Study on the characteristics of atomic hydrogen cleaning carbon contamination on multilayers
Mo/Si multilayers are widely used in synchrotron radiation beam-lines and extreme ultraviolet lithography machines. With the increasing power of light source, the problem of carboncontamination on multilayers becomes more and more serious. In-situ efficient and non-damage removal of carbon contamina...
Saved in:
Published in | Vacuum Vol. 196; p. 110738 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.02.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Mo/Si multilayers are widely used in synchrotron radiation beam-lines and extreme ultraviolet lithography machines. With the increasing power of light source, the problem of carboncontamination on multilayers becomes more and more serious. In-situ efficient and non-damage removal of carbon contamination becomes very necessary. Atomic hydrogen has been proved an effective particle to cleaning carbon without damage. However, the mechanism of atomic hydrogen cleaning carbon contamination is not completely understood now and the cleaning rate is slowly. In order to realize efficient and in situ cleaning of carbon contamination by atomic hydrogen, the influence of different conditions on the process of atomic hydrogen cleaning carbon contamination was researched with experiment firstly. Then, the characteristic relationship of working distance, temperature and atomic hydrogen concentration on the cleaning rate was identified to study the mechanism. The cleaning rate could reach 0.0347 nm/min. In the end, the change of optical properties and surface roughness of multilayer after cleaning were analyzed. The result was shown that the reflectivity of the samples could be effectively recovered and the surface roughness of the samples had little change after cleaning. The workhas great significance for realizing the efficient atomic hydrogen cleaning carbon contamination in-situ.
•The influence of different conditions on the process of H0 cleaning carbon contamination was researched by experiment.•The mechanism of cleaning was analyzed by the characteristic of d, T and H0 concentration on the cleaning rate.•The methods for increasing the cleaning rate were described based on mechanism and experiment. |
---|---|
AbstractList | Mo/Si multilayers are widely used in synchrotron radiation beam-lines and extreme ultraviolet lithography machines. With the increasing power of light source, the problem of carboncontamination on multilayers becomes more and more serious. In-situ efficient and non-damage removal of carbon contamination becomes very necessary. Atomic hydrogen has been proved an effective particle to cleaning carbon without damage. However, the mechanism of atomic hydrogen cleaning carbon contamination is not completely understood now and the cleaning rate is slowly. In order to realize efficient and in situ cleaning of carbon contamination by atomic hydrogen, the influence of different conditions on the process of atomic hydrogen cleaning carbon contamination was researched with experiment firstly. Then, the characteristic relationship of working distance, temperature and atomic hydrogen concentration on the cleaning rate was identified to study the mechanism. The cleaning rate could reach 0.0347 nm/min. In the end, the change of optical properties and surface roughness of multilayer after cleaning were analyzed. The result was shown that the reflectivity of the samples could be effectively recovered and the surface roughness of the samples had little change after cleaning. The workhas great significance for realizing the efficient atomic hydrogen cleaning carbon contamination in-situ.
•The influence of different conditions on the process of H0 cleaning carbon contamination was researched by experiment.•The mechanism of cleaning was analyzed by the characteristic of d, T and H0 concentration on the cleaning rate.•The methods for increasing the cleaning rate were described based on mechanism and experiment. |
ArticleNumber | 110738 |
Author | Wang, Dazhuang Song, Yuan Yao, Shun Lu, Qipeng Gong, Xuepeng Zhang, Zhen Mao, Qijun Bai, Yang Yu, Bo Ma, Tianyu |
Author_xml | – sequence: 1 givenname: Yuan orcidid: 0000-0001-6065-2631 surname: Song fullname: Song, Yuan email: songyuan_show@126.com organization: State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, 130033, China – sequence: 2 givenname: Qipeng surname: Lu fullname: Lu, Qipeng email: luqipeng@126.com organization: State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, 130033, China – sequence: 3 givenname: Xuepeng surname: Gong fullname: Gong, Xuepeng email: gongxuepeng120@foxmail.com organization: State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, 130033, China – sequence: 4 givenname: Dazhuang surname: Wang fullname: Wang, Dazhuang organization: State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, 130033, China – sequence: 5 givenname: Zhen surname: Zhang fullname: Zhang, Zhen organization: State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, 130033, China – sequence: 6 givenname: Bo surname: Yu fullname: Yu, Bo organization: State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, 130033, China – sequence: 7 givenname: Shun surname: Yao fullname: Yao, Shun organization: State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, 130033, China – sequence: 8 givenname: Qijun surname: Mao fullname: Mao, Qijun organization: State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, 130033, China – sequence: 9 givenname: Tianyu surname: Ma fullname: Ma, Tianyu organization: State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, 130033, China – sequence: 10 givenname: Yang surname: Bai fullname: Bai, Yang organization: State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, 130033, China |
BookMark | eNqFkE1LAzEQhoNUsK3-Aw_7B3ZNsh9JPQhS_IKCBxU8CGE6m7Qpu1lJsoX-e7euJw8KAy9zeF5mnhmZuM5pQi4ZzRhl1dUu2wP2fZtxylnGGBW5PCFTJsUi5YKVEzKltOApp-L9jMxC2FFKeUXllHy8xL4-JJ1L4lYnuAUPGLW3IVoMSWcSiF1rMdkeat9ttEuw0eCs2yQIfj1g2LkIrXUQ7bAN0_ZNtA0ctA_n5NRAE_TFT87J2_3d6_IxXT0_PC1vVynmgse0AI1ysYaSo0EGrBYGBDWC5aYqKQiB0nBeyKIq8nW1FlKiLMs8rw01koPO5-R67EXfheC1UWjj90HRg20Uo-roSe3U6EkdPanR0wAXv-BPb1vwh_-wmxHTw2N7q70KaLVDXVuvMaq6s38XfAGejIjt |
CitedBy_id | crossref_primary_10_1116_6_0003544 crossref_primary_10_31857_S0033831123020053 crossref_primary_10_2494_photopolymer_37_415 crossref_primary_10_1016_j_mseb_2024_117545 crossref_primary_10_3762_bjnano_13_87 crossref_primary_10_1134_S1066362223020054 crossref_primary_10_1002_admt_202302187 crossref_primary_10_3788_LOP242093 |
Cites_doi | 10.1116/1.1849220 10.1557/JMR.1994.1820 10.1038/s41598-018-19273-6 10.1364/AO.37.001873 10.1107/S1600577513032402 10.1016/0257-8972(93)90217-C 10.1117/12.499373 10.3390/app9142827 10.1016/j.tsf.2008.06.046 10.1364/AO.56.005824 10.1016/j.mee.2015.04.033 10.1088/0022-3727/47/6/065205 10.3103/S0027134911020111 10.1107/S1600577515015040 10.1016/j.apsusc.2011.07.121 10.2494/photopolymer.33.419 10.1016/j.tsf.2014.10.030 10.1016/j.tsf.2016.06.002 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd |
Copyright_xml | – notice: 2021 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.vacuum.2021.110738 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Physics |
EISSN | 1879-2715 |
ExternalDocumentID | 10_1016_j_vacuum_2021_110738 S0042207X21006849 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 6TJ 7-5 71M 8P~ 8WZ 9JN A6W AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABMAC ABNEU ABTAH ABXDB ABXRA ABYKQ ACDAQ ACFVG ACGFS ACNCT ACNNM ACRLP ADBBV ADEZE ADMUD ADOJD AEBSH AEKER AENEX AEZYN AFFNX AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA HMV HVGLF HZ~ IHE J1W KOM M38 M41 MAGPM MO0 MVM N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SPD SPG SSM SSQ SSZ T5K T9H TAE TN5 WUQ ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AHDLI AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c372t-4aec89ba52cfc1a1d7fa70f713f650a77c8f22484643b6b788c85533df0f82ae3 |
IEDL.DBID | .~1 |
ISSN | 0042-207X |
IngestDate | Thu Apr 24 23:01:04 EDT 2025 Tue Jul 01 03:44:00 EDT 2025 Fri Feb 23 02:40:21 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Extreme ultraviolet lithography Carbon contamination on multilayers Cleaning mechanism Synchrotron radiation Atomic hydrogen cleaning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-4aec89ba52cfc1a1d7fa70f713f650a77c8f22484643b6b788c85533df0f82ae3 |
ORCID | 0000-0001-6065-2631 |
ParticipantIDs | crossref_citationtrail_10_1016_j_vacuum_2021_110738 crossref_primary_10_1016_j_vacuum_2021_110738 elsevier_sciencedirect_doi_10_1016_j_vacuum_2021_110738 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2022 2022-02-00 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: February 2022 |
PublicationDecade | 2020 |
PublicationTitle | Vacuum |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Gong, Lu, Lu (bib4) 2015; 944 Kuroki, Funakoshi, Nishiyama (bib24) 2015; 57 Morgan, Naulleau, Rekawa (bib20) 2010; 7636 Chen, Louis, Wormeester (bib22) 2011; 22 Masahito, Tetsuo, Akira (bib27) 2019; 20 Fernández, Rogler, Sauthier (bib17) 2017; 8 Heya, Harada, Niibe (bib26) 2020; 33 Imazono (bib8) 2017; 56 Dolgov, Lopaev, Rachimova (bib11) 2013; 47 Malykhin, Lopaev, Rakhimov (bib18) 2011; 66 Strein, Allred (bib5) 2008; 17 Kerkhof, Galutschek, Yakunin (bib13) 2020; 7 SwarajS, Belkhou, Stanescu (bib3) 2017; 84 Song, Lu, Gong (bib30) 2016; 61 Chen, Louis, Harmsen (bib23) 2011; 25 Akio, Takashi, Hirokazu (bib15) 2015; 22 Maréchal, Pauleau (bib32) 1994; 9 Bo, Ming, Song (bib12) 2019; 12 Beckers, Ven, Horst (bib14) 2019; 9 Mertins, Franz, Grimmer (bib7) 1998; 37 Hamamoto, Tanaka, Watanabe (bib16) 2005; 23 Lin (bib6) 2015; 143 Zhi, Yi, Wan (bib9) 2019; 7 Fernández, Rogler, Sauthier (bib10) 2017; 8 Van, Reefman, Meijere (bib28) 2018; 123 Pellegrin, Šics, Reyes-Herrera (bib21) 2014; 74 Guo, Hong, Xing (bib1) 2014; 39 Cuxart, Gonzalez (bib19) 2015; 81 Kerkhof, Yakunin, Kvon (bib29) 2020; 8 Liao, Shen, Yu (bib2) 2019; 7 Bewilogua, Dimigen (bib31) 1993; 61 Graham, Steinhaus, Clift (bib25) 2003; 56 Bo (10.1016/j.vacuum.2021.110738_bib12) 2019; 12 Maréchal (10.1016/j.vacuum.2021.110738_bib32) 1994; 9 Pellegrin (10.1016/j.vacuum.2021.110738_bib21) 2014; 74 Song (10.1016/j.vacuum.2021.110738_bib30) 2016; 61 Gong (10.1016/j.vacuum.2021.110738_bib4) 2015; 944 Zhi (10.1016/j.vacuum.2021.110738_bib9) 2019; 7 Malykhin (10.1016/j.vacuum.2021.110738_bib18) 2011; 66 Masahito (10.1016/j.vacuum.2021.110738_bib27) 2019; 20 Chen (10.1016/j.vacuum.2021.110738_bib23) 2011; 25 Guo (10.1016/j.vacuum.2021.110738_bib1) 2014; 39 SwarajS (10.1016/j.vacuum.2021.110738_bib3) 2017; 84 Hamamoto (10.1016/j.vacuum.2021.110738_bib16) 2005; 23 Kuroki (10.1016/j.vacuum.2021.110738_bib24) 2015; 57 Lin (10.1016/j.vacuum.2021.110738_bib6) 2015; 143 Kerkhof (10.1016/j.vacuum.2021.110738_bib29) 2020; 8 Van (10.1016/j.vacuum.2021.110738_bib28) 2018; 123 Beckers (10.1016/j.vacuum.2021.110738_bib14) 2019; 9 Fernández (10.1016/j.vacuum.2021.110738_bib17) 2017; 8 Imazono (10.1016/j.vacuum.2021.110738_bib8) 2017; 56 Liao (10.1016/j.vacuum.2021.110738_bib2) 2019; 7 Mertins (10.1016/j.vacuum.2021.110738_bib7) 1998; 37 Chen (10.1016/j.vacuum.2021.110738_bib22) 2011; 22 Dolgov (10.1016/j.vacuum.2021.110738_bib11) 2013; 47 Kerkhof (10.1016/j.vacuum.2021.110738_bib13) 2020; 7 Cuxart (10.1016/j.vacuum.2021.110738_bib19) 2015; 81 Fernández (10.1016/j.vacuum.2021.110738_bib10) 2017; 8 Heya (10.1016/j.vacuum.2021.110738_bib26) 2020; 33 Morgan (10.1016/j.vacuum.2021.110738_bib20) 2010; 7636 Akio (10.1016/j.vacuum.2021.110738_bib15) 2015; 22 Graham (10.1016/j.vacuum.2021.110738_bib25) 2003; 56 Bewilogua (10.1016/j.vacuum.2021.110738_bib31) 1993; 61 Strein (10.1016/j.vacuum.2021.110738_bib5) 2008; 17 |
References_xml | – volume: 22 start-page: 880 year: 2011 end-page: 897 ident: bib22 article-title: Carbon-induced extreme ultraviolet reflectance loss characterized using visible-light ellipsometry publication-title: Meas. Sci. Technol. – volume: 61 start-page: 144 year: 1993 end-page: 150 ident: bib31 article-title: Preparation of W-C:H coatings by reactive magnetron sputtering publication-title: Surf. Coating. Technol. – volume: 944 start-page: 124 year: 2015 end-page: 136 ident: bib4 article-title: Establishment of theoretical model and experimental equipment for researching on carbon contamination of EUV multi-layer mirror[C] publication-title: Proc. SPIE – volume: 9 start-page: 867 year: 2019 end-page: 878 ident: bib14 article-title: EUV-induced plasma: a peculiar phenomenon of a modern lithographic technology publication-title: Appl. Sci. – volume: 7636 start-page: 1 year: 2010 end-page: 10 ident: bib20 article-title: Removal of surface contamination from EUV mirrors using low-power downstream plasma cleaning publication-title: Proc. SPIE – volume: 23 start-page: 247 year: 2005 end-page: 251 ident: bib16 article-title: Cleaning of extreme ultraviolet lithography optics and masks using 13.5 nm and 172 nm radiation publication-title: J. Vacuum Sci. Technol. B Microelectron. Nanometer Struct. – volume: 37 start-page: 1873 year: 1998 end-page: 1882 ident: bib7 article-title: W/C, W/Ti, Ni/Ti, and Ni/V multilayers for the soft-X-ray range: experimental investigation with synchrotron radiation [J] publication-title: Appl. Opt. – volume: 7 start-page: 5 year: 2020 end-page: 12 ident: bib13 article-title: Particulate and molecular contamination control in EUV-induced H2-plasma in EUV lithographic scanner[C] systems contamination: prediction, control, and performance – volume: 8 start-page: 1293 year: 2017 end-page: 1298 ident: bib10 article-title: Characterization of carbon-contaminated B4C-coated optics after chemically selective cleaning with low-pressure RF plasma publication-title: Sci. Rep. – volume: 81 start-page: 533 year: 2015 end-page: 536 ident: bib19 article-title: RF plasma cleaning of optical surfaces: a study of cleaning rates on different carbon allotropes as a function of RF powers and distances publication-title: Appl. Surf. Sci. – volume: 25 start-page: 7 year: 2011 end-page: 12 ident: bib23 article-title: In situ ellipsometry study of atomic hydrogen etching of extreme ultraviolet induced carbon layers[J] publication-title: Appl. Surf. Sci. – volume: 33 start-page: 419 year: 2020 end-page: 426 ident: bib26 article-title: Removal of surface contamination by atomic hydrogen annealing publication-title: J. Photopolym. Sci. Technol. – volume: 22 start-page: 1359 year: 2015 end-page: 1363 ident: bib15 article-title: In situ removal of carbon contamination from a chromium-coated mirror: ideal optics to suppress higher-order harmonics in the carbon K‐edge region publication-title: J. Synchrotron Radiat. – volume: 143 start-page: 91 year: 2015 end-page: 101 ident: bib6 article-title: Making lithography work for the 7-nm node and beyond in overlay accuracy, resolution, defect, and cost publication-title: Microelectron. Eng. – volume: 39 start-page: 361 year: 2014 end-page: 369 ident: bib1 article-title: A new method to suppress high-order harmonics for a synchrotron radiation soft X-ray beam-line publication-title: Chin. Phys. C – volume: 12 start-page: 33 year: 2019 end-page: 39 ident: bib12 article-title: Numerical and experimental investigation of glow discharge cleaning on SSRF beamline[J] publication-title: Vacuum – volume: 20 start-page: 2 year: 2019 end-page: 19 ident: bib27 article-title: Removal of carbon contamination on oxidation-prone metal-coated mirrors using atomic hydrogen publication-title: AIP Conf. Proc. – volume: 7 start-page: 32 year: 2019 end-page: 41 ident: bib9 article-title: The mechanism study of mixed Ar/O2 plasma-cleaning treatment on niobium surface for work function improvement publication-title: Appl. Surf. Sci. – volume: 57 start-page: 110 year: 2015 end-page: 112 ident: bib24 article-title: Transportation of hydrogen radicals for cleaning extreme ultraviolet lithography optics publication-title: Thin Solid Films – volume: 74 start-page: 300 year: 2014 end-page: 314 ident: bib21 article-title: Characterization, optimization and surface physics aspects of in situ plasma mirror cleaning publication-title: J. Synchrotron Radiat. – volume: 7 start-page: 102 year: 2019 end-page: 109 ident: bib2 article-title: Performance testing of an x-ray telescope prototype at Shanghai Synchrotron Radiation Facility publication-title: J. Astronomical Telesc. Instrum. Syst. – volume: 56 start-page: 460 year: 2003 end-page: 469 ident: bib25 article-title: Atomic hydrogen cleaning of EUV multilayer optics [C] publication-title: Proc. SPIE – volume: 66 start-page: 184 year: 2011 end-page: 189 ident: bib18 article-title: Plasma cleaning of multilayer mirrors in EUV lithography from amorphous carbon contaminations publication-title: Moscow Univ. Phys. Bull. – volume: 84 start-page: 46 year: 2017 end-page: 55 ident: bib3 article-title: Performance of the HERMES beamline at the carbon K-edge publication-title: J. Phys. Conf. – volume: 8 start-page: 156 year: 2020 end-page: 161 ident: bib29 article-title: Understanding EUV-induced plasma and application to particle contamination control in EUV scanners[C] Extreme Ultraviolet (EUV) Lithography XI – volume: 17 start-page: 1011 year: 2008 end-page: 1015 ident: bib5 article-title: Eliminating carbon contamination on oxidized si surfaces using a vuvexcimer-lamp publication-title: Thin Solid Films – volume: 9 start-page: 1820 year: 1994 end-page: 1828 ident: bib32 article-title: Deposition process and characterization of chromium-carbon coatings produced by direct sputtering of a magnetron chromium carbide target publication-title: J. Mater. Res. – volume: 123 year: 2018 ident: bib28 article-title: Ion energy distributions in highly transient EUV induced plasma in hydrogen publication-title: J. Appl. Phys. – volume: 56 start-page: 5824 year: 2017 end-page: 5830 ident: bib8 article-title: Multilayer-coated photodiode-based beam intensity monitor for polarization analysis of plasma soft X-ray laser publication-title: Appl. Opt. – volume: 61 start-page: 96 year: 2016 end-page: 100 ident: bib30 article-title: Mechanism and model of atomic hydrogen cleaning for different types of carbon contamination on extreme ultraviolet multilayers publication-title: Thin Solid Films – volume: 47 start-page: 65205 year: 2013 end-page: 65213 ident: bib11 article-title: Comparison of H2 and He carbon cleaning mechanisms in extreme ultraviolet induced and surface wave discharge plasmas publication-title: J. Phys. D Appl. Phys. – volume: 8 start-page: 1293 year: 2017 end-page: 1298 ident: bib17 article-title: Characterization of carbon-contaminated B4C-coated optics after chemically selective cleaning with low-pressure RF plasma publication-title: Sci. Rep. – volume: 23 start-page: 247 issue: 1 year: 2005 ident: 10.1016/j.vacuum.2021.110738_bib16 article-title: Cleaning of extreme ultraviolet lithography optics and masks using 13.5 nm and 172 nm radiation publication-title: J. Vacuum Sci. Technol. B Microelectron. Nanometer Struct. doi: 10.1116/1.1849220 – volume: 9 start-page: 1820 issue: 7 year: 1994 ident: 10.1016/j.vacuum.2021.110738_bib32 article-title: Deposition process and characterization of chromium-carbon coatings produced by direct sputtering of a magnetron chromium carbide target publication-title: J. Mater. Res. doi: 10.1557/JMR.1994.1820 – volume: 8 start-page: 1293 issue: 1 year: 2017 ident: 10.1016/j.vacuum.2021.110738_bib10 article-title: Characterization of carbon-contaminated B4C-coated optics after chemically selective cleaning with low-pressure RF plasma publication-title: Sci. Rep. doi: 10.1038/s41598-018-19273-6 – volume: 37 start-page: 1873 issue: 10 year: 1998 ident: 10.1016/j.vacuum.2021.110738_bib7 article-title: W/C, W/Ti, Ni/Ti, and Ni/V multilayers for the soft-X-ray range: experimental investigation with synchrotron radiation [J] publication-title: Appl. Opt. doi: 10.1364/AO.37.001873 – volume: 81 start-page: 533 issue: 7 year: 2015 ident: 10.1016/j.vacuum.2021.110738_bib19 article-title: RF plasma cleaning of optical surfaces: a study of cleaning rates on different carbon allotropes as a function of RF powers and distances publication-title: Appl. Surf. Sci. – volume: 74 start-page: 300 issue: 21 year: 2014 ident: 10.1016/j.vacuum.2021.110738_bib21 article-title: Characterization, optimization and surface physics aspects of in situ plasma mirror cleaning publication-title: J. Synchrotron Radiat. doi: 10.1107/S1600577513032402 – volume: 7 start-page: 32 issue: 2 year: 2019 ident: 10.1016/j.vacuum.2021.110738_bib9 article-title: The mechanism study of mixed Ar/O2 plasma-cleaning treatment on niobium surface for work function improvement publication-title: Appl. Surf. Sci. – volume: 61 start-page: 144 issue: 1–3 year: 1993 ident: 10.1016/j.vacuum.2021.110738_bib31 article-title: Preparation of W-C:H coatings by reactive magnetron sputtering publication-title: Surf. Coating. Technol. doi: 10.1016/0257-8972(93)90217-C – volume: 8 start-page: 156 year: 2020 ident: 10.1016/j.vacuum.2021.110738_bib29 – volume: 56 start-page: 460 issue: 37 year: 2003 ident: 10.1016/j.vacuum.2021.110738_bib25 article-title: Atomic hydrogen cleaning of EUV multilayer optics [C] publication-title: Proc. SPIE doi: 10.1117/12.499373 – volume: 944 start-page: 124 issue: 6 year: 2015 ident: 10.1016/j.vacuum.2021.110738_bib4 article-title: Establishment of theoretical model and experimental equipment for researching on carbon contamination of EUV multi-layer mirror[C] publication-title: Proc. SPIE – volume: 9 start-page: 867 issue: 14 year: 2019 ident: 10.1016/j.vacuum.2021.110738_bib14 article-title: EUV-induced plasma: a peculiar phenomenon of a modern lithographic technology publication-title: Appl. Sci. doi: 10.3390/app9142827 – volume: 12 start-page: 33 issue: 6 year: 2019 ident: 10.1016/j.vacuum.2021.110738_bib12 article-title: Numerical and experimental investigation of glow discharge cleaning on SSRF beamline[J] publication-title: Vacuum – volume: 17 start-page: 1011 issue: 5 year: 2008 ident: 10.1016/j.vacuum.2021.110738_bib5 article-title: Eliminating carbon contamination on oxidized si surfaces using a vuvexcimer-lamp publication-title: Thin Solid Films doi: 10.1016/j.tsf.2008.06.046 – volume: 56 start-page: 5824 issue: 21 year: 2017 ident: 10.1016/j.vacuum.2021.110738_bib8 article-title: Multilayer-coated photodiode-based beam intensity monitor for polarization analysis of plasma soft X-ray laser publication-title: Appl. Opt. doi: 10.1364/AO.56.005824 – volume: 123 issue: 6 year: 2018 ident: 10.1016/j.vacuum.2021.110738_bib28 article-title: Ion energy distributions in highly transient EUV induced plasma in hydrogen publication-title: J. Appl. Phys. – volume: 7 start-page: 5 issue: 14 year: 2020 ident: 10.1016/j.vacuum.2021.110738_bib13 article-title: Particulate and molecular contamination control in EUV-induced H2-plasma in EUV lithographic scanner[C] systems contamination: prediction, control, and performance – volume: 143 start-page: 91 issue: 5 year: 2015 ident: 10.1016/j.vacuum.2021.110738_bib6 article-title: Making lithography work for the 7-nm node and beyond in overlay accuracy, resolution, defect, and cost publication-title: Microelectron. Eng. doi: 10.1016/j.mee.2015.04.033 – volume: 39 start-page: 361 issue: 4 year: 2014 ident: 10.1016/j.vacuum.2021.110738_bib1 article-title: A new method to suppress high-order harmonics for a synchrotron radiation soft X-ray beam-line publication-title: Chin. Phys. C – volume: 47 start-page: 65205 issue: 6 year: 2013 ident: 10.1016/j.vacuum.2021.110738_bib11 article-title: Comparison of H2 and He carbon cleaning mechanisms in extreme ultraviolet induced and surface wave discharge plasmas publication-title: J. Phys. D Appl. Phys. doi: 10.1088/0022-3727/47/6/065205 – volume: 66 start-page: 184 issue: 2 year: 2011 ident: 10.1016/j.vacuum.2021.110738_bib18 article-title: Plasma cleaning of multilayer mirrors in EUV lithography from amorphous carbon contaminations publication-title: Moscow Univ. Phys. Bull. doi: 10.3103/S0027134911020111 – volume: 22 start-page: 880 issue: 8 year: 2011 ident: 10.1016/j.vacuum.2021.110738_bib22 article-title: Carbon-induced extreme ultraviolet reflectance loss characterized using visible-light ellipsometry publication-title: Meas. Sci. Technol. – volume: 22 start-page: 1359 issue: 6 year: 2015 ident: 10.1016/j.vacuum.2021.110738_bib15 article-title: In situ removal of carbon contamination from a chromium-coated mirror: ideal optics to suppress higher-order harmonics in the carbon K‐edge region publication-title: J. Synchrotron Radiat. doi: 10.1107/S1600577515015040 – volume: 7 start-page: 102 issue: 5 year: 2019 ident: 10.1016/j.vacuum.2021.110738_bib2 article-title: Performance testing of an x-ray telescope prototype at Shanghai Synchrotron Radiation Facility publication-title: J. Astronomical Telesc. Instrum. Syst. – volume: 84 start-page: 46 issue: 9 year: 2017 ident: 10.1016/j.vacuum.2021.110738_bib3 article-title: Performance of the HERMES beamline at the carbon K-edge publication-title: J. Phys. Conf. – volume: 8 start-page: 1293 issue: 1 year: 2017 ident: 10.1016/j.vacuum.2021.110738_bib17 article-title: Characterization of carbon-contaminated B4C-coated optics after chemically selective cleaning with low-pressure RF plasma publication-title: Sci. Rep. doi: 10.1038/s41598-018-19273-6 – volume: 25 start-page: 7 issue: 8 year: 2011 ident: 10.1016/j.vacuum.2021.110738_bib23 article-title: In situ ellipsometry study of atomic hydrogen etching of extreme ultraviolet induced carbon layers[J] publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2011.07.121 – volume: 20 start-page: 2 issue: 4 year: 2019 ident: 10.1016/j.vacuum.2021.110738_bib27 article-title: Removal of carbon contamination on oxidation-prone metal-coated mirrors using atomic hydrogen publication-title: AIP Conf. Proc. – volume: 33 start-page: 419 issue: 4 year: 2020 ident: 10.1016/j.vacuum.2021.110738_bib26 article-title: Removal of surface contamination by atomic hydrogen annealing publication-title: J. Photopolym. Sci. Technol. doi: 10.2494/photopolymer.33.419 – volume: 57 start-page: 110 issue: 5 year: 2015 ident: 10.1016/j.vacuum.2021.110738_bib24 article-title: Transportation of hydrogen radicals for cleaning extreme ultraviolet lithography optics publication-title: Thin Solid Films doi: 10.1016/j.tsf.2014.10.030 – volume: 61 start-page: 96 issue: 2 year: 2016 ident: 10.1016/j.vacuum.2021.110738_bib30 article-title: Mechanism and model of atomic hydrogen cleaning for different types of carbon contamination on extreme ultraviolet multilayers publication-title: Thin Solid Films doi: 10.1016/j.tsf.2016.06.002 – volume: 7636 start-page: 1 issue: 2 year: 2010 ident: 10.1016/j.vacuum.2021.110738_bib20 article-title: Removal of surface contamination from EUV mirrors using low-power downstream plasma cleaning publication-title: Proc. SPIE |
SSID | ssj0002608 |
Score | 2.3765113 |
Snippet | Mo/Si multilayers are widely used in synchrotron radiation beam-lines and extreme ultraviolet lithography machines. With the increasing power of light source,... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 110738 |
SubjectTerms | Atomic hydrogen cleaning Carbon contamination on multilayers Cleaning mechanism Extreme ultraviolet lithography Synchrotron radiation |
Title | Study on the characteristics of atomic hydrogen cleaning carbon contamination on multilayers |
URI | https://dx.doi.org/10.1016/j.vacuum.2021.110738 |
Volume | 196 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5FEbz4qIr1UXLwGruPdJMeS7FUhZ4s9CAseWywUndLH0Iv_nZn9lEtiILXJROWyWTyze73TQi58azWkREBw19SjAslmPK1ZSo0vtRJhG20kG0xjAYj_jBuj2ukV2lhkFZZ5v4ip-fZunzSKr3Zmk0mqPHlQeCJMRQtXiQ5ivg4Fxjltx9fNA_A63IjQ4HRlXwu53i9K7NaoR498JEPn6tUfjqevh05_SNyUGJF2i1e55jUkrRODkvcSMtduaiTvZzGaRYn5BlpgWuapRRwHTXbzZhp5iiU2G8TQ1_Wdp5B6FCYV-GXEWrUXIMZMtcVsmNwvXCenHA4VQjMT8mof_fUG7Dy_gRmQhEsGVeJkR2t2oFxxle-FU4Jz0FZ6gCXKSGMdHCCAwLhoY40FMNGtgH-Wec5GagkPCM7aZYm54RawEnOYt8oIznXQkmo2yyM9ENpO8pvkLByW2zK5uJ4x8U0rlhkr3Hh7BidHRfObhC2sZoVzTX-GC-qFYm3giSG_P-r5cW_LS_JfoCKh5yofUV2lvNVcg04ZKmbeaA1yW73_nEw_AQd4N5f |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB58IHrxLdZnDl7X7iPdpEcRS3311EIPwpLHBiu1K7UVevG3O7OPqiAKXpdMWCaTzDe73zcBOPOt1rERoUe_pDwulPBUoK2nIhNIncbURovYFp243eM3_UZ_AS4rLQzRKsuzvzjT89O6fFIvvVl_GQxI48vD0Bd9LFr8WPLmIixz3L50jcH5-yfPAwG7nOtQcHiln8tJXm_KTKckSA8DIsTnMpWf8tOXnNPahPUSLLKL4n22YCEdbcNGCRxZuS1ft2El53Ga1x14IF7gjGUjhsCOme_dmFnmGNbYzwPDHmd2nGHsMJxX0acRZtRYoxlR1xXRY2jBaJ6ccThUhMx3ode66l62vfICBc9EIpx4XKVGNrVqhMaZQAVWOCV8h3WpQ2CmhDDSYQpHCMIjHWusho1sIP6zzncyVGm0B0ujbJTuA7MIlJylxlFGcq6Fkli4WRwZRNI2VVCDqHJbYsru4nTJxTCpaGRPSeHshJydFM6ugTe3eim6a_wxXlQrknyLkgQTwK-WB_-2PIXVdvf-Lrm77twewlpI8oectX0ES5PxND1GUDLRJ3nQfQBNi9_t |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Study+on+the+characteristics+of+atomic+hydrogen+cleaning+carbon+contamination+on+multilayers&rft.jtitle=Vacuum&rft.au=Song%2C+Yuan&rft.au=Lu%2C+Qipeng&rft.au=Gong%2C+Xuepeng&rft.au=Wang%2C+Dazhuang&rft.date=2022-02-01&rft.issn=0042-207X&rft.volume=196&rft.spage=110738&rft_id=info:doi/10.1016%2Fj.vacuum.2021.110738&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_vacuum_2021_110738 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0042-207X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0042-207X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0042-207X&client=summon |