Fading memory and kernel properties of generic cortical microcircuit models
It is quite difficult to construct circuits of spiking neurons that can carry out complex computational tasks. On the other hand even randomly connected circuits of spiking neurons can in principle be used for complex computational tasks such as time-warp invariant speech recognition. This is possib...
Saved in:
Published in | Journal of physiology, Paris Vol. 98; no. 4; pp. 315 - 330 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
France
Elsevier Ltd
01.07.2004
|
Subjects | |
Online Access | Get full text |
ISSN | 0928-4257 1769-7115 |
DOI | 10.1016/j.jphysparis.2005.09.020 |
Cover
Loading…
Abstract | It is quite difficult to construct circuits of spiking neurons that can carry out complex computational tasks. On the other hand even randomly connected circuits of spiking neurons can in principle be used for complex computational tasks such as time-warp invariant speech recognition. This is possible because such circuits have an inherent tendency to integrate incoming information in such a way that simple linear readouts can be trained to transform the current circuit activity into the target output for a very large number of computational tasks. Consequently we propose to analyze circuits of spiking neurons in terms of their roles as analog fading memory and non-linear kernels, rather than as implementations of specific computational operations and algorithms. This article is a sequel to [W. Maass, T. Natschläger, H. Markram, Real-time computing without stable states: a new framework for neural computation based on perturbations, Neural Comput. 14 (11) (2002) 2531–2560, Online available as #130 from:
<http://www.igi.tugraz.at/maass/publications.html>], and contains new results about the performance of generic neural microcircuit models for the recognition of speech that is subject to linear and non-linear time-warps, as well as for computations on time-varying firing rates. These computations rely, apart from general properties of generic neural microcircuit models, just on capabilities of simple linear readouts trained by linear regression. This article also provides detailed data on the fading memory property of generic neural microcircuit models, and a quick review of other new results on the computational power of such circuits of spiking neurons. |
---|---|
AbstractList | It is quite difficult to construct circuits of spiking neurons that can carry out complex computational tasks. On the other hand even randomly connected circuits of spiking neurons can in principle be used for complex computational tasks such as time-warp invariant speech recognition. This is possible because such circuits have an inherent tendency to integrate incoming information in such a way that simple linear readouts can be trained to transform the current circuit activity into the target output for a very large number of computational tasks. Consequently we propose to analyze circuits of spiking neurons in terms of their roles as analog fading memory and non-linear kernels, rather than as implementations of specific computational operations and algorithms. This article is a sequel to [W. Maass, T. Natschläger, H. Markram, Real-time computing without stable states: a new framework for neural computation based on perturbations, Neural Comput. 14 (11) (2002) 2531-2560, Online available as #130 from: ], and contains new results about the performance of generic neural microcircuit models for the recognition of speech that is subject to linear and non-linear time-warps, as well as for computations on time-varying firing rates. These computations rely, apart from general properties of generic neural microcircuit models, just on capabilities of simple linear readouts trained by linear regression. This article also provides detailed data on the fading memory property of generic neural microcircuit models, and a quick review of other new results on the computational power of such circuits of spiking neurons.It is quite difficult to construct circuits of spiking neurons that can carry out complex computational tasks. On the other hand even randomly connected circuits of spiking neurons can in principle be used for complex computational tasks such as time-warp invariant speech recognition. This is possible because such circuits have an inherent tendency to integrate incoming information in such a way that simple linear readouts can be trained to transform the current circuit activity into the target output for a very large number of computational tasks. Consequently we propose to analyze circuits of spiking neurons in terms of their roles as analog fading memory and non-linear kernels, rather than as implementations of specific computational operations and algorithms. This article is a sequel to [W. Maass, T. Natschläger, H. Markram, Real-time computing without stable states: a new framework for neural computation based on perturbations, Neural Comput. 14 (11) (2002) 2531-2560, Online available as #130 from: ], and contains new results about the performance of generic neural microcircuit models for the recognition of speech that is subject to linear and non-linear time-warps, as well as for computations on time-varying firing rates. These computations rely, apart from general properties of generic neural microcircuit models, just on capabilities of simple linear readouts trained by linear regression. This article also provides detailed data on the fading memory property of generic neural microcircuit models, and a quick review of other new results on the computational power of such circuits of spiking neurons. It is quite difficult to construct circuits of spiking neurons that can carry out complex computational tasks. On the other hand even randomly connected circuits of spiking neurons can in principle be used for complex computational tasks such as time-warp invariant speech recognition. This is possible because such circuits have an inherent tendency to integrate incoming information in such a way that simple linear readouts can be trained to transform the current circuit activity into the target output for a very large number of computational tasks. Consequently we propose to analyze circuits of spiking neurons in terms of their roles as analog fading memory and non-linear kernels, rather than as implementations of specific computational operations and algorithms. This article is a sequel to [W. Maass, T. Natschläger, H. Markram, Real-time computing without stable states: a new framework for neural computation based on perturbations, Neural Comput. 14 (11) (2002) 2531–2560, Online available as #130 from: <http://www.igi.tugraz.at/maass/publications.html>], and contains new results about the performance of generic neural microcircuit models for the recognition of speech that is subject to linear and non-linear time-warps, as well as for computations on time-varying firing rates. These computations rely, apart from general properties of generic neural microcircuit models, just on capabilities of simple linear readouts trained by linear regression. This article also provides detailed data on the fading memory property of generic neural microcircuit models, and a quick review of other new results on the computational power of such circuits of spiking neurons. It is quite difficult to construct circuits of spiking neurons that can carry out complex computational tasks. On the other hand even randomly connected circuits of spiking neurons can in principle be used for complex computational tasks such as time-warp invariant speech recognition. This is possible because such circuits have an inherent tendency to integrate incoming information in such a way that simple linear readouts can be trained to transform the current circuit activity into the target output for a very large number of computational tasks. Consequently we propose to analyze circuits of spiking neurons in terms of their roles as analog fading memory and non-linear kernels, rather than as implementations of specific computational operations and algorithms. This article is a sequel to [W. Maass, T. Natschläger, H. Markram, Real-time computing without stable states: a new framework for neural computation based on perturbations, Neural Comput. 14 (11) (2002) 2531-2560, Online available as #130 from: ], and contains new results about the performance of generic neural microcircuit models for the recognition of speech that is subject to linear and non-linear time-warps, as well as for computations on time-varying firing rates. These computations rely, apart from general properties of generic neural microcircuit models, just on capabilities of simple linear readouts trained by linear regression. This article also provides detailed data on the fading memory property of generic neural microcircuit models, and a quick review of other new results on the computational power of such circuits of spiking neurons. |
Author | Markram, Henry Maass, Wolfgang Natschläger, Thomas |
Author_xml | – sequence: 1 givenname: Wolfgang surname: Maass fullname: Maass, Wolfgang email: maass@igi.tugraz.at organization: Institute for Theoretical Computer Science, Technische Universitaet Graz, A-8010 Graz, Austria – sequence: 2 givenname: Thomas surname: Natschläger fullname: Natschläger, Thomas email: thomas.natschlaeger@scch.at organization: Institute for Theoretical Computer Science, Technische Universitaet Graz, A-8010 Graz, Austria – sequence: 3 givenname: Henry surname: Markram fullname: Markram, Henry email: henry.markram@epfl.ch organization: Brain Mind Institute, EPFL, Lausanne, Switzerland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/16310350$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkEFP3DAQhS0EgmXbv1D51FvC2E7i-FKpRUBRkbjA2XLsCfWS2KmdRdp_T9BuqdQLp5FG772Z952T4xADEkIZlAxYc7EpN9PvXZ5M8rnkAHUJqgQOR2TFZKMKyVh9TFageFtUvJZn5DznDQCwqm1PyRlrBANRw4r8ujbOhyc64hjTjprg6DOmgAOdUpwwzR4zjT19woDJW2rjsrJmoKO3KVqf7NbPdIwOh_yJnPRmyPj5MNfk8frq4fJncXd_c3v5_a6wQvK5qFrHa4HQtNJxIbpKVMj7VgrkgslaKdUZw410Pa8QJbS9VCAddL1SNesasSZf97nLi3-2mGc9-mxxGEzAuM26kVw1tZKL8MtBuO1GdHpKfjRpp__WXwTf9oKlS84Je239bGYfw5yMHzQD_cZbb_Q_3vqNtwalF95LQPtfwPuNj60_9taFHL54TDpbj8Gi8wntrF30H4e8AmOkoXQ |
CitedBy_id | crossref_primary_10_1109_TNN_2011_2134109 crossref_primary_10_1152_jn_00708_2010 crossref_primary_10_1016_j_neucom_2016_11_045 crossref_primary_10_1016_j_neunet_2018_07_003 crossref_primary_10_1016_j_compchemeng_2020_106730 crossref_primary_10_1152_jn_01357_2006 crossref_primary_10_55708_js0211001 crossref_primary_10_1371_journal_pcbi_1000180 crossref_primary_10_1371_journal_pcbi_1006781 crossref_primary_10_1016_j_cobeha_2016_06_003 crossref_primary_10_1088_1674_4926_42_2_023105 crossref_primary_10_7554_eLife_63751 crossref_primary_10_1016_j_neunet_2018_08_025 crossref_primary_10_1113_jphysiol_2007_146597 crossref_primary_10_1016_j_neunet_2019_03_005 crossref_primary_10_1038_nrn2558 crossref_primary_10_1002_adfm_202500782 crossref_primary_10_1088_1361_6544_ace492 crossref_primary_10_1016_j_neucom_2007_12_020 crossref_primary_10_1371_journal_pcbi_0020165 crossref_primary_10_3389_fdata_2022_787421 crossref_primary_10_3390_e22090928 crossref_primary_10_1098_rstb_2018_0377 crossref_primary_10_1016_j_conb_2014_01_010 crossref_primary_10_1016_j_neuron_2018_03_045 crossref_primary_10_1109_TNNLS_2021_3076777 crossref_primary_10_1371_journal_pcbi_1002985 crossref_primary_10_1109_TNN_2010_2089641 crossref_primary_10_4018_jncr_2011100101 crossref_primary_10_1038_s41467_024_44856_5 crossref_primary_10_1002_wdev_306 crossref_primary_10_1016_j_neunet_2007_04_017 crossref_primary_10_1088_2634_4386_ac7db7 crossref_primary_10_1038_s41598_023_43923_z crossref_primary_10_1109_LED_2023_3335142 crossref_primary_10_1371_journal_pcbi_1009246 crossref_primary_10_1007_s10827_009_0176_0 crossref_primary_10_1016_j_asoc_2022_109645 crossref_primary_10_3389_fncom_2019_00079 |
Cites_doi | 10.1523/JNEUROSCI.12-04-01301.1992 10.1162/089976600300015123 10.1523/JNEUROSCI.12-04-01280.1992 10.1162/089976602760407955 10.1162/0899766054026684 10.1126/science.1091277 10.1146/annurev.neuro.23.1.613 10.1016/S0893-6080(01)00144-7 10.1073/pnas.250483697 10.1111/j.1469-7793.1998.00523.x 10.1073/pnas.031567098 10.1038/333367a0 10.1073/pnas.95.9.5323 10.1162/0899766054796888 10.1016/j.neunet.2005.06.047 10.1002/(SICI)1097-4695(199910)41:1<69::AID-NEU10>3.0.CO;2-1 10.1093/cercor/bhj132 10.1007/978-3-540-39432-7_63 10.1126/science.7863330 10.1126/science.287.5451.273 10.1162/089976604323057443 |
ContentType | Journal Article |
Copyright | 2005 |
Copyright_xml | – notice: 2005 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.jphysparis.2005.09.020 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1769-7115 |
EndPage | 330 |
ExternalDocumentID | 16310350 10_1016_j_jphysparis_2005_09_020 S0928425705000215 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .GJ .~1 0R~ 1B1 1RT 1~. 1~5 29L 3O- 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AACTN AADPK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABCQJ ABGSF ABLJU ABMAC ABUDA ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGWIK AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HMQ HVGLF HZ~ IHE J1W KOM LX3 M2V M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SBG SDF SDG SES SEW SNS SSN SSU SSZ T5K WUQ ZA5 ZXP AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU CITATION SSH CGR CUY CVF ECM EFKBS EIF NPM 7X8 |
ID | FETCH-LOGICAL-c372t-48d253e0687d233b434e2f873e23175999baa2a7df24ee708f7907d0bf9951b63 |
IEDL.DBID | .~1 |
ISSN | 0928-4257 |
IngestDate | Thu Sep 04 16:08:47 EDT 2025 Thu Jul 24 07:32:27 EDT 2025 Tue Jul 01 01:18:26 EDT 2025 Thu Apr 24 23:11:18 EDT 2025 Fri Feb 23 02:16:48 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Spiking neurons Non-linear kernels Computational power Neural circuits Computational models Linear regression Analog memory Speech processing |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-48d253e0687d233b434e2f873e23175999baa2a7df24ee708f7907d0bf9951b63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 16310350 |
PQID | 67296597 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_67296597 pubmed_primary_16310350 crossref_citationtrail_10_1016_j_jphysparis_2005_09_020 crossref_primary_10_1016_j_jphysparis_2005_09_020 elsevier_sciencedirect_doi_10_1016_j_jphysparis_2005_09_020 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2004-07-01 |
PublicationDateYYYYMMDD | 2004-07-01 |
PublicationDate_xml | – month: 07 year: 2004 text: 2004-07-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | France |
PublicationPlace_xml | – name: France |
PublicationTitle | Journal of physiology, Paris |
PublicationTitleAlternate | J Physiol Paris |
PublicationYear | 2004 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Bertschinger, Natschläger (bib2) 2004; 16 Hopfield, Brody (bib16) 2000; 97 Rosenblatt (bib37) 1962 Maass, Legenstein, Bertschinger (bib27) 2005; vol. 17 Schölkopf, Smola (bib39) 2002 Mallot (bib33) 2000 C. Fernando, S. Sojakka, Pattern recognition in a bucket: a real liquid brain, in: Proceedings of ECAL, 2003, Online available from Legenstein, Markram, Maass (bib24) 2003; 14 Auer, Burgsteiner, Maass (bib1) 2002; vol. 2415 Maass, Markram (bib30) 2005 Douglas, Markram, Martin (bib6) 2002 Haykin (bib14) 1999 Jäger, Haas (bib20) 2004; 304 Häusler, Markram, Maass (bib13) 2003; 8 Debanne, Shulz, Fregnac (bib4) 1998; 508 Legenstein, Näger, Maass (bib25) 2005; 17 Jäger (bib19) 2003 H. Jäger, Short term memory in echo state networks, GMD Report 152, German National Research Center for Information Technology, 2002. A. Kaske, W. Maass, A model for the interaction of oscillations and pattern generation with real-time computing in generic neural microcircuit models, Neural Networks, in press, 2005, Online available as #156 from S. Häusler, W. Maass, A statistical analysis of information processing properties of lamina-specific cortical microcircuit models, submitted for publication, 2005, Online available as #162 from J. Hopfield, C. Brody, The Mus silicium (sonoran desert sand mouse) web page, Base Maass, Legenstein, Markram (bib28) 2002; vol. 2525 Shulz, Fregnac (bib40) 1992; 12 Soare (bib41) 1987 Markram, Wang, Tsodyks (bib34) 1998; 95 Joshi, Maass (bib21) 2005; 17 Natschläger, Markram, Maass (bib35) 2003 Buonomano, Merzenich (bib3) 1995; 267 Scores: Base Maass, Sontag (bib32) 2000; 12 Vapnik (bib43) 1998 W. Maass, P. Joshi, E.D. Sontag, Principles of real-time computing with feedback applied to cortical microcircuit models, in: Advances in Neural Information Processing Systems, vol. 18, MIT Press, 2006, to appear. Online available as #164 from Fregnac, Shulz (bib10) 1999; 41 Maass, Natschläger, Markram (bib31) 2002; 14 Koch (bib23) 1999 Maass, Markram (bib29) 2002; 15 . A. Rene, M. Pananceau, N. Huguet, P. Bandot, Y. Fregnac, An in vivo generalization of spike-timing-dependent plasticity to multiple pairs of pre-/post-synaptic spikes in adult visual cortex, Poster at the Ladislav Tauc Conference in Neurobiology, Gif sur Yvette, December 2003. Fregnac, Shulz, Thorpe, Bienenstock (bib8) 1988; 333 Savage (bib38) 1998 Dataset: Base Gupta, Wang, Markram (bib11) 2000; 287 Hopfield, Brody (bib17) 2001; 98 deCharms, Zador (bib5) 2000; 23 Fregnac, Shulz, Thorpe, Bienenstock (bib9) 1992; 12 Turing (bib42) 1936; 2 10.1016/j.jphysparis.2005.09.020_bib22 10.1016/j.jphysparis.2005.09.020_bib26 Häusler (10.1016/j.jphysparis.2005.09.020_bib13) 2003; 8 Maass (10.1016/j.jphysparis.2005.09.020_bib28) 2002; vol. 2525 Mallot (10.1016/j.jphysparis.2005.09.020_bib33) 2000 Maass (10.1016/j.jphysparis.2005.09.020_bib31) 2002; 14 Jäger (10.1016/j.jphysparis.2005.09.020_bib20) 2004; 304 Turing (10.1016/j.jphysparis.2005.09.020_bib42) 1936; 2 Auer (10.1016/j.jphysparis.2005.09.020_bib1) 2002; vol. 2415 Debanne (10.1016/j.jphysparis.2005.09.020_bib4) 1998; 508 Legenstein (10.1016/j.jphysparis.2005.09.020_bib25) 2005; 17 Maass (10.1016/j.jphysparis.2005.09.020_bib29) 2002; 15 Maass (10.1016/j.jphysparis.2005.09.020_bib32) 2000; 12 Koch (10.1016/j.jphysparis.2005.09.020_bib23) 1999 Rosenblatt (10.1016/j.jphysparis.2005.09.020_bib37) 1962 Fregnac (10.1016/j.jphysparis.2005.09.020_bib9) 1992; 12 Bertschinger (10.1016/j.jphysparis.2005.09.020_bib2) 2004; 16 deCharms (10.1016/j.jphysparis.2005.09.020_bib5) 2000; 23 Shulz (10.1016/j.jphysparis.2005.09.020_bib40) 1992; 12 Gupta (10.1016/j.jphysparis.2005.09.020_bib11) 2000; 287 Soare (10.1016/j.jphysparis.2005.09.020_bib41) 1987 10.1016/j.jphysparis.2005.09.020_bib12 Natschläger (10.1016/j.jphysparis.2005.09.020_bib35) 2003 Hopfield (10.1016/j.jphysparis.2005.09.020_bib17) 2001; 98 Haykin (10.1016/j.jphysparis.2005.09.020_bib14) 1999 Maass (10.1016/j.jphysparis.2005.09.020_bib27) 2005; vol. 17 Buonomano (10.1016/j.jphysparis.2005.09.020_bib3) 1995; 267 Fregnac (10.1016/j.jphysparis.2005.09.020_bib10) 1999; 41 10.1016/j.jphysparis.2005.09.020_bib15 Joshi (10.1016/j.jphysparis.2005.09.020_bib21) 2005; 17 10.1016/j.jphysparis.2005.09.020_bib36 Douglas (10.1016/j.jphysparis.2005.09.020_bib6) 2002 Savage (10.1016/j.jphysparis.2005.09.020_bib38) 1998 Maass (10.1016/j.jphysparis.2005.09.020_bib30) 2005 10.1016/j.jphysparis.2005.09.020_bib18 Markram (10.1016/j.jphysparis.2005.09.020_bib34) 1998; 95 Jäger (10.1016/j.jphysparis.2005.09.020_bib19) 2003 Schölkopf (10.1016/j.jphysparis.2005.09.020_bib39) 2002 Hopfield (10.1016/j.jphysparis.2005.09.020_bib16) 2000; 97 Legenstein (10.1016/j.jphysparis.2005.09.020_bib24) 2003; 14 10.1016/j.jphysparis.2005.09.020_bib7 Fregnac (10.1016/j.jphysparis.2005.09.020_bib8) 1988; 333 Vapnik (10.1016/j.jphysparis.2005.09.020_bib43) 1998 |
References_xml | – start-page: 609 year: 2003 end-page: 616 ident: bib19 article-title: Adaptive nonlinear system identification with echo state networks publication-title: Advances in Neural Information Processing Systems 2002 (NIPS 2002) – volume: 508 start-page: 523 year: 1998 end-page: 548 ident: bib4 article-title: Activity-dependent regulation of “on” and “off” responses in cat visual cortical receptive fields publication-title: J. Physiol. – reference: A. Kaske, W. Maass, A model for the interaction of oscillations and pattern generation with real-time computing in generic neural microcircuit models, Neural Networks, in press, 2005, Online available as #156 from: – year: 1998 ident: bib38 article-title: Models of Computation: Exploring the Power of Computing – volume: 12 start-page: 1301 year: 1992 end-page: 1318 ident: bib40 article-title: Cellular analogs of visual cortical epigenesis. ii. Plasticity of binocular integration publication-title: J. Neurosci. – volume: 287 start-page: 273 year: 2000 end-page: 278 ident: bib11 article-title: Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex publication-title: Science – volume: 17 start-page: 1715 year: 2005 end-page: 1738 ident: bib21 article-title: Movement generation with circuits of spiking neurons publication-title: Neural Comput. – year: 2000 ident: bib33 article-title: Computational Vision – volume: 41 start-page: 69 year: 1999 end-page: 82 ident: bib10 article-title: Activity-dependent regulation of receptive field properties of cat area 17 by supervised Hebbian learning publication-title: J. Neurobiol. – volume: vol. 2525 start-page: 282 year: 2002 end-page: 293 ident: bib28 article-title: A new approach towards vision suggested by biologically realistic neural microcircuit models publication-title: Proceedings of the 2nd International Workshop on Biologically Motivated Computer Vision 2002 – reference: J. Hopfield, C. Brody, The Mus silicium (sonoran desert sand mouse) web page, Base: – reference: , Scores: Base+/ – volume: 16 start-page: 1413 year: 2004 end-page: 1436 ident: bib2 article-title: Real-time computation at the edge of chaos in recurrent neural networks publication-title: Neural Comput. – volume: 12 start-page: 1280 year: 1992 end-page: 1300 ident: bib9 article-title: Cellular analogs of visual cortical epigenesis. i. Plasticity of orientation selectivity publication-title: J. Neurosci. – year: 2005 ident: bib30 article-title: Theory of the computational function of microcircuit dynamics publication-title: Proceedings of the 2004 Dahlem Workshop on Microcircuits – volume: 17 start-page: 2337 year: 2005 end-page: 2382 ident: bib25 article-title: What can a neuron learn with spike-timing-dependent plasticity? publication-title: Neural Comput. – volume: 14 start-page: 2531 year: 2002 end-page: 2560 ident: bib31 article-title: Real-time computing without stable states: a new framework for neural computation based on perturbations publication-title: Neural Comput. – reference: A. Rene, M. Pananceau, N. Huguet, P. Bandot, Y. Fregnac, An in vivo generalization of spike-timing-dependent plasticity to multiple pairs of pre-/post-synaptic spikes in adult visual cortex, Poster at the Ladislav Tauc Conference in Neurobiology, Gif sur Yvette, December 2003. – start-page: 123 year: 2003 end-page: 138 ident: bib35 article-title: Computer models and analysis tools for neural microcircuits publication-title: Neuroscience Databases. A Practical Guide – volume: 8 start-page: 39 year: 2003 end-page: 50 ident: bib13 article-title: Perspectives of the high dimensional dynamics of neural microcircuits from the point of view of low dimensional readouts publication-title: Complexity (Special Issue on Complex Adaptive Systems) – volume: 12 start-page: 1743 year: 2000 end-page: 1772 ident: bib32 article-title: Neural systems as nonlinear filters publication-title: Neural Comput. – year: 1987 ident: bib41 article-title: Recursively Enumerable Sets and Degrees: A Study of Computable Functions and Computably Generated Sets – year: 1962 ident: bib37 article-title: Principles of Neurodynamics – volume: vol. 17 start-page: 865 year: 2005 end-page: 872 ident: bib27 article-title: Methods for estimating the computational power and generalization capability of neural microcircuits publication-title: Advances in Neural Information Processing Systems – year: 1999 ident: bib14 article-title: Neural Networks: A Comprehensive Foundation – volume: 14 start-page: 5 year: 2003 end-page: 19 ident: bib24 article-title: Input prediction and autonomous movement analysis in recurrent circuits of spiking neurons publication-title: Rev. Neurosci. (Special Issue on Neuroinformatics of Neural and Artificial Computation) – reference: H. Jäger, Short term memory in echo state networks, GMD Report 152, German National Research Center for Information Technology, 2002. – reference: >. – volume: 2 start-page: 230 year: 1936 end-page: 265 ident: bib42 article-title: On computable numbers with an application to the Entscheidungs problem publication-title: Proc. London Math. Soc. – volume: 267 start-page: 1028 year: 1995 end-page: 1030 ident: bib3 article-title: Temporal information transformed into a spatial code by a neural network with realistic properties publication-title: Science – year: 2002 ident: bib6 article-title: Neocortex publication-title: The Synaptic Organization of the Brain – reference: , Dataset: Base+/ – volume: 98 start-page: 1282 year: 2001 end-page: 1287 ident: bib17 article-title: What is a moment? Transient synchrony as a collective mechanism for spatiotemporal integration publication-title: Proc. Natl. Acad. Sci. USA – volume: vol. 2415 start-page: 123 year: 2002 end-page: 128 ident: bib1 article-title: Reducing communication for distributed learning in neural networks publication-title: Proceedings of the International Conference on Artificial Neural Networks—ICANN 2002 – volume: 23 start-page: 613 year: 2000 end-page: 647 ident: bib5 article-title: Neural representation and the cortical code publication-title: Ann. Rev. Neurosci. – year: 2002 ident: bib39 article-title: Learning with Kernels – reference: C. Fernando, S. Sojakka, Pattern recognition in a bucket: a real liquid brain, in: Proceedings of ECAL, 2003, Online available from: – volume: 333 start-page: 367 year: 1988 end-page: 370 ident: bib8 article-title: A cellular analogue of visual cortical plasticity publication-title: Nature – volume: 15 start-page: 155 year: 2002 end-page: 161 ident: bib29 article-title: Synapses as dynamic memory buffers publication-title: Neural Networks – year: 1998 ident: bib43 article-title: Statistical Learning Theory – reference: S. Häusler, W. Maass, A statistical analysis of information processing properties of lamina-specific cortical microcircuit models, submitted for publication, 2005, Online available as #162 from: < – volume: 304 start-page: 78 year: 2004 end-page: 80 ident: bib20 article-title: Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication publication-title: Science – volume: 95 start-page: 5323 year: 1998 end-page: 5328 ident: bib34 article-title: Differential signaling via the same axon of neocortical pyramidal neurons publication-title: Proc. Natl. Acad. Sci. – year: 1999 ident: bib23 article-title: Biophysics of Computation – volume: 97 start-page: 13919 year: 2000 end-page: 13924 ident: bib16 article-title: What is a moment? “Cortical” sensory integration over a brief interval publication-title: Proc. Natl. Acad. Sci. USA – reference: W. Maass, P. Joshi, E.D. Sontag, Principles of real-time computing with feedback applied to cortical microcircuit models, in: Advances in Neural Information Processing Systems, vol. 18, MIT Press, 2006, to appear. Online available as #164 from: – reference: . – year: 1987 ident: 10.1016/j.jphysparis.2005.09.020_bib41 – volume: 12 start-page: 1301 issue: 4 year: 1992 ident: 10.1016/j.jphysparis.2005.09.020_bib40 article-title: Cellular analogs of visual cortical epigenesis. ii. Plasticity of binocular integration publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.12-04-01301.1992 – year: 2002 ident: 10.1016/j.jphysparis.2005.09.020_bib39 – volume: 12 start-page: 1743 issue: 8 year: 2000 ident: 10.1016/j.jphysparis.2005.09.020_bib32 article-title: Neural systems as nonlinear filters publication-title: Neural Comput. doi: 10.1162/089976600300015123 – year: 1962 ident: 10.1016/j.jphysparis.2005.09.020_bib37 – volume: 12 start-page: 1280 issue: 4 year: 1992 ident: 10.1016/j.jphysparis.2005.09.020_bib9 article-title: Cellular analogs of visual cortical epigenesis. i. Plasticity of orientation selectivity publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.12-04-01280.1992 – year: 2005 ident: 10.1016/j.jphysparis.2005.09.020_bib30 article-title: Theory of the computational function of microcircuit dynamics – volume: vol. 17 start-page: 865 year: 2005 ident: 10.1016/j.jphysparis.2005.09.020_bib27 article-title: Methods for estimating the computational power and generalization capability of neural microcircuits – year: 2002 ident: 10.1016/j.jphysparis.2005.09.020_bib6 article-title: Neocortex – ident: 10.1016/j.jphysparis.2005.09.020_bib18 – volume: 14 start-page: 2531 issue: 11 year: 2002 ident: 10.1016/j.jphysparis.2005.09.020_bib31 article-title: Real-time computing without stable states: a new framework for neural computation based on perturbations publication-title: Neural Comput. doi: 10.1162/089976602760407955 – volume: 17 start-page: 1715 issue: 8 year: 2005 ident: 10.1016/j.jphysparis.2005.09.020_bib21 article-title: Movement generation with circuits of spiking neurons publication-title: Neural Comput. doi: 10.1162/0899766054026684 – volume: 304 start-page: 78 year: 2004 ident: 10.1016/j.jphysparis.2005.09.020_bib20 article-title: Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication publication-title: Science doi: 10.1126/science.1091277 – volume: 14 start-page: 5 issue: 1–2 year: 2003 ident: 10.1016/j.jphysparis.2005.09.020_bib24 article-title: Input prediction and autonomous movement analysis in recurrent circuits of spiking neurons publication-title: Rev. Neurosci. (Special Issue on Neuroinformatics of Neural and Artificial Computation) – volume: 23 start-page: 613 year: 2000 ident: 10.1016/j.jphysparis.2005.09.020_bib5 article-title: Neural representation and the cortical code publication-title: Ann. Rev. Neurosci. doi: 10.1146/annurev.neuro.23.1.613 – volume: 15 start-page: 155 year: 2002 ident: 10.1016/j.jphysparis.2005.09.020_bib29 article-title: Synapses as dynamic memory buffers publication-title: Neural Networks doi: 10.1016/S0893-6080(01)00144-7 – start-page: 123 year: 2003 ident: 10.1016/j.jphysparis.2005.09.020_bib35 article-title: Computer models and analysis tools for neural microcircuits – volume: 97 start-page: 13919 issue: 25 year: 2000 ident: 10.1016/j.jphysparis.2005.09.020_bib16 article-title: What is a moment? “Cortical” sensory integration over a brief interval publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.250483697 – volume: vol. 2525 start-page: 282 year: 2002 ident: 10.1016/j.jphysparis.2005.09.020_bib28 article-title: A new approach towards vision suggested by biologically realistic neural microcircuit models – volume: 508 start-page: 523 year: 1998 ident: 10.1016/j.jphysparis.2005.09.020_bib4 article-title: Activity-dependent regulation of “on” and “off” responses in cat visual cortical receptive fields publication-title: J. Physiol. doi: 10.1111/j.1469-7793.1998.00523.x – volume: 98 start-page: 1282 issue: 3 year: 2001 ident: 10.1016/j.jphysparis.2005.09.020_bib17 article-title: What is a moment? Transient synchrony as a collective mechanism for spatiotemporal integration publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.031567098 – year: 1998 ident: 10.1016/j.jphysparis.2005.09.020_bib38 – volume: 333 start-page: 367 issue: 6171 year: 1988 ident: 10.1016/j.jphysparis.2005.09.020_bib8 article-title: A cellular analogue of visual cortical plasticity publication-title: Nature doi: 10.1038/333367a0 – ident: 10.1016/j.jphysparis.2005.09.020_bib36 – year: 1998 ident: 10.1016/j.jphysparis.2005.09.020_bib43 – volume: 95 start-page: 5323 year: 1998 ident: 10.1016/j.jphysparis.2005.09.020_bib34 article-title: Differential signaling via the same axon of neocortical pyramidal neurons publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.95.9.5323 – year: 1999 ident: 10.1016/j.jphysparis.2005.09.020_bib14 – ident: 10.1016/j.jphysparis.2005.09.020_bib15 – year: 1999 ident: 10.1016/j.jphysparis.2005.09.020_bib23 – start-page: 609 year: 2003 ident: 10.1016/j.jphysparis.2005.09.020_bib19 article-title: Adaptive nonlinear system identification with echo state networks – volume: 17 start-page: 2337 issue: 11 year: 2005 ident: 10.1016/j.jphysparis.2005.09.020_bib25 article-title: What can a neuron learn with spike-timing-dependent plasticity? publication-title: Neural Comput. doi: 10.1162/0899766054796888 – year: 2000 ident: 10.1016/j.jphysparis.2005.09.020_bib33 – ident: 10.1016/j.jphysparis.2005.09.020_bib22 doi: 10.1016/j.neunet.2005.06.047 – volume: 41 start-page: 69 issue: 1 year: 1999 ident: 10.1016/j.jphysparis.2005.09.020_bib10 article-title: Activity-dependent regulation of receptive field properties of cat area 17 by supervised Hebbian learning publication-title: J. Neurobiol. doi: 10.1002/(SICI)1097-4695(199910)41:1<69::AID-NEU10>3.0.CO;2-1 – ident: 10.1016/j.jphysparis.2005.09.020_bib12 doi: 10.1093/cercor/bhj132 – ident: 10.1016/j.jphysparis.2005.09.020_bib7 doi: 10.1007/978-3-540-39432-7_63 – volume: 267 start-page: 1028 issue: February year: 1995 ident: 10.1016/j.jphysparis.2005.09.020_bib3 article-title: Temporal information transformed into a spatial code by a neural network with realistic properties publication-title: Science doi: 10.1126/science.7863330 – ident: 10.1016/j.jphysparis.2005.09.020_bib26 – volume: 2 start-page: 230 year: 1936 ident: 10.1016/j.jphysparis.2005.09.020_bib42 article-title: On computable numbers with an application to the Entscheidungs problem publication-title: Proc. London Math. Soc. – volume: 287 start-page: 273 year: 2000 ident: 10.1016/j.jphysparis.2005.09.020_bib11 article-title: Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex publication-title: Science doi: 10.1126/science.287.5451.273 – volume: 16 start-page: 1413 issue: 7 year: 2004 ident: 10.1016/j.jphysparis.2005.09.020_bib2 article-title: Real-time computation at the edge of chaos in recurrent neural networks publication-title: Neural Comput. doi: 10.1162/089976604323057443 – volume: 8 start-page: 39 issue: 4 year: 2003 ident: 10.1016/j.jphysparis.2005.09.020_bib13 article-title: Perspectives of the high dimensional dynamics of neural microcircuits from the point of view of low dimensional readouts publication-title: Complexity (Special Issue on Complex Adaptive Systems) – volume: vol. 2415 start-page: 123 year: 2002 ident: 10.1016/j.jphysparis.2005.09.020_bib1 article-title: Reducing communication for distributed learning in neural networks |
SSID | ssj0001488 |
Score | 2.0145035 |
Snippet | It is quite difficult to construct circuits of spiking neurons that can carry out complex computational tasks. On the other hand even randomly connected... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 315 |
SubjectTerms | Action Potentials - physiology Analog memory Animals Cerebral Cortex - physiology Computational models Computational power Computer Simulation Humans Linear Models Linear regression Models, Neurological Neural circuits Neural Networks (Computer) Neurons - physiology Non-linear kernels Nonlinear Dynamics Software Speech Speech processing Spiking neurons Time Factors |
Title | Fading memory and kernel properties of generic cortical microcircuit models |
URI | https://dx.doi.org/10.1016/j.jphysparis.2005.09.020 https://www.ncbi.nlm.nih.gov/pubmed/16310350 https://www.proquest.com/docview/67296597 |
Volume | 98 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV29T-swELcQLCyIb8qnB8QWahwnTsRUIaoCgoWHxGbZsf0UXptWpR1Y-Nu5cxKqJ4GExBrFjnXn3P3u_PMdIafeusRmFmKTTNtIxCKNMmF85IW3UhSgco93h-8f0sGTuH1OnpfIVXsXBmmVje2vbXqw1s2TbiPN7qQsu48s53iGJBnW9OfhorkQEuvnn78vaB4A94M1zjGLBG83bJ6a4_WC6YPQ7a_JruTnDDt_f-2ivoOgwRX118lagyFpr17mBlly1SbZ6lUQP4_e6BkNrM6QLt8id_1AkqcjZNS-UV1Z-s9NKzekE0zDT7GeKh17-hfLT5cFhWA0ZLfpCJl6RTkt5uWMhn45r9vkqX_952oQNQ0UoiKWfAbytzyJHUszaXkcG1CF4z6TseMIGwAbGq25ltZz4ZxkmZcQK1tmfA7Ay6TxDlmuxpXbI5QJl4Dzt1wWUlh-YQqjTeq0gJkTqfMOka3MVNFUF8cmF0PV0she1ELa2PwyUSxXIO0OufgcOakrbPxgzGWrFvXfblHgCH4w-qTVpIKfCU9IdOXG81eVQqiRQojVIbu1ghcrSrEhW8L2f_XlA7JaM3-Q7ntIlmfTuTsCUDMzx2HXHpOV3s3d4OEDsML5Fg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwELYQHHYvqwX20eXlw4pbtsZx4kScKkRVttALIHGz7NhepdC0Ku2Bf8-M44BWWiSkvUaaxJpxZr4Zf54h5Ke3LrOFhdyk0DYRqciTQhifeOGtFBWY3OPd4atJProVv--yuw1y1t2FQVpl9P2tTw_eOj7pR232F3Xdv2YlxzMkybCnP8eL5lvYnQo2-9bgYjyavDhkQPzBIZdYSAKBSOhpaV5TrCCEgX-xwFL-Yjj8-99R6i0UGqLR8DP5FGEkHbQr3SYbrtkhu4MGUujZEz2mgdgZKua7ZDwMPHk6Q1LtE9WNpfdu2bgHusBK_BJbqtK5p3-wA3VdUchHQ4GbzpCsV9XLal2vaBiZ8_iF3A7Pb85GSZyhkFSp5CswgeVZ6lheSMvT1IA1HPeFTB1H5ADw0GjNtbSeC-ckK7yEdNky40vAXiZPv5LNZt6474Qy4TKI_5bLSgrLT0xltMmdFvDmTOqyR2SnM1XFBuM45-JBdUyyqXrVNs6_zBQrFWi7R05eJBdtk413yJx2ZlF_bRgFseAd0kedJRX8T3hIohs3Xz-qHLKNHLKsHvnWGvh1RTnOZMvYj__68hH5MLq5ulSXF5PxHvnYEoGQ_btPNlfLtTsAjLMyh3EPPwMzyvvH |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fading+memory+and+kernel+properties+of+generic+cortical+microcircuit+models&rft.jtitle=Journal+of+physiology%2C+Paris&rft.au=Maass%2C+Wolfgang&rft.au=Natschl%C3%A4ger%2C+Thomas&rft.au=Markram%2C+Henry&rft.date=2004-07-01&rft.issn=0928-4257&rft.volume=98&rft.issue=4-6&rft.spage=315&rft_id=info:doi/10.1016%2Fj.jphysparis.2005.09.020&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0928-4257&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0928-4257&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0928-4257&client=summon |