Study on the characteristics of atomic hydrogen cleaning carbon contamination on multilayers

Mo/Si multilayers are widely used in synchrotron radiation beam-lines and extreme ultraviolet lithography machines. With the increasing power of light source, the problem of carboncontamination on multilayers becomes more and more serious. In-situ efficient and non-damage removal of carbon contamina...

Full description

Saved in:
Bibliographic Details
Published inVacuum Vol. 196; p. 110738
Main Authors Song, Yuan, Lu, Qipeng, Gong, Xuepeng, Wang, Dazhuang, Zhang, Zhen, Yu, Bo, Yao, Shun, Mao, Qijun, Ma, Tianyu, Bai, Yang
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.02.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Mo/Si multilayers are widely used in synchrotron radiation beam-lines and extreme ultraviolet lithography machines. With the increasing power of light source, the problem of carboncontamination on multilayers becomes more and more serious. In-situ efficient and non-damage removal of carbon contamination becomes very necessary. Atomic hydrogen has been proved an effective particle to cleaning carbon without damage. However, the mechanism of atomic hydrogen cleaning carbon contamination is not completely understood now and the cleaning rate is slowly. In order to realize efficient and in situ cleaning of carbon contamination by atomic hydrogen, the influence of different conditions on the process of atomic hydrogen cleaning carbon contamination was researched with experiment firstly. Then, the characteristic relationship of working distance, temperature and atomic hydrogen concentration on the cleaning rate was identified to study the mechanism. The cleaning rate could reach 0.0347 nm/min. In the end, the change of optical properties and surface roughness of multilayer after cleaning were analyzed. The result was shown that the reflectivity of the samples could be effectively recovered and the surface roughness of the samples had little change after cleaning. The workhas great significance for realizing the efficient atomic hydrogen cleaning carbon contamination in-situ. •The influence of different conditions on the process of H0 cleaning carbon contamination was researched by experiment.•The mechanism of cleaning was analyzed by the characteristic of d, T and H0 concentration on the cleaning rate.•The methods for increasing the cleaning rate were described based on mechanism and experiment.
AbstractList Mo/Si multilayers are widely used in synchrotron radiation beam-lines and extreme ultraviolet lithography machines. With the increasing power of light source, the problem of carboncontamination on multilayers becomes more and more serious. In-situ efficient and non-damage removal of carbon contamination becomes very necessary. Atomic hydrogen has been proved an effective particle to cleaning carbon without damage. However, the mechanism of atomic hydrogen cleaning carbon contamination is not completely understood now and the cleaning rate is slowly. In order to realize efficient and in situ cleaning of carbon contamination by atomic hydrogen, the influence of different conditions on the process of atomic hydrogen cleaning carbon contamination was researched with experiment firstly. Then, the characteristic relationship of working distance, temperature and atomic hydrogen concentration on the cleaning rate was identified to study the mechanism. The cleaning rate could reach 0.0347 nm/min. In the end, the change of optical properties and surface roughness of multilayer after cleaning were analyzed. The result was shown that the reflectivity of the samples could be effectively recovered and the surface roughness of the samples had little change after cleaning. The workhas great significance for realizing the efficient atomic hydrogen cleaning carbon contamination in-situ. •The influence of different conditions on the process of H0 cleaning carbon contamination was researched by experiment.•The mechanism of cleaning was analyzed by the characteristic of d, T and H0 concentration on the cleaning rate.•The methods for increasing the cleaning rate were described based on mechanism and experiment.
ArticleNumber 110738
Author Wang, Dazhuang
Song, Yuan
Yao, Shun
Lu, Qipeng
Gong, Xuepeng
Zhang, Zhen
Mao, Qijun
Bai, Yang
Yu, Bo
Ma, Tianyu
Author_xml – sequence: 1
  givenname: Yuan
  orcidid: 0000-0001-6065-2631
  surname: Song
  fullname: Song, Yuan
  email: songyuan_show@126.com
  organization: State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, 130033, China
– sequence: 2
  givenname: Qipeng
  surname: Lu
  fullname: Lu, Qipeng
  email: luqipeng@126.com
  organization: State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, 130033, China
– sequence: 3
  givenname: Xuepeng
  surname: Gong
  fullname: Gong, Xuepeng
  email: gongxuepeng120@foxmail.com
  organization: State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, 130033, China
– sequence: 4
  givenname: Dazhuang
  surname: Wang
  fullname: Wang, Dazhuang
  organization: State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, 130033, China
– sequence: 5
  givenname: Zhen
  surname: Zhang
  fullname: Zhang, Zhen
  organization: State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, 130033, China
– sequence: 6
  givenname: Bo
  surname: Yu
  fullname: Yu, Bo
  organization: State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, 130033, China
– sequence: 7
  givenname: Shun
  surname: Yao
  fullname: Yao, Shun
  organization: State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, 130033, China
– sequence: 8
  givenname: Qijun
  surname: Mao
  fullname: Mao, Qijun
  organization: State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, 130033, China
– sequence: 9
  givenname: Tianyu
  surname: Ma
  fullname: Ma, Tianyu
  organization: State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, 130033, China
– sequence: 10
  givenname: Yang
  surname: Bai
  fullname: Bai, Yang
  organization: State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, 130033, China
BookMark eNqFkE1LAzEQhoNUsK3-Aw_7B3ZNsh9JPQhS_IKCBxU8CGE6m7Qpu1lJsoX-e7euJw8KAy9zeF5mnhmZuM5pQi4ZzRhl1dUu2wP2fZtxylnGGBW5PCFTJsUi5YKVEzKltOApp-L9jMxC2FFKeUXllHy8xL4-JJ1L4lYnuAUPGLW3IVoMSWcSiF1rMdkeat9ttEuw0eCs2yQIfj1g2LkIrXUQ7bAN0_ZNtA0ctA_n5NRAE_TFT87J2_3d6_IxXT0_PC1vVynmgse0AI1ysYaSo0EGrBYGBDWC5aYqKQiB0nBeyKIq8nW1FlKiLMs8rw01koPO5-R67EXfheC1UWjj90HRg20Uo-roSe3U6EkdPanR0wAXv-BPb1vwh_-wmxHTw2N7q70KaLVDXVuvMaq6s38XfAGejIjt
CitedBy_id crossref_primary_10_1116_6_0003544
crossref_primary_10_31857_S0033831123020053
crossref_primary_10_2494_photopolymer_37_415
crossref_primary_10_1016_j_mseb_2024_117545
crossref_primary_10_3762_bjnano_13_87
crossref_primary_10_1134_S1066362223020054
crossref_primary_10_1002_admt_202302187
crossref_primary_10_3788_LOP242093
Cites_doi 10.1116/1.1849220
10.1557/JMR.1994.1820
10.1038/s41598-018-19273-6
10.1364/AO.37.001873
10.1107/S1600577513032402
10.1016/0257-8972(93)90217-C
10.1117/12.499373
10.3390/app9142827
10.1016/j.tsf.2008.06.046
10.1364/AO.56.005824
10.1016/j.mee.2015.04.033
10.1088/0022-3727/47/6/065205
10.3103/S0027134911020111
10.1107/S1600577515015040
10.1016/j.apsusc.2011.07.121
10.2494/photopolymer.33.419
10.1016/j.tsf.2014.10.030
10.1016/j.tsf.2016.06.002
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.vacuum.2021.110738
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1879-2715
ExternalDocumentID 10_1016_j_vacuum_2021_110738
S0042207X21006849
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
6TJ
7-5
71M
8P~
8WZ
9JN
A6W
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABMAC
ABNEU
ABTAH
ABXDB
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNCT
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADOJD
AEBSH
AEKER
AENEX
AEZYN
AFFNX
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
KOM
M38
M41
MAGPM
MO0
MVM
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SPG
SSM
SSQ
SSZ
T5K
T9H
TAE
TN5
WUQ
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AHDLI
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c372t-4aec89ba52cfc1a1d7fa70f713f650a77c8f22484643b6b788c85533df0f82ae3
IEDL.DBID .~1
ISSN 0042-207X
IngestDate Thu Apr 24 23:01:04 EDT 2025
Tue Jul 01 03:44:00 EDT 2025
Fri Feb 23 02:40:21 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Extreme ultraviolet lithography
Carbon contamination on multilayers
Cleaning mechanism
Synchrotron radiation
Atomic hydrogen cleaning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-4aec89ba52cfc1a1d7fa70f713f650a77c8f22484643b6b788c85533df0f82ae3
ORCID 0000-0001-6065-2631
ParticipantIDs crossref_citationtrail_10_1016_j_vacuum_2021_110738
crossref_primary_10_1016_j_vacuum_2021_110738
elsevier_sciencedirect_doi_10_1016_j_vacuum_2021_110738
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2022
2022-02-00
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: February 2022
PublicationDecade 2020
PublicationTitle Vacuum
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Gong, Lu, Lu (bib4) 2015; 944
Kuroki, Funakoshi, Nishiyama (bib24) 2015; 57
Morgan, Naulleau, Rekawa (bib20) 2010; 7636
Chen, Louis, Wormeester (bib22) 2011; 22
Masahito, Tetsuo, Akira (bib27) 2019; 20
Fernández, Rogler, Sauthier (bib17) 2017; 8
Heya, Harada, Niibe (bib26) 2020; 33
Imazono (bib8) 2017; 56
Dolgov, Lopaev, Rachimova (bib11) 2013; 47
Malykhin, Lopaev, Rakhimov (bib18) 2011; 66
Strein, Allred (bib5) 2008; 17
Kerkhof, Galutschek, Yakunin (bib13) 2020; 7
SwarajS, Belkhou, Stanescu (bib3) 2017; 84
Song, Lu, Gong (bib30) 2016; 61
Chen, Louis, Harmsen (bib23) 2011; 25
Akio, Takashi, Hirokazu (bib15) 2015; 22
Maréchal, Pauleau (bib32) 1994; 9
Bo, Ming, Song (bib12) 2019; 12
Beckers, Ven, Horst (bib14) 2019; 9
Mertins, Franz, Grimmer (bib7) 1998; 37
Hamamoto, Tanaka, Watanabe (bib16) 2005; 23
Lin (bib6) 2015; 143
Zhi, Yi, Wan (bib9) 2019; 7
Fernández, Rogler, Sauthier (bib10) 2017; 8
Van, Reefman, Meijere (bib28) 2018; 123
Pellegrin, Šics, Reyes-Herrera (bib21) 2014; 74
Guo, Hong, Xing (bib1) 2014; 39
Cuxart, Gonzalez (bib19) 2015; 81
Kerkhof, Yakunin, Kvon (bib29) 2020; 8
Liao, Shen, Yu (bib2) 2019; 7
Bewilogua, Dimigen (bib31) 1993; 61
Graham, Steinhaus, Clift (bib25) 2003; 56
Bo (10.1016/j.vacuum.2021.110738_bib12) 2019; 12
Maréchal (10.1016/j.vacuum.2021.110738_bib32) 1994; 9
Pellegrin (10.1016/j.vacuum.2021.110738_bib21) 2014; 74
Song (10.1016/j.vacuum.2021.110738_bib30) 2016; 61
Gong (10.1016/j.vacuum.2021.110738_bib4) 2015; 944
Zhi (10.1016/j.vacuum.2021.110738_bib9) 2019; 7
Malykhin (10.1016/j.vacuum.2021.110738_bib18) 2011; 66
Masahito (10.1016/j.vacuum.2021.110738_bib27) 2019; 20
Chen (10.1016/j.vacuum.2021.110738_bib23) 2011; 25
Guo (10.1016/j.vacuum.2021.110738_bib1) 2014; 39
SwarajS (10.1016/j.vacuum.2021.110738_bib3) 2017; 84
Hamamoto (10.1016/j.vacuum.2021.110738_bib16) 2005; 23
Kuroki (10.1016/j.vacuum.2021.110738_bib24) 2015; 57
Lin (10.1016/j.vacuum.2021.110738_bib6) 2015; 143
Kerkhof (10.1016/j.vacuum.2021.110738_bib29) 2020; 8
Van (10.1016/j.vacuum.2021.110738_bib28) 2018; 123
Beckers (10.1016/j.vacuum.2021.110738_bib14) 2019; 9
Fernández (10.1016/j.vacuum.2021.110738_bib17) 2017; 8
Imazono (10.1016/j.vacuum.2021.110738_bib8) 2017; 56
Liao (10.1016/j.vacuum.2021.110738_bib2) 2019; 7
Mertins (10.1016/j.vacuum.2021.110738_bib7) 1998; 37
Chen (10.1016/j.vacuum.2021.110738_bib22) 2011; 22
Dolgov (10.1016/j.vacuum.2021.110738_bib11) 2013; 47
Kerkhof (10.1016/j.vacuum.2021.110738_bib13) 2020; 7
Cuxart (10.1016/j.vacuum.2021.110738_bib19) 2015; 81
Fernández (10.1016/j.vacuum.2021.110738_bib10) 2017; 8
Heya (10.1016/j.vacuum.2021.110738_bib26) 2020; 33
Morgan (10.1016/j.vacuum.2021.110738_bib20) 2010; 7636
Akio (10.1016/j.vacuum.2021.110738_bib15) 2015; 22
Graham (10.1016/j.vacuum.2021.110738_bib25) 2003; 56
Bewilogua (10.1016/j.vacuum.2021.110738_bib31) 1993; 61
Strein (10.1016/j.vacuum.2021.110738_bib5) 2008; 17
References_xml – volume: 22
  start-page: 880
  year: 2011
  end-page: 897
  ident: bib22
  article-title: Carbon-induced extreme ultraviolet reflectance loss characterized using visible-light ellipsometry
  publication-title: Meas. Sci. Technol.
– volume: 61
  start-page: 144
  year: 1993
  end-page: 150
  ident: bib31
  article-title: Preparation of W-C:H coatings by reactive magnetron sputtering
  publication-title: Surf. Coating. Technol.
– volume: 944
  start-page: 124
  year: 2015
  end-page: 136
  ident: bib4
  article-title: Establishment of theoretical model and experimental equipment for researching on carbon contamination of EUV multi-layer mirror[C]
  publication-title: Proc. SPIE
– volume: 9
  start-page: 867
  year: 2019
  end-page: 878
  ident: bib14
  article-title: EUV-induced plasma: a peculiar phenomenon of a modern lithographic technology
  publication-title: Appl. Sci.
– volume: 7636
  start-page: 1
  year: 2010
  end-page: 10
  ident: bib20
  article-title: Removal of surface contamination from EUV mirrors using low-power downstream plasma cleaning
  publication-title: Proc. SPIE
– volume: 23
  start-page: 247
  year: 2005
  end-page: 251
  ident: bib16
  article-title: Cleaning of extreme ultraviolet lithography optics and masks using 13.5 nm and 172 nm radiation
  publication-title: J. Vacuum Sci. Technol. B Microelectron. Nanometer Struct.
– volume: 37
  start-page: 1873
  year: 1998
  end-page: 1882
  ident: bib7
  article-title: W/C, W/Ti, Ni/Ti, and Ni/V multilayers for the soft-X-ray range: experimental investigation with synchrotron radiation [J]
  publication-title: Appl. Opt.
– volume: 7
  start-page: 5
  year: 2020
  end-page: 12
  ident: bib13
  article-title: Particulate and molecular contamination control in EUV-induced H2-plasma in EUV lithographic scanner[C] systems contamination: prediction, control, and performance
– volume: 8
  start-page: 1293
  year: 2017
  end-page: 1298
  ident: bib10
  article-title: Characterization of carbon-contaminated B4C-coated optics after chemically selective cleaning with low-pressure RF plasma
  publication-title: Sci. Rep.
– volume: 81
  start-page: 533
  year: 2015
  end-page: 536
  ident: bib19
  article-title: RF plasma cleaning of optical surfaces: a study of cleaning rates on different carbon allotropes as a function of RF powers and distances
  publication-title: Appl. Surf. Sci.
– volume: 25
  start-page: 7
  year: 2011
  end-page: 12
  ident: bib23
  article-title: In situ ellipsometry study of atomic hydrogen etching of extreme ultraviolet induced carbon layers[J]
  publication-title: Appl. Surf. Sci.
– volume: 33
  start-page: 419
  year: 2020
  end-page: 426
  ident: bib26
  article-title: Removal of surface contamination by atomic hydrogen annealing
  publication-title: J. Photopolym. Sci. Technol.
– volume: 22
  start-page: 1359
  year: 2015
  end-page: 1363
  ident: bib15
  article-title: In situ removal of carbon contamination from a chromium-coated mirror: ideal optics to suppress higher-order harmonics in the carbon K‐edge region
  publication-title: J. Synchrotron Radiat.
– volume: 143
  start-page: 91
  year: 2015
  end-page: 101
  ident: bib6
  article-title: Making lithography work for the 7-nm node and beyond in overlay accuracy, resolution, defect, and cost
  publication-title: Microelectron. Eng.
– volume: 39
  start-page: 361
  year: 2014
  end-page: 369
  ident: bib1
  article-title: A new method to suppress high-order harmonics for a synchrotron radiation soft X-ray beam-line
  publication-title: Chin. Phys. C
– volume: 12
  start-page: 33
  year: 2019
  end-page: 39
  ident: bib12
  article-title: Numerical and experimental investigation of glow discharge cleaning on SSRF beamline[J]
  publication-title: Vacuum
– volume: 20
  start-page: 2
  year: 2019
  end-page: 19
  ident: bib27
  article-title: Removal of carbon contamination on oxidation-prone metal-coated mirrors using atomic hydrogen
  publication-title: AIP Conf. Proc.
– volume: 7
  start-page: 32
  year: 2019
  end-page: 41
  ident: bib9
  article-title: The mechanism study of mixed Ar/O2 plasma-cleaning treatment on niobium surface for work function improvement
  publication-title: Appl. Surf. Sci.
– volume: 57
  start-page: 110
  year: 2015
  end-page: 112
  ident: bib24
  article-title: Transportation of hydrogen radicals for cleaning extreme ultraviolet lithography optics
  publication-title: Thin Solid Films
– volume: 74
  start-page: 300
  year: 2014
  end-page: 314
  ident: bib21
  article-title: Characterization, optimization and surface physics aspects of in situ plasma mirror cleaning
  publication-title: J. Synchrotron Radiat.
– volume: 7
  start-page: 102
  year: 2019
  end-page: 109
  ident: bib2
  article-title: Performance testing of an x-ray telescope prototype at Shanghai Synchrotron Radiation Facility
  publication-title: J. Astronomical Telesc. Instrum. Syst.
– volume: 56
  start-page: 460
  year: 2003
  end-page: 469
  ident: bib25
  article-title: Atomic hydrogen cleaning of EUV multilayer optics [C]
  publication-title: Proc. SPIE
– volume: 66
  start-page: 184
  year: 2011
  end-page: 189
  ident: bib18
  article-title: Plasma cleaning of multilayer mirrors in EUV lithography from amorphous carbon contaminations
  publication-title: Moscow Univ. Phys. Bull.
– volume: 84
  start-page: 46
  year: 2017
  end-page: 55
  ident: bib3
  article-title: Performance of the HERMES beamline at the carbon K-edge
  publication-title: J. Phys. Conf.
– volume: 8
  start-page: 156
  year: 2020
  end-page: 161
  ident: bib29
  article-title: Understanding EUV-induced plasma and application to particle contamination control in EUV scanners[C] Extreme Ultraviolet (EUV) Lithography XI
– volume: 17
  start-page: 1011
  year: 2008
  end-page: 1015
  ident: bib5
  article-title: Eliminating carbon contamination on oxidized si surfaces using a vuvexcimer-lamp
  publication-title: Thin Solid Films
– volume: 9
  start-page: 1820
  year: 1994
  end-page: 1828
  ident: bib32
  article-title: Deposition process and characterization of chromium-carbon coatings produced by direct sputtering of a magnetron chromium carbide target
  publication-title: J. Mater. Res.
– volume: 123
  year: 2018
  ident: bib28
  article-title: Ion energy distributions in highly transient EUV induced plasma in hydrogen
  publication-title: J. Appl. Phys.
– volume: 56
  start-page: 5824
  year: 2017
  end-page: 5830
  ident: bib8
  article-title: Multilayer-coated photodiode-based beam intensity monitor for polarization analysis of plasma soft X-ray laser
  publication-title: Appl. Opt.
– volume: 61
  start-page: 96
  year: 2016
  end-page: 100
  ident: bib30
  article-title: Mechanism and model of atomic hydrogen cleaning for different types of carbon contamination on extreme ultraviolet multilayers
  publication-title: Thin Solid Films
– volume: 47
  start-page: 65205
  year: 2013
  end-page: 65213
  ident: bib11
  article-title: Comparison of H2 and He carbon cleaning mechanisms in extreme ultraviolet induced and surface wave discharge plasmas
  publication-title: J. Phys. D Appl. Phys.
– volume: 8
  start-page: 1293
  year: 2017
  end-page: 1298
  ident: bib17
  article-title: Characterization of carbon-contaminated B4C-coated optics after chemically selective cleaning with low-pressure RF plasma
  publication-title: Sci. Rep.
– volume: 23
  start-page: 247
  issue: 1
  year: 2005
  ident: 10.1016/j.vacuum.2021.110738_bib16
  article-title: Cleaning of extreme ultraviolet lithography optics and masks using 13.5 nm and 172 nm radiation
  publication-title: J. Vacuum Sci. Technol. B Microelectron. Nanometer Struct.
  doi: 10.1116/1.1849220
– volume: 9
  start-page: 1820
  issue: 7
  year: 1994
  ident: 10.1016/j.vacuum.2021.110738_bib32
  article-title: Deposition process and characterization of chromium-carbon coatings produced by direct sputtering of a magnetron chromium carbide target
  publication-title: J. Mater. Res.
  doi: 10.1557/JMR.1994.1820
– volume: 8
  start-page: 1293
  issue: 1
  year: 2017
  ident: 10.1016/j.vacuum.2021.110738_bib10
  article-title: Characterization of carbon-contaminated B4C-coated optics after chemically selective cleaning with low-pressure RF plasma
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-19273-6
– volume: 37
  start-page: 1873
  issue: 10
  year: 1998
  ident: 10.1016/j.vacuum.2021.110738_bib7
  article-title: W/C, W/Ti, Ni/Ti, and Ni/V multilayers for the soft-X-ray range: experimental investigation with synchrotron radiation [J]
  publication-title: Appl. Opt.
  doi: 10.1364/AO.37.001873
– volume: 81
  start-page: 533
  issue: 7
  year: 2015
  ident: 10.1016/j.vacuum.2021.110738_bib19
  article-title: RF plasma cleaning of optical surfaces: a study of cleaning rates on different carbon allotropes as a function of RF powers and distances
  publication-title: Appl. Surf. Sci.
– volume: 74
  start-page: 300
  issue: 21
  year: 2014
  ident: 10.1016/j.vacuum.2021.110738_bib21
  article-title: Characterization, optimization and surface physics aspects of in situ plasma mirror cleaning
  publication-title: J. Synchrotron Radiat.
  doi: 10.1107/S1600577513032402
– volume: 7
  start-page: 32
  issue: 2
  year: 2019
  ident: 10.1016/j.vacuum.2021.110738_bib9
  article-title: The mechanism study of mixed Ar/O2 plasma-cleaning treatment on niobium surface for work function improvement
  publication-title: Appl. Surf. Sci.
– volume: 61
  start-page: 144
  issue: 1–3
  year: 1993
  ident: 10.1016/j.vacuum.2021.110738_bib31
  article-title: Preparation of W-C:H coatings by reactive magnetron sputtering
  publication-title: Surf. Coating. Technol.
  doi: 10.1016/0257-8972(93)90217-C
– volume: 8
  start-page: 156
  year: 2020
  ident: 10.1016/j.vacuum.2021.110738_bib29
– volume: 56
  start-page: 460
  issue: 37
  year: 2003
  ident: 10.1016/j.vacuum.2021.110738_bib25
  article-title: Atomic hydrogen cleaning of EUV multilayer optics [C]
  publication-title: Proc. SPIE
  doi: 10.1117/12.499373
– volume: 944
  start-page: 124
  issue: 6
  year: 2015
  ident: 10.1016/j.vacuum.2021.110738_bib4
  article-title: Establishment of theoretical model and experimental equipment for researching on carbon contamination of EUV multi-layer mirror[C]
  publication-title: Proc. SPIE
– volume: 9
  start-page: 867
  issue: 14
  year: 2019
  ident: 10.1016/j.vacuum.2021.110738_bib14
  article-title: EUV-induced plasma: a peculiar phenomenon of a modern lithographic technology
  publication-title: Appl. Sci.
  doi: 10.3390/app9142827
– volume: 12
  start-page: 33
  issue: 6
  year: 2019
  ident: 10.1016/j.vacuum.2021.110738_bib12
  article-title: Numerical and experimental investigation of glow discharge cleaning on SSRF beamline[J]
  publication-title: Vacuum
– volume: 17
  start-page: 1011
  issue: 5
  year: 2008
  ident: 10.1016/j.vacuum.2021.110738_bib5
  article-title: Eliminating carbon contamination on oxidized si surfaces using a vuvexcimer-lamp
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2008.06.046
– volume: 56
  start-page: 5824
  issue: 21
  year: 2017
  ident: 10.1016/j.vacuum.2021.110738_bib8
  article-title: Multilayer-coated photodiode-based beam intensity monitor for polarization analysis of plasma soft X-ray laser
  publication-title: Appl. Opt.
  doi: 10.1364/AO.56.005824
– volume: 123
  issue: 6
  year: 2018
  ident: 10.1016/j.vacuum.2021.110738_bib28
  article-title: Ion energy distributions in highly transient EUV induced plasma in hydrogen
  publication-title: J. Appl. Phys.
– volume: 7
  start-page: 5
  issue: 14
  year: 2020
  ident: 10.1016/j.vacuum.2021.110738_bib13
  article-title: Particulate and molecular contamination control in EUV-induced H2-plasma in EUV lithographic scanner[C] systems contamination: prediction, control, and performance
– volume: 143
  start-page: 91
  issue: 5
  year: 2015
  ident: 10.1016/j.vacuum.2021.110738_bib6
  article-title: Making lithography work for the 7-nm node and beyond in overlay accuracy, resolution, defect, and cost
  publication-title: Microelectron. Eng.
  doi: 10.1016/j.mee.2015.04.033
– volume: 39
  start-page: 361
  issue: 4
  year: 2014
  ident: 10.1016/j.vacuum.2021.110738_bib1
  article-title: A new method to suppress high-order harmonics for a synchrotron radiation soft X-ray beam-line
  publication-title: Chin. Phys. C
– volume: 47
  start-page: 65205
  issue: 6
  year: 2013
  ident: 10.1016/j.vacuum.2021.110738_bib11
  article-title: Comparison of H2 and He carbon cleaning mechanisms in extreme ultraviolet induced and surface wave discharge plasmas
  publication-title: J. Phys. D Appl. Phys.
  doi: 10.1088/0022-3727/47/6/065205
– volume: 66
  start-page: 184
  issue: 2
  year: 2011
  ident: 10.1016/j.vacuum.2021.110738_bib18
  article-title: Plasma cleaning of multilayer mirrors in EUV lithography from amorphous carbon contaminations
  publication-title: Moscow Univ. Phys. Bull.
  doi: 10.3103/S0027134911020111
– volume: 22
  start-page: 880
  issue: 8
  year: 2011
  ident: 10.1016/j.vacuum.2021.110738_bib22
  article-title: Carbon-induced extreme ultraviolet reflectance loss characterized using visible-light ellipsometry
  publication-title: Meas. Sci. Technol.
– volume: 22
  start-page: 1359
  issue: 6
  year: 2015
  ident: 10.1016/j.vacuum.2021.110738_bib15
  article-title: In situ removal of carbon contamination from a chromium-coated mirror: ideal optics to suppress higher-order harmonics in the carbon K‐edge region
  publication-title: J. Synchrotron Radiat.
  doi: 10.1107/S1600577515015040
– volume: 7
  start-page: 102
  issue: 5
  year: 2019
  ident: 10.1016/j.vacuum.2021.110738_bib2
  article-title: Performance testing of an x-ray telescope prototype at Shanghai Synchrotron Radiation Facility
  publication-title: J. Astronomical Telesc. Instrum. Syst.
– volume: 84
  start-page: 46
  issue: 9
  year: 2017
  ident: 10.1016/j.vacuum.2021.110738_bib3
  article-title: Performance of the HERMES beamline at the carbon K-edge
  publication-title: J. Phys. Conf.
– volume: 8
  start-page: 1293
  issue: 1
  year: 2017
  ident: 10.1016/j.vacuum.2021.110738_bib17
  article-title: Characterization of carbon-contaminated B4C-coated optics after chemically selective cleaning with low-pressure RF plasma
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-19273-6
– volume: 25
  start-page: 7
  issue: 8
  year: 2011
  ident: 10.1016/j.vacuum.2021.110738_bib23
  article-title: In situ ellipsometry study of atomic hydrogen etching of extreme ultraviolet induced carbon layers[J]
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2011.07.121
– volume: 20
  start-page: 2
  issue: 4
  year: 2019
  ident: 10.1016/j.vacuum.2021.110738_bib27
  article-title: Removal of carbon contamination on oxidation-prone metal-coated mirrors using atomic hydrogen
  publication-title: AIP Conf. Proc.
– volume: 33
  start-page: 419
  issue: 4
  year: 2020
  ident: 10.1016/j.vacuum.2021.110738_bib26
  article-title: Removal of surface contamination by atomic hydrogen annealing
  publication-title: J. Photopolym. Sci. Technol.
  doi: 10.2494/photopolymer.33.419
– volume: 57
  start-page: 110
  issue: 5
  year: 2015
  ident: 10.1016/j.vacuum.2021.110738_bib24
  article-title: Transportation of hydrogen radicals for cleaning extreme ultraviolet lithography optics
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2014.10.030
– volume: 61
  start-page: 96
  issue: 2
  year: 2016
  ident: 10.1016/j.vacuum.2021.110738_bib30
  article-title: Mechanism and model of atomic hydrogen cleaning for different types of carbon contamination on extreme ultraviolet multilayers
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2016.06.002
– volume: 7636
  start-page: 1
  issue: 2
  year: 2010
  ident: 10.1016/j.vacuum.2021.110738_bib20
  article-title: Removal of surface contamination from EUV mirrors using low-power downstream plasma cleaning
  publication-title: Proc. SPIE
SSID ssj0002608
Score 2.3765113
Snippet Mo/Si multilayers are widely used in synchrotron radiation beam-lines and extreme ultraviolet lithography machines. With the increasing power of light source,...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 110738
SubjectTerms Atomic hydrogen cleaning
Carbon contamination on multilayers
Cleaning mechanism
Extreme ultraviolet lithography
Synchrotron radiation
Title Study on the characteristics of atomic hydrogen cleaning carbon contamination on multilayers
URI https://dx.doi.org/10.1016/j.vacuum.2021.110738
Volume 196
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5FEbz4qIr1UXLwGruPdJMeS7FUhZ4s9CAseWywUndLH0Iv_nZn9lEtiILXJROWyWTyze73TQi58azWkREBw19SjAslmPK1ZSo0vtRJhG20kG0xjAYj_jBuj2ukV2lhkFZZ5v4ip-fZunzSKr3Zmk0mqPHlQeCJMRQtXiQ5ivg4Fxjltx9fNA_A63IjQ4HRlXwu53i9K7NaoR498JEPn6tUfjqevh05_SNyUGJF2i1e55jUkrRODkvcSMtduaiTvZzGaRYn5BlpgWuapRRwHTXbzZhp5iiU2G8TQ1_Wdp5B6FCYV-GXEWrUXIMZMtcVsmNwvXCenHA4VQjMT8mof_fUG7Dy_gRmQhEsGVeJkR2t2oFxxle-FU4Jz0FZ6gCXKSGMdHCCAwLhoY40FMNGtgH-Wec5GagkPCM7aZYm54RawEnOYt8oIznXQkmo2yyM9ENpO8pvkLByW2zK5uJ4x8U0rlhkr3Hh7BidHRfObhC2sZoVzTX-GC-qFYm3giSG_P-r5cW_LS_JfoCKh5yofUV2lvNVcg04ZKmbeaA1yW73_nEw_AQd4N5f
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB58IHrxLdZnDl7X7iPdpEcRS3311EIPwpLHBiu1K7UVevG3O7OPqiAKXpdMWCaTzDe73zcBOPOt1rERoUe_pDwulPBUoK2nIhNIncbURovYFp243eM3_UZ_AS4rLQzRKsuzvzjT89O6fFIvvVl_GQxI48vD0Bd9LFr8WPLmIixz3L50jcH5-yfPAwG7nOtQcHiln8tJXm_KTKckSA8DIsTnMpWf8tOXnNPahPUSLLKL4n22YCEdbcNGCRxZuS1ft2El53Ga1x14IF7gjGUjhsCOme_dmFnmGNbYzwPDHmd2nGHsMJxX0acRZtRYoxlR1xXRY2jBaJ6ccThUhMx3ode66l62vfICBc9EIpx4XKVGNrVqhMaZQAVWOCV8h3WpQ2CmhDDSYQpHCMIjHWusho1sIP6zzncyVGm0B0ujbJTuA7MIlJylxlFGcq6Fkli4WRwZRNI2VVCDqHJbYsru4nTJxTCpaGRPSeHshJydFM6ugTe3eim6a_wxXlQrknyLkgQTwK-WB_-2PIXVdvf-Lrm77twewlpI8oectX0ES5PxND1GUDLRJ3nQfQBNi9_t
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Study+on+the+characteristics+of+atomic+hydrogen+cleaning+carbon+contamination+on+multilayers&rft.jtitle=Vacuum&rft.au=Song%2C+Yuan&rft.au=Lu%2C+Qipeng&rft.au=Gong%2C+Xuepeng&rft.au=Wang%2C+Dazhuang&rft.date=2022-02-01&rft.issn=0042-207X&rft.volume=196&rft.spage=110738&rft_id=info:doi/10.1016%2Fj.vacuum.2021.110738&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_vacuum_2021_110738
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0042-207X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0042-207X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0042-207X&client=summon