Fading memory and kernel properties of generic cortical microcircuit models

It is quite difficult to construct circuits of spiking neurons that can carry out complex computational tasks. On the other hand even randomly connected circuits of spiking neurons can in principle be used for complex computational tasks such as time-warp invariant speech recognition. This is possib...

Full description

Saved in:
Bibliographic Details
Published inJournal of physiology, Paris Vol. 98; no. 4; pp. 315 - 330
Main Authors Maass, Wolfgang, Natschläger, Thomas, Markram, Henry
Format Journal Article
LanguageEnglish
Published France Elsevier Ltd 01.07.2004
Subjects
Online AccessGet full text
ISSN0928-4257
1769-7115
DOI10.1016/j.jphysparis.2005.09.020

Cover

Loading…
Abstract It is quite difficult to construct circuits of spiking neurons that can carry out complex computational tasks. On the other hand even randomly connected circuits of spiking neurons can in principle be used for complex computational tasks such as time-warp invariant speech recognition. This is possible because such circuits have an inherent tendency to integrate incoming information in such a way that simple linear readouts can be trained to transform the current circuit activity into the target output for a very large number of computational tasks. Consequently we propose to analyze circuits of spiking neurons in terms of their roles as analog fading memory and non-linear kernels, rather than as implementations of specific computational operations and algorithms. This article is a sequel to [W. Maass, T. Natschläger, H. Markram, Real-time computing without stable states: a new framework for neural computation based on perturbations, Neural Comput. 14 (11) (2002) 2531–2560, Online available as #130 from: <http://www.igi.tugraz.at/maass/publications.html>], and contains new results about the performance of generic neural microcircuit models for the recognition of speech that is subject to linear and non-linear time-warps, as well as for computations on time-varying firing rates. These computations rely, apart from general properties of generic neural microcircuit models, just on capabilities of simple linear readouts trained by linear regression. This article also provides detailed data on the fading memory property of generic neural microcircuit models, and a quick review of other new results on the computational power of such circuits of spiking neurons.
AbstractList It is quite difficult to construct circuits of spiking neurons that can carry out complex computational tasks. On the other hand even randomly connected circuits of spiking neurons can in principle be used for complex computational tasks such as time-warp invariant speech recognition. This is possible because such circuits have an inherent tendency to integrate incoming information in such a way that simple linear readouts can be trained to transform the current circuit activity into the target output for a very large number of computational tasks. Consequently we propose to analyze circuits of spiking neurons in terms of their roles as analog fading memory and non-linear kernels, rather than as implementations of specific computational operations and algorithms. This article is a sequel to [W. Maass, T. Natschläger, H. Markram, Real-time computing without stable states: a new framework for neural computation based on perturbations, Neural Comput. 14 (11) (2002) 2531-2560, Online available as #130 from: ], and contains new results about the performance of generic neural microcircuit models for the recognition of speech that is subject to linear and non-linear time-warps, as well as for computations on time-varying firing rates. These computations rely, apart from general properties of generic neural microcircuit models, just on capabilities of simple linear readouts trained by linear regression. This article also provides detailed data on the fading memory property of generic neural microcircuit models, and a quick review of other new results on the computational power of such circuits of spiking neurons.It is quite difficult to construct circuits of spiking neurons that can carry out complex computational tasks. On the other hand even randomly connected circuits of spiking neurons can in principle be used for complex computational tasks such as time-warp invariant speech recognition. This is possible because such circuits have an inherent tendency to integrate incoming information in such a way that simple linear readouts can be trained to transform the current circuit activity into the target output for a very large number of computational tasks. Consequently we propose to analyze circuits of spiking neurons in terms of their roles as analog fading memory and non-linear kernels, rather than as implementations of specific computational operations and algorithms. This article is a sequel to [W. Maass, T. Natschläger, H. Markram, Real-time computing without stable states: a new framework for neural computation based on perturbations, Neural Comput. 14 (11) (2002) 2531-2560, Online available as #130 from: ], and contains new results about the performance of generic neural microcircuit models for the recognition of speech that is subject to linear and non-linear time-warps, as well as for computations on time-varying firing rates. These computations rely, apart from general properties of generic neural microcircuit models, just on capabilities of simple linear readouts trained by linear regression. This article also provides detailed data on the fading memory property of generic neural microcircuit models, and a quick review of other new results on the computational power of such circuits of spiking neurons.
It is quite difficult to construct circuits of spiking neurons that can carry out complex computational tasks. On the other hand even randomly connected circuits of spiking neurons can in principle be used for complex computational tasks such as time-warp invariant speech recognition. This is possible because such circuits have an inherent tendency to integrate incoming information in such a way that simple linear readouts can be trained to transform the current circuit activity into the target output for a very large number of computational tasks. Consequently we propose to analyze circuits of spiking neurons in terms of their roles as analog fading memory and non-linear kernels, rather than as implementations of specific computational operations and algorithms. This article is a sequel to [W. Maass, T. Natschläger, H. Markram, Real-time computing without stable states: a new framework for neural computation based on perturbations, Neural Comput. 14 (11) (2002) 2531–2560, Online available as #130 from: <http://www.igi.tugraz.at/maass/publications.html>], and contains new results about the performance of generic neural microcircuit models for the recognition of speech that is subject to linear and non-linear time-warps, as well as for computations on time-varying firing rates. These computations rely, apart from general properties of generic neural microcircuit models, just on capabilities of simple linear readouts trained by linear regression. This article also provides detailed data on the fading memory property of generic neural microcircuit models, and a quick review of other new results on the computational power of such circuits of spiking neurons.
It is quite difficult to construct circuits of spiking neurons that can carry out complex computational tasks. On the other hand even randomly connected circuits of spiking neurons can in principle be used for complex computational tasks such as time-warp invariant speech recognition. This is possible because such circuits have an inherent tendency to integrate incoming information in such a way that simple linear readouts can be trained to transform the current circuit activity into the target output for a very large number of computational tasks. Consequently we propose to analyze circuits of spiking neurons in terms of their roles as analog fading memory and non-linear kernels, rather than as implementations of specific computational operations and algorithms. This article is a sequel to [W. Maass, T. Natschläger, H. Markram, Real-time computing without stable states: a new framework for neural computation based on perturbations, Neural Comput. 14 (11) (2002) 2531-2560, Online available as #130 from: ], and contains new results about the performance of generic neural microcircuit models for the recognition of speech that is subject to linear and non-linear time-warps, as well as for computations on time-varying firing rates. These computations rely, apart from general properties of generic neural microcircuit models, just on capabilities of simple linear readouts trained by linear regression. This article also provides detailed data on the fading memory property of generic neural microcircuit models, and a quick review of other new results on the computational power of such circuits of spiking neurons.
Author Markram, Henry
Maass, Wolfgang
Natschläger, Thomas
Author_xml – sequence: 1
  givenname: Wolfgang
  surname: Maass
  fullname: Maass, Wolfgang
  email: maass@igi.tugraz.at
  organization: Institute for Theoretical Computer Science, Technische Universitaet Graz, A-8010 Graz, Austria
– sequence: 2
  givenname: Thomas
  surname: Natschläger
  fullname: Natschläger, Thomas
  email: thomas.natschlaeger@scch.at
  organization: Institute for Theoretical Computer Science, Technische Universitaet Graz, A-8010 Graz, Austria
– sequence: 3
  givenname: Henry
  surname: Markram
  fullname: Markram, Henry
  email: henry.markram@epfl.ch
  organization: Brain Mind Institute, EPFL, Lausanne, Switzerland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/16310350$$D View this record in MEDLINE/PubMed
BookMark eNqFkEFP3DAQhS0EgmXbv1D51FvC2E7i-FKpRUBRkbjA2XLsCfWS2KmdRdp_T9BuqdQLp5FG772Z952T4xADEkIZlAxYc7EpN9PvXZ5M8rnkAHUJqgQOR2TFZKMKyVh9TFageFtUvJZn5DznDQCwqm1PyRlrBANRw4r8ujbOhyc64hjTjprg6DOmgAOdUpwwzR4zjT19woDJW2rjsrJmoKO3KVqf7NbPdIwOh_yJnPRmyPj5MNfk8frq4fJncXd_c3v5_a6wQvK5qFrHa4HQtNJxIbpKVMj7VgrkgslaKdUZw410Pa8QJbS9VCAddL1SNesasSZf97nLi3-2mGc9-mxxGEzAuM26kVw1tZKL8MtBuO1GdHpKfjRpp__WXwTf9oKlS84Je239bGYfw5yMHzQD_cZbb_Q_3vqNtwalF95LQPtfwPuNj60_9taFHL54TDpbj8Gi8wntrF30H4e8AmOkoXQ
CitedBy_id crossref_primary_10_1109_TNN_2011_2134109
crossref_primary_10_1152_jn_00708_2010
crossref_primary_10_1016_j_neucom_2016_11_045
crossref_primary_10_1016_j_neunet_2018_07_003
crossref_primary_10_1016_j_compchemeng_2020_106730
crossref_primary_10_1152_jn_01357_2006
crossref_primary_10_55708_js0211001
crossref_primary_10_1371_journal_pcbi_1000180
crossref_primary_10_1371_journal_pcbi_1006781
crossref_primary_10_1016_j_cobeha_2016_06_003
crossref_primary_10_1088_1674_4926_42_2_023105
crossref_primary_10_7554_eLife_63751
crossref_primary_10_1016_j_neunet_2018_08_025
crossref_primary_10_1113_jphysiol_2007_146597
crossref_primary_10_1016_j_neunet_2019_03_005
crossref_primary_10_1038_nrn2558
crossref_primary_10_1002_adfm_202500782
crossref_primary_10_1088_1361_6544_ace492
crossref_primary_10_1016_j_neucom_2007_12_020
crossref_primary_10_1371_journal_pcbi_0020165
crossref_primary_10_3389_fdata_2022_787421
crossref_primary_10_3390_e22090928
crossref_primary_10_1098_rstb_2018_0377
crossref_primary_10_1016_j_conb_2014_01_010
crossref_primary_10_1016_j_neuron_2018_03_045
crossref_primary_10_1109_TNNLS_2021_3076777
crossref_primary_10_1371_journal_pcbi_1002985
crossref_primary_10_1109_TNN_2010_2089641
crossref_primary_10_4018_jncr_2011100101
crossref_primary_10_1038_s41467_024_44856_5
crossref_primary_10_1002_wdev_306
crossref_primary_10_1016_j_neunet_2007_04_017
crossref_primary_10_1088_2634_4386_ac7db7
crossref_primary_10_1038_s41598_023_43923_z
crossref_primary_10_1109_LED_2023_3335142
crossref_primary_10_1371_journal_pcbi_1009246
crossref_primary_10_1007_s10827_009_0176_0
crossref_primary_10_1016_j_asoc_2022_109645
crossref_primary_10_3389_fncom_2019_00079
Cites_doi 10.1523/JNEUROSCI.12-04-01301.1992
10.1162/089976600300015123
10.1523/JNEUROSCI.12-04-01280.1992
10.1162/089976602760407955
10.1162/0899766054026684
10.1126/science.1091277
10.1146/annurev.neuro.23.1.613
10.1016/S0893-6080(01)00144-7
10.1073/pnas.250483697
10.1111/j.1469-7793.1998.00523.x
10.1073/pnas.031567098
10.1038/333367a0
10.1073/pnas.95.9.5323
10.1162/0899766054796888
10.1016/j.neunet.2005.06.047
10.1002/(SICI)1097-4695(199910)41:1<69::AID-NEU10>3.0.CO;2-1
10.1093/cercor/bhj132
10.1007/978-3-540-39432-7_63
10.1126/science.7863330
10.1126/science.287.5451.273
10.1162/089976604323057443
ContentType Journal Article
Copyright 2005
Copyright_xml – notice: 2005
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.jphysparis.2005.09.020
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1769-7115
EndPage 330
ExternalDocumentID 16310350
10_1016_j_jphysparis_2005_09_020
S0928425705000215
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.GJ
.~1
0R~
1B1
1RT
1~.
1~5
29L
3O-
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AACTN
AADPK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABCQJ
ABGSF
ABLJU
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGWIK
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HMQ
HVGLF
HZ~
IHE
J1W
KOM
LX3
M2V
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SBG
SDF
SDG
SES
SEW
SNS
SSN
SSU
SSZ
T5K
WUQ
ZA5
ZXP
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
CITATION
SSH
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
ID FETCH-LOGICAL-c372t-48d253e0687d233b434e2f873e23175999baa2a7df24ee708f7907d0bf9951b63
IEDL.DBID .~1
ISSN 0928-4257
IngestDate Thu Sep 04 16:08:47 EDT 2025
Thu Jul 24 07:32:27 EDT 2025
Tue Jul 01 01:18:26 EDT 2025
Thu Apr 24 23:11:18 EDT 2025
Fri Feb 23 02:16:48 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Spiking neurons
Non-linear kernels
Computational power
Neural circuits
Computational models
Linear regression
Analog memory
Speech processing
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-48d253e0687d233b434e2f873e23175999baa2a7df24ee708f7907d0bf9951b63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 16310350
PQID 67296597
PQPubID 23479
PageCount 16
ParticipantIDs proquest_miscellaneous_67296597
pubmed_primary_16310350
crossref_citationtrail_10_1016_j_jphysparis_2005_09_020
crossref_primary_10_1016_j_jphysparis_2005_09_020
elsevier_sciencedirect_doi_10_1016_j_jphysparis_2005_09_020
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2004-07-01
PublicationDateYYYYMMDD 2004-07-01
PublicationDate_xml – month: 07
  year: 2004
  text: 2004-07-01
  day: 01
PublicationDecade 2000
PublicationPlace France
PublicationPlace_xml – name: France
PublicationTitle Journal of physiology, Paris
PublicationTitleAlternate J Physiol Paris
PublicationYear 2004
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Bertschinger, Natschläger (bib2) 2004; 16
Hopfield, Brody (bib16) 2000; 97
Rosenblatt (bib37) 1962
Maass, Legenstein, Bertschinger (bib27) 2005; vol. 17
Schölkopf, Smola (bib39) 2002
Mallot (bib33) 2000
C. Fernando, S. Sojakka, Pattern recognition in a bucket: a real liquid brain, in: Proceedings of ECAL, 2003, Online available from
Legenstein, Markram, Maass (bib24) 2003; 14
Auer, Burgsteiner, Maass (bib1) 2002; vol. 2415
Maass, Markram (bib30) 2005
Douglas, Markram, Martin (bib6) 2002
Haykin (bib14) 1999
Jäger, Haas (bib20) 2004; 304
Häusler, Markram, Maass (bib13) 2003; 8
Debanne, Shulz, Fregnac (bib4) 1998; 508
Legenstein, Näger, Maass (bib25) 2005; 17
Jäger (bib19) 2003
H. Jäger, Short term memory in echo state networks, GMD Report 152, German National Research Center for Information Technology, 2002.
A. Kaske, W. Maass, A model for the interaction of oscillations and pattern generation with real-time computing in generic neural microcircuit models, Neural Networks, in press, 2005, Online available as #156 from
S. Häusler, W. Maass, A statistical analysis of information processing properties of lamina-specific cortical microcircuit models, submitted for publication, 2005, Online available as #162 from
J. Hopfield, C. Brody, The Mus silicium (sonoran desert sand mouse) web page, Base
Maass, Legenstein, Markram (bib28) 2002; vol. 2525
Shulz, Fregnac (bib40) 1992; 12
Soare (bib41) 1987
Markram, Wang, Tsodyks (bib34) 1998; 95
Joshi, Maass (bib21) 2005; 17
Natschläger, Markram, Maass (bib35) 2003
Buonomano, Merzenich (bib3) 1995; 267
Scores: Base
Maass, Sontag (bib32) 2000; 12
Vapnik (bib43) 1998
W. Maass, P. Joshi, E.D. Sontag, Principles of real-time computing with feedback applied to cortical microcircuit models, in: Advances in Neural Information Processing Systems, vol. 18, MIT Press, 2006, to appear. Online available as #164 from
Fregnac, Shulz (bib10) 1999; 41
Maass, Natschläger, Markram (bib31) 2002; 14
Koch (bib23) 1999
Maass, Markram (bib29) 2002; 15
.
A. Rene, M. Pananceau, N. Huguet, P. Bandot, Y. Fregnac, An in vivo generalization of spike-timing-dependent plasticity to multiple pairs of pre-/post-synaptic spikes in adult visual cortex, Poster at the Ladislav Tauc Conference in Neurobiology, Gif sur Yvette, December 2003.
Fregnac, Shulz, Thorpe, Bienenstock (bib8) 1988; 333
Savage (bib38) 1998
Dataset: Base
Gupta, Wang, Markram (bib11) 2000; 287
Hopfield, Brody (bib17) 2001; 98
deCharms, Zador (bib5) 2000; 23
Fregnac, Shulz, Thorpe, Bienenstock (bib9) 1992; 12
Turing (bib42) 1936; 2
10.1016/j.jphysparis.2005.09.020_bib22
10.1016/j.jphysparis.2005.09.020_bib26
Häusler (10.1016/j.jphysparis.2005.09.020_bib13) 2003; 8
Maass (10.1016/j.jphysparis.2005.09.020_bib28) 2002; vol. 2525
Mallot (10.1016/j.jphysparis.2005.09.020_bib33) 2000
Maass (10.1016/j.jphysparis.2005.09.020_bib31) 2002; 14
Jäger (10.1016/j.jphysparis.2005.09.020_bib20) 2004; 304
Turing (10.1016/j.jphysparis.2005.09.020_bib42) 1936; 2
Auer (10.1016/j.jphysparis.2005.09.020_bib1) 2002; vol. 2415
Debanne (10.1016/j.jphysparis.2005.09.020_bib4) 1998; 508
Legenstein (10.1016/j.jphysparis.2005.09.020_bib25) 2005; 17
Maass (10.1016/j.jphysparis.2005.09.020_bib29) 2002; 15
Maass (10.1016/j.jphysparis.2005.09.020_bib32) 2000; 12
Koch (10.1016/j.jphysparis.2005.09.020_bib23) 1999
Rosenblatt (10.1016/j.jphysparis.2005.09.020_bib37) 1962
Fregnac (10.1016/j.jphysparis.2005.09.020_bib9) 1992; 12
Bertschinger (10.1016/j.jphysparis.2005.09.020_bib2) 2004; 16
deCharms (10.1016/j.jphysparis.2005.09.020_bib5) 2000; 23
Shulz (10.1016/j.jphysparis.2005.09.020_bib40) 1992; 12
Gupta (10.1016/j.jphysparis.2005.09.020_bib11) 2000; 287
Soare (10.1016/j.jphysparis.2005.09.020_bib41) 1987
10.1016/j.jphysparis.2005.09.020_bib12
Natschläger (10.1016/j.jphysparis.2005.09.020_bib35) 2003
Hopfield (10.1016/j.jphysparis.2005.09.020_bib17) 2001; 98
Haykin (10.1016/j.jphysparis.2005.09.020_bib14) 1999
Maass (10.1016/j.jphysparis.2005.09.020_bib27) 2005; vol. 17
Buonomano (10.1016/j.jphysparis.2005.09.020_bib3) 1995; 267
Fregnac (10.1016/j.jphysparis.2005.09.020_bib10) 1999; 41
10.1016/j.jphysparis.2005.09.020_bib15
Joshi (10.1016/j.jphysparis.2005.09.020_bib21) 2005; 17
10.1016/j.jphysparis.2005.09.020_bib36
Douglas (10.1016/j.jphysparis.2005.09.020_bib6) 2002
Savage (10.1016/j.jphysparis.2005.09.020_bib38) 1998
Maass (10.1016/j.jphysparis.2005.09.020_bib30) 2005
10.1016/j.jphysparis.2005.09.020_bib18
Markram (10.1016/j.jphysparis.2005.09.020_bib34) 1998; 95
Jäger (10.1016/j.jphysparis.2005.09.020_bib19) 2003
Schölkopf (10.1016/j.jphysparis.2005.09.020_bib39) 2002
Hopfield (10.1016/j.jphysparis.2005.09.020_bib16) 2000; 97
Legenstein (10.1016/j.jphysparis.2005.09.020_bib24) 2003; 14
10.1016/j.jphysparis.2005.09.020_bib7
Fregnac (10.1016/j.jphysparis.2005.09.020_bib8) 1988; 333
Vapnik (10.1016/j.jphysparis.2005.09.020_bib43) 1998
References_xml – start-page: 609
  year: 2003
  end-page: 616
  ident: bib19
  article-title: Adaptive nonlinear system identification with echo state networks
  publication-title: Advances in Neural Information Processing Systems 2002 (NIPS 2002)
– volume: 508
  start-page: 523
  year: 1998
  end-page: 548
  ident: bib4
  article-title: Activity-dependent regulation of “on” and “off” responses in cat visual cortical receptive fields
  publication-title: J. Physiol.
– reference: A. Kaske, W. Maass, A model for the interaction of oscillations and pattern generation with real-time computing in generic neural microcircuit models, Neural Networks, in press, 2005, Online available as #156 from:
– year: 1998
  ident: bib38
  article-title: Models of Computation: Exploring the Power of Computing
– volume: 12
  start-page: 1301
  year: 1992
  end-page: 1318
  ident: bib40
  article-title: Cellular analogs of visual cortical epigenesis. ii. Plasticity of binocular integration
  publication-title: J. Neurosci.
– volume: 287
  start-page: 273
  year: 2000
  end-page: 278
  ident: bib11
  article-title: Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex
  publication-title: Science
– volume: 17
  start-page: 1715
  year: 2005
  end-page: 1738
  ident: bib21
  article-title: Movement generation with circuits of spiking neurons
  publication-title: Neural Comput.
– year: 2000
  ident: bib33
  article-title: Computational Vision
– volume: 41
  start-page: 69
  year: 1999
  end-page: 82
  ident: bib10
  article-title: Activity-dependent regulation of receptive field properties of cat area 17 by supervised Hebbian learning
  publication-title: J. Neurobiol.
– volume: vol. 2525
  start-page: 282
  year: 2002
  end-page: 293
  ident: bib28
  article-title: A new approach towards vision suggested by biologically realistic neural microcircuit models
  publication-title: Proceedings of the 2nd International Workshop on Biologically Motivated Computer Vision 2002
– reference: J. Hopfield, C. Brody, The Mus silicium (sonoran desert sand mouse) web page, Base:
– reference: , Scores: Base+/
– volume: 16
  start-page: 1413
  year: 2004
  end-page: 1436
  ident: bib2
  article-title: Real-time computation at the edge of chaos in recurrent neural networks
  publication-title: Neural Comput.
– volume: 12
  start-page: 1280
  year: 1992
  end-page: 1300
  ident: bib9
  article-title: Cellular analogs of visual cortical epigenesis. i. Plasticity of orientation selectivity
  publication-title: J. Neurosci.
– year: 2005
  ident: bib30
  article-title: Theory of the computational function of microcircuit dynamics
  publication-title: Proceedings of the 2004 Dahlem Workshop on Microcircuits
– volume: 17
  start-page: 2337
  year: 2005
  end-page: 2382
  ident: bib25
  article-title: What can a neuron learn with spike-timing-dependent plasticity?
  publication-title: Neural Comput.
– volume: 14
  start-page: 2531
  year: 2002
  end-page: 2560
  ident: bib31
  article-title: Real-time computing without stable states: a new framework for neural computation based on perturbations
  publication-title: Neural Comput.
– reference: A. Rene, M. Pananceau, N. Huguet, P. Bandot, Y. Fregnac, An in vivo generalization of spike-timing-dependent plasticity to multiple pairs of pre-/post-synaptic spikes in adult visual cortex, Poster at the Ladislav Tauc Conference in Neurobiology, Gif sur Yvette, December 2003.
– start-page: 123
  year: 2003
  end-page: 138
  ident: bib35
  article-title: Computer models and analysis tools for neural microcircuits
  publication-title: Neuroscience Databases. A Practical Guide
– volume: 8
  start-page: 39
  year: 2003
  end-page: 50
  ident: bib13
  article-title: Perspectives of the high dimensional dynamics of neural microcircuits from the point of view of low dimensional readouts
  publication-title: Complexity (Special Issue on Complex Adaptive Systems)
– volume: 12
  start-page: 1743
  year: 2000
  end-page: 1772
  ident: bib32
  article-title: Neural systems as nonlinear filters
  publication-title: Neural Comput.
– year: 1987
  ident: bib41
  article-title: Recursively Enumerable Sets and Degrees: A Study of Computable Functions and Computably Generated Sets
– year: 1962
  ident: bib37
  article-title: Principles of Neurodynamics
– volume: vol. 17
  start-page: 865
  year: 2005
  end-page: 872
  ident: bib27
  article-title: Methods for estimating the computational power and generalization capability of neural microcircuits
  publication-title: Advances in Neural Information Processing Systems
– year: 1999
  ident: bib14
  article-title: Neural Networks: A Comprehensive Foundation
– volume: 14
  start-page: 5
  year: 2003
  end-page: 19
  ident: bib24
  article-title: Input prediction and autonomous movement analysis in recurrent circuits of spiking neurons
  publication-title: Rev. Neurosci. (Special Issue on Neuroinformatics of Neural and Artificial Computation)
– reference: H. Jäger, Short term memory in echo state networks, GMD Report 152, German National Research Center for Information Technology, 2002.
– reference: >.
– volume: 2
  start-page: 230
  year: 1936
  end-page: 265
  ident: bib42
  article-title: On computable numbers with an application to the Entscheidungs problem
  publication-title: Proc. London Math. Soc.
– volume: 267
  start-page: 1028
  year: 1995
  end-page: 1030
  ident: bib3
  article-title: Temporal information transformed into a spatial code by a neural network with realistic properties
  publication-title: Science
– year: 2002
  ident: bib6
  article-title: Neocortex
  publication-title: The Synaptic Organization of the Brain
– reference: , Dataset: Base+/
– volume: 98
  start-page: 1282
  year: 2001
  end-page: 1287
  ident: bib17
  article-title: What is a moment? Transient synchrony as a collective mechanism for spatiotemporal integration
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: vol. 2415
  start-page: 123
  year: 2002
  end-page: 128
  ident: bib1
  article-title: Reducing communication for distributed learning in neural networks
  publication-title: Proceedings of the International Conference on Artificial Neural Networks—ICANN 2002
– volume: 23
  start-page: 613
  year: 2000
  end-page: 647
  ident: bib5
  article-title: Neural representation and the cortical code
  publication-title: Ann. Rev. Neurosci.
– year: 2002
  ident: bib39
  article-title: Learning with Kernels
– reference: C. Fernando, S. Sojakka, Pattern recognition in a bucket: a real liquid brain, in: Proceedings of ECAL, 2003, Online available from:
– volume: 333
  start-page: 367
  year: 1988
  end-page: 370
  ident: bib8
  article-title: A cellular analogue of visual cortical plasticity
  publication-title: Nature
– volume: 15
  start-page: 155
  year: 2002
  end-page: 161
  ident: bib29
  article-title: Synapses as dynamic memory buffers
  publication-title: Neural Networks
– year: 1998
  ident: bib43
  article-title: Statistical Learning Theory
– reference: S. Häusler, W. Maass, A statistical analysis of information processing properties of lamina-specific cortical microcircuit models, submitted for publication, 2005, Online available as #162 from: <
– volume: 304
  start-page: 78
  year: 2004
  end-page: 80
  ident: bib20
  article-title: Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication
  publication-title: Science
– volume: 95
  start-page: 5323
  year: 1998
  end-page: 5328
  ident: bib34
  article-title: Differential signaling via the same axon of neocortical pyramidal neurons
  publication-title: Proc. Natl. Acad. Sci.
– year: 1999
  ident: bib23
  article-title: Biophysics of Computation
– volume: 97
  start-page: 13919
  year: 2000
  end-page: 13924
  ident: bib16
  article-title: What is a moment? “Cortical” sensory integration over a brief interval
  publication-title: Proc. Natl. Acad. Sci. USA
– reference: W. Maass, P. Joshi, E.D. Sontag, Principles of real-time computing with feedback applied to cortical microcircuit models, in: Advances in Neural Information Processing Systems, vol. 18, MIT Press, 2006, to appear. Online available as #164 from:
– reference: .
– year: 1987
  ident: 10.1016/j.jphysparis.2005.09.020_bib41
– volume: 12
  start-page: 1301
  issue: 4
  year: 1992
  ident: 10.1016/j.jphysparis.2005.09.020_bib40
  article-title: Cellular analogs of visual cortical epigenesis. ii. Plasticity of binocular integration
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.12-04-01301.1992
– year: 2002
  ident: 10.1016/j.jphysparis.2005.09.020_bib39
– volume: 12
  start-page: 1743
  issue: 8
  year: 2000
  ident: 10.1016/j.jphysparis.2005.09.020_bib32
  article-title: Neural systems as nonlinear filters
  publication-title: Neural Comput.
  doi: 10.1162/089976600300015123
– year: 1962
  ident: 10.1016/j.jphysparis.2005.09.020_bib37
– volume: 12
  start-page: 1280
  issue: 4
  year: 1992
  ident: 10.1016/j.jphysparis.2005.09.020_bib9
  article-title: Cellular analogs of visual cortical epigenesis. i. Plasticity of orientation selectivity
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.12-04-01280.1992
– year: 2005
  ident: 10.1016/j.jphysparis.2005.09.020_bib30
  article-title: Theory of the computational function of microcircuit dynamics
– volume: vol. 17
  start-page: 865
  year: 2005
  ident: 10.1016/j.jphysparis.2005.09.020_bib27
  article-title: Methods for estimating the computational power and generalization capability of neural microcircuits
– year: 2002
  ident: 10.1016/j.jphysparis.2005.09.020_bib6
  article-title: Neocortex
– ident: 10.1016/j.jphysparis.2005.09.020_bib18
– volume: 14
  start-page: 2531
  issue: 11
  year: 2002
  ident: 10.1016/j.jphysparis.2005.09.020_bib31
  article-title: Real-time computing without stable states: a new framework for neural computation based on perturbations
  publication-title: Neural Comput.
  doi: 10.1162/089976602760407955
– volume: 17
  start-page: 1715
  issue: 8
  year: 2005
  ident: 10.1016/j.jphysparis.2005.09.020_bib21
  article-title: Movement generation with circuits of spiking neurons
  publication-title: Neural Comput.
  doi: 10.1162/0899766054026684
– volume: 304
  start-page: 78
  year: 2004
  ident: 10.1016/j.jphysparis.2005.09.020_bib20
  article-title: Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication
  publication-title: Science
  doi: 10.1126/science.1091277
– volume: 14
  start-page: 5
  issue: 1–2
  year: 2003
  ident: 10.1016/j.jphysparis.2005.09.020_bib24
  article-title: Input prediction and autonomous movement analysis in recurrent circuits of spiking neurons
  publication-title: Rev. Neurosci. (Special Issue on Neuroinformatics of Neural and Artificial Computation)
– volume: 23
  start-page: 613
  year: 2000
  ident: 10.1016/j.jphysparis.2005.09.020_bib5
  article-title: Neural representation and the cortical code
  publication-title: Ann. Rev. Neurosci.
  doi: 10.1146/annurev.neuro.23.1.613
– volume: 15
  start-page: 155
  year: 2002
  ident: 10.1016/j.jphysparis.2005.09.020_bib29
  article-title: Synapses as dynamic memory buffers
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(01)00144-7
– start-page: 123
  year: 2003
  ident: 10.1016/j.jphysparis.2005.09.020_bib35
  article-title: Computer models and analysis tools for neural microcircuits
– volume: 97
  start-page: 13919
  issue: 25
  year: 2000
  ident: 10.1016/j.jphysparis.2005.09.020_bib16
  article-title: What is a moment? “Cortical” sensory integration over a brief interval
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.250483697
– volume: vol. 2525
  start-page: 282
  year: 2002
  ident: 10.1016/j.jphysparis.2005.09.020_bib28
  article-title: A new approach towards vision suggested by biologically realistic neural microcircuit models
– volume: 508
  start-page: 523
  year: 1998
  ident: 10.1016/j.jphysparis.2005.09.020_bib4
  article-title: Activity-dependent regulation of “on” and “off” responses in cat visual cortical receptive fields
  publication-title: J. Physiol.
  doi: 10.1111/j.1469-7793.1998.00523.x
– volume: 98
  start-page: 1282
  issue: 3
  year: 2001
  ident: 10.1016/j.jphysparis.2005.09.020_bib17
  article-title: What is a moment? Transient synchrony as a collective mechanism for spatiotemporal integration
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.031567098
– year: 1998
  ident: 10.1016/j.jphysparis.2005.09.020_bib38
– volume: 333
  start-page: 367
  issue: 6171
  year: 1988
  ident: 10.1016/j.jphysparis.2005.09.020_bib8
  article-title: A cellular analogue of visual cortical plasticity
  publication-title: Nature
  doi: 10.1038/333367a0
– ident: 10.1016/j.jphysparis.2005.09.020_bib36
– year: 1998
  ident: 10.1016/j.jphysparis.2005.09.020_bib43
– volume: 95
  start-page: 5323
  year: 1998
  ident: 10.1016/j.jphysparis.2005.09.020_bib34
  article-title: Differential signaling via the same axon of neocortical pyramidal neurons
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.95.9.5323
– year: 1999
  ident: 10.1016/j.jphysparis.2005.09.020_bib14
– ident: 10.1016/j.jphysparis.2005.09.020_bib15
– year: 1999
  ident: 10.1016/j.jphysparis.2005.09.020_bib23
– start-page: 609
  year: 2003
  ident: 10.1016/j.jphysparis.2005.09.020_bib19
  article-title: Adaptive nonlinear system identification with echo state networks
– volume: 17
  start-page: 2337
  issue: 11
  year: 2005
  ident: 10.1016/j.jphysparis.2005.09.020_bib25
  article-title: What can a neuron learn with spike-timing-dependent plasticity?
  publication-title: Neural Comput.
  doi: 10.1162/0899766054796888
– year: 2000
  ident: 10.1016/j.jphysparis.2005.09.020_bib33
– ident: 10.1016/j.jphysparis.2005.09.020_bib22
  doi: 10.1016/j.neunet.2005.06.047
– volume: 41
  start-page: 69
  issue: 1
  year: 1999
  ident: 10.1016/j.jphysparis.2005.09.020_bib10
  article-title: Activity-dependent regulation of receptive field properties of cat area 17 by supervised Hebbian learning
  publication-title: J. Neurobiol.
  doi: 10.1002/(SICI)1097-4695(199910)41:1<69::AID-NEU10>3.0.CO;2-1
– ident: 10.1016/j.jphysparis.2005.09.020_bib12
  doi: 10.1093/cercor/bhj132
– ident: 10.1016/j.jphysparis.2005.09.020_bib7
  doi: 10.1007/978-3-540-39432-7_63
– volume: 267
  start-page: 1028
  issue: February
  year: 1995
  ident: 10.1016/j.jphysparis.2005.09.020_bib3
  article-title: Temporal information transformed into a spatial code by a neural network with realistic properties
  publication-title: Science
  doi: 10.1126/science.7863330
– ident: 10.1016/j.jphysparis.2005.09.020_bib26
– volume: 2
  start-page: 230
  year: 1936
  ident: 10.1016/j.jphysparis.2005.09.020_bib42
  article-title: On computable numbers with an application to the Entscheidungs problem
  publication-title: Proc. London Math. Soc.
– volume: 287
  start-page: 273
  year: 2000
  ident: 10.1016/j.jphysparis.2005.09.020_bib11
  article-title: Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex
  publication-title: Science
  doi: 10.1126/science.287.5451.273
– volume: 16
  start-page: 1413
  issue: 7
  year: 2004
  ident: 10.1016/j.jphysparis.2005.09.020_bib2
  article-title: Real-time computation at the edge of chaos in recurrent neural networks
  publication-title: Neural Comput.
  doi: 10.1162/089976604323057443
– volume: 8
  start-page: 39
  issue: 4
  year: 2003
  ident: 10.1016/j.jphysparis.2005.09.020_bib13
  article-title: Perspectives of the high dimensional dynamics of neural microcircuits from the point of view of low dimensional readouts
  publication-title: Complexity (Special Issue on Complex Adaptive Systems)
– volume: vol. 2415
  start-page: 123
  year: 2002
  ident: 10.1016/j.jphysparis.2005.09.020_bib1
  article-title: Reducing communication for distributed learning in neural networks
SSID ssj0001488
Score 2.0145035
Snippet It is quite difficult to construct circuits of spiking neurons that can carry out complex computational tasks. On the other hand even randomly connected...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 315
SubjectTerms Action Potentials - physiology
Analog memory
Animals
Cerebral Cortex - physiology
Computational models
Computational power
Computer Simulation
Humans
Linear Models
Linear regression
Models, Neurological
Neural circuits
Neural Networks (Computer)
Neurons - physiology
Non-linear kernels
Nonlinear Dynamics
Software
Speech
Speech processing
Spiking neurons
Time Factors
Title Fading memory and kernel properties of generic cortical microcircuit models
URI https://dx.doi.org/10.1016/j.jphysparis.2005.09.020
https://www.ncbi.nlm.nih.gov/pubmed/16310350
https://www.proquest.com/docview/67296597
Volume 98
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV29T-swELcQLCyIb8qnB8QWahwnTsRUIaoCgoWHxGbZsf0UXptWpR1Y-Nu5cxKqJ4GExBrFjnXn3P3u_PMdIafeusRmFmKTTNtIxCKNMmF85IW3UhSgco93h-8f0sGTuH1OnpfIVXsXBmmVje2vbXqw1s2TbiPN7qQsu48s53iGJBnW9OfhorkQEuvnn78vaB4A94M1zjGLBG83bJ6a4_WC6YPQ7a_JruTnDDt_f-2ivoOgwRX118lagyFpr17mBlly1SbZ6lUQP4_e6BkNrM6QLt8id_1AkqcjZNS-UV1Z-s9NKzekE0zDT7GeKh17-hfLT5cFhWA0ZLfpCJl6RTkt5uWMhn45r9vkqX_952oQNQ0UoiKWfAbytzyJHUszaXkcG1CF4z6TseMIGwAbGq25ltZz4ZxkmZcQK1tmfA7Ay6TxDlmuxpXbI5QJl4Dzt1wWUlh-YQqjTeq0gJkTqfMOka3MVNFUF8cmF0PV0she1ELa2PwyUSxXIO0OufgcOakrbPxgzGWrFvXfblHgCH4w-qTVpIKfCU9IdOXG81eVQqiRQojVIbu1ghcrSrEhW8L2f_XlA7JaM3-Q7ntIlmfTuTsCUDMzx2HXHpOV3s3d4OEDsML5Fg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwELYQHHYvqwX20eXlw4pbtsZx4kScKkRVttALIHGz7NhepdC0Ku2Bf8-M44BWWiSkvUaaxJpxZr4Zf54h5Ke3LrOFhdyk0DYRqciTQhifeOGtFBWY3OPd4atJProVv--yuw1y1t2FQVpl9P2tTw_eOj7pR232F3Xdv2YlxzMkybCnP8eL5lvYnQo2-9bgYjyavDhkQPzBIZdYSAKBSOhpaV5TrCCEgX-xwFL-Yjj8-99R6i0UGqLR8DP5FGEkHbQr3SYbrtkhu4MGUujZEz2mgdgZKua7ZDwMPHk6Q1LtE9WNpfdu2bgHusBK_BJbqtK5p3-wA3VdUchHQ4GbzpCsV9XLal2vaBiZ8_iF3A7Pb85GSZyhkFSp5CswgeVZ6lheSMvT1IA1HPeFTB1H5ADw0GjNtbSeC-ckK7yEdNky40vAXiZPv5LNZt6474Qy4TKI_5bLSgrLT0xltMmdFvDmTOqyR2SnM1XFBuM45-JBdUyyqXrVNs6_zBQrFWi7R05eJBdtk413yJx2ZlF_bRgFseAd0kedJRX8T3hIohs3Xz-qHLKNHLKsHvnWGvh1RTnOZMvYj__68hH5MLq5ulSXF5PxHvnYEoGQ_btPNlfLtTsAjLMyh3EPPwMzyvvH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fading+memory+and+kernel+properties+of+generic+cortical+microcircuit+models&rft.jtitle=Journal+of+physiology%2C+Paris&rft.au=Maass%2C+Wolfgang&rft.au=Natschl%C3%A4ger%2C+Thomas&rft.au=Markram%2C+Henry&rft.date=2004-07-01&rft.issn=0928-4257&rft.volume=98&rft.issue=4-6&rft.spage=315&rft_id=info:doi/10.1016%2Fj.jphysparis.2005.09.020&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0928-4257&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0928-4257&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0928-4257&client=summon