2001 end-page: 135 ident: bib0315 article-title: Comparison of laser-clad and furnace-melted Ni-based alloy microstructures publication-title: Surf Coat Technol – volume: 549 start-page: 195 year: 2013 end-page: 199 ident: bib0510 article-title: Microstructure and corrosion resistance of AlCrFeCuCo high entropy alloy publication-title: J Alloys Compd – volume: 97 start-page: 884 year: 2019 end-page: 895 ident: bib0030 article-title: Incorporation of wollastonite bioactive ceramic with titanium for medical applications: an overview publication-title: Mater Sci Eng C – volume: 54 start-page: 397 year: 2009 end-page: 425 ident: bib0760 article-title: Ti based biomaterials, the ultimate choice for orthopaedic implants-a review publication-title: Prog Mater Sci – volume: 22 start-page: 1667 year: 2012 end-page: 1673 ident: bib0400 article-title: Microstructure and wear resistance of laser clad TiB–TiC/TiNi–Ti publication-title: Trans Nonferrous Met Soc China – volume: 383 year: 2020 ident: bib0085 article-title: Microstructure and wide temperature range self-lubricating properties of laser cladding NiCrAlY/Ag publication-title: Surf Coat Technol – volume: 384 year: 2020 ident: bib0055 article-title: The influence of post treatments on the microstructure and corrosion behavior of thermally sprayed NiCrMoAl alloy coating publication-title: Surf Coat Technol – volume: 181 year: 2019 ident: bib0645 article-title: Effect of LaB publication-title: Mater Des – volume: 316 start-page: 610 year: 2014 end-page: 616 ident: bib0660 article-title: Growth mechanism, distribution characteristics and reinforcing behavior of (Ti, Nb)C particle in laser cladded Fe-based composite coating publication-title: Appl Surf Sci – volume: 8 start-page: 1990 year: 2012 end-page: 1997 ident: bib0780 article-title: Beta type Ti–Mo alloys with changeable Young’s modulus for spinal fixation applications publication-title: Acta Biomater – volume: 361 start-page: 63 year: 2019 end-page: 74 ident: bib0570 article-title: Microstructural characterization and corrosion behaviour of AlCoCrFeNiTi publication-title: Surf Coat Technol – volume: 30 start-page: 263 year: 1998 end-page: 273 ident: bib0200 article-title: In-process vibration-assisted high power Nd:YAG pulsed laser ceramic–metal composite cladding on Al-alloys publication-title: Opt Laser Technol – volume: 284 year: 2020 ident: bib0335 article-title: Mechanical properties and electrochemical corrosion resistance of multilayer laser cladded Fe-based composite coatings on 4Cr5MoSiV1 steel publication-title: J Mater Process Technol – volume: 119 year: 2019 ident: bib0455 article-title: The influence of the pre-placed powder layers on the morphology, microscopic characteristics and microhardness of Ti-6Al-4V/WC MMC coatings during laser cladding publication-title: Opt Laser Technol – volume: 66 year: 2015 ident: bib0720 article-title: Tribocorrosion behaviour of laser cladded biomedical grade titanium alloy publication-title: Mater Corros – volume: 236 start-page: 45 year: 2013 end-page: 51 ident: bib0405 article-title: Directional growth whisker reinforced Ti-base composites fabricated by laser cladding publication-title: Surf Coat Technol – volume: 819 year: 2020 ident: bib0580 article-title: Microstructure and properties of laser cladding and CoCr publication-title: J Alloys Compd – volume: 28 year: 2016 ident: bib0105 article-title: Investigations on ultra-high-speed laser material deposition as alternative for hard chrome plating and thermal spraying publication-title: J Laser Appl – year: 2006 ident: bib0100 article-title: System and method for closed-loop control of laser cladding by powder injection publication-title: US – volume: 8 start-page: 3888 year: 2012 ident: bib0745 article-title: Development of new metallic alloys for biomedical applications publication-title: Acta Biomater – volume: 5 start-page: 337 year: 2010 end-page: 346 ident: bib0150 article-title: A CFD model of the laser, coaxial powder stream and substrate interaction in laser cladding publication-title: Phys Procedia – volume: 51 start-page: 174 year: 2020 end-page: 190 ident: bib0160 article-title: Ultrasonic vibration-assisted (UV-A) manufacturing processes: state of the art and future perspectives publication-title: J Manuf Process – volume: 32 start-page: 1910 year: 2011 end-page: 1915 ident: bib0495 article-title: Synthesis and characterization of FeCoNiCrCu high-entropy alloy coating by laser cladding publication-title: Mater Des – volume: 122 start-page: 151 year: 2019 end-page: 163 ident: bib0125 article-title: Progress in numerical simulation of the laser cladding process publication-title: Opt Lasers Eng – volume: 92 start-page: 225 year: 2018 end-page: 257 ident: bib0040 article-title: A literature review of Ti-6Al-4V linear friction welding publication-title: Prog Mater Sci – volume: 5 start-page: 27718 year: 2018 end-page: 27725 ident: bib0450 article-title: On the development and characterization of microwave processed Ni + 30% SiC based composite clads publication-title: Mater Today Proc – volume: 587 start-page: 588 year: 2014 end-page: 593 ident: bib0525 article-title: Solidification behaviour in laser cladding of AlCoCrCuFeNi high-entropy alloy on magnesium substrates publication-title: J Alloys Compd – volume: 46 start-page: 58 year: 2014 end-page: 64 ident: bib0415 article-title: Influence of Mn additions on the microstructure and magnetic properties of FeNiCr/60% WC composite coating produced by laser cladding publication-title: Int J Refract Metals Hard Mater – year: 2008 ident: bib0705 article-title: High temperature oxidation and corrosion of metals, corrosion series – volume: 118 start-page: 140 year: 2019 end-page: 150 ident: bib0725 article-title: Microstructure and high temperature wear behaviour of in-situ TiC reinforced AlCoCrFeNi-based high-entropy alloy composite coatings fabricated by laser cladding publication-title: Opt Laser Technol – volume: 8 start-page: 1 year: 2020 end-page: 41 ident: bib0005 article-title: Latest research advances on magnesium and magnesium alloys worldwide publication-title: J Magnes Alloys – volume: 403 year: 2020 ident: bib0165 article-title: Microstructure evolution and properties of in-situ ceramic particles reinforced Fe-based composite coating produced by ultrasonic vibration assisted laser cladding processing publication-title: Surf Coat Technol – volume: 195 start-page: 178 year: 2017 end-page: 181 ident: bib0600 article-title: In situ synthesized high volume fraction WC reinforced Ni-based coating by laser cladding publication-title: Mater Lett – volume: 256 start-page: 5985 year: 2010 end-page: 5992 ident: bib0615 article-title: Investigation on cracking behavior of Ni-based coating by laser-induction hybrid cladding publication-title: Appl Surf Sci – volume: 248 start-page: 54 year: 2014 end-page: 62 ident: bib0305 article-title: Effect of defocus manner on laser cladding of Fe-based alloy powder publication-title: Surf Coat Technol – volume: 89 start-page: 97 year: 2017 end-page: 107 ident: bib0690 article-title: Characteristics of laser clad α-Ti/TiC+(Ti,W)C publication-title: Opt Laser Technol – volume: 7 start-page: 41463 year: 2017 ident: bib0190 article-title: Effects of ultrasonic vibration on the microstructure and mechanical properties of high alloying TiAl publication-title: Sci Rep – volume: 731 start-page: 662 year: 2018 end-page: 666 ident: bib0550 article-title: Structure and high-temperature property of amorphous composite coating synthesized by laser cladding FeCrCoNiSiB high-entropy alloy powder publication-title: J Alloys Compd – volume: 138 year: 2021 ident: bib0115 article-title: Recent research and development status of laser cladding: a review publication-title: Opt Laser Technol – volume: 28 start-page: 96 year: 2020 end-page: 104 ident: bib0025 article-title: Recent developments in metal additive manufacturing publication-title: Curr Opin Chem Eng – volume: 11 year: 2017 ident: bib0630 article-title: Effect of CeO publication-title: Materials – volume: 204 start-page: 731 year: 2009 end-page: 735 ident: bib0365 article-title: Microstructure and dry sliding wear resistance of laser clad TiC reinforced Ti–Ni–Si intermetallic composite coating publication-title: Surf Coat Technol – volume: 256 start-page: 4708 year: 2010 end-page: 4714 ident: bib0380 article-title: Laser induction hybrid rapid cladding of WC particles reinforced NiCrBSi composite coatings publication-title: Appl Surf Sci – volume: 827 year: 2020 ident: bib0090 article-title: Influence of phase composition and microstructure on corrosion behavior of laser based Ti–Co–Ni ternary coatings on Ti–6Al–4V alloy publication-title: J Alloys Compd – volume: 692 start-page: 989 year: 2017 end-page: 996 ident: bib0325 article-title: Effect of process parameters on the microstructure evolution and wear property of the laser cladding coatings on Ti-6Al-4V alloy publication-title: J Alloys Compd – volume: 201 start-page: 9497 year: 2007 end-page: 9505 ident: bib0360 article-title: Microstructure and wear studies of laser clad Al-Si/SiC(p) composite coatings publication-title: Surf Coat Technol – volume: 46 start-page: 13711 year: 2020 end-page: 13723 ident: bib0625 article-title: Influence of Y publication-title: Ceram Int – volume: 33 year: 2020 ident: bib0835 article-title: A review of additive manufacturing of cermets publication-title: Addit Manuf – volume: 679 start-page: 202 year: 2016 end-page: 212 ident: bib0435 article-title: Oxidation behaviors of the TiNi/Ti publication-title: J Alloys Compd – volume: 206 start-page: 4021 year: 2012 end-page: 4026 ident: bib0395 article-title: Effect of heat input on the microstructure of in-situ synthesized TiN–TiB/Ti based composite coating by laser cladding publication-title: Surf Coat Technol – volume: 111 year: 2020 ident: bib0840 article-title: Recent developments in polymers/polymer nanocomposites for additive manufacturing publication-title: Prog Mater Sci – volume: 357 start-page: 811 year: 2019 end-page: 821 ident: bib0695 article-title: Effects of the content of MoS publication-title: Surf Coat Technol – volume: 88 start-page: 139 year: 2017 end-page: 152 ident: bib0135 article-title: Online monitoring of thermo-cycles and its correlation with microstructure in laser cladding of nickel based super alloy publication-title: Opt Lasers Eng – volume: 59 start-page: 226 year: 2016 end-page: 235 ident: bib0740 article-title: Microstructural evolution and mechanical properties of biomedical Co-Cr-Mo alloy subjected to high-pressure torsion publication-title: J Mech Behav Biomed Mater – volume: 108 start-page: 321 year: 2018 end-page: 332 ident: bib0270 article-title: Experimental research and multi-response multi-parameter optimization of laser cladding Fe313 publication-title: Opt Laser Technol – volume: 509 start-page: 4882 year: 2011 end-page: 4886 ident: bib0390 article-title: Phase constituents and microstructure of laser cladding Al publication-title: J Alloys Compd – volume: 41 start-page: 338 year: 2012 end-page: 343 ident: bib0505 article-title: Dry sliding wear behavior of laser clad TiVCrAlSi high entropy alloy coatings on Ti–6Al–4V substrate publication-title: Mater Des – volume: 313 start-page: 243 year: 2014 end-page: 250 ident: bib0685 article-title: Investigation of laser cladding high temperature anti-wear composite coatings on Ti6Al4V alloy with the addition of self-lubricant CaF publication-title: Appl Surf Sci – volume: 553 start-page: 216 year: 2013 end-page: 220 ident: bib0515 article-title: Microstructure and properties of Al2CrFeCoCuTiNix high-entropy alloys prepared by laser cladding publication-title: J Alloys Compd – volume: 4 start-page: 234 year: 2014 end-page: 267 ident: bib0290 article-title: Support vector machines in engineering: an overview publication-title: WIREs Data Min Knowl Discov – volume: 337 start-page: 97 year: 2018 end-page: 103 ident: bib0655 article-title: Influence of microstructures and wear behaviors of the microalloyed coatings on TC11 alloy surface using laser cladding technique publication-title: Surf Coat Technol – volume: 67 start-page: 190 year: 1984 end-page: 194 ident: bib0670 article-title: Directional solidification of (Ti, Zr) carbide-(Ti, Zr) diboride eutectics publication-title: J Am Ceram Soc – volume: 600 start-page: 210 year: 2014 end-page: 214 ident: bib0520 article-title: Thermally stable laser cladded CoCrCuFeNi high-entropy alloy coating with low stacking fault energy publication-title: J Alloys Compd – volume: 395 year: 2020 ident: bib0815 article-title: Microstructure and wear resistance of electromagnetic field assisted multi-layer laser clad Fe901 coating publication-title: Surf Coat Technol – volume: 16 start-page: 140 year: 2004 end-page: 146 ident: bib0145 article-title: Solidification model of laser cladding with wire feeding technique publication-title: J Laser Appl – volume: 87 start-page: 3349 year: 2016 end-page: 3358 ident: bib0265 article-title: A parametric study on laser cladding of Ti-6Al-4V wire and WC/W publication-title: Int J Adv Manuf Technol – year: 2011 ident: bib0735 article-title: Metals for biomedical applications – volume: 59 start-page: 19 year: 2008 end-page: 22 ident: bib0195 article-title: Potency of high-intensity ultrasonic treatment for grain refinement of magnesium alloys publication-title: Scr Mater – volume: 358 start-page: 531 year: 2019 end-page: 538 ident: bib0220 article-title: Microstructure, microhardness and corrosion resistance of NiCrBSi coatings under electromagnetic field auxiliary laser cladding publication-title: Surf Coat Technol – volume: 56 start-page: 295 year: 2020 end-page: 305 ident: bib0050 article-title: Hybrid laser welding of dissimilar aluminum alloys: welding processing, microstructure, properties and modelling publication-title: J Manuf Process – volume: 383 year: 2020 ident: bib0060 article-title: High-intensity chromium ion implantation into Zr-1Nb alloy publication-title: Surf Coat Technol – volume: 8 start-page: 1661 year: 2012 end-page: 1669 ident: bib0755 article-title: A new look at biomedical Ti-based shape memory alloys publication-title: Acta Biomater – volume: 206 start-page: 1389 year: 2011 end-page: 1395 ident: bib0490 article-title: Thermal stability and oxidation resistance of laser clad TiVCrAlSi high entropy alloy coatings on Ti–6Al–4V alloy publication-title: Surf Coat Technol – volume: 338 start-page: 126 year: 2002 end-page: 132 ident: bib0715 article-title: Microstructure and wear resistance of laser clad Ti publication-title: Mater Sci Eng A – volume: 3 start-page: 67 year: 2016 end-page: 99 ident: bib0680 article-title: A review to the laser cladding of self-lubricating composite coatings publication-title: Lasers Manuf Mater Process – volume: 344 start-page: 353 year: 2018 end-page: 358 ident: bib0555 article-title: Microstructure and properties of in-situ TiN reinforced laser cladding CoCr publication-title: Surf Coat Technol – start-page: 159 year: 2020 end-page: 189 ident: bib0730 article-title: Alloy materials for biomedical applications publication-title: Alloy materials and their allied applications – volume: 352 start-page: 420 year: 2018 end-page: 436 ident: bib0770 article-title: Laser cladding with HA and functionally graded TiO publication-title: Surf Coat Technol – volume: 31 start-page: 1643 year: 2011 end-page: 1652 ident: bib0765 article-title: Osteoblast interaction with laser cladded HA and SiO publication-title: Mater Sci Eng C – volume: 176 year: 2020 ident: bib0820 article-title: Microstructure and wear behaviors of laser cladding in-situ synthetic (TiB publication-title: Vacuum – volume: 243 start-page: 195 year: 2019 end-page: 198 ident: bib0210 article-title: Characteristics of dilution and microstructure in laser cladding Ni-Cr-B-Si coating assisted by electromagnetic compound field publication-title: Mater Lett – volume: 345 start-page: 99 year: 2015 end-page: 108 ident: bib0420 article-title: Improving the tribocorrosion resistance of Ti6Al4V surface by laser surface cladding with TiNiZrO publication-title: Appl Surf Sci – volume: 5 start-page: 44 year: 2020 end-page: 54 ident: bib0830 article-title: Additive manufacturing of magnesium alloys publication-title: Bioact Mater – volume: 186 year: 2020 ident: bib0015 article-title: A review on crucibles for induction melting of titanium alloys publication-title: Mater Des – volume: 28 start-page: 1697 year: 2008 end-page: 1713 ident: bib0665 article-title: TiC–TiB publication-title: J Eur Ceram Soc – volume: 383 year: 2020 ident: bib0205 article-title: Effects of electromagnetic compound field on the escape behavior of pores in molten pool during laser cladding publication-title: Surf Coat Technol – volume: 188 start-page: 435 year: 2020 end-page: 474 ident: bib0475 article-title: High entropy alloys: a focused review of mechanical properties and deformation mechanisms publication-title: Acta Mater – volume: 43 start-page: 961 year: 2017 end-page: 967 ident: bib0795 article-title: Mechanical properties and formation mechanism of Ti/SiC system gradient materials fabricated by in-situ reaction laser cladding publication-title: Ceram Int – volume: 42 start-page: 1154 year: 2010 end-page: 1161 ident: bib0300 article-title: Thermal fatigue resistance of non-smooth cast iron treated by laser cladding with different self-fluxing alloys publication-title: Opt Laser Technol – volume: 311 start-page: 321 year: 2017 end-page: 329 ident: bib0540 article-title: Synthesis and characterization of refractory TiZrNbWMo high-entropy alloy coating by laser cladding publication-title: Surf Coat Technol – volume: 50 start-page: 985 year: 2012 end-page: 995 ident: bib0285 article-title: Statistical analysis and optimization of process parameters in Ti6Al4V laser cladding using Nd:YAG laser publication-title: Opt Lasers Eng – volume: 44 start-page: 2752 year: 2018 end-page: 2760 ident: bib0800 article-title: Ultrasonic vibration-assisted laser engineering net shaping of ZrO publication-title: Ceram Int – volume: 203 start-page: 1395 year: 2009 end-page: 1399 ident: bib0370 article-title: Laser clad TiC reinforced NiCrBSi composite coatings on Ti–6Al–4V alloy using a CW CO publication-title: Surf Coat Technol – volume: 34 start-page: 549 year: 2016 end-page: 564 ident: bib0595 article-title: Effect of rare earth elements and their oxides on tribo-mechanical performance of laser claddings: a review publication-title: J Rare Earths – volume: 65 start-page: 66 year: 2015 end-page: 75 ident: bib0610 article-title: Effects of post-heat treatment on microstructure and properties of laser cladded composite coatings on titanium alloy substrate publication-title: Opt Laser Technol – volume: 352 start-page: 163 year: 2015 end-page: 168 ident: bib0425 article-title: Microstructure and corrosion resistance of TC2 Ti alloy by laser cladding with Ti/TiC/TiB publication-title: Appl Surf Sci – volume: 203 start-page: 1395 year: 2009 end-page: 1399 ident: bib0320 article-title: Laser clad TiC reinforced NiCrBSi composite coatings on Ti-6Al-4V alloy using a CW CO publication-title: Surf Coat Technol – volume: 46 start-page: 226 year: 2017 end-page: 231 ident: bib0535 article-title: Microstructure and properties of laser cladding AlB publication-title: Surf Technol – volume: 242 year: 2020 ident: bib0590 article-title: In-situ TiC reinforced CoCrCuFeNiSi publication-title: Mater Chem Phys – volume: 349 start-page: 37 year: 2018 end-page: 49 ident: bib0275 article-title: Parametric study and characterization of AlN-Ni-Ti6Al4V composite cladding on titanium alloy publication-title: Surf Coat Technol – volume: 200 start-page: 4923 year: 2006 end-page: 4928 ident: bib0355 article-title: Laser cladding of Ni-base composite coatings onto Ti–6Al–4V substrates with pre-placed B publication-title: Surf Coat Technol – volume: 359 start-page: 300 year: 2019 end-page: 313 ident: bib0635 article-title: Effect of CeO publication-title: Surf Coat Technol – year: 2012 ident: bib0230 article-title: Effect of the hydrostatic pressure in the diffusible hydrogen at the underwater wet welding – volume: 116 start-page: 345 year: 2019 end-page: 355 ident: bib0295 article-title: Laser cladding of nanoparticle TiC ceramic powder: effects of process parameters on the quality characteristics of the coatings and its prediction model publication-title: Opt Laser Technol – volume: 698 start-page: 761 year: 2017 end-page: 770 ident: bib0545 article-title: Phase evolution and cavitation erosion-corrosion behavior of FeCoCrAlNiTi publication-title: J Alloys Compd – volume: 378 year: 2019 ident: bib0280 article-title: Laser cladding of Inconel 718 with 75Cr3C2+25(80Ni20Cr) powder: statistical modeling and optimization publication-title: Surf Coat Technol – volume: 363 start-page: 543 year: 2016 end-page: 547 ident: bib0530 article-title: Formation of core–shell structure in high entropy alloy coating by laser cladding publication-title: Appl Surf Sci – volume: 21 start-page: 201 year: 2015 end-page: 206 ident: bib0785 article-title: Effect of second-phase doping on laser deposited Al publication-title: Rapid Prototyp J – volume: 106 start-page: 32 year: 2018 end-page: 38 ident: bib0130 article-title: On the formation features, microstructure and microhardness of single laser tracks formed by laser cladding of a NiCrBSi self-fluxing alloy publication-title: Opt Lasers Eng – volume: 58 start-page: 412 year: 2014 end-page: 425 ident: bib0340 article-title: Research status of laser cladding on titanium and its alloys: a review publication-title: Mater Des – volume: 86 year: 2020 ident: bib0065 article-title: Experimental investigation on tool wear characteristics of PVD and CVD coatings during face milling of Ti6242S and Ti-555 titanium alloys publication-title: Int J Refract Metals Hard Mater – volume: 383 year: 2020 ident: bib0465 article-title: In-situ TiC-Al publication-title: Surf Coat Technol – volume: 29 start-page: 259 year: 2014 end-page: 271 ident: bib0410 article-title: In situ synthesized TiB–TiN reinforced Ti6Al4V alloy composite coatings: microstructure, tribological and in-vitro biocompatibility publication-title: J Mech Behav Biomed Mater – volume: 465 start-page: 700 year: 2019 end-page: 714 ident: bib0565 article-title: Modified criterions for phase prediction in the multi-component laser-clad coatings and investigations into microstructural evolution/wear resistance of FeCrCoNiAlMo publication-title: Appl Surf Sci – volume: 11 start-page: 142 year: 2020 ident: bib0825 article-title: Grain structure control during metal 3D printing by high-intensity ultrasound publication-title: Nat Commun – volume: 111 start-page: 814 year: 2019 end-page: 824 ident: bib0110 article-title: Underwater wet laser cladding on 316L stainless steel: a protective material assisted method publication-title: Opt Laser Technol – volume: 205 start-page: 2007 year: 2010 end-page: 2015 ident: bib0255 article-title: Effect of laser cladding process parameters on clad quality and in-situ formed microstructure of Fe–TiC composite coatings publication-title: Surf Coat Technol – volume: 13 year: 2019 ident: bib0460 article-title: Characterisation and mechanical properties of Al/SiC metal matrix composite coatings formed on ZE41 magnesium alloys by laser cladding publication-title: Results Phys – volume: 410 year: 2021 ident: bib0170 article-title: Microstructure and mechanical properties of parts formed by ultrasonic vibration-assisted laser cladding of Inconel 718 publication-title: Surf Coat Technol – volume: 44 start-page: 20851 year: 2018 end-page: 20861 ident: bib0250 article-title: Laser deposition of compositionally graded titanium oxide on Ti6Al4V alloy publication-title: Ceram Int – volume: 105 start-page: 257 year: 2018 end-page: 263 ident: bib0560 article-title: Characterization of Al0.5FeCu0.7NiCoCr high-entropy alloy coating on aluminum alloy by laser cladding publication-title: Opt Laser Technol – volume: 120 start-page: 84 year: 2019 end-page: 94 ident: bib0070 article-title: Effects of CeO publication-title: Opt Lasers Eng – volume: 29 year: 2019 ident: bib0010 article-title: Overview: additive manufacturing enabled accelerated design of Ni-based alloys for improved fatigue life publication-title: Addit Manuf – volume: 46 year: 2019 ident: bib0675 article-title: Microstructure and friction and wear resistance of laser cladding composite coating on Ti811 surface publication-title: Chin J Lasers – volume: 6 start-page: 299 year: 2004 end-page: 303 ident: bib0470 article-title: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes publication-title: Adv Eng Mater – volume: 12 start-page: 303 year: 2011 end-page: 312 ident: bib0500 article-title: The property research on high-entropy alloy AlxFeCoNiCuCr coating by laser cladding publication-title: Phys Procedia – volume: 48 start-page: 893 year: 2010 end-page: 898 ident: bib0620 article-title: Development and characterization of (Ti, Mo)C carbides reinforced Fe-based surface composite coating produced by laser cladding publication-title: Opt Lasers Eng – volume: 319 start-page: 136 year: 2017 end-page: 144 ident: bib0095 article-title: Structure and oxidation behavior of γ-TiAl coating produced by laser cladding on titanium alloy publication-title: Surf Coat Technol – volume: 6 start-page: 299 issue: 5 year: 2004 ident: 10.1016/j.jmapro.2021.03.061_bib0470 article-title: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes publication-title: Adv Eng Mater doi: 10.1002/adem.200300567 – volume: 600 start-page: 210 year: 2014 ident: 10.1016/j.jmapro.2021.03.061_bib0520 article-title: Thermally stable laser cladded CoCrCuFeNi high-entropy alloy coating with low stacking fault energy publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2014.02.121 – volume: 29 start-page: 259 year: 2014 ident: 10.1016/j.jmapro.2021.03.061_bib0410 article-title: In situ synthesized TiB–TiN reinforced Ti6Al4V alloy composite coatings: microstructure, tribological and in-vitro biocompatibility publication-title: J Mech Behav Biomed Mater doi: 10.1016/j.jmbbm.2013.09.006 – volume: 59 start-page: 226 year: 2016 ident: 10.1016/j.jmapro.2021.03.061_bib0740 article-title: Microstructural evolution and mechanical properties of biomedical Co-Cr-Mo alloy subjected to high-pressure torsion publication-title: J Mech Behav Biomed Mater doi: 10.1016/j.jmbbm.2015.11.015 – volume: 66 year: 2015 ident: 10.1016/j.jmapro.2021.03.061_bib0720 article-title: Tribocorrosion behaviour of laser cladded biomedical grade titanium alloy publication-title: Mater Corros – volume: 111 year: 2020 ident: 10.1016/j.jmapro.2021.03.061_bib0840 article-title: Recent developments in polymers/polymer nanocomposites for additive manufacturing publication-title: Prog Mater Sci doi: 10.1016/j.pmatsci.2020.100638 – volume: 1 start-page: 30 issue: 1 year: 2008 ident: 10.1016/j.jmapro.2021.03.061_bib0750 article-title: Mechanical biocompatibilities of titanium alloys for biomedical applications publication-title: J Mech Behav Biomed Mater doi: 10.1016/j.jmbbm.2007.07.001 – volume: 204 start-page: 731 issue: 5 year: 2009 ident: 10.1016/j.jmapro.2021.03.061_bib0365 article-title: Microstructure and dry sliding wear resistance of laser clad TiC reinforced Ti–Ni–Si intermetallic composite coating publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2009.09.024 – volume: 359 start-page: 300 year: 2019 ident: 10.1016/j.jmapro.2021.03.061_bib0635 article-title: Effect of CeO2 addition on microstructure and mechanical properties of in-situ (Ti, Nb)C/Ni coating publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2018.12.083 – volume: 58 start-page: 412 year: 2014 ident: 10.1016/j.jmapro.2021.03.061_bib0340 article-title: Research status of laser cladding on titanium and its alloys: a review publication-title: Mater Des doi: 10.1016/j.matdes.2014.01.077 – volume: 105 start-page: 257 year: 2018 ident: 10.1016/j.jmapro.2021.03.061_bib0560 article-title: Characterization of Al0.5FeCu0.7NiCoCr high-entropy alloy coating on aluminum alloy by laser cladding publication-title: Opt Laser Technol doi: 10.1016/j.optlastec.2018.01.058 – volume: 47 start-page: 2230 issue: 2 year: 2021 ident: 10.1016/j.jmapro.2021.03.061_bib0045 article-title: Optimization of microstructure and properties of composite coatings by laser cladding on titanium alloy publication-title: Ceram Int doi: 10.1016/j.ceramint.2020.09.063 – volume: 731 start-page: 662 year: 2018 ident: 10.1016/j.jmapro.2021.03.061_bib0550 article-title: Structure and high-temperature property of amorphous composite coating synthesized by laser cladding FeCrCoNiSiB high-entropy alloy powder publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2017.08.248 – volume: 127 start-page: 15 year: 2015 ident: 10.1016/j.jmapro.2021.03.061_bib0775 article-title: Effect of CeO2 and Y2O3 on microstructure, bioactivity and degradability of laser cladding CaO-SiO2 coating on titanium alloy publication-title: Colloids Surf B Biointerfaces doi: 10.1016/j.colsurfb.2015.01.016 – volume: 209 start-page: 2237 issue: 5 year: 2009 ident: 10.1016/j.jmapro.2021.03.061_bib0330 article-title: Direct laser cladding of Co on Ti–6Al–4V with a compositionally graded interface publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2008.05.017 – volume: 403 year: 2020 ident: 10.1016/j.jmapro.2021.03.061_bib0165 article-title: Microstructure evolution and properties of in-situ ceramic particles reinforced Fe-based composite coating produced by ultrasonic vibration assisted laser cladding processing publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2020.126445 – volume: 240 start-page: 2691 issue: 10 year: 2010 ident: 10.1016/j.jmapro.2021.03.061_bib0605 article-title: Laser cladding of Colmonoy 6 powder on AISI316L austenitic stainless steel publication-title: Nucl Eng Des doi: 10.1016/j.nucengdes.2010.05.040 – volume: 42 start-page: 1154 issue: 7 year: 2010 ident: 10.1016/j.jmapro.2021.03.061_bib0300 article-title: Thermal fatigue resistance of non-smooth cast iron treated by laser cladding with different self-fluxing alloys publication-title: Opt Laser Technol doi: 10.1016/j.optlastec.2010.03.001 – volume: 92 start-page: 225 year: 2018 ident: 10.1016/j.jmapro.2021.03.061_bib0040 article-title: A literature review of Ti-6Al-4V linear friction welding publication-title: Prog Mater Sci doi: 10.1016/j.pmatsci.2017.10.003 – volume: 68 start-page: 381 year: 2018 ident: 10.1016/j.jmapro.2021.03.061_bib0310 article-title: Characteristics of Fe-, Ni- and Co-based powder coatings fabricated by laser metal deposition without preheating the base material publication-title: Procedia CIRP doi: 10.1016/j.procir.2017.12.099 – volume: 67 start-page: 190 issue: 3 year: 1984 ident: 10.1016/j.jmapro.2021.03.061_bib0670 article-title: Directional solidification of (Ti, Zr) carbide-(Ti, Zr) diboride eutectics publication-title: J Am Ceram Soc doi: 10.1111/j.1151-2916.1984.tb19740.x – volume: 679 start-page: 202 year: 2016 ident: 10.1016/j.jmapro.2021.03.061_bib0435 article-title: Oxidation behaviors of the TiNi/Ti2Ni matrix composite coatings with different contents of TaC addition fabricated on Ti6Al4V by laser cladding publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2016.04.037 – volume: 48 start-page: 893 issue: 9 year: 2010 ident: 10.1016/j.jmapro.2021.03.061_bib0620 article-title: Development and characterization of (Ti, Mo)C carbides reinforced Fe-based surface composite coating produced by laser cladding publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2010.03.017 – volume: 827 year: 2020 ident: 10.1016/j.jmapro.2021.03.061_bib0090 article-title: Influence of phase composition and microstructure on corrosion behavior of laser based Ti–Co–Ni ternary coatings on Ti–6Al–4V alloy publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2020.154245 – volume: 51 start-page: 174 year: 2020 ident: 10.1016/j.jmapro.2021.03.061_bib0160 article-title: Ultrasonic vibration-assisted (UV-A) manufacturing processes: state of the art and future perspectives publication-title: J Manuf Process doi: 10.1016/j.jmapro.2020.01.028 – volume: 4 start-page: 763 issue: 2, Part A year: 2017 ident: 10.1016/j.jmapro.2021.03.061_bib0440 article-title: Microstructure evolution in Ti6Al4V alloy laser cladded with Premix Ti+TiB2 powders publication-title: Mater Today Proc doi: 10.1016/j.matpr.2017.01.084 – volume: 727 start-page: 671 year: 2017 ident: 10.1016/j.jmapro.2021.03.061_bib0445 article-title: Effect of alloy elements added on microstructure and hardening of Al/SiC laser clad coatings publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2017.08.153 – volume: 819 year: 2020 ident: 10.1016/j.jmapro.2021.03.061_bib0580 article-title: Microstructure and properties of laser cladding and CoCr2.5FeNi2Tix high-entropy alloy composite coatings publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2019.152986 – year: 2012 ident: 10.1016/j.jmapro.2021.03.061_bib0230 – year: 2008 ident: 10.1016/j.jmapro.2021.03.061_bib0705 – volume: 28 issue: 2 year: 2016 ident: 10.1016/j.jmapro.2021.03.061_bib0105 article-title: Investigations on ultra-high-speed laser material deposition as alternative for hard chrome plating and thermal spraying publication-title: J Laser Appl doi: 10.2351/1.4943910 – volume: 465 start-page: 700 year: 2019 ident: 10.1016/j.jmapro.2021.03.061_bib0565 article-title: Modified criterions for phase prediction in the multi-component laser-clad coatings and investigations into microstructural evolution/wear resistance of FeCrCoNiAlMox laser-clad coatings publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2018.08.264 – volume: 316 start-page: 610 year: 2014 ident: 10.1016/j.jmapro.2021.03.061_bib0660 article-title: Growth mechanism, distribution characteristics and reinforcing behavior of (Ti, Nb)C particle in laser cladded Fe-based composite coating publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2014.08.052 – volume: 352 start-page: 420 year: 2018 ident: 10.1016/j.jmapro.2021.03.061_bib0770 article-title: Laser cladding with HA and functionally graded TiO2-HA precursors on Ti–6Al–4V alloy for enhancing bioactivity and cyto-compatibility publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2018.08.044 – volume: 138 year: 2021 ident: 10.1016/j.jmapro.2021.03.061_bib0115 article-title: Recent research and development status of laser cladding: a review publication-title: Opt Laser Technol doi: 10.1016/j.optlastec.2021.106915 – volume: 313 start-page: 243 year: 2014 ident: 10.1016/j.jmapro.2021.03.061_bib0685 article-title: Investigation of laser cladding high temperature anti-wear composite coatings on Ti6Al4V alloy with the addition of self-lubricant CaF2 publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2014.05.196 – volume: 4 start-page: 57 year: 2014 ident: 10.1016/j.jmapro.2021.03.061_bib0480 article-title: Guidelines in predicting phase formation of high-entropy alloys publication-title: MRS Commun doi: 10.1557/mrc.2014.11 – year: 2004 ident: 10.1016/j.jmapro.2021.03.061_bib0240 – volume: 108 start-page: 321 year: 2018 ident: 10.1016/j.jmapro.2021.03.061_bib0270 article-title: Experimental research and multi-response multi-parameter optimization of laser cladding Fe313 publication-title: Opt Laser Technol doi: 10.1016/j.optlastec.2018.06.030 – volume: 65 start-page: 66 year: 2015 ident: 10.1016/j.jmapro.2021.03.061_bib0610 article-title: Effects of post-heat treatment on microstructure and properties of laser cladded composite coatings on titanium alloy substrate publication-title: Opt Laser Technol doi: 10.1016/j.optlastec.2014.07.003 – volume: 86 year: 2020 ident: 10.1016/j.jmapro.2021.03.061_bib0080 article-title: Microstructure and properties of laser cladded B4C/TiC/Ni-based composite coating publication-title: Int J Refract Metals Hard Mater doi: 10.1016/j.ijrmhm.2019.105112 – volume: 358 start-page: 531 year: 2019 ident: 10.1016/j.jmapro.2021.03.061_bib0220 article-title: Microstructure, microhardness and corrosion resistance of NiCrBSi coatings under electromagnetic field auxiliary laser cladding publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2018.11.034 – volume: 319 start-page: 136 year: 2017 ident: 10.1016/j.jmapro.2021.03.061_bib0095 article-title: Structure and oxidation behavior of γ-TiAl coating produced by laser cladding on titanium alloy publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2017.04.008 – volume: 43 start-page: 961 issue: 1, Part B year: 2017 ident: 10.1016/j.jmapro.2021.03.061_bib0795 article-title: Mechanical properties and formation mechanism of Ti/SiC system gradient materials fabricated by in-situ reaction laser cladding publication-title: Ceram Int doi: 10.1016/j.ceramint.2016.10.026 – volume: 46 start-page: 226 issue: 6 year: 2017 ident: 10.1016/j.jmapro.2021.03.061_bib0535 article-title: Microstructure and properties of laser cladding AlBxCoCrNiTi high-entropy alloy coating on titanium alloys publication-title: Surf Technol – volume: 248 start-page: 54 year: 2014 ident: 10.1016/j.jmapro.2021.03.061_bib0305 article-title: Effect of defocus manner on laser cladding of Fe-based alloy powder publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2014.03.019 – volume: 186 year: 2020 ident: 10.1016/j.jmapro.2021.03.061_bib0015 article-title: A review on crucibles for induction melting of titanium alloys publication-title: Mater Des doi: 10.1016/j.matdes.2019.108295 – volume: 43 start-page: 9622 issue: 13 year: 2017 ident: 10.1016/j.jmapro.2021.03.061_bib0185 article-title: Microstructure evolution and mechanical properties of ultrasonic assisted laser clad yttria stabilized zirconia coating publication-title: Ceram Int doi: 10.1016/j.ceramint.2017.04.103 – volume: 257 start-page: 1550 issue: 5 year: 2010 ident: 10.1016/j.jmapro.2021.03.061_bib0385 article-title: A study on wear resistance and microcrack of the Ti3Al/TiAl+TiC ceramic layer deposited by laser cladding on Ti–6Al–4V alloy publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2010.08.094 – year: 2005 ident: 10.1016/j.jmapro.2021.03.061_bib0075 – volume: 203 start-page: 1395 issue: 10–11 year: 2009 ident: 10.1016/j.jmapro.2021.03.061_bib0320 article-title: Laser clad TiC reinforced NiCrBSi composite coatings on Ti-6Al-4V alloy using a CW CO2 laser publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2008.11.012 – volume: 337 start-page: 97 year: 2018 ident: 10.1016/j.jmapro.2021.03.061_bib0655 article-title: Influence of microstructures and wear behaviors of the microalloyed coatings on TC11 alloy surface using laser cladding technique publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2017.12.058 – volume: 46 issue: 1 year: 2019 ident: 10.1016/j.jmapro.2021.03.061_bib0675 article-title: Microstructure and friction and wear resistance of laser cladding composite coating on Ti811 surface publication-title: Chin J Lasers – volume: 408 year: 2021 ident: 10.1016/j.jmapro.2021.03.061_bib0235 article-title: High-performance Ti-6Al-4V with graded microstructure and superior properties fabricated by powder feeding underwater laser metal deposition publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2020.126778 – volume: 137 start-page: 122 issue: 2 year: 2001 ident: 10.1016/j.jmapro.2021.03.061_bib0315 article-title: Comparison of laser-clad and furnace-melted Ni-based alloy microstructures publication-title: Surf Coat Technol doi: 10.1016/S0257-8972(00)00732-5 – volume: 549 start-page: 195 year: 2013 ident: 10.1016/j.jmapro.2021.03.061_bib0510 article-title: Microstructure and corrosion resistance of AlCrFeCuCo high entropy alloy publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2012.09.091 – volume: 50 start-page: 985 issue: 7 year: 2012 ident: 10.1016/j.jmapro.2021.03.061_bib0285 article-title: Statistical analysis and optimization of process parameters in Ti6Al4V laser cladding using Nd:YAG laser publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2012.01.018 – volume: 41 start-page: 338 year: 2012 ident: 10.1016/j.jmapro.2021.03.061_bib0505 article-title: Dry sliding wear behavior of laser clad TiVCrAlSi high entropy alloy coatings on Ti–6Al–4V substrate publication-title: Mater Des doi: 10.1016/j.matdes.2012.04.049 – volume: 44 start-page: 20599 issue: 17 year: 2018 ident: 10.1016/j.jmapro.2021.03.061_bib0805 article-title: A review on laser deposition-additive manufacturing of ceramics and ceramic reinforced metal matrix composites publication-title: Ceram Int doi: 10.1016/j.ceramint.2018.08.083 – volume: 141 start-page: 207 year: 2015 ident: 10.1016/j.jmapro.2021.03.061_bib0180 article-title: Dilution characteristics of ultrasonic assisted laser clad yttria-stabilized zirconia coating publication-title: Mater Lett doi: 10.1016/j.matlet.2014.11.058 – volume: 4 start-page: 234 issue: 3 year: 2014 ident: 10.1016/j.jmapro.2021.03.061_bib0290 article-title: Support vector machines in engineering: an overview publication-title: WIREs Data Min Knowl Discov doi: 10.1002/widm.1125 – volume: 363 start-page: 543 year: 2016 ident: 10.1016/j.jmapro.2021.03.061_bib0530 article-title: Formation of core–shell structure in high entropy alloy coating by laser cladding publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2015.12.059 – volume: 383 year: 2020 ident: 10.1016/j.jmapro.2021.03.061_bib0085 article-title: Microstructure and wide temperature range self-lubricating properties of laser cladding NiCrAlY/Ag2O/Ta2O5 composite coating publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2019.125248 – volume: 8 start-page: 1661 issue: 5 year: 2012 ident: 10.1016/j.jmapro.2021.03.061_bib0755 article-title: A new look at biomedical Ti-based shape memory alloys publication-title: Acta Biomater doi: 10.1016/j.actbio.2012.01.018 – volume: 131 year: 2020 ident: 10.1016/j.jmapro.2021.03.061_bib0810 article-title: Studies on the effect of composition and pre-heating on microstructure and mechanical properties of direct laser clad titanium aluminide publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2020.106041 – volume: 32 start-page: 1910 issue: 4 year: 2011 ident: 10.1016/j.jmapro.2021.03.061_bib0495 article-title: Synthesis and characterization of FeCoNiCrCu high-entropy alloy coating by laser cladding publication-title: Mater Des doi: 10.1016/j.matdes.2010.12.001 – volume: 188 start-page: 435 year: 2020 ident: 10.1016/j.jmapro.2021.03.061_bib0475 article-title: High entropy alloys: a focused review of mechanical properties and deformation mechanisms publication-title: Acta Mater doi: 10.1016/j.actamat.2019.12.015 – volume: 195 start-page: 178 year: 2017 ident: 10.1016/j.jmapro.2021.03.061_bib0600 article-title: In situ synthesized high volume fraction WC reinforced Ni-based coating by laser cladding publication-title: Mater Lett doi: 10.1016/j.matlet.2017.02.076 – volume: 29 year: 2019 ident: 10.1016/j.jmapro.2021.03.061_bib0010 article-title: Overview: additive manufacturing enabled accelerated design of Ni-based alloys for improved fatigue life publication-title: Addit Manuf – volume: 5 start-page: 337 year: 2010 ident: 10.1016/j.jmapro.2021.03.061_bib0150 article-title: A CFD model of the laser, coaxial powder stream and substrate interaction in laser cladding publication-title: Phys Procedia doi: 10.1016/j.phpro.2010.08.060 – volume: 255 start-page: 129 issue: 1 year: 2003 ident: 10.1016/j.jmapro.2021.03.061_bib0350 article-title: The microstructure and erosive–corrosive wear performance of laser-clad Ni–Cr3C2 composite coating publication-title: Wear doi: 10.1016/S0043-1648(03)00283-7 – volume: 357 start-page: 811 year: 2019 ident: 10.1016/j.jmapro.2021.03.061_bib0695 article-title: Effects of the content of MoS2 on microstructural evolution and wear behaviors of the laser-clad coatings publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2018.10.100 – volume: 155 start-page: 203 issue: 2 year: 2002 ident: 10.1016/j.jmapro.2021.03.061_bib0345 article-title: Microscopic morphology and distribution of TiC phase in laser clad NiCrBSiC–TiC layer on titanium alloy substrate publication-title: Surf Coat Technol doi: 10.1016/S0257-8972(02)00006-3 – volume: 201 start-page: 9497 issue: 24 year: 2007 ident: 10.1016/j.jmapro.2021.03.061_bib0360 article-title: Microstructure and wear studies of laser clad Al-Si/SiC(p) composite coatings publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2007.04.003 – volume: 236 start-page: 45 year: 2013 ident: 10.1016/j.jmapro.2021.03.061_bib0405 article-title: Directional growth whisker reinforced Ti-base composites fabricated by laser cladding publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2013.05.052 – volume: 30 start-page: 263 issue: 5 year: 1998 ident: 10.1016/j.jmapro.2021.03.061_bib0200 article-title: In-process vibration-assisted high power Nd:YAG pulsed laser ceramic–metal composite cladding on Al-alloys publication-title: Opt Laser Technol doi: 10.1016/S0030-3992(98)00048-6 – volume: 352 start-page: 163 year: 2015 ident: 10.1016/j.jmapro.2021.03.061_bib0425 article-title: Microstructure and corrosion resistance of TC2 Ti alloy by laser cladding with Ti/TiC/TiB2 powders publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2015.04.030 – volume: 205 start-page: 2007 issue: 7 year: 2010 ident: 10.1016/j.jmapro.2021.03.061_bib0255 article-title: Effect of laser cladding process parameters on clad quality and in-situ formed microstructure of Fe–TiC composite coatings publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2010.08.087 – volume: 122 start-page: 151 year: 2019 ident: 10.1016/j.jmapro.2021.03.061_bib0125 article-title: Progress in numerical simulation of the laser cladding process publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2019.05.026 – volume: 33 year: 2020 ident: 10.1016/j.jmapro.2021.03.061_bib0835 article-title: A review of additive manufacturing of cermets publication-title: Addit Manuf – year: 2006 ident: 10.1016/j.jmapro.2021.03.061_bib0100 article-title: System and method for closed-loop control of laser cladding by powder injection publication-title: US – volume: 54 start-page: 397 issue: 3 year: 2009 ident: 10.1016/j.jmapro.2021.03.061_bib0760 article-title: Ti based biomaterials, the ultimate choice for orthopaedic implants-a review publication-title: Prog Mater Sci doi: 10.1016/j.pmatsci.2008.06.004 – volume: 203 start-page: 1395 issue: 10 year: 2009 ident: 10.1016/j.jmapro.2021.03.061_bib0370 article-title: Laser clad TiC reinforced NiCrBSi composite coatings on Ti–6Al–4V alloy using a CW CO2 laser publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2008.11.012 – volume: 119 year: 2020 ident: 10.1016/j.jmapro.2021.03.061_bib0585 article-title: Effect of Fe on microstructure and properties of AlCoCrFexNi (x=1.5, 2.5) high entropy alloy coatings prepared by laser cladding publication-title: Intermetallics doi: 10.1016/j.intermet.2020.106722 – volume: 8 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.jmapro.2021.03.061_bib0005 article-title: Latest research advances on magnesium and magnesium alloys worldwide publication-title: J Magnes Alloys doi: 10.1016/j.jma.2020.02.003 – volume: 12 start-page: 303 year: 2011 ident: 10.1016/j.jmapro.2021.03.061_bib0500 article-title: The property research on high-entropy alloy AlxFeCoNiCuCr coating by laser cladding publication-title: Phys Procedia doi: 10.1016/j.phpro.2011.03.039 – volume: 383 year: 2020 ident: 10.1016/j.jmapro.2021.03.061_bib0205 article-title: Effects of electromagnetic compound field on the escape behavior of pores in molten pool during laser cladding publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2019.125198 – volume: 5 start-page: 27718 issue: 14, Part 2 year: 2018 ident: 10.1016/j.jmapro.2021.03.061_bib0450 article-title: On the development and characterization of microwave processed Ni + 30% SiC based composite clads publication-title: Mater Today Proc doi: 10.1016/j.matpr.2018.10.006 – volume: 89 start-page: 97 year: 2017 ident: 10.1016/j.jmapro.2021.03.061_bib0690 article-title: Characteristics of laser clad α-Ti/TiC+(Ti,W)C1−x/Ti2SC+TiS composite coatings on TA2 titanium alloy publication-title: Opt Laser Technol doi: 10.1016/j.optlastec.2016.09.044 – volume: 7 start-page: 41463 issue: 1 year: 2017 ident: 10.1016/j.jmapro.2021.03.061_bib0190 article-title: Effects of ultrasonic vibration on the microstructure and mechanical properties of high alloying TiAl publication-title: Sci Rep doi: 10.1038/srep41463 – volume: 11 issue: 1 year: 2017 ident: 10.1016/j.jmapro.2021.03.061_bib0630 article-title: Effect of CeO2 on microstructure and wear resistance of TiC bioinert coatings on Ti6Al4V alloy by laser cladding publication-title: Materials doi: 10.3390/ma11010058 – start-page: 159 year: 2020 ident: 10.1016/j.jmapro.2021.03.061_bib0730 article-title: Alloy materials for biomedical applications – volume: 338 start-page: 126 issue: 1 year: 2002 ident: 10.1016/j.jmapro.2021.03.061_bib0715 article-title: Microstructure and wear resistance of laser clad Ti5Si3/NiTi2 intermetallic composite coating on titanium alloy publication-title: Mater Sci Eng A doi: 10.1016/S0921-5093(02)00076-X – volume: 106 start-page: 32 year: 2018 ident: 10.1016/j.jmapro.2021.03.061_bib0130 article-title: On the formation features, microstructure and microhardness of single laser tracks formed by laser cladding of a NiCrBSi self-fluxing alloy publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2018.02.004 – volume: 121 start-page: 61 year: 2017 ident: 10.1016/j.jmapro.2021.03.061_bib0155 article-title: A fundamental investigation on ultrasonic vibration-assisted laser engineered net shaping of stainless steel publication-title: Int J Mach Tools Manuf doi: 10.1016/j.ijmachtools.2017.04.008 – volume: 127 start-page: 133 year: 2017 ident: 10.1016/j.jmapro.2021.03.061_bib0790 article-title: Additive manufacturing of a functionally graded material from Ti-6Al-4V to Invar: experimental characterization and thermodynamic calculations publication-title: Acta Mater doi: 10.1016/j.actamat.2016.12.070 – volume: 242 year: 2020 ident: 10.1016/j.jmapro.2021.03.061_bib0590 article-title: In-situ TiC reinforced CoCrCuFeNiSi0.2 high-entropy alloy coatings designed for enhanced wear performance by laser cladding publication-title: Mater Chem Phys doi: 10.1016/j.matchemphys.2019.122522 – volume: 21 start-page: 201 issue: 2 year: 2015 ident: 10.1016/j.jmapro.2021.03.061_bib0785 article-title: Effect of second-phase doping on laser deposited Al2O3 ceramics publication-title: Rapid Prototyp J doi: 10.1108/RPJ-12-2014-0167 – volume: 120 start-page: 84 year: 2019 ident: 10.1016/j.jmapro.2021.03.061_bib0070 article-title: Effects of CeO2 on microstructure and properties of TiC/Ti2Ni reinforced Ti-based laser cladding composite coatings publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2019.03.001 – volume: 8 start-page: 3888 issue: 11 year: 2012 ident: 10.1016/j.jmapro.2021.03.061_bib0745 article-title: Development of new metallic alloys for biomedical applications publication-title: Acta Biomater doi: 10.1016/j.actbio.2012.06.037 – volume: 83 start-page: 37 year: 2019 ident: 10.1016/j.jmapro.2021.03.061_bib0035 article-title: Review of titanium surface modification techniques and coatings for antibacterial applications publication-title: Acta Biomater doi: 10.1016/j.actbio.2018.10.036 – volume: 211 start-page: 187 issue: 2 year: 2011 ident: 10.1016/j.jmapro.2021.03.061_bib0140 article-title: FEM modeling and experimental verification for dilution control in laser cladding publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2010.09.007 – volume: 116 start-page: 345 year: 2019 ident: 10.1016/j.jmapro.2021.03.061_bib0295 article-title: Laser cladding of nanoparticle TiC ceramic powder: effects of process parameters on the quality characteristics of the coatings and its prediction model publication-title: Opt Laser Technol doi: 10.1016/j.optlastec.2019.03.048 – volume: 28 start-page: 96 year: 2020 ident: 10.1016/j.jmapro.2021.03.061_bib0025 article-title: Recent developments in metal additive manufacturing publication-title: Curr Opin Chem Eng doi: 10.1016/j.coche.2020.03.001 – volume: 8 start-page: 1990 issue: 5 year: 2012 ident: 10.1016/j.jmapro.2021.03.061_bib0780 article-title: Beta type Ti–Mo alloys with changeable Young’s modulus for spinal fixation applications publication-title: Acta Biomater doi: 10.1016/j.actbio.2012.02.004 – volume: 206 start-page: 4021 issue: 19 year: 2012 ident: 10.1016/j.jmapro.2021.03.061_bib0395 article-title: Effect of heat input on the microstructure of in-situ synthesized TiN–TiB/Ti based composite coating by laser cladding publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2012.03.082 – volume: 256 start-page: 4708 issue: 14 year: 2010 ident: 10.1016/j.jmapro.2021.03.061_bib0380 article-title: Laser induction hybrid rapid cladding of WC particles reinforced NiCrBSi composite coatings publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2010.02.078 – volume: 60 start-page: 17 year: 2016 ident: 10.1016/j.jmapro.2021.03.061_bib0430 article-title: A comparative study of the structure and wear resistance of NiCrBSi/50 wt.% WC composite coatings by laser cladding and laser induction hybrid cladding publication-title: Int J Refract Metals Hard Mater doi: 10.1016/j.ijrmhm.2016.06.019 – volume: 119 year: 2019 ident: 10.1016/j.jmapro.2021.03.061_bib0455 article-title: The influence of the pre-placed powder layers on the morphology, microscopic characteristics and microhardness of Ti-6Al-4V/WC MMC coatings during laser cladding publication-title: Opt Laser Technol doi: 10.1016/j.optlastec.2019.105572 – volume: 118 start-page: 140 year: 2019 ident: 10.1016/j.jmapro.2021.03.061_bib0725 article-title: Microstructure and high temperature wear behaviour of in-situ TiC reinforced AlCoCrFeNi-based high-entropy alloy composite coatings fabricated by laser cladding publication-title: Opt Laser Technol doi: 10.1016/j.optlastec.2019.05.006 – volume: 383 year: 2020 ident: 10.1016/j.jmapro.2021.03.061_bib0060 article-title: High-intensity chromium ion implantation into Zr-1Nb alloy publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2019.125272 – volume: 325 start-page: 352 year: 2017 ident: 10.1016/j.jmapro.2021.03.061_bib0245 article-title: Effect of dilution and macrosegregation on corrosion resistance of laser clad AerMet100 steel coating on 300M steel substrate publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2017.04.035 – volume: 345 start-page: 99 year: 2015 ident: 10.1016/j.jmapro.2021.03.061_bib0420 article-title: Improving the tribocorrosion resistance of Ti6Al4V surface by laser surface cladding with TiNiZrO2 composite coating publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2015.03.152 – volume: 16 start-page: 140 issue: 3 year: 2004 ident: 10.1016/j.jmapro.2021.03.061_bib0145 article-title: Solidification model of laser cladding with wire feeding technique publication-title: J Laser Appl doi: 10.2351/1.1771167 – volume: 59 start-page: 19 issue: 1 year: 2008 ident: 10.1016/j.jmapro.2021.03.061_bib0195 article-title: Potency of high-intensity ultrasonic treatment for grain refinement of magnesium alloys publication-title: Scr Mater doi: 10.1016/j.scriptamat.2008.02.017 – volume: 114 start-page: 81 year: 2019 ident: 10.1016/j.jmapro.2021.03.061_bib0215 article-title: Investigation on laser cladding Ni-base coating assisted by electromagnetic field publication-title: Opt Laser Technol doi: 10.1016/j.optlastec.2019.01.017 – volume: 134 year: 2021 ident: 10.1016/j.jmapro.2021.03.061_bib0120 article-title: Recent trends in laser cladding and surface alloying publication-title: Opt Laser Technol doi: 10.1016/j.optlastec.2020.106619 – volume: 256 start-page: 5985 issue: 20 year: 2010 ident: 10.1016/j.jmapro.2021.03.061_bib0615 article-title: Investigation on cracking behavior of Ni-based coating by laser-induction hybrid cladding publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2010.03.106 – volume: 157 start-page: 258 year: 2018 ident: 10.1016/j.jmapro.2021.03.061_bib0650 article-title: Microstructure and properties of in-situ synthesized (Ti3Al + TiB)/Ti composites by laser cladding publication-title: Mater Des doi: 10.1016/j.matdes.2018.07.045 – volume: 83 start-page: 127 year: 2016 ident: 10.1016/j.jmapro.2021.03.061_bib0260 article-title: Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review publication-title: Biomaterials doi: 10.1016/j.biomaterials.2016.01.012 – volume: 692 start-page: 989 year: 2017 ident: 10.1016/j.jmapro.2021.03.061_bib0325 article-title: Effect of process parameters on the microstructure evolution and wear property of the laser cladding coatings on Ti-6Al-4V alloy publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2016.09.071 – volume: 206 start-page: 1389 issue: 6 year: 2011 ident: 10.1016/j.jmapro.2021.03.061_bib0490 article-title: Thermal stability and oxidation resistance of laser clad TiVCrAlSi high entropy alloy coatings on Ti–6Al–4V alloy publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2011.08.063 – volume: 349 start-page: 37 year: 2018 ident: 10.1016/j.jmapro.2021.03.061_bib0275 article-title: Parametric study and characterization of AlN-Ni-Ti6Al4V composite cladding on titanium alloy publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2018.05.053 – volume: 835 year: 2020 ident: 10.1016/j.jmapro.2021.03.061_bib0175 article-title: Design and characterization of FeCrCoAlMn0.5Mo0.1 high-entropy alloy coating by ultrasonic assisted laser cladding publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2020.155449 – volume: 87 start-page: 3349 issue: 9–12 year: 2016 ident: 10.1016/j.jmapro.2021.03.061_bib0265 article-title: A parametric study on laser cladding of Ti-6Al-4V wire and WC/W2C powder publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-016-8743-9 – volume: 174 start-page: 34 issue: 1 year: 2006 ident: 10.1016/j.jmapro.2021.03.061_bib0225 article-title: Effect of shielding conditions of local dry cavity on weld quality in underwater Nd:YAG laser welding publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2004.12.009 – volume: 44 start-page: 20851 issue: 17 year: 2018 ident: 10.1016/j.jmapro.2021.03.061_bib0250 article-title: Laser deposition of compositionally graded titanium oxide on Ti6Al4V alloy publication-title: Ceram Int doi: 10.1016/j.ceramint.2018.08.090 – volume: 270 start-page: 243 year: 2015 ident: 10.1016/j.jmapro.2021.03.061_bib0710 article-title: High temperature oxidation behavior of laser cladding MCrAlY coatings on austenitic stainless steel publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2015.02.050 – volume: 111 start-page: 814 year: 2019 ident: 10.1016/j.jmapro.2021.03.061_bib0110 article-title: Underwater wet laser cladding on 316L stainless steel: a protective material assisted method publication-title: Opt Laser Technol doi: 10.1016/j.optlastec.2018.09.022 – volume: 311 start-page: 321 year: 2017 ident: 10.1016/j.jmapro.2021.03.061_bib0540 article-title: Synthesis and characterization of refractory TiZrNbWMo high-entropy alloy coating by laser cladding publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2017.01.012 – year: 2011 ident: 10.1016/j.jmapro.2021.03.061_bib0735 – volume: 361 start-page: 63 year: 2019 ident: 10.1016/j.jmapro.2021.03.061_bib0570 article-title: Microstructural characterization and corrosion behaviour of AlCoCrFeNiTix high-entropy alloy coatings fabricated by laser cladding publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2019.01.044 – volume: 176 year: 2020 ident: 10.1016/j.jmapro.2021.03.061_bib0820 article-title: Microstructure and wear behaviors of laser cladding in-situ synthetic (TiBx+TiC)/(Ti2Ni+TiNi) gradient composite coatings publication-title: Vacuum doi: 10.1016/j.vacuum.2020.109305 – volume: 358 start-page: 667 year: 2019 ident: 10.1016/j.jmapro.2021.03.061_bib0575 article-title: Effects of laser power on microstructure and properties of laser cladded CoCrBFeNiSi high-entropy alloy amorphous coatings publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2018.10.086 – volume: 46 start-page: 13711 issue: 9 year: 2020 ident: 10.1016/j.jmapro.2021.03.061_bib0625 article-title: Influence of Y2O3 on the microstructure and tribological properties of Ti-based wear-resistant laser-clad layers on TC4 alloy publication-title: Ceram Int doi: 10.1016/j.ceramint.2020.02.159 – volume: 86 year: 2020 ident: 10.1016/j.jmapro.2021.03.061_bib0065 article-title: Experimental investigation on tool wear characteristics of PVD and CVD coatings during face milling of Ti6242S and Ti-555 titanium alloys publication-title: Int J Refract Metals Hard Mater doi: 10.1016/j.ijrmhm.2019.105091 – volume: 88 start-page: 139 year: 2017 ident: 10.1016/j.jmapro.2021.03.061_bib0135 article-title: Online monitoring of thermo-cycles and its correlation with microstructure in laser cladding of nickel based super alloy publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2016.08.005 – volume: 344 start-page: 353 year: 2018 ident: 10.1016/j.jmapro.2021.03.061_bib0555 article-title: Microstructure and properties of in-situ TiN reinforced laser cladding CoCr2FeNiTix high-entropy alloy composite coatings publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2018.03.035 – volume: 44 start-page: 2752 issue: 3 year: 2018 ident: 10.1016/j.jmapro.2021.03.061_bib0800 article-title: Ultrasonic vibration-assisted laser engineering net shaping of ZrO2-Al2O3 bulk parts: effects on crack suppression, microstructure, and mechanical properties publication-title: Ceram Int doi: 10.1016/j.ceramint.2017.11.013 – volume: 243 start-page: 195 year: 2019 ident: 10.1016/j.jmapro.2021.03.061_bib0210 article-title: Characteristics of dilution and microstructure in laser cladding Ni-Cr-B-Si coating assisted by electromagnetic compound field publication-title: Mater Lett doi: 10.1016/j.matlet.2019.01.133 – volume: 3 start-page: 67 issue: 2 year: 2016 ident: 10.1016/j.jmapro.2021.03.061_bib0680 article-title: A review to the laser cladding of self-lubricating composite coatings publication-title: Lasers Manuf Mater Process doi: 10.1007/s40516-016-0025-8 – volume: 106 year: 2019 ident: 10.1016/j.jmapro.2021.03.061_bib0020 article-title: 3D printing of aluminium alloys: additive manufacturing of aluminium alloys using selective laser melting publication-title: Prog Mater Sci doi: 10.1016/j.pmatsci.2019.100578 – volume: 587 start-page: 588 year: 2014 ident: 10.1016/j.jmapro.2021.03.061_bib0525 article-title: Solidification behaviour in laser cladding of AlCoCrCuFeNi high-entropy alloy on magnesium substrates publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2013.10.254 – volume: 126 year: 2020 ident: 10.1016/j.jmapro.2021.03.061_bib0700 article-title: Fabrication and tribological behaviors of Ti3SiC2/Ti5Si3/TiC/Ni-based composite coatings by laser cladding for self-lubricating applications publication-title: Opt Laser Technol doi: 10.1016/j.optlastec.2020.106077 – volume: 200 start-page: 4923 issue: 16 year: 2006 ident: 10.1016/j.jmapro.2021.03.061_bib0355 article-title: Laser cladding of Ni-base composite coatings onto Ti–6Al–4V substrates with pre-placed B4C+NiCrBSi powders publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2005.04.059 – volume: 31 start-page: 1643 issue: 8 year: 2011 ident: 10.1016/j.jmapro.2021.03.061_bib0765 article-title: Osteoblast interaction with laser cladded HA and SiO2-HA coatings on Ti–6Al–4V publication-title: Mater Sci Eng C doi: 10.1016/j.msec.2011.07.009 – volume: 48 start-page: 119 issue: 1 year: 2010 ident: 10.1016/j.jmapro.2021.03.061_bib0375 article-title: Microstructure and wear properties of TiCN/Ti coatings on titanium alloy by laser cladding publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2009.08.003 – volume: 698 start-page: 761 year: 2017 ident: 10.1016/j.jmapro.2021.03.061_bib0545 article-title: Phase evolution and cavitation erosion-corrosion behavior of FeCoCrAlNiTix high entropy alloy coatings on 304 stainless steel by laser surface alloying publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2016.12.196 – volume: 383 year: 2020 ident: 10.1016/j.jmapro.2021.03.061_bib0465 article-title: In-situ TiC-Al3Ti reinforced Al-Mg composites with Y2O3 addition formed by laser cladding on AZ91D publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2019.125249 – volume: 384 year: 2020 ident: 10.1016/j.jmapro.2021.03.061_bib0055 article-title: The influence of post treatments on the microstructure and corrosion behavior of thermally sprayed NiCrMoAl alloy coating publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2019.125166 – volume: 34 start-page: 549 issue: 6 year: 2016 ident: 10.1016/j.jmapro.2021.03.061_bib0595 article-title: Effect of rare earth elements and their oxides on tribo-mechanical performance of laser claddings: a review publication-title: J Rare Earths doi: 10.1016/S1002-0721(16)60061-3 – volume: 509 start-page: 4882 issue: 14 year: 2011 ident: 10.1016/j.jmapro.2021.03.061_bib0390 article-title: Phase constituents and microstructure of laser cladding Al2O3/Ti3Al reinforced ceramic layer on titanium alloy publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2011.01.199 – volume: 13 year: 2019 ident: 10.1016/j.jmapro.2021.03.061_bib0460 article-title: Characterisation and mechanical properties of Al/SiC metal matrix composite coatings formed on ZE41 magnesium alloys by laser cladding publication-title: Results Phys doi: 10.1016/j.rinp.2019.102160 – volume: 97 start-page: 884 year: 2019 ident: 10.1016/j.jmapro.2021.03.061_bib0030 article-title: Incorporation of wollastonite bioactive ceramic with titanium for medical applications: an overview publication-title: Mater Sci Eng C doi: 10.1016/j.msec.2018.12.056 – volume: 284 year: 2020 ident: 10.1016/j.jmapro.2021.03.061_bib0335 article-title: Mechanical properties and electrochemical corrosion resistance of multilayer laser cladded Fe-based composite coatings on 4Cr5MoSiV1 steel publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2020.116736 – volume: 181 year: 2019 ident: 10.1016/j.jmapro.2021.03.061_bib0645 article-title: Effect of LaB6 addition on the microstructure and properties of (Ti3Al + TiB)/Ti composites by laser cladding publication-title: Mater Des doi: 10.1016/j.matdes.2019.107959 – volume: 553 start-page: 216 year: 2013 ident: 10.1016/j.jmapro.2021.03.061_bib0515 article-title: Microstructure and properties of Al2CrFeCoCuTiNix high-entropy alloys prepared by laser cladding publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2012.11.100 – volume: 11 start-page: 142 issue: 1 year: 2020 ident: 10.1016/j.jmapro.2021.03.061_bib0825 article-title: Grain structure control during metal 3D printing by high-intensity ultrasound publication-title: Nat Commun doi: 10.1038/s41467-019-13874-z – volume: 46 start-page: 58 year: 2014 ident: 10.1016/j.jmapro.2021.03.061_bib0415 article-title: Influence of Mn additions on the microstructure and magnetic properties of FeNiCr/60% WC composite coating produced by laser cladding publication-title: Int J Refract Metals Hard Mater doi: 10.1016/j.ijrmhm.2014.05.010 – volume: 48 start-page: 123 issue: 2 year: 2019 ident: 10.1016/j.jmapro.2021.03.061_bib0640 article-title: Microstructures and properties of laser cladding coating on Ti811 alloy surface publication-title: Surf Technol – volume: 22 start-page: 1667 issue: 7 year: 2012 ident: 10.1016/j.jmapro.2021.03.061_bib0400 article-title: Microstructure and wear resistance of laser clad TiB–TiC/TiNi–Ti2Ni intermetallic coating on titanium alloy publication-title: Trans Nonferrous Met Soc China doi: 10.1016/S1003-6326(11)61371-X – volume: 56 start-page: 295 year: 2020 ident: 10.1016/j.jmapro.2021.03.061_bib0050 article-title: Hybrid laser welding of dissimilar aluminum alloys: welding processing, microstructure, properties and modelling publication-title: J Manuf Process doi: 10.1016/j.jmapro.2020.03.048 – volume: 410 year: 2021 ident: 10.1016/j.jmapro.2021.03.061_bib0170 article-title: Microstructure and mechanical properties of parts formed by ultrasonic vibration-assisted laser cladding of Inconel 718 publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2021.126964 – volume: 28 start-page: 1697 issue: 8 year: 2008 ident: 10.1016/j.jmapro.2021.03.061_bib0665 article-title: TiC–TiB2 composites: a review of phase relationships, processing and properties publication-title: J Eur Ceram Soc doi: 10.1016/j.jeurceramsoc.2007.11.011 – volume: 5 start-page: 44 issue: 1 year: 2020 ident: 10.1016/j.jmapro.2021.03.061_bib0830 article-title: Additive manufacturing of magnesium alloys publication-title: Bioact Mater doi: 10.1016/j.bioactmat.2019.12.004 – volume: 771 start-page: 1018 year: 2019 ident: 10.1016/j.jmapro.2021.03.061_bib0485 article-title: Laser cladding of Ni based powder on a Cu-Ni-Al glassmold: influence of the process parameters on bonding quality and coating geometry publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2018.09.004 – volume: 395 year: 2020 ident: 10.1016/j.jmapro.2021.03.061_bib0815 article-title: Microstructure and wear resistance of electromagnetic field assisted multi-layer laser clad Fe901 coating publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2020.125876 – volume: 378 year: 2019 ident: 10.1016/j.jmapro.2021.03.061_bib0280 article-title: Laser cladding of Inconel 718 with 75Cr3C2+25(80Ni20Cr) powder: statistical modeling and optimization publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2019.124933 |
SSID | ssj0012401 |
Score | 2.6233685 |
SecondaryResourceType | review_article |
Snippet | Engineering alloys are widely applied as important functional structural materials in aerospace, electronics, metallurgy, and other high-end engineering... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 341 |
SubjectTerms | Development trend Engineering alloys Laser cladding Mechanical properties Research status Surface modification |
Title | Research and progress of laser cladding on engineering alloys: A review |
URI | https://dx.doi.org/10.1016/j.jmapro.2021.03.061 |
Volume | 66 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NSwMxEA2lXvQgfmL9KDl4jd1NNknjrRRrVehFC72FnSSVlrottR68-NtN9qNWEAWPu8nA8hjeTNg3LwhdQps7bp0kVNiIJBwkSU0yJpAyyXjbceVytcVA9IfJ_YiPaqhbzcIEWWXJ_QWn52xdvmmVaLYWk0nr0VceEeozjXMb9FGYYE9kyPKrj7XMw5evqPBMpYKE3dX4XK7xmr6knqf8KZHGudWpiH8uTxslp7eHdsteEXeKz9lHNZcdoJ0NB8FDdFsp53CaWZyLrTx14fkY-67YLbGZBcFQ9oznGXZfgTj8bn9_vcYdXMyuHKFh7-ap2yfl3QjEMElXJIFgKSuNA25BsLRtI3_Y9O0PUAXAFVNGQWxUZPwKl85AysFECoxftBbYMapn88ydIAzUWUYhUkaMPVg-3MSxSqi0inInXAOxChJtSuPwcH_FTFcKsakugNQBSB0x7YFsILKOWhTGGX_slxXa-lsCaM_tv0ae_jvyDG2Hp0L5dY7qq-Wbu_A9xgqaeRI10Vbn7qE_-ARm09HN |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60HtSD-MT6zMFr6G6y2W28lWJdX73YQm9hJ0nFUrei9eC_N9mHVhAFrzv7QfgIMxPyzReAM2wLK4xNKItNQCOBCc10NKaY8YSLthXSFmqLfpwOo-uRGC1Bt56F8bLKKveXOb3I1tWXVsVm6_nxsXXvKk_s6zMLCxv00TKseHcq0YCVztVN2v-8THBFq7RNZTH1gHqCrpB5TZ4yl6rcQZGFhdtpHP5coRaqTm8TNqp2kXTKFW3Bks23YX3BRHAHLmvxHMlyQwq9lcteZDYmrjG2L0RPvWYofyCznNgvIPE37u-v56RDyvGVXRj2LgbdlFbPI1DNEzanEXpX2URbFAZjnrVN4M6brgNCJhGF5FJLDLUMtIuIxGrMBOpAonZBY5DvQSOf5XYfCDJrOMNA6njsyHJwHYYyYomRTNjYNoHXlChdeYf7JyymqhaJTVRJpPJEqoArR2QT6CfqufTO-OP_pGZbfdsDyqX3X5EH_0aewmo6uLtVt1f9m0NY85FSCHYEjfnLmz12LcccT6ot9QGmStR- |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+and+progress+of+laser+cladding+on+engineering+alloys%3A+A+review&rft.jtitle=Journal+of+manufacturing+processes&rft.au=Liu%2C+Yanan&rft.au=Ding%2C+Ye&rft.au=Yang%2C+Lijun&rft.au=Sun%2C+Ronglu&rft.date=2021-06-01&rft.issn=1526-6125&rft.volume=66&rft.spage=341&rft.epage=363&rft_id=info:doi/10.1016%2Fj.jmapro.2021.03.061&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jmapro_2021_03_061 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1526-6125&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1526-6125&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1526-6125&client=summon |