Integrating the active OER and HER components as the heterostructures for the efficient overall water splitting
Developing the efficient and low-cost electrocatalysts for overall water splitting is of the great importance for the production of H2. The popular bi-functional catalysts usually shown good activity for one half reaction at expense of the activity for another half-reaction, thus given a moderate pe...
Saved in:
Published in | Nano energy Vol. 44; pp. 353 - 363 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.02.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Developing the efficient and low-cost electrocatalysts for overall water splitting is of the great importance for the production of H2. The popular bi-functional catalysts usually shown good activity for one half reaction at expense of the activity for another half-reaction, thus given a moderate performance for overall water splitting. In this paper, we have reported on integrating the active OER (Ni3N) and HER (NiMoN) components as Ni3N-NiMoN heterostructures for the effective overall water splitting. The heterostructures were constructed by the controllable nitridation of the Ni-Mo-O precursor anchored on carbon cloth (CC) under NH3 atmosphere. The micro-structures of the catalyst could be tuned by regulating the surface properties of CC and the calcination temperature. Under optimized condition, the Ni3N-NiMoN catalysts exhibited good catalytic activity for both OER and HER in alkaline electrolyte. The catalysts can achieve a current density of 10mAcm−2 at an overpotential of 31mV for HER, being close to Pt catalyst. Also, it only requiring an overpotential of 277mV to reach current density of 10mAcm−2 for OER. Moreover, the cell assembled by the identical Ni3N-NiMoN as both the cathode and anode needs only a cell voltage of 1.54V to achieve current density of 10mAcm−2. The superior performance of Ni3N-NiMoN heterostructures can be ascribed to the following points: 1) the simultaneous presence of active OER and HER components and the promoted action each other in the heterostructures, and 2) the exposure of the abundant active sites in the sheet-like structure assembled by the nanoparticles.
The OER-active Ni3N and HER-active NiMoN have been integrated as Ni3N-NiMoN heterostructures anchored on carbon cloth for the high-effective overall water splitting. The catalysts can achieve a current density of 10mAcm−2 at an overpotential of 31mV for HER and an overpotential of 277mV for OER. The cell assembled by Ni3N-NiMoN heterostructures as both the cathode and anode only needs a cell voltage of 1.54V to achieve 10mAcm−2 for overall water splitting. [Display omitted]
•The active OER and HER components are integrated as Ni3N-NiMoN heterostructures.•The heterostructures show good performance for both HER and OER.•The heterostructures exhibit superior performance for overall water splitting.•The origin of superior performance of the heterostructures is elucidated. |
---|---|
AbstractList | Developing the efficient and low-cost electrocatalysts for overall water splitting is of the great importance for the production of H2. The popular bi-functional catalysts usually shown good activity for one half reaction at expense of the activity for another half-reaction, thus given a moderate performance for overall water splitting. In this paper, we have reported on integrating the active OER (Ni3N) and HER (NiMoN) components as Ni3N-NiMoN heterostructures for the effective overall water splitting. The heterostructures were constructed by the controllable nitridation of the Ni-Mo-O precursor anchored on carbon cloth (CC) under NH3 atmosphere. The micro-structures of the catalyst could be tuned by regulating the surface properties of CC and the calcination temperature. Under optimized condition, the Ni3N-NiMoN catalysts exhibited good catalytic activity for both OER and HER in alkaline electrolyte. The catalysts can achieve a current density of 10mAcm−2 at an overpotential of 31mV for HER, being close to Pt catalyst. Also, it only requiring an overpotential of 277mV to reach current density of 10mAcm−2 for OER. Moreover, the cell assembled by the identical Ni3N-NiMoN as both the cathode and anode needs only a cell voltage of 1.54V to achieve current density of 10mAcm−2. The superior performance of Ni3N-NiMoN heterostructures can be ascribed to the following points: 1) the simultaneous presence of active OER and HER components and the promoted action each other in the heterostructures, and 2) the exposure of the abundant active sites in the sheet-like structure assembled by the nanoparticles.
The OER-active Ni3N and HER-active NiMoN have been integrated as Ni3N-NiMoN heterostructures anchored on carbon cloth for the high-effective overall water splitting. The catalysts can achieve a current density of 10mAcm−2 at an overpotential of 31mV for HER and an overpotential of 277mV for OER. The cell assembled by Ni3N-NiMoN heterostructures as both the cathode and anode only needs a cell voltage of 1.54V to achieve 10mAcm−2 for overall water splitting. [Display omitted]
•The active OER and HER components are integrated as Ni3N-NiMoN heterostructures.•The heterostructures show good performance for both HER and OER.•The heterostructures exhibit superior performance for overall water splitting.•The origin of superior performance of the heterostructures is elucidated. |
Author | Tian, Chungui Wu, Aiping Zhang, Xiaomeng Ma, Hui Gu, Ying Xie, Ying Fu, Honggang Yang, Guoyu Yan, Haijing |
Author_xml | – sequence: 1 givenname: Aiping surname: Wu fullname: Wu, Aiping organization: Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of China, Heilongjiang University, Harbin 150080, China – sequence: 2 givenname: Ying surname: Xie fullname: Xie, Ying organization: Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of China, Heilongjiang University, Harbin 150080, China – sequence: 3 givenname: Hui surname: Ma fullname: Ma, Hui organization: Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of China, Heilongjiang University, Harbin 150080, China – sequence: 4 givenname: Chungui surname: Tian fullname: Tian, Chungui email: chunguitianhq@163.com organization: Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of China, Heilongjiang University, Harbin 150080, China – sequence: 5 givenname: Ying surname: Gu fullname: Gu, Ying organization: Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of China, Heilongjiang University, Harbin 150080, China – sequence: 6 givenname: Haijing surname: Yan fullname: Yan, Haijing organization: Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of China, Heilongjiang University, Harbin 150080, China – sequence: 7 givenname: Xiaomeng surname: Zhang fullname: Zhang, Xiaomeng organization: Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of China, Heilongjiang University, Harbin 150080, China – sequence: 8 givenname: Guoyu surname: Yang fullname: Yang, Guoyu organization: Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Institute of Technology, Beijing 100081, China – sequence: 9 givenname: Honggang surname: Fu fullname: Fu, Honggang email: fuhg@vip.sina.com organization: Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of China, Heilongjiang University, Harbin 150080, China |
BookMark | eNqFkM1OAjEUhbvARETewEVfYMbe-SvjwsQQFBISEqPrptO5AyVDS9qC8e3tiCsXejdncc-5P98NGRlrkJA7YCkwqO73qZHGokkzBjwFSFlRjsg4ywCSbFaW12Tq_Z7FqkrgkI2JXZmAWyeDNlsadkilCvqMdLN4pdK0dBlV2cMx7jHBU-m_TTsM6KwP7qTCyaGnnXXfDew6rXS0UntGJ_uefshopf7Y6zDsuCVXnew9Tn90Qt6fF2_zZbLevKzmT-tE5TwLSVHJFhreAtY1b7IaK2iyUnKe11XH82bWFYXkZVvwsgbIZYM44wwLJhWCwjyfkOIyV8U7vcNOHJ0-SPcpgImBldiLCysxsBIAIrKKsYdfMaVDhGNNcFL3_4UfL2GMj501OuEHFgpb7VAF0Vr994AvULKN2w |
CitedBy_id | crossref_primary_10_1016_S1872_5813_24_60490_1 crossref_primary_10_1002_smll_202205469 crossref_primary_10_1016_j_cej_2021_128809 crossref_primary_10_1021_acsami_1c16048 crossref_primary_10_1016_j_fuel_2022_126131 crossref_primary_10_1016_j_xcrp_2020_100136 crossref_primary_10_1016_j_apcatb_2021_119882 crossref_primary_10_1021_acsaem_4c00876 crossref_primary_10_1002_ange_202107510 crossref_primary_10_1016_j_cej_2021_131094 crossref_primary_10_1002_smll_201901530 crossref_primary_10_1021_acsami_0c06716 crossref_primary_10_1016_j_ccr_2022_214968 crossref_primary_10_1039_C8TA12043A crossref_primary_10_1007_s12274_022_4920_3 crossref_primary_10_1016_j_apsusc_2023_157896 crossref_primary_10_1039_D4GC00393D crossref_primary_10_1002_adma_202007523 crossref_primary_10_1021_acssuschemeng_0c03333 crossref_primary_10_1039_C9TA03473K crossref_primary_10_1039_D0TA08735A crossref_primary_10_1016_j_mtsust_2024_100914 crossref_primary_10_1016_j_pmatsci_2024_101254 crossref_primary_10_1021_acsaem_0c02674 crossref_primary_10_1016_j_cclet_2020_05_012 crossref_primary_10_1007_s40843_018_9393_x crossref_primary_10_1016_j_cej_2021_128818 crossref_primary_10_1016_j_ijhydene_2019_01_258 crossref_primary_10_1016_j_jpowsour_2021_230580 crossref_primary_10_1016_j_mtnano_2022_100272 crossref_primary_10_1016_j_jallcom_2021_160986 crossref_primary_10_1021_acsami_4c11560 crossref_primary_10_1016_j_jcis_2025_02_105 crossref_primary_10_1016_j_jechem_2020_10_010 crossref_primary_10_1039_C8QI00860D crossref_primary_10_1002_smll_202207425 crossref_primary_10_1002_adfm_202103673 crossref_primary_10_1039_C9TC03813B crossref_primary_10_1002_cctc_201901707 crossref_primary_10_1039_D0TA07975H crossref_primary_10_1021_acsaem_0c00369 crossref_primary_10_1002_ange_201810104 crossref_primary_10_1039_D3NR02458J crossref_primary_10_1007_s10853_020_05080_w crossref_primary_10_1002_smll_201801717 crossref_primary_10_1016_j_jallcom_2024_174797 crossref_primary_10_1002_adma_201803590 crossref_primary_10_1039_C9TA06537G crossref_primary_10_1016_j_jece_2022_107761 crossref_primary_10_1016_j_apmt_2024_102224 crossref_primary_10_1016_j_jelechem_2023_117811 crossref_primary_10_1021_acsaem_2c03973 crossref_primary_10_1016_j_cej_2020_126483 crossref_primary_10_1016_j_jcis_2021_09_121 crossref_primary_10_1016_j_ijhydene_2022_02_190 crossref_primary_10_1016_j_cej_2020_127686 crossref_primary_10_1007_s12274_022_4702_y crossref_primary_10_1021_acsami_1c09308 crossref_primary_10_1016_j_ijhydene_2021_06_146 crossref_primary_10_1039_D4NJ00908H crossref_primary_10_1039_C9TA11378A crossref_primary_10_1016_j_apcatb_2020_119398 crossref_primary_10_1039_D3CC05444F crossref_primary_10_1038_s41467_019_13092_7 crossref_primary_10_1007_s12274_023_6219_4 crossref_primary_10_1016_j_nanoen_2021_106402 crossref_primary_10_1002_cssc_202002338 crossref_primary_10_1016_j_mtnano_2022_100176 crossref_primary_10_1039_D2DT00022A crossref_primary_10_1016_j_ensm_2021_04_013 crossref_primary_10_1039_D3QI00857F crossref_primary_10_1002_slct_202001868 crossref_primary_10_1038_s41427_018_0072_z crossref_primary_10_1021_acs_energyfuels_3c03940 crossref_primary_10_1002_smll_202202033 crossref_primary_10_1002_slct_201904506 crossref_primary_10_1002_adfm_202104827 crossref_primary_10_1002_smll_202405952 crossref_primary_10_1007_s40243_022_00214_3 crossref_primary_10_1039_D3NJ01361H crossref_primary_10_1007_s40820_020_00469_3 crossref_primary_10_1039_D3DT01469J crossref_primary_10_1016_j_cej_2022_135544 crossref_primary_10_1007_s10853_023_08551_y crossref_primary_10_1016_j_electacta_2019_06_093 crossref_primary_10_1039_D1SE01283E crossref_primary_10_1039_D3CP04951E crossref_primary_10_1039_D2CC02083A crossref_primary_10_1016_j_electacta_2021_138887 crossref_primary_10_1002_aenm_202002176 crossref_primary_10_1021_acs_jpcc_1c03961 crossref_primary_10_1016_j_ijhydene_2023_03_236 crossref_primary_10_1016_j_mcat_2023_113672 crossref_primary_10_1002_adfm_202102530 crossref_primary_10_1016_j_ijhydene_2023_11_054 crossref_primary_10_1166_sam_2024_4691 crossref_primary_10_1016_S1872_5805_24_60829_2 crossref_primary_10_1016_j_cej_2025_159640 crossref_primary_10_1039_D0TA05038E crossref_primary_10_1016_j_cej_2025_159407 crossref_primary_10_1039_D2CE00817C crossref_primary_10_1021_acs_inorgchem_1c01716 crossref_primary_10_1002_smtd_202200459 crossref_primary_10_1016_j_apcatb_2023_123563 crossref_primary_10_1016_j_ijhydene_2021_06_050 crossref_primary_10_1016_j_apcatb_2019_04_054 crossref_primary_10_1002_celc_201901420 crossref_primary_10_1002_anie_201908722 crossref_primary_10_1021_acssuschemeng_4c03806 crossref_primary_10_1016_j_jssc_2022_123556 crossref_primary_10_1016_j_nanoen_2021_105987 crossref_primary_10_1038_s41467_019_13375_z crossref_primary_10_1016_j_jallcom_2022_167570 crossref_primary_10_1016_j_catcom_2023_106788 crossref_primary_10_1016_j_ijhydene_2024_04_211 crossref_primary_10_1016_j_ijhydene_2023_04_175 crossref_primary_10_1039_C9TA03249E crossref_primary_10_1016_j_ijoes_2023_100187 crossref_primary_10_1007_s40843_019_1268_7 crossref_primary_10_1016_j_jcat_2019_01_039 crossref_primary_10_2139_ssrn_4098456 crossref_primary_10_1039_D3SE01601C crossref_primary_10_1039_D4NR00560K crossref_primary_10_1039_D2NJ05003J crossref_primary_10_1039_D0TA08802A crossref_primary_10_1039_D1TA00908G crossref_primary_10_1016_j_carbon_2020_08_013 crossref_primary_10_1039_D2DT01200F crossref_primary_10_1016_j_ijhydene_2022_02_152 crossref_primary_10_1016_j_jmst_2024_05_058 crossref_primary_10_1021_acs_chemrev_3c00937 crossref_primary_10_1039_C8TA07906D crossref_primary_10_1002_cctc_201901638 crossref_primary_10_1039_D0CE01527J crossref_primary_10_1002_celc_201901439 crossref_primary_10_1016_j_electacta_2020_136051 crossref_primary_10_1016_j_electacta_2020_137384 crossref_primary_10_1016_j_cej_2020_127482 crossref_primary_10_1016_j_jcis_2024_07_168 crossref_primary_10_1039_C9TA03686E crossref_primary_10_3390_nano12152640 crossref_primary_10_1021_acs_jpcc_2c03482 crossref_primary_10_1016_j_jmst_2021_01_091 crossref_primary_10_1016_j_nanoen_2019_103995 crossref_primary_10_1080_14686996_2022_2029686 crossref_primary_10_1039_D1EE02105B crossref_primary_10_1016_j_fuel_2024_133985 crossref_primary_10_1016_j_electacta_2022_141184 crossref_primary_10_20964_2021_07_38 crossref_primary_10_1016_j_jcis_2022_03_035 crossref_primary_10_1016_j_jallcom_2019_05_103 crossref_primary_10_1016_j_jpowsour_2018_11_073 crossref_primary_10_1016_j_jcis_2023_04_001 crossref_primary_10_1063_5_0256530 crossref_primary_10_1002_celc_201901767 crossref_primary_10_1016_j_apsusc_2022_154808 crossref_primary_10_1002_asia_201801018 crossref_primary_10_1039_D2EE01510B crossref_primary_10_1016_j_apcatb_2021_120246 crossref_primary_10_1016_j_fuel_2024_131442 crossref_primary_10_1039_D0SE00466A crossref_primary_10_1016_j_surfin_2025_105775 crossref_primary_10_1039_D3GC03576J crossref_primary_10_1039_D2RA07901A crossref_primary_10_1039_D2TA02955C crossref_primary_10_1016_j_ijhydene_2024_07_270 crossref_primary_10_1016_j_electacta_2018_04_210 crossref_primary_10_1021_acsami_0c05219 crossref_primary_10_1002_smll_202201927 crossref_primary_10_1039_D0EE02020F crossref_primary_10_3390_app11219974 crossref_primary_10_1002_cctc_201801960 crossref_primary_10_1016_j_apcatb_2020_119097 crossref_primary_10_1016_j_jallcom_2020_158456 crossref_primary_10_1039_D1TA04408G crossref_primary_10_1002_adma_201907818 crossref_primary_10_1016_j_apsusc_2020_146183 crossref_primary_10_1002_adma_201900178 crossref_primary_10_1016_j_ijhydene_2024_07_186 crossref_primary_10_1039_D4NR01071J crossref_primary_10_1021_acs_energyfuels_3c00732 crossref_primary_10_1016_j_jcis_2024_04_063 crossref_primary_10_1039_C9TA04742E crossref_primary_10_1002_smll_202311335 crossref_primary_10_1039_C9TA08926H crossref_primary_10_1002_slct_201803032 crossref_primary_10_1016_j_jece_2021_105028 crossref_primary_10_1016_j_jpowsour_2019_227294 crossref_primary_10_1016_j_electacta_2020_136125 crossref_primary_10_1021_acsami_8b09854 crossref_primary_10_1016_j_apcatb_2022_121279 crossref_primary_10_1016_j_xcrp_2022_100762 crossref_primary_10_1002_adfm_202404535 crossref_primary_10_1063_5_0221098 crossref_primary_10_1021_acsami_4c22156 crossref_primary_10_1016_j_electacta_2019_07_046 crossref_primary_10_1002_aenm_201900624 crossref_primary_10_1039_D4TA01683A crossref_primary_10_3390_catal11091028 crossref_primary_10_1039_C9NA00535H crossref_primary_10_1002_anie_201810104 crossref_primary_10_1016_j_ijhydene_2023_12_221 crossref_primary_10_1088_2515_7639_abd596 crossref_primary_10_1016_j_electacta_2021_139702 crossref_primary_10_1021_acsami_9b07415 crossref_primary_10_1002_smll_202302738 crossref_primary_10_1016_j_apsusc_2021_149651 crossref_primary_10_1016_j_solidstatesciences_2020_106403 crossref_primary_10_1021_acsaem_9b02130 crossref_primary_10_1039_D0TA09473K crossref_primary_10_1016_j_nanoen_2022_107753 crossref_primary_10_1039_D1MA00814E crossref_primary_10_1039_D2NJ04748A crossref_primary_10_1016_j_electacta_2019_135488 crossref_primary_10_1016_j_ijhydene_2018_08_147 crossref_primary_10_1016_j_jcis_2023_05_192 crossref_primary_10_1021_acsomega_0c03435 crossref_primary_10_1016_j_jallcom_2020_157265 crossref_primary_10_1002_ejic_202300204 crossref_primary_10_1021_acs_energyfuels_4c00801 crossref_primary_10_1039_C8EE00934A crossref_primary_10_1021_acscatal_9b01637 crossref_primary_10_1016_j_cej_2020_127757 crossref_primary_10_1016_j_electacta_2023_142511 crossref_primary_10_1016_j_ceramint_2023_12_213 crossref_primary_10_1016_j_nanoen_2019_02_024 crossref_primary_10_1021_acs_inorgchem_0c03073 crossref_primary_10_1016_j_colsurfa_2024_134021 crossref_primary_10_1016_j_cis_2023_102865 crossref_primary_10_1002_aenm_202200321 crossref_primary_10_1016_j_jechem_2018_09_016 crossref_primary_10_1016_j_jallcom_2021_160833 crossref_primary_10_1021_accountsmr_2c00188 crossref_primary_10_1016_j_jpowsour_2021_229552 crossref_primary_10_1021_acsmaterialslett_2c00143 crossref_primary_10_1002_celc_202001430 crossref_primary_10_1016_j_ijhydene_2023_12_278 crossref_primary_10_1063_5_0061856 crossref_primary_10_1007_s42765_020_00063_7 crossref_primary_10_1016_j_xcrp_2021_100443 crossref_primary_10_1021_acs_nanolett_2c04380 crossref_primary_10_1007_s10854_021_06048_5 crossref_primary_10_1016_j_jpowsour_2020_229137 crossref_primary_10_3390_nano9101486 crossref_primary_10_1039_D1RA01299A crossref_primary_10_1016_j_ceramint_2022_04_322 crossref_primary_10_1002_anie_202016102 crossref_primary_10_1039_C8CC06099A crossref_primary_10_1016_j_jallcom_2023_172169 crossref_primary_10_2139_ssrn_4161346 crossref_primary_10_1002_smll_202104863 crossref_primary_10_1016_j_cej_2021_133117 crossref_primary_10_1016_j_apsusc_2019_143672 crossref_primary_10_1088_2058_6272_abd8b4 crossref_primary_10_1016_j_electacta_2020_136114 crossref_primary_10_1002_cctc_201901224 crossref_primary_10_1016_S1872_2067_22_64149_4 crossref_primary_10_1039_D1NR07614K crossref_primary_10_2139_ssrn_4048941 crossref_primary_10_1016_j_ijhydene_2022_05_050 crossref_primary_10_1016_j_mssp_2022_107164 crossref_primary_10_1021_acs_inorgchem_2c00923 crossref_primary_10_1049_hve2_12378 crossref_primary_10_1002_slct_202000151 crossref_primary_10_1016_j_jtice_2024_105356 crossref_primary_10_1039_D2QI00077F crossref_primary_10_1039_D2TA01977A crossref_primary_10_1038_s41467_018_06728_7 crossref_primary_10_1039_D3NR05051C crossref_primary_10_1002_adfm_202316296 crossref_primary_10_2139_ssrn_4201952 crossref_primary_10_1039_D4TA04991H crossref_primary_10_3390_catal10060621 crossref_primary_10_1016_j_apcatb_2019_05_017 crossref_primary_10_1021_acsami_9b20887 crossref_primary_10_1002_cctc_202400582 crossref_primary_10_1039_C9NR02153A crossref_primary_10_1039_D0SE00346H crossref_primary_10_1016_j_cej_2023_143535 crossref_primary_10_1007_s12648_021_02260_5 crossref_primary_10_1039_C9TA04083H crossref_primary_10_1002_adma_201901174 crossref_primary_10_1016_j_apcatb_2019_117899 crossref_primary_10_1016_j_gee_2020_11_023 crossref_primary_10_1021_acsami_5c01010 crossref_primary_10_1016_j_ijhydene_2019_08_127 crossref_primary_10_1016_j_jcis_2019_12_044 crossref_primary_10_1039_D4SE00179F crossref_primary_10_1016_j_electacta_2018_11_183 crossref_primary_10_1016_j_surfin_2024_104043 crossref_primary_10_1016_j_apcatb_2020_118956 crossref_primary_10_1016_j_jre_2024_06_017 crossref_primary_10_1016_j_cej_2020_124845 crossref_primary_10_1016_j_ijhydene_2019_04_219 crossref_primary_10_1016_j_apsusc_2020_148407 crossref_primary_10_1016_S1872_2067_24_60157_9 crossref_primary_10_1002_slct_202203616 crossref_primary_10_1016_j_ijhydene_2018_10_201 crossref_primary_10_1016_j_ijhydene_2023_07_291 crossref_primary_10_1021_acsaem_0c01907 crossref_primary_10_1002_adma_202000455 crossref_primary_10_1039_D0NR07875A crossref_primary_10_1002_tcr_202300285 crossref_primary_10_1007_s10008_021_04943_9 crossref_primary_10_1016_j_cattod_2020_06_077 crossref_primary_10_1002_adfm_202008822 crossref_primary_10_1016_j_ijhydene_2022_06_076 crossref_primary_10_1002_slct_202201682 crossref_primary_10_1021_acssuschemeng_3c02771 crossref_primary_10_1021_acsami_1c09084 crossref_primary_10_1039_D3GC02105J crossref_primary_10_1021_acsaem_9b02315 crossref_primary_10_1016_j_jpcs_2023_111853 crossref_primary_10_1021_acsaenm_4c00533 crossref_primary_10_1007_s12274_023_5740_9 crossref_primary_10_1016_j_apcatb_2020_119707 crossref_primary_10_1039_D3CC04506D crossref_primary_10_1002_smll_201906775 crossref_primary_10_3390_nano10112115 crossref_primary_10_1039_D3QM00196B crossref_primary_10_3390_catal11040429 crossref_primary_10_1016_j_nanoms_2024_01_011 crossref_primary_10_1016_j_ijhydene_2024_09_267 crossref_primary_10_1016_j_jcat_2020_01_015 crossref_primary_10_1016_j_jechem_2022_03_025 crossref_primary_10_1039_D3QI00341H crossref_primary_10_1016_j_ijhydene_2022_06_060 crossref_primary_10_1016_j_jallcom_2021_159066 crossref_primary_10_1021_acssuschemeng_1c04674 crossref_primary_10_1021_acssuschemeng_2c07658 crossref_primary_10_1016_j_ijhydene_2024_02_032 crossref_primary_10_1021_acs_energyfuels_1c01971 crossref_primary_10_1002_cctc_202201615 crossref_primary_10_1016_j_ccr_2021_213953 crossref_primary_10_1039_D2DT02603A crossref_primary_10_1002_slct_201803665 crossref_primary_10_1021_acsami_1c13480 crossref_primary_10_1016_j_molstruc_2024_140852 crossref_primary_10_1002_aenm_202103247 crossref_primary_10_1016_j_electacta_2020_135689 crossref_primary_10_1016_j_cej_2022_140441 crossref_primary_10_1021_acsanm_0c02723 crossref_primary_10_1039_C9NR08802D crossref_primary_10_1016_j_colsurfa_2022_129597 crossref_primary_10_1016_j_jcis_2022_11_072 crossref_primary_10_1021_acsanm_2c04496 crossref_primary_10_20964_2021_03_39 crossref_primary_10_3389_fmats_2022_1089695 crossref_primary_10_1016_j_electacta_2020_136629 crossref_primary_10_1039_D1TA04231A crossref_primary_10_1016_j_diamond_2024_111072 crossref_primary_10_1016_j_jechem_2022_04_040 crossref_primary_10_1039_C9TA13615K crossref_primary_10_1039_C9DT00957D crossref_primary_10_1007_s10876_022_02318_2 crossref_primary_10_1021_acsomega_0c01383 crossref_primary_10_1016_j_chphma_2023_09_001 crossref_primary_10_1002_adma_202208209 crossref_primary_10_1002_chem_201903628 crossref_primary_10_1016_j_ijhydene_2022_06_288 crossref_primary_10_1002_aenm_201900390 crossref_primary_10_1021_acsanm_4c06609 crossref_primary_10_1016_j_jallcom_2023_170371 crossref_primary_10_1016_j_jpowsour_2021_230934 crossref_primary_10_1016_j_mtener_2021_100911 crossref_primary_10_1039_C9TA04283K crossref_primary_10_1002_asia_201900791 crossref_primary_10_1016_j_jallcom_2022_165862 crossref_primary_10_1039_D2SE01032A crossref_primary_10_1039_D3NJ00216K crossref_primary_10_1002_ente_201900936 crossref_primary_10_1016_j_jechem_2021_01_002 crossref_primary_10_1016_j_jelechem_2021_115829 crossref_primary_10_1002_smll_202304573 crossref_primary_10_1002_aenm_202303730 crossref_primary_10_1002_ange_202306640 crossref_primary_10_1002_smtd_202000701 crossref_primary_10_1007_s40843_020_1361_3 crossref_primary_10_1016_j_flatc_2019_100133 crossref_primary_10_1021_acs_chemrev_3c00005 crossref_primary_10_1016_j_cej_2023_145321 crossref_primary_10_1016_j_mtener_2021_100902 crossref_primary_10_1002_asia_202400851 crossref_primary_10_1016_j_ijhydene_2019_07_160 crossref_primary_10_1021_acssuschemeng_2c04597 crossref_primary_10_1016_j_apsusc_2019_01_167 crossref_primary_10_1039_D1MA00130B crossref_primary_10_1039_D0TA11997K crossref_primary_10_1039_D1SE01225H crossref_primary_10_1002_smll_202302025 crossref_primary_10_1002_aenm_202302532 crossref_primary_10_1021_acsaem_9b00785 crossref_primary_10_1149_2_0171902jes crossref_primary_10_1039_D4RA01320D crossref_primary_10_1016_j_est_2023_109518 crossref_primary_10_1016_j_mcat_2021_112086 crossref_primary_10_1016_j_apcatb_2020_119758 crossref_primary_10_1016_j_apcatb_2019_118330 crossref_primary_10_1016_j_ijhydene_2024_07_411 crossref_primary_10_1021_acs_jpcc_0c00321 crossref_primary_10_1016_j_electacta_2021_139074 crossref_primary_10_1039_D0TA09620B crossref_primary_10_1021_acsami_9b03368 crossref_primary_10_1016_j_ijhydene_2023_09_186 crossref_primary_10_1016_j_ijhydene_2020_07_005 crossref_primary_10_1016_j_jpowsour_2019_03_036 crossref_primary_10_1039_D1RA05526G crossref_primary_10_1002_cey2_465 crossref_primary_10_1016_j_electacta_2020_135886 crossref_primary_10_1016_j_jcat_2019_12_031 crossref_primary_10_1002_ente_201900066 crossref_primary_10_1016_j_ccr_2023_215029 crossref_primary_10_1021_acs_jpcc_2c02632 crossref_primary_10_1002_celc_201902170 crossref_primary_10_1039_D1CE00059D crossref_primary_10_1016_j_jechem_2024_04_002 crossref_primary_10_1002_smll_202304143 crossref_primary_10_1016_j_mtphys_2022_100727 crossref_primary_10_1016_j_surfin_2023_103125 crossref_primary_10_1016_j_apsusc_2020_146623 crossref_primary_10_1002_ange_202016102 crossref_primary_10_1002_ente_201901392 crossref_primary_10_1016_j_ijhydene_2021_09_050 crossref_primary_10_1016_j_jcis_2021_10_069 crossref_primary_10_1021_acssuschemeng_8b02656 crossref_primary_10_1021_acssuschemeng_9b02510 crossref_primary_10_1002_cssc_202002624 crossref_primary_10_1002_sus2_3 crossref_primary_10_1007_s40843_020_1541_9 crossref_primary_10_1016_j_electacta_2021_138042 crossref_primary_10_1039_D3CC06015B crossref_primary_10_1016_j_ijhydene_2024_04_196 crossref_primary_10_1016_j_cej_2020_128240 crossref_primary_10_1002_anie_202306640 crossref_primary_10_1002_smll_202103826 crossref_primary_10_1002_cctc_202001689 crossref_primary_10_1021_acsami_4c15087 crossref_primary_10_1016_j_ijhydene_2019_02_215 crossref_primary_10_1039_D3QI01642K crossref_primary_10_1002_ange_201908722 crossref_primary_10_1039_D4CC06763K crossref_primary_10_1016_j_nanoen_2019_06_017 crossref_primary_10_1039_C9NR09148C crossref_primary_10_1016_j_apcatb_2019_02_014 crossref_primary_10_1002_cssc_201900230 crossref_primary_10_1021_acs_langmuir_2c03494 crossref_primary_10_1007_s12274_021_3559_9 crossref_primary_10_12677_JAPC_2023_123022 crossref_primary_10_1039_D3TA02610H crossref_primary_10_1016_j_electacta_2020_135957 crossref_primary_10_1039_C9NJ05562B crossref_primary_10_1002_adfm_202210855 crossref_primary_10_1016_j_mtener_2022_100948 crossref_primary_10_1039_D3DT02804F crossref_primary_10_1016_j_apsusc_2020_147977 crossref_primary_10_1016_j_molstruc_2024_138813 crossref_primary_10_1039_D0SE01805H crossref_primary_10_1007_s41779_024_01132_5 crossref_primary_10_1016_j_electacta_2022_140674 crossref_primary_10_1016_j_jechem_2023_10_015 crossref_primary_10_1016_j_ces_2023_119125 crossref_primary_10_1039_D1QM01471D crossref_primary_10_1021_acs_inorgchem_0c02369 crossref_primary_10_1016_j_ijhydene_2018_11_182 crossref_primary_10_1016_j_mtphys_2019_100162 crossref_primary_10_1016_j_ijhydene_2022_07_135 crossref_primary_10_1002_aenm_202103511 crossref_primary_10_1016_j_apcatb_2022_121834 crossref_primary_10_1016_j_ijhydene_2024_10_120 crossref_primary_10_1016_j_jpowsour_2022_232417 crossref_primary_10_1002_smtd_202301602 crossref_primary_10_1016_j_cej_2023_146172 crossref_primary_10_1021_acs_energyfuels_2c02013 crossref_primary_10_1021_acsami_0c13533 crossref_primary_10_1021_acsami_8b22114 crossref_primary_10_1021_acs_energyfuels_4c04519 crossref_primary_10_1021_acsami_0c10024 crossref_primary_10_1039_C8TA00517F crossref_primary_10_1016_j_carbon_2021_11_050 crossref_primary_10_1021_acsami_9b11594 crossref_primary_10_1039_C8TA05551C crossref_primary_10_1016_j_apsusc_2020_146753 crossref_primary_10_1016_j_apsusc_2024_159391 crossref_primary_10_1016_j_jcis_2024_09_239 crossref_primary_10_1039_D1TA10546A crossref_primary_10_1002_anie_202107510 crossref_primary_10_1016_j_apcatb_2019_01_007 crossref_primary_10_1021_acs_inorgchem_1c01136 crossref_primary_10_1039_D4TA02076F crossref_primary_10_1002_ente_201901079 crossref_primary_10_1016_j_ijhydene_2023_08_327 crossref_primary_10_1021_acsami_4c00974 crossref_primary_10_1039_D1NR02307A crossref_primary_10_1016_j_diamond_2023_110261 crossref_primary_10_1016_j_jelechem_2021_115201 crossref_primary_10_1016_j_apsusc_2022_155785 crossref_primary_10_1016_j_cossms_2020_100805 crossref_primary_10_1016_j_apsusc_2021_151182 crossref_primary_10_1007_s12274_022_5245_y crossref_primary_10_1016_j_jcis_2020_02_030 crossref_primary_10_1016_j_ijhydene_2020_07_078 crossref_primary_10_1016_j_ijhydene_2021_07_236 crossref_primary_10_1039_D0TA06565J crossref_primary_10_1002_adfm_202112164 crossref_primary_10_1016_j_electacta_2020_135933 crossref_primary_10_1016_j_ijhydene_2020_12_037 crossref_primary_10_1021_acs_energyfuels_2c01144 crossref_primary_10_1002_asia_202200035 crossref_primary_10_1016_j_ccr_2023_215117 crossref_primary_10_1016_j_apsusc_2022_153352 crossref_primary_10_1021_acs_jpcc_1c04892 crossref_primary_10_1063_5_0221991 crossref_primary_10_1016_j_mser_2024_100829 crossref_primary_10_1016_j_jallcom_2023_171746 crossref_primary_10_1002_smtd_202100679 crossref_primary_10_1039_C9NR03401C crossref_primary_10_1016_j_mset_2020_09_005 crossref_primary_10_1016_j_ijhydene_2023_09_240 crossref_primary_10_1016_j_jece_2024_111946 crossref_primary_10_1016_j_mssp_2024_109052 crossref_primary_10_1016_j_jechem_2019_05_007 crossref_primary_10_1002_cctc_202301241 crossref_primary_10_1007_s12274_024_6670_x crossref_primary_10_1016_j_cej_2023_145170 crossref_primary_10_2139_ssrn_3949875 crossref_primary_10_1016_j_apcatb_2021_120611 crossref_primary_10_1039_C8QM00405F crossref_primary_10_1039_D4NJ02653E crossref_primary_10_1002_eem2_12526 crossref_primary_10_1002_eem2_12407 crossref_primary_10_1360_SSC_2024_0241 crossref_primary_10_3390_ma14061473 crossref_primary_10_1016_j_jmst_2020_10_009 crossref_primary_10_1039_D0CP03845H crossref_primary_10_1007_s13391_020_00260_x crossref_primary_10_1002_cnl2_105 crossref_primary_10_1021_acs_inorgchem_2c03516 crossref_primary_10_1021_acs_chemmater_1c02609 crossref_primary_10_1039_D2QI02081E crossref_primary_10_1016_j_elecom_2018_01_014 crossref_primary_10_1016_j_jscs_2022_101469 crossref_primary_10_1021_acsami_2c10781 crossref_primary_10_1021_acsanm_2c01243 crossref_primary_10_1016_j_jallcom_2024_177588 crossref_primary_10_1002_adhm_202202596 crossref_primary_10_1007_s40843_021_1894_4 crossref_primary_10_1016_j_cej_2020_128067 crossref_primary_10_1016_j_jcis_2019_09_104 crossref_primary_10_1016_j_rinp_2024_107702 crossref_primary_10_1016_j_fuel_2025_134573 crossref_primary_10_1016_j_mtener_2020_100436 crossref_primary_10_1016_j_jallcom_2019_153346 crossref_primary_10_1016_j_jallcom_2021_161346 crossref_primary_10_1016_j_ijhydene_2023_03_093 crossref_primary_10_1039_D0TA09604K crossref_primary_10_1002_asia_201900489 crossref_primary_10_1039_D0TA07403A crossref_primary_10_1016_j_electacta_2019_01_152 crossref_primary_10_1016_j_nanoen_2020_105732 crossref_primary_10_1016_j_jallcom_2020_156810 crossref_primary_10_1021_acscatal_0c01159 crossref_primary_10_1002_cssc_201901628 crossref_primary_10_1007_s10853_018_2519_6 crossref_primary_10_1016_j_electacta_2019_134631 crossref_primary_10_1016_j_ensm_2021_06_043 crossref_primary_10_1016_j_ijhydene_2024_01_312 |
Cites_doi | 10.1039/C4EE01760A 10.1002/adma.201600054 10.1039/C7CC05172G 10.1002/anie.201701477 10.1038/nmat2858 10.1021/ja404523s 10.1021/acsnano.7b01946 10.1002/anie.201511447 10.1002/adma.201506314 10.1002/anie.201610413 10.1002/aenm.201502585 10.1038/ncomms4783 10.1002/adfm.201600566 10.1016/j.apcatb.2014.02.020 10.1016/j.nanoen.2017.07.027 10.1002/anie.201200699 10.1016/j.nanoen.2017.01.014 10.1002/ange.201607651 10.1021/ja301567f 10.1016/j.nanoen.2016.08.027 10.1016/j.nanoen.2017.02.004 10.1002/anie.201600525 10.1002/adma.201601019 10.1038/nmat1752 10.1016/j.nanoen.2016.02.023 10.1002/adma.201606521 10.1039/C5EE02996A 10.1002/ange.201506480 10.1039/C6TA07883D 10.1021/ja403440e 10.1002/anie.201703183 10.1021/acs.nanolett.6b03803 10.1021/acsnano.6b06259 10.1002/ange.201402998 10.1038/nchem.1853 10.1002/adma.201601663 10.1038/nchem.907 10.1002/aenm.201602547 10.1002/anie.201502438 10.1021/jacs.5b07756 10.1002/aenm.201600221 10.1002/anie.201503407 10.1039/C6SC03356C 10.1002/ange.201207111 10.1016/j.nanoen.2017.03.016 10.1038/35104599 10.1038/nmat1840 10.1126/science.285.5428.687 10.1002/aenm.201700381 10.1021/jacs.7b03507 10.1021/ja405351s 10.1039/C6NR02803A 10.1021/jacs.6b05940 10.1039/C6TA02492K 10.1002/adma.201602441 10.1002/aenm.201601189 10.1038/ncomms15437 10.1016/j.nanoen.2017.04.032 10.1002/smll.201604265 10.1039/C4CS00470A 10.1002/ange.201501616 10.1021/acsnano.6b06580 10.1021/ja407115p 10.1039/C4TA03776F 10.1002/anie.201600686 10.1021/ja4081056 10.1016/j.nanoen.2016.07.005 10.1021/ja5119495 10.1021/acsenergylett.7b00229 10.1039/C6TA00356G 10.1002/adma.201701584 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd |
Copyright_xml | – notice: 2017 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.nanoen.2017.11.045 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 363 |
ExternalDocumentID | 10_1016_j_nanoen_2017_11_045 S2211285517307322 |
GroupedDBID | --K --M .~1 0R~ 1~. 1~5 4.4 457 4G. 5VS 7-5 8P~ AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC EBS EFJIC EFLBG EJD FDB FIRID FNPLU FYGXN GBLVA HZ~ JARJE KOM M41 MAGPM MO0 O-L O9- OAUVE P-8 P-9 PC. Q38 RIG ROL SDF SPC SPCBC SSM SSR SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c372t-46ad1b7d1e997b29e61b25a77396f73b8f44a75d4759113abee870e40ace1ce33 |
IEDL.DBID | .~1 |
ISSN | 2211-2855 |
IngestDate | Thu Apr 24 23:08:25 EDT 2025 Tue Jul 01 01:55:59 EDT 2025 Fri Feb 23 02:30:22 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Nickel nitride Nickel molybdenum nitride Water splitting Heterostructures |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-46ad1b7d1e997b29e61b25a77396f73b8f44a75d4759113abee870e40ace1ce33 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1016_j_nanoen_2017_11_045 crossref_citationtrail_10_1016_j_nanoen_2017_11_045 elsevier_sciencedirect_doi_10_1016_j_nanoen_2017_11_045 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2018 2018-02-00 |
PublicationDateYYYYMMDD | 2018-02-01 |
PublicationDate_xml | – month: 02 year: 2018 text: February 2018 |
PublicationDecade | 2010 |
PublicationTitle | Nano energy |
PublicationYear | 2018 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Vrubel, Hu (bib8) 2012; 51 Balogun, Zeng, Qiu, Luo, Onasanya, Olaniyi, Tong (bib52) 2016; 4 Zhang, Ouyang, Xu, Chen, Rawat, Fan (bib43) 2016; 6 Jiang, You, Sheng, Sun (bib36) 2015; 127 Chen, Xu, Fang, Tong, Wu, Lu, Peng, Ding, Wu, Xie (bib66) 2015; 127 Wang, Chen, Yu, Wang, Zheng (bib60) 2016 Louie, Bell (bib65) 2013; 135 Sivanantham, Ganesan, Shanmugam (bib7) 2016; 26 Wu, Tian, Yan, Jiao, Yan, Yang, Fu (bib15) 2016; 8 Shen, Wang, Tang, Li, Wang, Dong, Li, Xu, Lan (bib27) 2017; 2 Ouyang, Zhang, Zhang, Fan, Rawat (bib47) 2017 Liang, Gandi, Anjum, Wang, Schwingenschlogl, Alshareef (bib37) 2016; 16 Wu, Liao, Cao, Li, Zhang (bib55) 2017; 34 Zhang, Wu, Qi, Chen, Cao (bib23) 2017; 7 Huang, Yu, Zhao, Han, Yang, Liu, Li, Zhang, Qiu (bib38) 2017; 34 Xu, Cui, Guo, Zhao, Jiang, Xu, Zhuang, Huang, Wang, Li (bib62) 2016; 55 Nandi, Singu, Mullangi, Illathvalappil, George, Vinod, Kurungot, Vaidhyanathan (bib48) 2016; 6 Dresselhaus, Thomas (bib2) 2001; 414 Cao, Veith, Neuefeind, Adzic, Khalifah (bib12) 2013; 135 Popczun, McKone, Read, Biacchi, Wiltrout, Lewis, Schaak (bib19) 2013; 135 Yu, Duan, Gao, Lang, Zheng, Yu (bib32) 2017; 8 Kibsgaard, Jaramillo, Besenbacher (bib64) 2014; 6 Z.H. Zhao, D.E. Schipper, A.P. Leitner, H. Thirumalai, J.H. Chen, L.X. Xie, F. Qin, M.K. Alam, L.C. Grabow, S. Chen, D.Z. Wang, Z.F. Ren, Z.M. Wang, K.H. Whitmire, J.M. Bao, Nano Energy Ping, Wang, Lu, Chen, Chen, Huang, Ma, Tan, Yang, Cao, Wang, Wu, Ying, Zhang (bib24) 2016; 28 . Wang, Wang, Liu, Zheng, Li (bib44) 2016; 22 Faber, Jin (bib4) 2014; 7 Wang, Zhang, Liu, Xie, Feng, Liu, Shao, Wang (bib22) 2017; 56 Huang, Gong, Song, Feng, Nie, Zhao, Wang, Zeng, Zhong, Li (bib17) 2016; 10 Gao, Zhang, Li, Yu, Hong, Zhang, Liang, Lin (bib30) 2016; 55 Gao, Zhang, Wang, Xiao, Tao, Xue, Ding (bib56) 2016; 4 McCrory, Jung, Peters, Jaramillo (bib11) 2013; 135 Loh, Bao, Eda, Chhowalla (bib58) 2010; 2 Acik, Lee, Mattevi, Chhowalla, Cho, Chabal (bib59) 2010; 9 Greeley, Jaramillo, Bonde, Chorkendorff, Norskov (bib3) 2006; 5 Zhang, Wang, Liu, Liao, Liu, Zhuang, Chen, Zscheche, Feng (bib69) 2017; 8 Fang, Gao, Dong, Xia, Yip, Qin, Qu, Ho (bib42) 2016; 27 Feng, Xu, Dong, Ye, Tong, Li (bib26) 2016; 55 Zhou, Jia, Lu, Yang, Hou, Li, Chen (bib61) 2016; 28 Lai, Li, Wu, Saqib, Luque, Xu (bib40) 2016; 9 Wang, Min, Wang, Li, Casillas, Ma, Li, Liu, Li, Yuan, Antonietti, Wu (bib21) 2017; 11 Xu, Chen, Li, Tong, Ding, Wu, Chu, Peng, Wu, Xie (bib46) 2015; 137 Jiang, Niu, Tang, Zhang, Liu, Zhang, Chen, Li, Gu, Wan, Hu (bib50) 2017; 56 Li, Wang, Zhou, Zhang, Sun, Tang, Zhang, Al-Enizi, Yang, Zheng (bib29) 2015; 137 Chen, Zhou, Zhang, Tong, Zhong, Zhang, Zhang, Wu, Xie (bib72) 2017 Jiao, Zheng, Jaroniec, Qiao (bib5) 2015; 44 Feng, Ye, Xu, Tong, Li (bib25) 2016; 28 Yang, Gao, Zhang, Zeng, Li, Abbott (bib49) 2017; 36 Tang, Zhang, Lu, He, Jiang, Asiri, Sun (bib20) 2017; 29 Lukowski, Daniel, Meng, Forticaux, Li, Jin (bib13) 2013; 135 Wang, Guo, Zhou, Chang, Zheng, Li (bib45) 2016; 10 Zhang, Wang, Wang, Al-Enizi, Elzatahry, Zheng (bib68) 2016; 4 Jin, Wang, Li, Yue, Han, Shen, Cui (bib31) 2016; 28 Zheng, Jiao, Zhu, Li, Han, Chen, Du, Jaroniec, Qiao (bib53) 2014; 5 Zhu, Ma, Jaroniec, Qiao (bib33) 2017; 56 Turner (bib1) 1999; 285 Li, Zhang, Qiao, Yu, Peterson, Zafar, Kumar, Curtarolo, Hunte, Shannon, Zhu, Yang, Cao (bib14) 2016; 138 Jiang, Gao, Sheng, Yan (bib41) 2016; 128 Stamenkovic, Mun, Arenz, Mayrhofer, Lucas, Wang, Ross, Markovic (bib10) 2007; 6 Tang, Cheng, Pu, Xing, Sun (bib6) 2015; 54 Xiao, Yan, Ge, Liu, Wang, Wang (bib57) 2014; 154–155 Wu, Wang, Liu, Xia, Xuan, Guo, Lei, Wang (bib16) 2017; 32 Wan, Regmi, Leonard (bib18) 2014; 126 Chen, Qi, Guo, Lei, Zhang, Cao (bib67) 2017; 53 Liao, Keith, Carter (bib70) 2012; 134 Jia, Zhao, Chen, Shang, Shi, Kang, Waterhouse, Wu, Tung, Zhang (bib9) 2016; 6 Chen, Xu, Tao, Zhou, Tong, Ding, Zhang, Chu, Wu, Xie (bib71) 2016; 28 Ledendecker, Calderón, Papp, Steinrück, Antonietti, Shalon (bib34) 2015; 54 Tang, Jiang, Niu, Liu, Luo, Chen, Jin, Gao, Wan, Hu (bib39) 2017; 139 Xing, Kong, Liu, Liu, Kang, Luo (bib28) 2014; 2 Masa, Sinev, Mistry, Ventosa, Mata, Arbiol, Muhler, Cuenya, Schuhmann (bib51) 2017 Chen, Sasaki, Ma, Frenkel, Marinkovic, Muckerman, Zhu, Adzic (bib63) 2012; 51 Liu, Zhao, Peng, Zhang, Sit, Yuwen, Zhang, Lee, Zhang (bib54) 2017; 29 Wang (10.1016/j.nanoen.2017.11.045_bib22) 2017; 56 Xing (10.1016/j.nanoen.2017.11.045_bib28) 2014; 2 Huang (10.1016/j.nanoen.2017.11.045_bib38) 2017; 34 Acik (10.1016/j.nanoen.2017.11.045_bib59) 2010; 9 Wang (10.1016/j.nanoen.2017.11.045_bib45) 2016; 10 Balogun (10.1016/j.nanoen.2017.11.045_bib52) 2016; 4 Zhang (10.1016/j.nanoen.2017.11.045_bib69) 2017; 8 Xiao (10.1016/j.nanoen.2017.11.045_bib57) 2014; 154–155 Zhang (10.1016/j.nanoen.2017.11.045_bib23) 2017; 7 Gao (10.1016/j.nanoen.2017.11.045_bib56) 2016; 4 Chen (10.1016/j.nanoen.2017.11.045_bib71) 2016; 28 Chen (10.1016/j.nanoen.2017.11.045_bib72) 2017 Feng (10.1016/j.nanoen.2017.11.045_bib26) 2016; 55 Wu (10.1016/j.nanoen.2017.11.045_bib16) 2017; 32 Shen (10.1016/j.nanoen.2017.11.045_bib27) 2017; 2 Kibsgaard (10.1016/j.nanoen.2017.11.045_bib64) 2014; 6 Tang (10.1016/j.nanoen.2017.11.045_bib39) 2017; 139 Faber (10.1016/j.nanoen.2017.11.045_bib4) 2014; 7 Zhou (10.1016/j.nanoen.2017.11.045_bib61) 2016; 28 Greeley (10.1016/j.nanoen.2017.11.045_bib3) 2006; 5 Nandi (10.1016/j.nanoen.2017.11.045_bib48) 2016; 6 Chen (10.1016/j.nanoen.2017.11.045_bib66) 2015; 127 Tang (10.1016/j.nanoen.2017.11.045_bib6) 2015; 54 Ping (10.1016/j.nanoen.2017.11.045_bib24) 2016; 28 Jin (10.1016/j.nanoen.2017.11.045_bib31) 2016; 28 Sivanantham (10.1016/j.nanoen.2017.11.045_bib7) 2016; 26 Gao (10.1016/j.nanoen.2017.11.045_bib30) 2016; 55 Chen (10.1016/j.nanoen.2017.11.045_bib67) 2017; 53 Jiang (10.1016/j.nanoen.2017.11.045_bib36) 2015; 127 Turner (10.1016/j.nanoen.2017.11.045_bib1) 1999; 285 McCrory (10.1016/j.nanoen.2017.11.045_bib11) 2013; 135 Wang (10.1016/j.nanoen.2017.11.045_bib44) 2016; 22 Wang (10.1016/j.nanoen.2017.11.045_bib60) 2016 Li (10.1016/j.nanoen.2017.11.045_bib29) 2015; 137 Jiang (10.1016/j.nanoen.2017.11.045_bib41) 2016; 128 Fang (10.1016/j.nanoen.2017.11.045_bib42) 2016; 27 Zhang (10.1016/j.nanoen.2017.11.045_bib68) 2016; 4 Wu (10.1016/j.nanoen.2017.11.045_bib55) 2017; 34 Louie (10.1016/j.nanoen.2017.11.045_bib65) 2013; 135 Xu (10.1016/j.nanoen.2017.11.045_bib46) 2015; 137 Jia (10.1016/j.nanoen.2017.11.045_bib9) 2016; 6 Xu (10.1016/j.nanoen.2017.11.045_bib62) 2016; 55 Ledendecker (10.1016/j.nanoen.2017.11.045_bib34) 2015; 54 Lai (10.1016/j.nanoen.2017.11.045_bib40) 2016; 9 Wu (10.1016/j.nanoen.2017.11.045_bib15) 2016; 8 Cao (10.1016/j.nanoen.2017.11.045_bib12) 2013; 135 Li (10.1016/j.nanoen.2017.11.045_bib14) 2016; 138 Wang (10.1016/j.nanoen.2017.11.045_bib21) 2017; 11 Masa (10.1016/j.nanoen.2017.11.045_bib51) 2017 Ouyang (10.1016/j.nanoen.2017.11.045_bib47) 2017 Liao (10.1016/j.nanoen.2017.11.045_bib70) 2012; 134 Wan (10.1016/j.nanoen.2017.11.045_bib18) 2014; 126 Chen (10.1016/j.nanoen.2017.11.045_bib63) 2012; 51 Jiang (10.1016/j.nanoen.2017.11.045_bib50) 2017; 56 Zhang (10.1016/j.nanoen.2017.11.045_bib43) 2016; 6 Vrubel (10.1016/j.nanoen.2017.11.045_bib8) 2012; 51 Feng (10.1016/j.nanoen.2017.11.045_bib25) 2016; 28 Huang (10.1016/j.nanoen.2017.11.045_bib17) 2016; 10 Stamenkovic (10.1016/j.nanoen.2017.11.045_bib10) 2007; 6 10.1016/j.nanoen.2017.11.045_bib35 Yang (10.1016/j.nanoen.2017.11.045_bib49) 2017; 36 Dresselhaus (10.1016/j.nanoen.2017.11.045_bib2) 2001; 414 Yu (10.1016/j.nanoen.2017.11.045_bib32) 2017; 8 Loh (10.1016/j.nanoen.2017.11.045_bib58) 2010; 2 Liu (10.1016/j.nanoen.2017.11.045_bib54) 2017; 29 Tang (10.1016/j.nanoen.2017.11.045_bib20) 2017; 29 Zhu (10.1016/j.nanoen.2017.11.045_bib33) 2017; 56 Popczun (10.1016/j.nanoen.2017.11.045_bib19) 2013; 135 Liang (10.1016/j.nanoen.2017.11.045_bib37) 2016; 16 Zheng (10.1016/j.nanoen.2017.11.045_bib53) 2014; 5 Jiao (10.1016/j.nanoen.2017.11.045_bib5) 2015; 44 Lukowski (10.1016/j.nanoen.2017.11.045_bib13) 2013; 135 |
References_xml | – volume: 28 start-page: 7640 year: 2016 end-page: 7645 ident: bib24 publication-title: Adv. Mater. – volume: 285 start-page: 687 year: 1999 end-page: 689 ident: bib1 publication-title: Science – volume: 11 start-page: 4358 year: 2017 end-page: 4364 ident: bib21 publication-title: ACS Nano – volume: 56 start-page: 5867 year: 2017 end-page: 5871 ident: bib22 publication-title: Angew. Chem. Int. Ed. – volume: 16 start-page: 7718 year: 2016 end-page: 7725 ident: bib37 publication-title: Nano Lett. – volume: 8 start-page: 968 year: 2017 end-page: 973 ident: bib32 publication-title: Chem. Sci. – volume: 2 start-page: 1015 year: 2010 end-page: 1024 ident: bib58 publication-title: Nat. Chem. – volume: 44 start-page: 2060 year: 2015 end-page: 2086 ident: bib5 publication-title: Chem. Soc. Rev. – volume: 138 start-page: 16632 year: 2016 end-page: 16638 ident: bib14 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 11337 year: 2016 end-page: 11343 ident: bib17 publication-title: ACS Nano – volume: 127 start-page: 14923 year: 2015 end-page: 14927 ident: bib66 publication-title: Angew. Chem. – volume: 4 start-page: 9844 year: 2016 end-page: 9849 ident: bib52 publication-title: J. Mater. Chem. A – volume: 28 start-page: 29 year: 2016 end-page: 43 ident: bib61 publication-title: Nano Energy – volume: 6 start-page: 241 year: 2007 end-page: 247 ident: bib10 publication-title: Nat. Mater. – volume: 135 start-page: 19186 year: 2013 end-page: 19192 ident: bib12 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 11052 year: 2016 end-page: 11059 ident: bib15 publication-title: Nanoscale – volume: 55 start-page: 6290 year: 2016 end-page: 6294 ident: bib30 publication-title: Angew. Chem. Int. Ed. – volume: 54 start-page: 12361 year: 2015 end-page: 12365 ident: bib34 publication-title: Angew. Chem. Int. Ed. – volume: 6 start-page: 1502585 year: 2016 ident: bib9 publication-title: Adv. Energy Mater. – reference: 〉. – volume: 32 start-page: 511 year: 2017 end-page: 519 ident: bib16 publication-title: Nano Energy – volume: 36 start-page: 85 year: 2017 end-page: 94 ident: bib49 publication-title: Nano Energy – volume: 55 start-page: 6502 year: 2016 end-page: 6505 ident: bib62 publication-title: Angew. Chem. Int. Ed. – volume: 5 start-page: 909 year: 2006 end-page: 913 ident: bib3 publication-title: Nat. Mater. – volume: 27 start-page: 3247 year: 2016 end-page: 3254 ident: bib42 publication-title: Nano Energy – volume: 29 start-page: 1606521 year: 2017 ident: bib54 publication-title: Adv. Mater. – volume: 6 start-page: 1600221 year: 2016 ident: bib43 publication-title: Adv. Energy Mater. – volume: 5 start-page: 3783 year: 2014 ident: bib53 publication-title: Nat. Commun. – volume: 127 start-page: 6349 year: 2015 end-page: 6352 ident: bib36 publication-title: Angew. Chem. – volume: 54 start-page: 9351 year: 2015 end-page: 9355 ident: bib6 publication-title: Angew. Chem. Int. Ed. – volume: 7 start-page: 1602547 year: 2017 ident: bib23 publication-title: Adv. Energy Mater. – start-page: 1604265 year: 2017 ident: bib47 publication-title: Small – start-page: 1701584 year: 2017 ident: bib72 publication-title: Adv. Mater. – volume: 51 start-page: 12875 year: 2012 end-page: 12878 ident: bib8 publication-title: Angew. Chem. Int. Ed. – volume: 29 start-page: 1602441 year: 2017 ident: bib20 publication-title: Adv. Mater. – volume: 22 start-page: 111 year: 2016 end-page: 119 ident: bib44 publication-title: Nano Energy – volume: 28 start-page: 3785 year: 2016 end-page: 3790 ident: bib31 publication-title: Adv. Mater. – volume: 154–155 start-page: 232 year: 2014 end-page: 237 ident: bib57 publication-title: Appl. Catal. B: Environ. – volume: 135 start-page: 12329 year: 2013 end-page: 12337 ident: bib65 publication-title: J. Am. Chem. Soc. – volume: 55 start-page: 3694 year: 2016 end-page: 3698 ident: bib26 publication-title: Angew. Chem. Int. Ed. – volume: 51 start-page: 6131 year: 2012 end-page: 6135 ident: bib63 publication-title: Angew. Chem. Int. Ed. – volume: 414 start-page: 332 year: 2001 end-page: 337 ident: bib2 publication-title: Nature – volume: 135 start-page: 16977 year: 2013 end-page: 16987 ident: bib11 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 15437 year: 2017 ident: bib69 publication-title: Nat. Commun. – volume: 26 start-page: 4661 year: 2016 end-page: 4672 ident: bib7 publication-title: Adv. Funct. Mater. – volume: 4 start-page: 17363 year: 2016 end-page: 17369 ident: bib56 publication-title: J. Mater. Chem. A – volume: 6 start-page: 248 year: 2014 end-page: 253 ident: bib64 publication-title: Nat. Chem. – volume: 10 start-page: 10397 year: 2016 end-page: 10403 ident: bib45 publication-title: ACS Nano – volume: 135 start-page: 9267 year: 2013 end-page: 9270 ident: bib19 publication-title: J. Am. Chem. Soc. – volume: 34 start-page: 472 year: 2017 end-page: 480 ident: bib38 publication-title: Nano Energy – volume: 56 start-page: 1324 year: 2017 end-page: 1328 ident: bib33 publication-title: Angew. Chem. Int. Ed. – volume: 2 start-page: 1327 year: 2017 end-page: 1333 ident: bib27 publication-title: ACS Energy Lett. – start-page: 1601390 year: 2016 ident: bib60 publication-title: Adv. Energy Mater. – volume: 7 start-page: 3519 year: 2014 end-page: 3542 ident: bib4 publication-title: Energy Environ. Sci. – volume: 137 start-page: 14305 year: 2015 end-page: 14312 ident: bib29 publication-title: J. Am. Chem. Soc. – volume: 34 start-page: 8 year: 2017 end-page: 14 ident: bib55 publication-title: Nano Energy – volume: 137 start-page: 4119 year: 2015 end-page: 4125 ident: bib46 publication-title: J. Am. Chem. Soc. – volume: 28 start-page: 7527 year: 2016 end-page: 7532 ident: bib71 publication-title: Adv. Mater. – volume: 9 start-page: 840 year: 2010 end-page: 845 ident: bib59 publication-title: Nat. Mater. – volume: 128 start-page: 15466 year: 2016 end-page: 15471 ident: bib41 publication-title: Angew. Chem. – volume: 6 start-page: 1601189 year: 2016 ident: bib48 publication-title: Adv. Energy Mater. – volume: 134 start-page: 13296 year: 2012 end-page: 13309 ident: bib70 publication-title: J. Am. Chem. Soc. – volume: 56 start-page: 6572 year: 2017 end-page: 6577 ident: bib50 publication-title: Angew. Chem. Int. Ed. – volume: 53 start-page: 9566 year: 2017 end-page: 9569 ident: bib67 publication-title: Chem. Commun. – volume: 2 start-page: 18435 year: 2014 end-page: 18443 ident: bib28 publication-title: J. Mater. Chem. A – volume: 126 start-page: 6525 year: 2014 end-page: 6528 ident: bib18 publication-title: Angew. Chem. – volume: 28 start-page: 4698 year: 2016 end-page: 4703 ident: bib25 publication-title: Adv. Mater. – volume: 9 start-page: 1210 year: 2016 end-page: 1214 ident: bib40 publication-title: Energy Environ. Sci. – volume: 139 start-page: 8320 year: 2017 end-page: 8328 ident: bib39 publication-title: J. Am. Chem. Soc. – start-page: 1700381 year: 2017 ident: bib51 publication-title: Adv. Energy Mater. – volume: 135 start-page: 10274 year: 2013 end-page: 10277 ident: bib13 publication-title: J. Am. Chem. Soc. – reference: Z.H. Zhao, D.E. Schipper, A.P. Leitner, H. Thirumalai, J.H. Chen, L.X. Xie, F. Qin, M.K. Alam, L.C. Grabow, S. Chen, D.Z. Wang, Z.F. Ren, Z.M. Wang, K.H. Whitmire, J.M. Bao, Nano Energy, 〈 – volume: 4 start-page: 5713 year: 2016 end-page: 5718 ident: bib68 publication-title: J. Mater. Chem. A – volume: 7 start-page: 3519 year: 2014 ident: 10.1016/j.nanoen.2017.11.045_bib4 publication-title: Energy Environ. Sci. doi: 10.1039/C4EE01760A – volume: 28 start-page: 4698 year: 2016 ident: 10.1016/j.nanoen.2017.11.045_bib25 publication-title: Adv. Mater. doi: 10.1002/adma.201600054 – volume: 53 start-page: 9566 year: 2017 ident: 10.1016/j.nanoen.2017.11.045_bib67 publication-title: Chem. Commun. doi: 10.1039/C7CC05172G – volume: 56 start-page: 5867 year: 2017 ident: 10.1016/j.nanoen.2017.11.045_bib22 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201701477 – volume: 9 start-page: 840 year: 2010 ident: 10.1016/j.nanoen.2017.11.045_bib59 publication-title: Nat. Mater. doi: 10.1038/nmat2858 – volume: 135 start-page: 10274 year: 2013 ident: 10.1016/j.nanoen.2017.11.045_bib13 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja404523s – volume: 11 start-page: 4358 year: 2017 ident: 10.1016/j.nanoen.2017.11.045_bib21 publication-title: ACS Nano doi: 10.1021/acsnano.7b01946 – volume: 55 start-page: 3694 year: 2016 ident: 10.1016/j.nanoen.2017.11.045_bib26 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201511447 – volume: 28 start-page: 3785 year: 2016 ident: 10.1016/j.nanoen.2017.11.045_bib31 publication-title: Adv. Mater. doi: 10.1002/adma.201506314 – volume: 56 start-page: 1324 year: 2017 ident: 10.1016/j.nanoen.2017.11.045_bib33 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201610413 – volume: 6 start-page: 1502585 year: 2016 ident: 10.1016/j.nanoen.2017.11.045_bib9 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201502585 – volume: 5 start-page: 3783 year: 2014 ident: 10.1016/j.nanoen.2017.11.045_bib53 publication-title: Nat. Commun. doi: 10.1038/ncomms4783 – volume: 26 start-page: 4661 year: 2016 ident: 10.1016/j.nanoen.2017.11.045_bib7 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201600566 – volume: 154–155 start-page: 232 year: 2014 ident: 10.1016/j.nanoen.2017.11.045_bib57 publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2014.02.020 – ident: 10.1016/j.nanoen.2017.11.045_bib35 doi: 10.1016/j.nanoen.2017.07.027 – volume: 51 start-page: 6131 year: 2012 ident: 10.1016/j.nanoen.2017.11.045_bib63 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201200699 – volume: 32 start-page: 511 year: 2017 ident: 10.1016/j.nanoen.2017.11.045_bib16 publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.01.014 – volume: 128 start-page: 15466 year: 2016 ident: 10.1016/j.nanoen.2017.11.045_bib41 publication-title: Angew. Chem. doi: 10.1002/ange.201607651 – volume: 134 start-page: 13296 year: 2012 ident: 10.1016/j.nanoen.2017.11.045_bib70 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja301567f – volume: 28 start-page: 29 year: 2016 ident: 10.1016/j.nanoen.2017.11.045_bib61 publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.08.027 – volume: 34 start-page: 8 year: 2017 ident: 10.1016/j.nanoen.2017.11.045_bib55 publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.02.004 – volume: 55 start-page: 6290 year: 2016 ident: 10.1016/j.nanoen.2017.11.045_bib30 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201600525 – volume: 28 start-page: 7640 year: 2016 ident: 10.1016/j.nanoen.2017.11.045_bib24 publication-title: Adv. Mater. doi: 10.1002/adma.201601019 – volume: 5 start-page: 909 year: 2006 ident: 10.1016/j.nanoen.2017.11.045_bib3 publication-title: Nat. Mater. doi: 10.1038/nmat1752 – volume: 22 start-page: 111 year: 2016 ident: 10.1016/j.nanoen.2017.11.045_bib44 publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.02.023 – volume: 29 start-page: 1606521 year: 2017 ident: 10.1016/j.nanoen.2017.11.045_bib54 publication-title: Adv. Mater. doi: 10.1002/adma.201606521 – volume: 9 start-page: 1210 year: 2016 ident: 10.1016/j.nanoen.2017.11.045_bib40 publication-title: Energy Environ. Sci. doi: 10.1039/C5EE02996A – volume: 127 start-page: 14923 year: 2015 ident: 10.1016/j.nanoen.2017.11.045_bib66 publication-title: Angew. Chem. doi: 10.1002/ange.201506480 – volume: 4 start-page: 17363 year: 2016 ident: 10.1016/j.nanoen.2017.11.045_bib56 publication-title: J. Mater. Chem. A doi: 10.1039/C6TA07883D – volume: 135 start-page: 9267 year: 2013 ident: 10.1016/j.nanoen.2017.11.045_bib19 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja403440e – volume: 56 start-page: 6572 year: 2017 ident: 10.1016/j.nanoen.2017.11.045_bib50 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201703183 – volume: 16 start-page: 7718 year: 2016 ident: 10.1016/j.nanoen.2017.11.045_bib37 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b03803 – volume: 10 start-page: 10397 year: 2016 ident: 10.1016/j.nanoen.2017.11.045_bib45 publication-title: ACS Nano doi: 10.1021/acsnano.6b06259 – volume: 126 start-page: 6525 year: 2014 ident: 10.1016/j.nanoen.2017.11.045_bib18 publication-title: Angew. Chem. doi: 10.1002/ange.201402998 – volume: 6 start-page: 248 year: 2014 ident: 10.1016/j.nanoen.2017.11.045_bib64 publication-title: Nat. Chem. doi: 10.1038/nchem.1853 – volume: 28 start-page: 7527 year: 2016 ident: 10.1016/j.nanoen.2017.11.045_bib71 publication-title: Adv. Mater. doi: 10.1002/adma.201601663 – volume: 2 start-page: 1015 year: 2010 ident: 10.1016/j.nanoen.2017.11.045_bib58 publication-title: Nat. Chem. doi: 10.1038/nchem.907 – volume: 7 start-page: 1602547 year: 2017 ident: 10.1016/j.nanoen.2017.11.045_bib23 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201602547 – volume: 54 start-page: 12361 year: 2015 ident: 10.1016/j.nanoen.2017.11.045_bib34 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201502438 – volume: 137 start-page: 14305 year: 2015 ident: 10.1016/j.nanoen.2017.11.045_bib29 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b07756 – volume: 6 start-page: 1600221 year: 2016 ident: 10.1016/j.nanoen.2017.11.045_bib43 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201600221 – volume: 54 start-page: 9351 year: 2015 ident: 10.1016/j.nanoen.2017.11.045_bib6 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201503407 – volume: 8 start-page: 968 year: 2017 ident: 10.1016/j.nanoen.2017.11.045_bib32 publication-title: Chem. Sci. doi: 10.1039/C6SC03356C – volume: 51 start-page: 12875 year: 2012 ident: 10.1016/j.nanoen.2017.11.045_bib8 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.201207111 – volume: 34 start-page: 472 year: 2017 ident: 10.1016/j.nanoen.2017.11.045_bib38 publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.03.016 – volume: 414 start-page: 332 year: 2001 ident: 10.1016/j.nanoen.2017.11.045_bib2 publication-title: Nature doi: 10.1038/35104599 – volume: 6 start-page: 241 year: 2007 ident: 10.1016/j.nanoen.2017.11.045_bib10 publication-title: Nat. Mater. doi: 10.1038/nmat1840 – volume: 285 start-page: 687 year: 1999 ident: 10.1016/j.nanoen.2017.11.045_bib1 publication-title: Science doi: 10.1126/science.285.5428.687 – start-page: 1700381 year: 2017 ident: 10.1016/j.nanoen.2017.11.045_bib51 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201700381 – volume: 139 start-page: 8320 year: 2017 ident: 10.1016/j.nanoen.2017.11.045_bib39 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b03507 – volume: 135 start-page: 12329 year: 2013 ident: 10.1016/j.nanoen.2017.11.045_bib65 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja405351s – volume: 8 start-page: 11052 year: 2016 ident: 10.1016/j.nanoen.2017.11.045_bib15 publication-title: Nanoscale doi: 10.1039/C6NR02803A – volume: 138 start-page: 16632 year: 2016 ident: 10.1016/j.nanoen.2017.11.045_bib14 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b05940 – volume: 4 start-page: 9844 year: 2016 ident: 10.1016/j.nanoen.2017.11.045_bib52 publication-title: J. Mater. Chem. A doi: 10.1039/C6TA02492K – volume: 29 start-page: 1602441 year: 2017 ident: 10.1016/j.nanoen.2017.11.045_bib20 publication-title: Adv. Mater. doi: 10.1002/adma.201602441 – volume: 6 start-page: 1601189 year: 2016 ident: 10.1016/j.nanoen.2017.11.045_bib48 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201601189 – volume: 8 start-page: 15437 year: 2017 ident: 10.1016/j.nanoen.2017.11.045_bib69 publication-title: Nat. Commun. doi: 10.1038/ncomms15437 – volume: 36 start-page: 85 year: 2017 ident: 10.1016/j.nanoen.2017.11.045_bib49 publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.04.032 – start-page: 1601390 year: 2016 ident: 10.1016/j.nanoen.2017.11.045_bib60 publication-title: Adv. Energy Mater. – start-page: 1604265 year: 2017 ident: 10.1016/j.nanoen.2017.11.045_bib47 publication-title: Small doi: 10.1002/smll.201604265 – volume: 44 start-page: 2060 year: 2015 ident: 10.1016/j.nanoen.2017.11.045_bib5 publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00470A – volume: 127 start-page: 6349 year: 2015 ident: 10.1016/j.nanoen.2017.11.045_bib36 publication-title: Angew. Chem. doi: 10.1002/ange.201501616 – volume: 10 start-page: 11337 year: 2016 ident: 10.1016/j.nanoen.2017.11.045_bib17 publication-title: ACS Nano doi: 10.1021/acsnano.6b06580 – volume: 135 start-page: 16977 year: 2013 ident: 10.1016/j.nanoen.2017.11.045_bib11 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja407115p – volume: 2 start-page: 18435 year: 2014 ident: 10.1016/j.nanoen.2017.11.045_bib28 publication-title: J. Mater. Chem. A doi: 10.1039/C4TA03776F – volume: 55 start-page: 6502 year: 2016 ident: 10.1016/j.nanoen.2017.11.045_bib62 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201600686 – volume: 135 start-page: 19186 year: 2013 ident: 10.1016/j.nanoen.2017.11.045_bib12 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4081056 – volume: 27 start-page: 3247 year: 2016 ident: 10.1016/j.nanoen.2017.11.045_bib42 publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.07.005 – volume: 137 start-page: 4119 year: 2015 ident: 10.1016/j.nanoen.2017.11.045_bib46 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5119495 – volume: 2 start-page: 1327 year: 2017 ident: 10.1016/j.nanoen.2017.11.045_bib27 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00229 – volume: 4 start-page: 5713 year: 2016 ident: 10.1016/j.nanoen.2017.11.045_bib68 publication-title: J. Mater. Chem. A doi: 10.1039/C6TA00356G – start-page: 1701584 year: 2017 ident: 10.1016/j.nanoen.2017.11.045_bib72 publication-title: Adv. Mater. doi: 10.1002/adma.201701584 |
SSID | ssj0000651712 |
Score | 2.6475952 |
Snippet | Developing the efficient and low-cost electrocatalysts for overall water splitting is of the great importance for the production of H2. The popular... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 353 |
SubjectTerms | Heterostructures Nickel molybdenum nitride Nickel nitride Water splitting |
Title | Integrating the active OER and HER components as the heterostructures for the efficient overall water splitting |
URI | https://dx.doi.org/10.1016/j.nanoen.2017.11.045 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6iFz2IT6wvcvAa2zx2szmW0tIqVvAB3pZkk2KlbIsPvPnbncnuFgVR8LRkdwbCZHZmsvvNF0LOik4KWTB1TBQ-Y8pnilnDLZMmMYm0RUcY7Ea-GqfDe3XxkDyskF7TC4Owyjr2VzE9Ruv6Tru2ZnsxnbZvBexdRAYZX6OfCozDSmn08vMPvvzOAimW6_jTE-UZKjQddBHmVdpyHpAIletzpPPEvqafMtSXrDPYIpt1uUi71Yy2yUood8jGFxLBXTIf1YwPMKJQzlEbQxi97t9QW3o6hCsCx-clYiaofYlCjwiDmVfssW-w5aZQvMYHIXJKgChFcKedzeg7lKPP9AWq1YiR3iP3g_5db8jqYxRYIbV4ZSq1njvteTBGO2FCyp1IrNbSpBMtXTZRyurEI_Mf59K6EOAlDqpji8CLIOU-WS1hjgeEWpl6YaxIhQ_Kmcx5nwQvPSw3FgKiRWRjuryoOcbxqItZ3oDJnvLK4DkaHLYfORi8RdhSa1FxbPwhr5tVyb_5Sg5p4FfNw39rHpF1GGUVXvuYrMLyhBMoR17dafS3U7LWHV0Ox5_I3uBj |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA6yPagP4hXnNQ--xi1J2zSPY2x0uk3QDXwrSRNRGd3wgn_fc3qRCaLgU2mTA-EkPedL-50vhFxknQiyYGSZyFzMAhcHzGhumNShDqXJOkJjNfJ4EiWz4Oo-vF8jvboWBmmVVewvY3oRrasn7cqb7eXTU_tOwN5FxJDxFa5TAXG4iepUYYM0u8PrZPL1qQWyLFfFf080YWhTF9EVTK_c5AuPWqhcXaKiJ5Y2_ZSkVhLPYJtsVYiRdstB7ZA1n--SzRUdwT2yGFaiD3BHAdFRU0QxetO_pSZ3NIErcscXOdImqHktOj0iE2ZRCsi-w66bAn4tGnwhKwFdKfI7zXxOPwCRvtBXAKwFTXqfzAb9aS9h1UkKLJNKvLEgMo5b5bjXWlmhfcStCI1SUkcPStr4IQiMCh2K_3EujfUe3mMfdEzmeealPCCNHMZ4SKiRkRPaiEg4H1gdW-dC76SDGUcsIFpE1q5Ls0pmHE-7mKc1n-w5LR2eosNhB5KCw1uEfVktS5mNP_qrelbSb8slhUzwq-XRvy3PyXoyHY_S0XByfUw2oCUu6dsnpAFT5U8BnbzZs2r1fQJ-1-MU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrating+the+active+OER+and+HER+components+as+the+heterostructures+for+the+efficient+overall+water+splitting&rft.jtitle=Nano+energy&rft.au=Wu%2C+Aiping&rft.au=Xie%2C+Ying&rft.au=Ma%2C+Hui&rft.au=Tian%2C+Chungui&rft.date=2018-02-01&rft.issn=2211-2855&rft.volume=44&rft.spage=353&rft.epage=363&rft_id=info:doi/10.1016%2Fj.nanoen.2017.11.045&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_nanoen_2017_11_045 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-2855&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-2855&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-2855&client=summon |