Integrating the active OER and HER components as the heterostructures for the efficient overall water splitting

Developing the efficient and low-cost electrocatalysts for overall water splitting is of the great importance for the production of H2. The popular bi-functional catalysts usually shown good activity for one half reaction at expense of the activity for another half-reaction, thus given a moderate pe...

Full description

Saved in:
Bibliographic Details
Published inNano energy Vol. 44; pp. 353 - 363
Main Authors Wu, Aiping, Xie, Ying, Ma, Hui, Tian, Chungui, Gu, Ying, Yan, Haijing, Zhang, Xiaomeng, Yang, Guoyu, Fu, Honggang
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.02.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Developing the efficient and low-cost electrocatalysts for overall water splitting is of the great importance for the production of H2. The popular bi-functional catalysts usually shown good activity for one half reaction at expense of the activity for another half-reaction, thus given a moderate performance for overall water splitting. In this paper, we have reported on integrating the active OER (Ni3N) and HER (NiMoN) components as Ni3N-NiMoN heterostructures for the effective overall water splitting. The heterostructures were constructed by the controllable nitridation of the Ni-Mo-O precursor anchored on carbon cloth (CC) under NH3 atmosphere. The micro-structures of the catalyst could be tuned by regulating the surface properties of CC and the calcination temperature. Under optimized condition, the Ni3N-NiMoN catalysts exhibited good catalytic activity for both OER and HER in alkaline electrolyte. The catalysts can achieve a current density of 10mAcm−2 at an overpotential of 31mV for HER, being close to Pt catalyst. Also, it only requiring an overpotential of 277mV to reach current density of 10mAcm−2 for OER. Moreover, the cell assembled by the identical Ni3N-NiMoN as both the cathode and anode needs only a cell voltage of 1.54V to achieve current density of 10mAcm−2. The superior performance of Ni3N-NiMoN heterostructures can be ascribed to the following points: 1) the simultaneous presence of active OER and HER components and the promoted action each other in the heterostructures, and 2) the exposure of the abundant active sites in the sheet-like structure assembled by the nanoparticles. The OER-active Ni3N and HER-active NiMoN have been integrated as Ni3N-NiMoN heterostructures anchored on carbon cloth for the high-effective overall water splitting. The catalysts can achieve a current density of 10mAcm−2 at an overpotential of 31mV for HER and an overpotential of 277mV for OER. The cell assembled by Ni3N-NiMoN heterostructures as both the cathode and anode only needs a cell voltage of 1.54V to achieve 10mAcm−2 for overall water splitting. [Display omitted] •The active OER and HER components are integrated as Ni3N-NiMoN heterostructures.•The heterostructures show good performance for both HER and OER.•The heterostructures exhibit superior performance for overall water splitting.•The origin of superior performance of the heterostructures is elucidated.
AbstractList Developing the efficient and low-cost electrocatalysts for overall water splitting is of the great importance for the production of H2. The popular bi-functional catalysts usually shown good activity for one half reaction at expense of the activity for another half-reaction, thus given a moderate performance for overall water splitting. In this paper, we have reported on integrating the active OER (Ni3N) and HER (NiMoN) components as Ni3N-NiMoN heterostructures for the effective overall water splitting. The heterostructures were constructed by the controllable nitridation of the Ni-Mo-O precursor anchored on carbon cloth (CC) under NH3 atmosphere. The micro-structures of the catalyst could be tuned by regulating the surface properties of CC and the calcination temperature. Under optimized condition, the Ni3N-NiMoN catalysts exhibited good catalytic activity for both OER and HER in alkaline electrolyte. The catalysts can achieve a current density of 10mAcm−2 at an overpotential of 31mV for HER, being close to Pt catalyst. Also, it only requiring an overpotential of 277mV to reach current density of 10mAcm−2 for OER. Moreover, the cell assembled by the identical Ni3N-NiMoN as both the cathode and anode needs only a cell voltage of 1.54V to achieve current density of 10mAcm−2. The superior performance of Ni3N-NiMoN heterostructures can be ascribed to the following points: 1) the simultaneous presence of active OER and HER components and the promoted action each other in the heterostructures, and 2) the exposure of the abundant active sites in the sheet-like structure assembled by the nanoparticles. The OER-active Ni3N and HER-active NiMoN have been integrated as Ni3N-NiMoN heterostructures anchored on carbon cloth for the high-effective overall water splitting. The catalysts can achieve a current density of 10mAcm−2 at an overpotential of 31mV for HER and an overpotential of 277mV for OER. The cell assembled by Ni3N-NiMoN heterostructures as both the cathode and anode only needs a cell voltage of 1.54V to achieve 10mAcm−2 for overall water splitting. [Display omitted] •The active OER and HER components are integrated as Ni3N-NiMoN heterostructures.•The heterostructures show good performance for both HER and OER.•The heterostructures exhibit superior performance for overall water splitting.•The origin of superior performance of the heterostructures is elucidated.
Author Tian, Chungui
Wu, Aiping
Zhang, Xiaomeng
Ma, Hui
Gu, Ying
Xie, Ying
Fu, Honggang
Yang, Guoyu
Yan, Haijing
Author_xml – sequence: 1
  givenname: Aiping
  surname: Wu
  fullname: Wu, Aiping
  organization: Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of China, Heilongjiang University, Harbin 150080, China
– sequence: 2
  givenname: Ying
  surname: Xie
  fullname: Xie, Ying
  organization: Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of China, Heilongjiang University, Harbin 150080, China
– sequence: 3
  givenname: Hui
  surname: Ma
  fullname: Ma, Hui
  organization: Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of China, Heilongjiang University, Harbin 150080, China
– sequence: 4
  givenname: Chungui
  surname: Tian
  fullname: Tian, Chungui
  email: chunguitianhq@163.com
  organization: Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of China, Heilongjiang University, Harbin 150080, China
– sequence: 5
  givenname: Ying
  surname: Gu
  fullname: Gu, Ying
  organization: Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of China, Heilongjiang University, Harbin 150080, China
– sequence: 6
  givenname: Haijing
  surname: Yan
  fullname: Yan, Haijing
  organization: Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of China, Heilongjiang University, Harbin 150080, China
– sequence: 7
  givenname: Xiaomeng
  surname: Zhang
  fullname: Zhang, Xiaomeng
  organization: Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of China, Heilongjiang University, Harbin 150080, China
– sequence: 8
  givenname: Guoyu
  surname: Yang
  fullname: Yang, Guoyu
  organization: Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Institute of Technology, Beijing 100081, China
– sequence: 9
  givenname: Honggang
  surname: Fu
  fullname: Fu, Honggang
  email: fuhg@vip.sina.com
  organization: Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of China, Heilongjiang University, Harbin 150080, China
BookMark eNqFkM1OAjEUhbvARETewEVfYMbe-SvjwsQQFBISEqPrptO5AyVDS9qC8e3tiCsXejdncc-5P98NGRlrkJA7YCkwqO73qZHGokkzBjwFSFlRjsg4ywCSbFaW12Tq_Z7FqkrgkI2JXZmAWyeDNlsadkilCvqMdLN4pdK0dBlV2cMx7jHBU-m_TTsM6KwP7qTCyaGnnXXfDew6rXS0UntGJ_uefshopf7Y6zDsuCVXnew9Tn90Qt6fF2_zZbLevKzmT-tE5TwLSVHJFhreAtY1b7IaK2iyUnKe11XH82bWFYXkZVvwsgbIZYM44wwLJhWCwjyfkOIyV8U7vcNOHJ0-SPcpgImBldiLCysxsBIAIrKKsYdfMaVDhGNNcFL3_4UfL2GMj501OuEHFgpb7VAF0Vr994AvULKN2w
CitedBy_id crossref_primary_10_1016_S1872_5813_24_60490_1
crossref_primary_10_1002_smll_202205469
crossref_primary_10_1016_j_cej_2021_128809
crossref_primary_10_1021_acsami_1c16048
crossref_primary_10_1016_j_fuel_2022_126131
crossref_primary_10_1016_j_xcrp_2020_100136
crossref_primary_10_1016_j_apcatb_2021_119882
crossref_primary_10_1021_acsaem_4c00876
crossref_primary_10_1002_ange_202107510
crossref_primary_10_1016_j_cej_2021_131094
crossref_primary_10_1002_smll_201901530
crossref_primary_10_1021_acsami_0c06716
crossref_primary_10_1016_j_ccr_2022_214968
crossref_primary_10_1039_C8TA12043A
crossref_primary_10_1007_s12274_022_4920_3
crossref_primary_10_1016_j_apsusc_2023_157896
crossref_primary_10_1039_D4GC00393D
crossref_primary_10_1002_adma_202007523
crossref_primary_10_1021_acssuschemeng_0c03333
crossref_primary_10_1039_C9TA03473K
crossref_primary_10_1039_D0TA08735A
crossref_primary_10_1016_j_mtsust_2024_100914
crossref_primary_10_1016_j_pmatsci_2024_101254
crossref_primary_10_1021_acsaem_0c02674
crossref_primary_10_1016_j_cclet_2020_05_012
crossref_primary_10_1007_s40843_018_9393_x
crossref_primary_10_1016_j_cej_2021_128818
crossref_primary_10_1016_j_ijhydene_2019_01_258
crossref_primary_10_1016_j_jpowsour_2021_230580
crossref_primary_10_1016_j_mtnano_2022_100272
crossref_primary_10_1016_j_jallcom_2021_160986
crossref_primary_10_1021_acsami_4c11560
crossref_primary_10_1016_j_jcis_2025_02_105
crossref_primary_10_1016_j_jechem_2020_10_010
crossref_primary_10_1039_C8QI00860D
crossref_primary_10_1002_smll_202207425
crossref_primary_10_1002_adfm_202103673
crossref_primary_10_1039_C9TC03813B
crossref_primary_10_1002_cctc_201901707
crossref_primary_10_1039_D0TA07975H
crossref_primary_10_1021_acsaem_0c00369
crossref_primary_10_1002_ange_201810104
crossref_primary_10_1039_D3NR02458J
crossref_primary_10_1007_s10853_020_05080_w
crossref_primary_10_1002_smll_201801717
crossref_primary_10_1016_j_jallcom_2024_174797
crossref_primary_10_1002_adma_201803590
crossref_primary_10_1039_C9TA06537G
crossref_primary_10_1016_j_jece_2022_107761
crossref_primary_10_1016_j_apmt_2024_102224
crossref_primary_10_1016_j_jelechem_2023_117811
crossref_primary_10_1021_acsaem_2c03973
crossref_primary_10_1016_j_cej_2020_126483
crossref_primary_10_1016_j_jcis_2021_09_121
crossref_primary_10_1016_j_ijhydene_2022_02_190
crossref_primary_10_1016_j_cej_2020_127686
crossref_primary_10_1007_s12274_022_4702_y
crossref_primary_10_1021_acsami_1c09308
crossref_primary_10_1016_j_ijhydene_2021_06_146
crossref_primary_10_1039_D4NJ00908H
crossref_primary_10_1039_C9TA11378A
crossref_primary_10_1016_j_apcatb_2020_119398
crossref_primary_10_1039_D3CC05444F
crossref_primary_10_1038_s41467_019_13092_7
crossref_primary_10_1007_s12274_023_6219_4
crossref_primary_10_1016_j_nanoen_2021_106402
crossref_primary_10_1002_cssc_202002338
crossref_primary_10_1016_j_mtnano_2022_100176
crossref_primary_10_1039_D2DT00022A
crossref_primary_10_1016_j_ensm_2021_04_013
crossref_primary_10_1039_D3QI00857F
crossref_primary_10_1002_slct_202001868
crossref_primary_10_1038_s41427_018_0072_z
crossref_primary_10_1021_acs_energyfuels_3c03940
crossref_primary_10_1002_smll_202202033
crossref_primary_10_1002_slct_201904506
crossref_primary_10_1002_adfm_202104827
crossref_primary_10_1002_smll_202405952
crossref_primary_10_1007_s40243_022_00214_3
crossref_primary_10_1039_D3NJ01361H
crossref_primary_10_1007_s40820_020_00469_3
crossref_primary_10_1039_D3DT01469J
crossref_primary_10_1016_j_cej_2022_135544
crossref_primary_10_1007_s10853_023_08551_y
crossref_primary_10_1016_j_electacta_2019_06_093
crossref_primary_10_1039_D1SE01283E
crossref_primary_10_1039_D3CP04951E
crossref_primary_10_1039_D2CC02083A
crossref_primary_10_1016_j_electacta_2021_138887
crossref_primary_10_1002_aenm_202002176
crossref_primary_10_1021_acs_jpcc_1c03961
crossref_primary_10_1016_j_ijhydene_2023_03_236
crossref_primary_10_1016_j_mcat_2023_113672
crossref_primary_10_1002_adfm_202102530
crossref_primary_10_1016_j_ijhydene_2023_11_054
crossref_primary_10_1166_sam_2024_4691
crossref_primary_10_1016_S1872_5805_24_60829_2
crossref_primary_10_1016_j_cej_2025_159640
crossref_primary_10_1039_D0TA05038E
crossref_primary_10_1016_j_cej_2025_159407
crossref_primary_10_1039_D2CE00817C
crossref_primary_10_1021_acs_inorgchem_1c01716
crossref_primary_10_1002_smtd_202200459
crossref_primary_10_1016_j_apcatb_2023_123563
crossref_primary_10_1016_j_ijhydene_2021_06_050
crossref_primary_10_1016_j_apcatb_2019_04_054
crossref_primary_10_1002_celc_201901420
crossref_primary_10_1002_anie_201908722
crossref_primary_10_1021_acssuschemeng_4c03806
crossref_primary_10_1016_j_jssc_2022_123556
crossref_primary_10_1016_j_nanoen_2021_105987
crossref_primary_10_1038_s41467_019_13375_z
crossref_primary_10_1016_j_jallcom_2022_167570
crossref_primary_10_1016_j_catcom_2023_106788
crossref_primary_10_1016_j_ijhydene_2024_04_211
crossref_primary_10_1016_j_ijhydene_2023_04_175
crossref_primary_10_1039_C9TA03249E
crossref_primary_10_1016_j_ijoes_2023_100187
crossref_primary_10_1007_s40843_019_1268_7
crossref_primary_10_1016_j_jcat_2019_01_039
crossref_primary_10_2139_ssrn_4098456
crossref_primary_10_1039_D3SE01601C
crossref_primary_10_1039_D4NR00560K
crossref_primary_10_1039_D2NJ05003J
crossref_primary_10_1039_D0TA08802A
crossref_primary_10_1039_D1TA00908G
crossref_primary_10_1016_j_carbon_2020_08_013
crossref_primary_10_1039_D2DT01200F
crossref_primary_10_1016_j_ijhydene_2022_02_152
crossref_primary_10_1016_j_jmst_2024_05_058
crossref_primary_10_1021_acs_chemrev_3c00937
crossref_primary_10_1039_C8TA07906D
crossref_primary_10_1002_cctc_201901638
crossref_primary_10_1039_D0CE01527J
crossref_primary_10_1002_celc_201901439
crossref_primary_10_1016_j_electacta_2020_136051
crossref_primary_10_1016_j_electacta_2020_137384
crossref_primary_10_1016_j_cej_2020_127482
crossref_primary_10_1016_j_jcis_2024_07_168
crossref_primary_10_1039_C9TA03686E
crossref_primary_10_3390_nano12152640
crossref_primary_10_1021_acs_jpcc_2c03482
crossref_primary_10_1016_j_jmst_2021_01_091
crossref_primary_10_1016_j_nanoen_2019_103995
crossref_primary_10_1080_14686996_2022_2029686
crossref_primary_10_1039_D1EE02105B
crossref_primary_10_1016_j_fuel_2024_133985
crossref_primary_10_1016_j_electacta_2022_141184
crossref_primary_10_20964_2021_07_38
crossref_primary_10_1016_j_jcis_2022_03_035
crossref_primary_10_1016_j_jallcom_2019_05_103
crossref_primary_10_1016_j_jpowsour_2018_11_073
crossref_primary_10_1016_j_jcis_2023_04_001
crossref_primary_10_1063_5_0256530
crossref_primary_10_1002_celc_201901767
crossref_primary_10_1016_j_apsusc_2022_154808
crossref_primary_10_1002_asia_201801018
crossref_primary_10_1039_D2EE01510B
crossref_primary_10_1016_j_apcatb_2021_120246
crossref_primary_10_1016_j_fuel_2024_131442
crossref_primary_10_1039_D0SE00466A
crossref_primary_10_1016_j_surfin_2025_105775
crossref_primary_10_1039_D3GC03576J
crossref_primary_10_1039_D2RA07901A
crossref_primary_10_1039_D2TA02955C
crossref_primary_10_1016_j_ijhydene_2024_07_270
crossref_primary_10_1016_j_electacta_2018_04_210
crossref_primary_10_1021_acsami_0c05219
crossref_primary_10_1002_smll_202201927
crossref_primary_10_1039_D0EE02020F
crossref_primary_10_3390_app11219974
crossref_primary_10_1002_cctc_201801960
crossref_primary_10_1016_j_apcatb_2020_119097
crossref_primary_10_1016_j_jallcom_2020_158456
crossref_primary_10_1039_D1TA04408G
crossref_primary_10_1002_adma_201907818
crossref_primary_10_1016_j_apsusc_2020_146183
crossref_primary_10_1002_adma_201900178
crossref_primary_10_1016_j_ijhydene_2024_07_186
crossref_primary_10_1039_D4NR01071J
crossref_primary_10_1021_acs_energyfuels_3c00732
crossref_primary_10_1016_j_jcis_2024_04_063
crossref_primary_10_1039_C9TA04742E
crossref_primary_10_1002_smll_202311335
crossref_primary_10_1039_C9TA08926H
crossref_primary_10_1002_slct_201803032
crossref_primary_10_1016_j_jece_2021_105028
crossref_primary_10_1016_j_jpowsour_2019_227294
crossref_primary_10_1016_j_electacta_2020_136125
crossref_primary_10_1021_acsami_8b09854
crossref_primary_10_1016_j_apcatb_2022_121279
crossref_primary_10_1016_j_xcrp_2022_100762
crossref_primary_10_1002_adfm_202404535
crossref_primary_10_1063_5_0221098
crossref_primary_10_1021_acsami_4c22156
crossref_primary_10_1016_j_electacta_2019_07_046
crossref_primary_10_1002_aenm_201900624
crossref_primary_10_1039_D4TA01683A
crossref_primary_10_3390_catal11091028
crossref_primary_10_1039_C9NA00535H
crossref_primary_10_1002_anie_201810104
crossref_primary_10_1016_j_ijhydene_2023_12_221
crossref_primary_10_1088_2515_7639_abd596
crossref_primary_10_1016_j_electacta_2021_139702
crossref_primary_10_1021_acsami_9b07415
crossref_primary_10_1002_smll_202302738
crossref_primary_10_1016_j_apsusc_2021_149651
crossref_primary_10_1016_j_solidstatesciences_2020_106403
crossref_primary_10_1021_acsaem_9b02130
crossref_primary_10_1039_D0TA09473K
crossref_primary_10_1016_j_nanoen_2022_107753
crossref_primary_10_1039_D1MA00814E
crossref_primary_10_1039_D2NJ04748A
crossref_primary_10_1016_j_electacta_2019_135488
crossref_primary_10_1016_j_ijhydene_2018_08_147
crossref_primary_10_1016_j_jcis_2023_05_192
crossref_primary_10_1021_acsomega_0c03435
crossref_primary_10_1016_j_jallcom_2020_157265
crossref_primary_10_1002_ejic_202300204
crossref_primary_10_1021_acs_energyfuels_4c00801
crossref_primary_10_1039_C8EE00934A
crossref_primary_10_1021_acscatal_9b01637
crossref_primary_10_1016_j_cej_2020_127757
crossref_primary_10_1016_j_electacta_2023_142511
crossref_primary_10_1016_j_ceramint_2023_12_213
crossref_primary_10_1016_j_nanoen_2019_02_024
crossref_primary_10_1021_acs_inorgchem_0c03073
crossref_primary_10_1016_j_colsurfa_2024_134021
crossref_primary_10_1016_j_cis_2023_102865
crossref_primary_10_1002_aenm_202200321
crossref_primary_10_1016_j_jechem_2018_09_016
crossref_primary_10_1016_j_jallcom_2021_160833
crossref_primary_10_1021_accountsmr_2c00188
crossref_primary_10_1016_j_jpowsour_2021_229552
crossref_primary_10_1021_acsmaterialslett_2c00143
crossref_primary_10_1002_celc_202001430
crossref_primary_10_1016_j_ijhydene_2023_12_278
crossref_primary_10_1063_5_0061856
crossref_primary_10_1007_s42765_020_00063_7
crossref_primary_10_1016_j_xcrp_2021_100443
crossref_primary_10_1021_acs_nanolett_2c04380
crossref_primary_10_1007_s10854_021_06048_5
crossref_primary_10_1016_j_jpowsour_2020_229137
crossref_primary_10_3390_nano9101486
crossref_primary_10_1039_D1RA01299A
crossref_primary_10_1016_j_ceramint_2022_04_322
crossref_primary_10_1002_anie_202016102
crossref_primary_10_1039_C8CC06099A
crossref_primary_10_1016_j_jallcom_2023_172169
crossref_primary_10_2139_ssrn_4161346
crossref_primary_10_1002_smll_202104863
crossref_primary_10_1016_j_cej_2021_133117
crossref_primary_10_1016_j_apsusc_2019_143672
crossref_primary_10_1088_2058_6272_abd8b4
crossref_primary_10_1016_j_electacta_2020_136114
crossref_primary_10_1002_cctc_201901224
crossref_primary_10_1016_S1872_2067_22_64149_4
crossref_primary_10_1039_D1NR07614K
crossref_primary_10_2139_ssrn_4048941
crossref_primary_10_1016_j_ijhydene_2022_05_050
crossref_primary_10_1016_j_mssp_2022_107164
crossref_primary_10_1021_acs_inorgchem_2c00923
crossref_primary_10_1049_hve2_12378
crossref_primary_10_1002_slct_202000151
crossref_primary_10_1016_j_jtice_2024_105356
crossref_primary_10_1039_D2QI00077F
crossref_primary_10_1039_D2TA01977A
crossref_primary_10_1038_s41467_018_06728_7
crossref_primary_10_1039_D3NR05051C
crossref_primary_10_1002_adfm_202316296
crossref_primary_10_2139_ssrn_4201952
crossref_primary_10_1039_D4TA04991H
crossref_primary_10_3390_catal10060621
crossref_primary_10_1016_j_apcatb_2019_05_017
crossref_primary_10_1021_acsami_9b20887
crossref_primary_10_1002_cctc_202400582
crossref_primary_10_1039_C9NR02153A
crossref_primary_10_1039_D0SE00346H
crossref_primary_10_1016_j_cej_2023_143535
crossref_primary_10_1007_s12648_021_02260_5
crossref_primary_10_1039_C9TA04083H
crossref_primary_10_1002_adma_201901174
crossref_primary_10_1016_j_apcatb_2019_117899
crossref_primary_10_1016_j_gee_2020_11_023
crossref_primary_10_1021_acsami_5c01010
crossref_primary_10_1016_j_ijhydene_2019_08_127
crossref_primary_10_1016_j_jcis_2019_12_044
crossref_primary_10_1039_D4SE00179F
crossref_primary_10_1016_j_electacta_2018_11_183
crossref_primary_10_1016_j_surfin_2024_104043
crossref_primary_10_1016_j_apcatb_2020_118956
crossref_primary_10_1016_j_jre_2024_06_017
crossref_primary_10_1016_j_cej_2020_124845
crossref_primary_10_1016_j_ijhydene_2019_04_219
crossref_primary_10_1016_j_apsusc_2020_148407
crossref_primary_10_1016_S1872_2067_24_60157_9
crossref_primary_10_1002_slct_202203616
crossref_primary_10_1016_j_ijhydene_2018_10_201
crossref_primary_10_1016_j_ijhydene_2023_07_291
crossref_primary_10_1021_acsaem_0c01907
crossref_primary_10_1002_adma_202000455
crossref_primary_10_1039_D0NR07875A
crossref_primary_10_1002_tcr_202300285
crossref_primary_10_1007_s10008_021_04943_9
crossref_primary_10_1016_j_cattod_2020_06_077
crossref_primary_10_1002_adfm_202008822
crossref_primary_10_1016_j_ijhydene_2022_06_076
crossref_primary_10_1002_slct_202201682
crossref_primary_10_1021_acssuschemeng_3c02771
crossref_primary_10_1021_acsami_1c09084
crossref_primary_10_1039_D3GC02105J
crossref_primary_10_1021_acsaem_9b02315
crossref_primary_10_1016_j_jpcs_2023_111853
crossref_primary_10_1021_acsaenm_4c00533
crossref_primary_10_1007_s12274_023_5740_9
crossref_primary_10_1016_j_apcatb_2020_119707
crossref_primary_10_1039_D3CC04506D
crossref_primary_10_1002_smll_201906775
crossref_primary_10_3390_nano10112115
crossref_primary_10_1039_D3QM00196B
crossref_primary_10_3390_catal11040429
crossref_primary_10_1016_j_nanoms_2024_01_011
crossref_primary_10_1016_j_ijhydene_2024_09_267
crossref_primary_10_1016_j_jcat_2020_01_015
crossref_primary_10_1016_j_jechem_2022_03_025
crossref_primary_10_1039_D3QI00341H
crossref_primary_10_1016_j_ijhydene_2022_06_060
crossref_primary_10_1016_j_jallcom_2021_159066
crossref_primary_10_1021_acssuschemeng_1c04674
crossref_primary_10_1021_acssuschemeng_2c07658
crossref_primary_10_1016_j_ijhydene_2024_02_032
crossref_primary_10_1021_acs_energyfuels_1c01971
crossref_primary_10_1002_cctc_202201615
crossref_primary_10_1016_j_ccr_2021_213953
crossref_primary_10_1039_D2DT02603A
crossref_primary_10_1002_slct_201803665
crossref_primary_10_1021_acsami_1c13480
crossref_primary_10_1016_j_molstruc_2024_140852
crossref_primary_10_1002_aenm_202103247
crossref_primary_10_1016_j_electacta_2020_135689
crossref_primary_10_1016_j_cej_2022_140441
crossref_primary_10_1021_acsanm_0c02723
crossref_primary_10_1039_C9NR08802D
crossref_primary_10_1016_j_colsurfa_2022_129597
crossref_primary_10_1016_j_jcis_2022_11_072
crossref_primary_10_1021_acsanm_2c04496
crossref_primary_10_20964_2021_03_39
crossref_primary_10_3389_fmats_2022_1089695
crossref_primary_10_1016_j_electacta_2020_136629
crossref_primary_10_1039_D1TA04231A
crossref_primary_10_1016_j_diamond_2024_111072
crossref_primary_10_1016_j_jechem_2022_04_040
crossref_primary_10_1039_C9TA13615K
crossref_primary_10_1039_C9DT00957D
crossref_primary_10_1007_s10876_022_02318_2
crossref_primary_10_1021_acsomega_0c01383
crossref_primary_10_1016_j_chphma_2023_09_001
crossref_primary_10_1002_adma_202208209
crossref_primary_10_1002_chem_201903628
crossref_primary_10_1016_j_ijhydene_2022_06_288
crossref_primary_10_1002_aenm_201900390
crossref_primary_10_1021_acsanm_4c06609
crossref_primary_10_1016_j_jallcom_2023_170371
crossref_primary_10_1016_j_jpowsour_2021_230934
crossref_primary_10_1016_j_mtener_2021_100911
crossref_primary_10_1039_C9TA04283K
crossref_primary_10_1002_asia_201900791
crossref_primary_10_1016_j_jallcom_2022_165862
crossref_primary_10_1039_D2SE01032A
crossref_primary_10_1039_D3NJ00216K
crossref_primary_10_1002_ente_201900936
crossref_primary_10_1016_j_jechem_2021_01_002
crossref_primary_10_1016_j_jelechem_2021_115829
crossref_primary_10_1002_smll_202304573
crossref_primary_10_1002_aenm_202303730
crossref_primary_10_1002_ange_202306640
crossref_primary_10_1002_smtd_202000701
crossref_primary_10_1007_s40843_020_1361_3
crossref_primary_10_1016_j_flatc_2019_100133
crossref_primary_10_1021_acs_chemrev_3c00005
crossref_primary_10_1016_j_cej_2023_145321
crossref_primary_10_1016_j_mtener_2021_100902
crossref_primary_10_1002_asia_202400851
crossref_primary_10_1016_j_ijhydene_2019_07_160
crossref_primary_10_1021_acssuschemeng_2c04597
crossref_primary_10_1016_j_apsusc_2019_01_167
crossref_primary_10_1039_D1MA00130B
crossref_primary_10_1039_D0TA11997K
crossref_primary_10_1039_D1SE01225H
crossref_primary_10_1002_smll_202302025
crossref_primary_10_1002_aenm_202302532
crossref_primary_10_1021_acsaem_9b00785
crossref_primary_10_1149_2_0171902jes
crossref_primary_10_1039_D4RA01320D
crossref_primary_10_1016_j_est_2023_109518
crossref_primary_10_1016_j_mcat_2021_112086
crossref_primary_10_1016_j_apcatb_2020_119758
crossref_primary_10_1016_j_apcatb_2019_118330
crossref_primary_10_1016_j_ijhydene_2024_07_411
crossref_primary_10_1021_acs_jpcc_0c00321
crossref_primary_10_1016_j_electacta_2021_139074
crossref_primary_10_1039_D0TA09620B
crossref_primary_10_1021_acsami_9b03368
crossref_primary_10_1016_j_ijhydene_2023_09_186
crossref_primary_10_1016_j_ijhydene_2020_07_005
crossref_primary_10_1016_j_jpowsour_2019_03_036
crossref_primary_10_1039_D1RA05526G
crossref_primary_10_1002_cey2_465
crossref_primary_10_1016_j_electacta_2020_135886
crossref_primary_10_1016_j_jcat_2019_12_031
crossref_primary_10_1002_ente_201900066
crossref_primary_10_1016_j_ccr_2023_215029
crossref_primary_10_1021_acs_jpcc_2c02632
crossref_primary_10_1002_celc_201902170
crossref_primary_10_1039_D1CE00059D
crossref_primary_10_1016_j_jechem_2024_04_002
crossref_primary_10_1002_smll_202304143
crossref_primary_10_1016_j_mtphys_2022_100727
crossref_primary_10_1016_j_surfin_2023_103125
crossref_primary_10_1016_j_apsusc_2020_146623
crossref_primary_10_1002_ange_202016102
crossref_primary_10_1002_ente_201901392
crossref_primary_10_1016_j_ijhydene_2021_09_050
crossref_primary_10_1016_j_jcis_2021_10_069
crossref_primary_10_1021_acssuschemeng_8b02656
crossref_primary_10_1021_acssuschemeng_9b02510
crossref_primary_10_1002_cssc_202002624
crossref_primary_10_1002_sus2_3
crossref_primary_10_1007_s40843_020_1541_9
crossref_primary_10_1016_j_electacta_2021_138042
crossref_primary_10_1039_D3CC06015B
crossref_primary_10_1016_j_ijhydene_2024_04_196
crossref_primary_10_1016_j_cej_2020_128240
crossref_primary_10_1002_anie_202306640
crossref_primary_10_1002_smll_202103826
crossref_primary_10_1002_cctc_202001689
crossref_primary_10_1021_acsami_4c15087
crossref_primary_10_1016_j_ijhydene_2019_02_215
crossref_primary_10_1039_D3QI01642K
crossref_primary_10_1002_ange_201908722
crossref_primary_10_1039_D4CC06763K
crossref_primary_10_1016_j_nanoen_2019_06_017
crossref_primary_10_1039_C9NR09148C
crossref_primary_10_1016_j_apcatb_2019_02_014
crossref_primary_10_1002_cssc_201900230
crossref_primary_10_1021_acs_langmuir_2c03494
crossref_primary_10_1007_s12274_021_3559_9
crossref_primary_10_12677_JAPC_2023_123022
crossref_primary_10_1039_D3TA02610H
crossref_primary_10_1016_j_electacta_2020_135957
crossref_primary_10_1039_C9NJ05562B
crossref_primary_10_1002_adfm_202210855
crossref_primary_10_1016_j_mtener_2022_100948
crossref_primary_10_1039_D3DT02804F
crossref_primary_10_1016_j_apsusc_2020_147977
crossref_primary_10_1016_j_molstruc_2024_138813
crossref_primary_10_1039_D0SE01805H
crossref_primary_10_1007_s41779_024_01132_5
crossref_primary_10_1016_j_electacta_2022_140674
crossref_primary_10_1016_j_jechem_2023_10_015
crossref_primary_10_1016_j_ces_2023_119125
crossref_primary_10_1039_D1QM01471D
crossref_primary_10_1021_acs_inorgchem_0c02369
crossref_primary_10_1016_j_ijhydene_2018_11_182
crossref_primary_10_1016_j_mtphys_2019_100162
crossref_primary_10_1016_j_ijhydene_2022_07_135
crossref_primary_10_1002_aenm_202103511
crossref_primary_10_1016_j_apcatb_2022_121834
crossref_primary_10_1016_j_ijhydene_2024_10_120
crossref_primary_10_1016_j_jpowsour_2022_232417
crossref_primary_10_1002_smtd_202301602
crossref_primary_10_1016_j_cej_2023_146172
crossref_primary_10_1021_acs_energyfuels_2c02013
crossref_primary_10_1021_acsami_0c13533
crossref_primary_10_1021_acsami_8b22114
crossref_primary_10_1021_acs_energyfuels_4c04519
crossref_primary_10_1021_acsami_0c10024
crossref_primary_10_1039_C8TA00517F
crossref_primary_10_1016_j_carbon_2021_11_050
crossref_primary_10_1021_acsami_9b11594
crossref_primary_10_1039_C8TA05551C
crossref_primary_10_1016_j_apsusc_2020_146753
crossref_primary_10_1016_j_apsusc_2024_159391
crossref_primary_10_1016_j_jcis_2024_09_239
crossref_primary_10_1039_D1TA10546A
crossref_primary_10_1002_anie_202107510
crossref_primary_10_1016_j_apcatb_2019_01_007
crossref_primary_10_1021_acs_inorgchem_1c01136
crossref_primary_10_1039_D4TA02076F
crossref_primary_10_1002_ente_201901079
crossref_primary_10_1016_j_ijhydene_2023_08_327
crossref_primary_10_1021_acsami_4c00974
crossref_primary_10_1039_D1NR02307A
crossref_primary_10_1016_j_diamond_2023_110261
crossref_primary_10_1016_j_jelechem_2021_115201
crossref_primary_10_1016_j_apsusc_2022_155785
crossref_primary_10_1016_j_cossms_2020_100805
crossref_primary_10_1016_j_apsusc_2021_151182
crossref_primary_10_1007_s12274_022_5245_y
crossref_primary_10_1016_j_jcis_2020_02_030
crossref_primary_10_1016_j_ijhydene_2020_07_078
crossref_primary_10_1016_j_ijhydene_2021_07_236
crossref_primary_10_1039_D0TA06565J
crossref_primary_10_1002_adfm_202112164
crossref_primary_10_1016_j_electacta_2020_135933
crossref_primary_10_1016_j_ijhydene_2020_12_037
crossref_primary_10_1021_acs_energyfuels_2c01144
crossref_primary_10_1002_asia_202200035
crossref_primary_10_1016_j_ccr_2023_215117
crossref_primary_10_1016_j_apsusc_2022_153352
crossref_primary_10_1021_acs_jpcc_1c04892
crossref_primary_10_1063_5_0221991
crossref_primary_10_1016_j_mser_2024_100829
crossref_primary_10_1016_j_jallcom_2023_171746
crossref_primary_10_1002_smtd_202100679
crossref_primary_10_1039_C9NR03401C
crossref_primary_10_1016_j_mset_2020_09_005
crossref_primary_10_1016_j_ijhydene_2023_09_240
crossref_primary_10_1016_j_jece_2024_111946
crossref_primary_10_1016_j_mssp_2024_109052
crossref_primary_10_1016_j_jechem_2019_05_007
crossref_primary_10_1002_cctc_202301241
crossref_primary_10_1007_s12274_024_6670_x
crossref_primary_10_1016_j_cej_2023_145170
crossref_primary_10_2139_ssrn_3949875
crossref_primary_10_1016_j_apcatb_2021_120611
crossref_primary_10_1039_C8QM00405F
crossref_primary_10_1039_D4NJ02653E
crossref_primary_10_1002_eem2_12526
crossref_primary_10_1002_eem2_12407
crossref_primary_10_1360_SSC_2024_0241
crossref_primary_10_3390_ma14061473
crossref_primary_10_1016_j_jmst_2020_10_009
crossref_primary_10_1039_D0CP03845H
crossref_primary_10_1007_s13391_020_00260_x
crossref_primary_10_1002_cnl2_105
crossref_primary_10_1021_acs_inorgchem_2c03516
crossref_primary_10_1021_acs_chemmater_1c02609
crossref_primary_10_1039_D2QI02081E
crossref_primary_10_1016_j_elecom_2018_01_014
crossref_primary_10_1016_j_jscs_2022_101469
crossref_primary_10_1021_acsami_2c10781
crossref_primary_10_1021_acsanm_2c01243
crossref_primary_10_1016_j_jallcom_2024_177588
crossref_primary_10_1002_adhm_202202596
crossref_primary_10_1007_s40843_021_1894_4
crossref_primary_10_1016_j_cej_2020_128067
crossref_primary_10_1016_j_jcis_2019_09_104
crossref_primary_10_1016_j_rinp_2024_107702
crossref_primary_10_1016_j_fuel_2025_134573
crossref_primary_10_1016_j_mtener_2020_100436
crossref_primary_10_1016_j_jallcom_2019_153346
crossref_primary_10_1016_j_jallcom_2021_161346
crossref_primary_10_1016_j_ijhydene_2023_03_093
crossref_primary_10_1039_D0TA09604K
crossref_primary_10_1002_asia_201900489
crossref_primary_10_1039_D0TA07403A
crossref_primary_10_1016_j_electacta_2019_01_152
crossref_primary_10_1016_j_nanoen_2020_105732
crossref_primary_10_1016_j_jallcom_2020_156810
crossref_primary_10_1021_acscatal_0c01159
crossref_primary_10_1002_cssc_201901628
crossref_primary_10_1007_s10853_018_2519_6
crossref_primary_10_1016_j_electacta_2019_134631
crossref_primary_10_1016_j_ensm_2021_06_043
crossref_primary_10_1016_j_ijhydene_2024_01_312
Cites_doi 10.1039/C4EE01760A
10.1002/adma.201600054
10.1039/C7CC05172G
10.1002/anie.201701477
10.1038/nmat2858
10.1021/ja404523s
10.1021/acsnano.7b01946
10.1002/anie.201511447
10.1002/adma.201506314
10.1002/anie.201610413
10.1002/aenm.201502585
10.1038/ncomms4783
10.1002/adfm.201600566
10.1016/j.apcatb.2014.02.020
10.1016/j.nanoen.2017.07.027
10.1002/anie.201200699
10.1016/j.nanoen.2017.01.014
10.1002/ange.201607651
10.1021/ja301567f
10.1016/j.nanoen.2016.08.027
10.1016/j.nanoen.2017.02.004
10.1002/anie.201600525
10.1002/adma.201601019
10.1038/nmat1752
10.1016/j.nanoen.2016.02.023
10.1002/adma.201606521
10.1039/C5EE02996A
10.1002/ange.201506480
10.1039/C6TA07883D
10.1021/ja403440e
10.1002/anie.201703183
10.1021/acs.nanolett.6b03803
10.1021/acsnano.6b06259
10.1002/ange.201402998
10.1038/nchem.1853
10.1002/adma.201601663
10.1038/nchem.907
10.1002/aenm.201602547
10.1002/anie.201502438
10.1021/jacs.5b07756
10.1002/aenm.201600221
10.1002/anie.201503407
10.1039/C6SC03356C
10.1002/ange.201207111
10.1016/j.nanoen.2017.03.016
10.1038/35104599
10.1038/nmat1840
10.1126/science.285.5428.687
10.1002/aenm.201700381
10.1021/jacs.7b03507
10.1021/ja405351s
10.1039/C6NR02803A
10.1021/jacs.6b05940
10.1039/C6TA02492K
10.1002/adma.201602441
10.1002/aenm.201601189
10.1038/ncomms15437
10.1016/j.nanoen.2017.04.032
10.1002/smll.201604265
10.1039/C4CS00470A
10.1002/ange.201501616
10.1021/acsnano.6b06580
10.1021/ja407115p
10.1039/C4TA03776F
10.1002/anie.201600686
10.1021/ja4081056
10.1016/j.nanoen.2016.07.005
10.1021/ja5119495
10.1021/acsenergylett.7b00229
10.1039/C6TA00356G
10.1002/adma.201701584
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright_xml – notice: 2017 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.nanoen.2017.11.045
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 363
ExternalDocumentID 10_1016_j_nanoen_2017_11_045
S2211285517307322
GroupedDBID --K
--M
.~1
0R~
1~.
1~5
4.4
457
4G.
5VS
7-5
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FNPLU
FYGXN
GBLVA
HZ~
JARJE
KOM
M41
MAGPM
MO0
O-L
O9-
OAUVE
P-8
P-9
PC.
Q38
RIG
ROL
SDF
SPC
SPCBC
SSM
SSR
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c372t-46ad1b7d1e997b29e61b25a77396f73b8f44a75d4759113abee870e40ace1ce33
IEDL.DBID .~1
ISSN 2211-2855
IngestDate Thu Apr 24 23:08:25 EDT 2025
Tue Jul 01 01:55:59 EDT 2025
Fri Feb 23 02:30:22 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Nickel nitride
Nickel molybdenum nitride
Water splitting
Heterostructures
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-46ad1b7d1e997b29e61b25a77396f73b8f44a75d4759113abee870e40ace1ce33
PageCount 11
ParticipantIDs crossref_primary_10_1016_j_nanoen_2017_11_045
crossref_citationtrail_10_1016_j_nanoen_2017_11_045
elsevier_sciencedirect_doi_10_1016_j_nanoen_2017_11_045
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2018
2018-02-00
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: February 2018
PublicationDecade 2010
PublicationTitle Nano energy
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Vrubel, Hu (bib8) 2012; 51
Balogun, Zeng, Qiu, Luo, Onasanya, Olaniyi, Tong (bib52) 2016; 4
Zhang, Ouyang, Xu, Chen, Rawat, Fan (bib43) 2016; 6
Jiang, You, Sheng, Sun (bib36) 2015; 127
Chen, Xu, Fang, Tong, Wu, Lu, Peng, Ding, Wu, Xie (bib66) 2015; 127
Wang, Chen, Yu, Wang, Zheng (bib60) 2016
Louie, Bell (bib65) 2013; 135
Sivanantham, Ganesan, Shanmugam (bib7) 2016; 26
Wu, Tian, Yan, Jiao, Yan, Yang, Fu (bib15) 2016; 8
Shen, Wang, Tang, Li, Wang, Dong, Li, Xu, Lan (bib27) 2017; 2
Ouyang, Zhang, Zhang, Fan, Rawat (bib47) 2017
Liang, Gandi, Anjum, Wang, Schwingenschlogl, Alshareef (bib37) 2016; 16
Wu, Liao, Cao, Li, Zhang (bib55) 2017; 34
Zhang, Wu, Qi, Chen, Cao (bib23) 2017; 7
Huang, Yu, Zhao, Han, Yang, Liu, Li, Zhang, Qiu (bib38) 2017; 34
Xu, Cui, Guo, Zhao, Jiang, Xu, Zhuang, Huang, Wang, Li (bib62) 2016; 55
Nandi, Singu, Mullangi, Illathvalappil, George, Vinod, Kurungot, Vaidhyanathan (bib48) 2016; 6
Dresselhaus, Thomas (bib2) 2001; 414
Cao, Veith, Neuefeind, Adzic, Khalifah (bib12) 2013; 135
Popczun, McKone, Read, Biacchi, Wiltrout, Lewis, Schaak (bib19) 2013; 135
Yu, Duan, Gao, Lang, Zheng, Yu (bib32) 2017; 8
Kibsgaard, Jaramillo, Besenbacher (bib64) 2014; 6
Z.H. Zhao, D.E. Schipper, A.P. Leitner, H. Thirumalai, J.H. Chen, L.X. Xie, F. Qin, M.K. Alam, L.C. Grabow, S. Chen, D.Z. Wang, Z.F. Ren, Z.M. Wang, K.H. Whitmire, J.M. Bao, Nano Energy
Ping, Wang, Lu, Chen, Chen, Huang, Ma, Tan, Yang, Cao, Wang, Wu, Ying, Zhang (bib24) 2016; 28
.
Wang, Wang, Liu, Zheng, Li (bib44) 2016; 22
Faber, Jin (bib4) 2014; 7
Wang, Zhang, Liu, Xie, Feng, Liu, Shao, Wang (bib22) 2017; 56
Huang, Gong, Song, Feng, Nie, Zhao, Wang, Zeng, Zhong, Li (bib17) 2016; 10
Gao, Zhang, Li, Yu, Hong, Zhang, Liang, Lin (bib30) 2016; 55
Gao, Zhang, Wang, Xiao, Tao, Xue, Ding (bib56) 2016; 4
McCrory, Jung, Peters, Jaramillo (bib11) 2013; 135
Loh, Bao, Eda, Chhowalla (bib58) 2010; 2
Acik, Lee, Mattevi, Chhowalla, Cho, Chabal (bib59) 2010; 9
Greeley, Jaramillo, Bonde, Chorkendorff, Norskov (bib3) 2006; 5
Zhang, Wang, Liu, Liao, Liu, Zhuang, Chen, Zscheche, Feng (bib69) 2017; 8
Fang, Gao, Dong, Xia, Yip, Qin, Qu, Ho (bib42) 2016; 27
Feng, Xu, Dong, Ye, Tong, Li (bib26) 2016; 55
Zhou, Jia, Lu, Yang, Hou, Li, Chen (bib61) 2016; 28
Lai, Li, Wu, Saqib, Luque, Xu (bib40) 2016; 9
Wang, Min, Wang, Li, Casillas, Ma, Li, Liu, Li, Yuan, Antonietti, Wu (bib21) 2017; 11
Xu, Chen, Li, Tong, Ding, Wu, Chu, Peng, Wu, Xie (bib46) 2015; 137
Jiang, Niu, Tang, Zhang, Liu, Zhang, Chen, Li, Gu, Wan, Hu (bib50) 2017; 56
Li, Wang, Zhou, Zhang, Sun, Tang, Zhang, Al-Enizi, Yang, Zheng (bib29) 2015; 137
Chen, Zhou, Zhang, Tong, Zhong, Zhang, Zhang, Wu, Xie (bib72) 2017
Jiao, Zheng, Jaroniec, Qiao (bib5) 2015; 44
Feng, Ye, Xu, Tong, Li (bib25) 2016; 28
Yang, Gao, Zhang, Zeng, Li, Abbott (bib49) 2017; 36
Tang, Zhang, Lu, He, Jiang, Asiri, Sun (bib20) 2017; 29
Lukowski, Daniel, Meng, Forticaux, Li, Jin (bib13) 2013; 135
Wang, Guo, Zhou, Chang, Zheng, Li (bib45) 2016; 10
Zhang, Wang, Wang, Al-Enizi, Elzatahry, Zheng (bib68) 2016; 4
Jin, Wang, Li, Yue, Han, Shen, Cui (bib31) 2016; 28
Zheng, Jiao, Zhu, Li, Han, Chen, Du, Jaroniec, Qiao (bib53) 2014; 5
Zhu, Ma, Jaroniec, Qiao (bib33) 2017; 56
Turner (bib1) 1999; 285
Li, Zhang, Qiao, Yu, Peterson, Zafar, Kumar, Curtarolo, Hunte, Shannon, Zhu, Yang, Cao (bib14) 2016; 138
Jiang, Gao, Sheng, Yan (bib41) 2016; 128
Stamenkovic, Mun, Arenz, Mayrhofer, Lucas, Wang, Ross, Markovic (bib10) 2007; 6
Tang, Cheng, Pu, Xing, Sun (bib6) 2015; 54
Xiao, Yan, Ge, Liu, Wang, Wang (bib57) 2014; 154–155
Wu, Wang, Liu, Xia, Xuan, Guo, Lei, Wang (bib16) 2017; 32
Wan, Regmi, Leonard (bib18) 2014; 126
Chen, Qi, Guo, Lei, Zhang, Cao (bib67) 2017; 53
Liao, Keith, Carter (bib70) 2012; 134
Jia, Zhao, Chen, Shang, Shi, Kang, Waterhouse, Wu, Tung, Zhang (bib9) 2016; 6
Chen, Xu, Tao, Zhou, Tong, Ding, Zhang, Chu, Wu, Xie (bib71) 2016; 28
Ledendecker, Calderón, Papp, Steinrück, Antonietti, Shalon (bib34) 2015; 54
Tang, Jiang, Niu, Liu, Luo, Chen, Jin, Gao, Wan, Hu (bib39) 2017; 139
Xing, Kong, Liu, Liu, Kang, Luo (bib28) 2014; 2
Masa, Sinev, Mistry, Ventosa, Mata, Arbiol, Muhler, Cuenya, Schuhmann (bib51) 2017
Chen, Sasaki, Ma, Frenkel, Marinkovic, Muckerman, Zhu, Adzic (bib63) 2012; 51
Liu, Zhao, Peng, Zhang, Sit, Yuwen, Zhang, Lee, Zhang (bib54) 2017; 29
Wang (10.1016/j.nanoen.2017.11.045_bib22) 2017; 56
Xing (10.1016/j.nanoen.2017.11.045_bib28) 2014; 2
Huang (10.1016/j.nanoen.2017.11.045_bib38) 2017; 34
Acik (10.1016/j.nanoen.2017.11.045_bib59) 2010; 9
Wang (10.1016/j.nanoen.2017.11.045_bib45) 2016; 10
Balogun (10.1016/j.nanoen.2017.11.045_bib52) 2016; 4
Zhang (10.1016/j.nanoen.2017.11.045_bib69) 2017; 8
Xiao (10.1016/j.nanoen.2017.11.045_bib57) 2014; 154–155
Zhang (10.1016/j.nanoen.2017.11.045_bib23) 2017; 7
Gao (10.1016/j.nanoen.2017.11.045_bib56) 2016; 4
Chen (10.1016/j.nanoen.2017.11.045_bib71) 2016; 28
Chen (10.1016/j.nanoen.2017.11.045_bib72) 2017
Feng (10.1016/j.nanoen.2017.11.045_bib26) 2016; 55
Wu (10.1016/j.nanoen.2017.11.045_bib16) 2017; 32
Shen (10.1016/j.nanoen.2017.11.045_bib27) 2017; 2
Kibsgaard (10.1016/j.nanoen.2017.11.045_bib64) 2014; 6
Tang (10.1016/j.nanoen.2017.11.045_bib39) 2017; 139
Faber (10.1016/j.nanoen.2017.11.045_bib4) 2014; 7
Zhou (10.1016/j.nanoen.2017.11.045_bib61) 2016; 28
Greeley (10.1016/j.nanoen.2017.11.045_bib3) 2006; 5
Nandi (10.1016/j.nanoen.2017.11.045_bib48) 2016; 6
Chen (10.1016/j.nanoen.2017.11.045_bib66) 2015; 127
Tang (10.1016/j.nanoen.2017.11.045_bib6) 2015; 54
Ping (10.1016/j.nanoen.2017.11.045_bib24) 2016; 28
Jin (10.1016/j.nanoen.2017.11.045_bib31) 2016; 28
Sivanantham (10.1016/j.nanoen.2017.11.045_bib7) 2016; 26
Gao (10.1016/j.nanoen.2017.11.045_bib30) 2016; 55
Chen (10.1016/j.nanoen.2017.11.045_bib67) 2017; 53
Jiang (10.1016/j.nanoen.2017.11.045_bib36) 2015; 127
Turner (10.1016/j.nanoen.2017.11.045_bib1) 1999; 285
McCrory (10.1016/j.nanoen.2017.11.045_bib11) 2013; 135
Wang (10.1016/j.nanoen.2017.11.045_bib44) 2016; 22
Wang (10.1016/j.nanoen.2017.11.045_bib60) 2016
Li (10.1016/j.nanoen.2017.11.045_bib29) 2015; 137
Jiang (10.1016/j.nanoen.2017.11.045_bib41) 2016; 128
Fang (10.1016/j.nanoen.2017.11.045_bib42) 2016; 27
Zhang (10.1016/j.nanoen.2017.11.045_bib68) 2016; 4
Wu (10.1016/j.nanoen.2017.11.045_bib55) 2017; 34
Louie (10.1016/j.nanoen.2017.11.045_bib65) 2013; 135
Xu (10.1016/j.nanoen.2017.11.045_bib46) 2015; 137
Jia (10.1016/j.nanoen.2017.11.045_bib9) 2016; 6
Xu (10.1016/j.nanoen.2017.11.045_bib62) 2016; 55
Ledendecker (10.1016/j.nanoen.2017.11.045_bib34) 2015; 54
Lai (10.1016/j.nanoen.2017.11.045_bib40) 2016; 9
Wu (10.1016/j.nanoen.2017.11.045_bib15) 2016; 8
Cao (10.1016/j.nanoen.2017.11.045_bib12) 2013; 135
Li (10.1016/j.nanoen.2017.11.045_bib14) 2016; 138
Wang (10.1016/j.nanoen.2017.11.045_bib21) 2017; 11
Masa (10.1016/j.nanoen.2017.11.045_bib51) 2017
Ouyang (10.1016/j.nanoen.2017.11.045_bib47) 2017
Liao (10.1016/j.nanoen.2017.11.045_bib70) 2012; 134
Wan (10.1016/j.nanoen.2017.11.045_bib18) 2014; 126
Chen (10.1016/j.nanoen.2017.11.045_bib63) 2012; 51
Jiang (10.1016/j.nanoen.2017.11.045_bib50) 2017; 56
Zhang (10.1016/j.nanoen.2017.11.045_bib43) 2016; 6
Vrubel (10.1016/j.nanoen.2017.11.045_bib8) 2012; 51
Feng (10.1016/j.nanoen.2017.11.045_bib25) 2016; 28
Huang (10.1016/j.nanoen.2017.11.045_bib17) 2016; 10
Stamenkovic (10.1016/j.nanoen.2017.11.045_bib10) 2007; 6
10.1016/j.nanoen.2017.11.045_bib35
Yang (10.1016/j.nanoen.2017.11.045_bib49) 2017; 36
Dresselhaus (10.1016/j.nanoen.2017.11.045_bib2) 2001; 414
Yu (10.1016/j.nanoen.2017.11.045_bib32) 2017; 8
Loh (10.1016/j.nanoen.2017.11.045_bib58) 2010; 2
Liu (10.1016/j.nanoen.2017.11.045_bib54) 2017; 29
Tang (10.1016/j.nanoen.2017.11.045_bib20) 2017; 29
Zhu (10.1016/j.nanoen.2017.11.045_bib33) 2017; 56
Popczun (10.1016/j.nanoen.2017.11.045_bib19) 2013; 135
Liang (10.1016/j.nanoen.2017.11.045_bib37) 2016; 16
Zheng (10.1016/j.nanoen.2017.11.045_bib53) 2014; 5
Jiao (10.1016/j.nanoen.2017.11.045_bib5) 2015; 44
Lukowski (10.1016/j.nanoen.2017.11.045_bib13) 2013; 135
References_xml – volume: 28
  start-page: 7640
  year: 2016
  end-page: 7645
  ident: bib24
  publication-title: Adv. Mater.
– volume: 285
  start-page: 687
  year: 1999
  end-page: 689
  ident: bib1
  publication-title: Science
– volume: 11
  start-page: 4358
  year: 2017
  end-page: 4364
  ident: bib21
  publication-title: ACS Nano
– volume: 56
  start-page: 5867
  year: 2017
  end-page: 5871
  ident: bib22
  publication-title: Angew. Chem. Int. Ed.
– volume: 16
  start-page: 7718
  year: 2016
  end-page: 7725
  ident: bib37
  publication-title: Nano Lett.
– volume: 8
  start-page: 968
  year: 2017
  end-page: 973
  ident: bib32
  publication-title: Chem. Sci.
– volume: 2
  start-page: 1015
  year: 2010
  end-page: 1024
  ident: bib58
  publication-title: Nat. Chem.
– volume: 44
  start-page: 2060
  year: 2015
  end-page: 2086
  ident: bib5
  publication-title: Chem. Soc. Rev.
– volume: 138
  start-page: 16632
  year: 2016
  end-page: 16638
  ident: bib14
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 11337
  year: 2016
  end-page: 11343
  ident: bib17
  publication-title: ACS Nano
– volume: 127
  start-page: 14923
  year: 2015
  end-page: 14927
  ident: bib66
  publication-title: Angew. Chem.
– volume: 4
  start-page: 9844
  year: 2016
  end-page: 9849
  ident: bib52
  publication-title: J. Mater. Chem. A
– volume: 28
  start-page: 29
  year: 2016
  end-page: 43
  ident: bib61
  publication-title: Nano Energy
– volume: 6
  start-page: 241
  year: 2007
  end-page: 247
  ident: bib10
  publication-title: Nat. Mater.
– volume: 135
  start-page: 19186
  year: 2013
  end-page: 19192
  ident: bib12
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 11052
  year: 2016
  end-page: 11059
  ident: bib15
  publication-title: Nanoscale
– volume: 55
  start-page: 6290
  year: 2016
  end-page: 6294
  ident: bib30
  publication-title: Angew. Chem. Int. Ed.
– volume: 54
  start-page: 12361
  year: 2015
  end-page: 12365
  ident: bib34
  publication-title: Angew. Chem. Int. Ed.
– volume: 6
  start-page: 1502585
  year: 2016
  ident: bib9
  publication-title: Adv. Energy Mater.
– reference: 〉.
– volume: 32
  start-page: 511
  year: 2017
  end-page: 519
  ident: bib16
  publication-title: Nano Energy
– volume: 36
  start-page: 85
  year: 2017
  end-page: 94
  ident: bib49
  publication-title: Nano Energy
– volume: 55
  start-page: 6502
  year: 2016
  end-page: 6505
  ident: bib62
  publication-title: Angew. Chem. Int. Ed.
– volume: 5
  start-page: 909
  year: 2006
  end-page: 913
  ident: bib3
  publication-title: Nat. Mater.
– volume: 27
  start-page: 3247
  year: 2016
  end-page: 3254
  ident: bib42
  publication-title: Nano Energy
– volume: 29
  start-page: 1606521
  year: 2017
  ident: bib54
  publication-title: Adv. Mater.
– volume: 6
  start-page: 1600221
  year: 2016
  ident: bib43
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 3783
  year: 2014
  ident: bib53
  publication-title: Nat. Commun.
– volume: 127
  start-page: 6349
  year: 2015
  end-page: 6352
  ident: bib36
  publication-title: Angew. Chem.
– volume: 54
  start-page: 9351
  year: 2015
  end-page: 9355
  ident: bib6
  publication-title: Angew. Chem. Int. Ed.
– volume: 7
  start-page: 1602547
  year: 2017
  ident: bib23
  publication-title: Adv. Energy Mater.
– start-page: 1604265
  year: 2017
  ident: bib47
  publication-title: Small
– start-page: 1701584
  year: 2017
  ident: bib72
  publication-title: Adv. Mater.
– volume: 51
  start-page: 12875
  year: 2012
  end-page: 12878
  ident: bib8
  publication-title: Angew. Chem. Int. Ed.
– volume: 29
  start-page: 1602441
  year: 2017
  ident: bib20
  publication-title: Adv. Mater.
– volume: 22
  start-page: 111
  year: 2016
  end-page: 119
  ident: bib44
  publication-title: Nano Energy
– volume: 28
  start-page: 3785
  year: 2016
  end-page: 3790
  ident: bib31
  publication-title: Adv. Mater.
– volume: 154–155
  start-page: 232
  year: 2014
  end-page: 237
  ident: bib57
  publication-title: Appl. Catal. B: Environ.
– volume: 135
  start-page: 12329
  year: 2013
  end-page: 12337
  ident: bib65
  publication-title: J. Am. Chem. Soc.
– volume: 55
  start-page: 3694
  year: 2016
  end-page: 3698
  ident: bib26
  publication-title: Angew. Chem. Int. Ed.
– volume: 51
  start-page: 6131
  year: 2012
  end-page: 6135
  ident: bib63
  publication-title: Angew. Chem. Int. Ed.
– volume: 414
  start-page: 332
  year: 2001
  end-page: 337
  ident: bib2
  publication-title: Nature
– volume: 135
  start-page: 16977
  year: 2013
  end-page: 16987
  ident: bib11
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 15437
  year: 2017
  ident: bib69
  publication-title: Nat. Commun.
– volume: 26
  start-page: 4661
  year: 2016
  end-page: 4672
  ident: bib7
  publication-title: Adv. Funct. Mater.
– volume: 4
  start-page: 17363
  year: 2016
  end-page: 17369
  ident: bib56
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 248
  year: 2014
  end-page: 253
  ident: bib64
  publication-title: Nat. Chem.
– volume: 10
  start-page: 10397
  year: 2016
  end-page: 10403
  ident: bib45
  publication-title: ACS Nano
– volume: 135
  start-page: 9267
  year: 2013
  end-page: 9270
  ident: bib19
  publication-title: J. Am. Chem. Soc.
– volume: 34
  start-page: 472
  year: 2017
  end-page: 480
  ident: bib38
  publication-title: Nano Energy
– volume: 56
  start-page: 1324
  year: 2017
  end-page: 1328
  ident: bib33
  publication-title: Angew. Chem. Int. Ed.
– volume: 2
  start-page: 1327
  year: 2017
  end-page: 1333
  ident: bib27
  publication-title: ACS Energy Lett.
– start-page: 1601390
  year: 2016
  ident: bib60
  publication-title: Adv. Energy Mater.
– volume: 7
  start-page: 3519
  year: 2014
  end-page: 3542
  ident: bib4
  publication-title: Energy Environ. Sci.
– volume: 137
  start-page: 14305
  year: 2015
  end-page: 14312
  ident: bib29
  publication-title: J. Am. Chem. Soc.
– volume: 34
  start-page: 8
  year: 2017
  end-page: 14
  ident: bib55
  publication-title: Nano Energy
– volume: 137
  start-page: 4119
  year: 2015
  end-page: 4125
  ident: bib46
  publication-title: J. Am. Chem. Soc.
– volume: 28
  start-page: 7527
  year: 2016
  end-page: 7532
  ident: bib71
  publication-title: Adv. Mater.
– volume: 9
  start-page: 840
  year: 2010
  end-page: 845
  ident: bib59
  publication-title: Nat. Mater.
– volume: 128
  start-page: 15466
  year: 2016
  end-page: 15471
  ident: bib41
  publication-title: Angew. Chem.
– volume: 6
  start-page: 1601189
  year: 2016
  ident: bib48
  publication-title: Adv. Energy Mater.
– volume: 134
  start-page: 13296
  year: 2012
  end-page: 13309
  ident: bib70
  publication-title: J. Am. Chem. Soc.
– volume: 56
  start-page: 6572
  year: 2017
  end-page: 6577
  ident: bib50
  publication-title: Angew. Chem. Int. Ed.
– volume: 53
  start-page: 9566
  year: 2017
  end-page: 9569
  ident: bib67
  publication-title: Chem. Commun.
– volume: 2
  start-page: 18435
  year: 2014
  end-page: 18443
  ident: bib28
  publication-title: J. Mater. Chem. A
– volume: 126
  start-page: 6525
  year: 2014
  end-page: 6528
  ident: bib18
  publication-title: Angew. Chem.
– volume: 28
  start-page: 4698
  year: 2016
  end-page: 4703
  ident: bib25
  publication-title: Adv. Mater.
– volume: 9
  start-page: 1210
  year: 2016
  end-page: 1214
  ident: bib40
  publication-title: Energy Environ. Sci.
– volume: 139
  start-page: 8320
  year: 2017
  end-page: 8328
  ident: bib39
  publication-title: J. Am. Chem. Soc.
– start-page: 1700381
  year: 2017
  ident: bib51
  publication-title: Adv. Energy Mater.
– volume: 135
  start-page: 10274
  year: 2013
  end-page: 10277
  ident: bib13
  publication-title: J. Am. Chem. Soc.
– reference: Z.H. Zhao, D.E. Schipper, A.P. Leitner, H. Thirumalai, J.H. Chen, L.X. Xie, F. Qin, M.K. Alam, L.C. Grabow, S. Chen, D.Z. Wang, Z.F. Ren, Z.M. Wang, K.H. Whitmire, J.M. Bao, Nano Energy, 〈
– volume: 4
  start-page: 5713
  year: 2016
  end-page: 5718
  ident: bib68
  publication-title: J. Mater. Chem. A
– volume: 7
  start-page: 3519
  year: 2014
  ident: 10.1016/j.nanoen.2017.11.045_bib4
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE01760A
– volume: 28
  start-page: 4698
  year: 2016
  ident: 10.1016/j.nanoen.2017.11.045_bib25
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201600054
– volume: 53
  start-page: 9566
  year: 2017
  ident: 10.1016/j.nanoen.2017.11.045_bib67
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC05172G
– volume: 56
  start-page: 5867
  year: 2017
  ident: 10.1016/j.nanoen.2017.11.045_bib22
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201701477
– volume: 9
  start-page: 840
  year: 2010
  ident: 10.1016/j.nanoen.2017.11.045_bib59
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2858
– volume: 135
  start-page: 10274
  year: 2013
  ident: 10.1016/j.nanoen.2017.11.045_bib13
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja404523s
– volume: 11
  start-page: 4358
  year: 2017
  ident: 10.1016/j.nanoen.2017.11.045_bib21
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b01946
– volume: 55
  start-page: 3694
  year: 2016
  ident: 10.1016/j.nanoen.2017.11.045_bib26
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201511447
– volume: 28
  start-page: 3785
  year: 2016
  ident: 10.1016/j.nanoen.2017.11.045_bib31
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201506314
– volume: 56
  start-page: 1324
  year: 2017
  ident: 10.1016/j.nanoen.2017.11.045_bib33
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201610413
– volume: 6
  start-page: 1502585
  year: 2016
  ident: 10.1016/j.nanoen.2017.11.045_bib9
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201502585
– volume: 5
  start-page: 3783
  year: 2014
  ident: 10.1016/j.nanoen.2017.11.045_bib53
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4783
– volume: 26
  start-page: 4661
  year: 2016
  ident: 10.1016/j.nanoen.2017.11.045_bib7
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201600566
– volume: 154–155
  start-page: 232
  year: 2014
  ident: 10.1016/j.nanoen.2017.11.045_bib57
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2014.02.020
– ident: 10.1016/j.nanoen.2017.11.045_bib35
  doi: 10.1016/j.nanoen.2017.07.027
– volume: 51
  start-page: 6131
  year: 2012
  ident: 10.1016/j.nanoen.2017.11.045_bib63
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201200699
– volume: 32
  start-page: 511
  year: 2017
  ident: 10.1016/j.nanoen.2017.11.045_bib16
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.01.014
– volume: 128
  start-page: 15466
  year: 2016
  ident: 10.1016/j.nanoen.2017.11.045_bib41
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201607651
– volume: 134
  start-page: 13296
  year: 2012
  ident: 10.1016/j.nanoen.2017.11.045_bib70
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja301567f
– volume: 28
  start-page: 29
  year: 2016
  ident: 10.1016/j.nanoen.2017.11.045_bib61
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.08.027
– volume: 34
  start-page: 8
  year: 2017
  ident: 10.1016/j.nanoen.2017.11.045_bib55
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.02.004
– volume: 55
  start-page: 6290
  year: 2016
  ident: 10.1016/j.nanoen.2017.11.045_bib30
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201600525
– volume: 28
  start-page: 7640
  year: 2016
  ident: 10.1016/j.nanoen.2017.11.045_bib24
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601019
– volume: 5
  start-page: 909
  year: 2006
  ident: 10.1016/j.nanoen.2017.11.045_bib3
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1752
– volume: 22
  start-page: 111
  year: 2016
  ident: 10.1016/j.nanoen.2017.11.045_bib44
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.02.023
– volume: 29
  start-page: 1606521
  year: 2017
  ident: 10.1016/j.nanoen.2017.11.045_bib54
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606521
– volume: 9
  start-page: 1210
  year: 2016
  ident: 10.1016/j.nanoen.2017.11.045_bib40
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE02996A
– volume: 127
  start-page: 14923
  year: 2015
  ident: 10.1016/j.nanoen.2017.11.045_bib66
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201506480
– volume: 4
  start-page: 17363
  year: 2016
  ident: 10.1016/j.nanoen.2017.11.045_bib56
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA07883D
– volume: 135
  start-page: 9267
  year: 2013
  ident: 10.1016/j.nanoen.2017.11.045_bib19
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja403440e
– volume: 56
  start-page: 6572
  year: 2017
  ident: 10.1016/j.nanoen.2017.11.045_bib50
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201703183
– volume: 16
  start-page: 7718
  year: 2016
  ident: 10.1016/j.nanoen.2017.11.045_bib37
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b03803
– volume: 10
  start-page: 10397
  year: 2016
  ident: 10.1016/j.nanoen.2017.11.045_bib45
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b06259
– volume: 126
  start-page: 6525
  year: 2014
  ident: 10.1016/j.nanoen.2017.11.045_bib18
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201402998
– volume: 6
  start-page: 248
  year: 2014
  ident: 10.1016/j.nanoen.2017.11.045_bib64
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1853
– volume: 28
  start-page: 7527
  year: 2016
  ident: 10.1016/j.nanoen.2017.11.045_bib71
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601663
– volume: 2
  start-page: 1015
  year: 2010
  ident: 10.1016/j.nanoen.2017.11.045_bib58
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.907
– volume: 7
  start-page: 1602547
  year: 2017
  ident: 10.1016/j.nanoen.2017.11.045_bib23
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201602547
– volume: 54
  start-page: 12361
  year: 2015
  ident: 10.1016/j.nanoen.2017.11.045_bib34
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201502438
– volume: 137
  start-page: 14305
  year: 2015
  ident: 10.1016/j.nanoen.2017.11.045_bib29
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b07756
– volume: 6
  start-page: 1600221
  year: 2016
  ident: 10.1016/j.nanoen.2017.11.045_bib43
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201600221
– volume: 54
  start-page: 9351
  year: 2015
  ident: 10.1016/j.nanoen.2017.11.045_bib6
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201503407
– volume: 8
  start-page: 968
  year: 2017
  ident: 10.1016/j.nanoen.2017.11.045_bib32
  publication-title: Chem. Sci.
  doi: 10.1039/C6SC03356C
– volume: 51
  start-page: 12875
  year: 2012
  ident: 10.1016/j.nanoen.2017.11.045_bib8
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.201207111
– volume: 34
  start-page: 472
  year: 2017
  ident: 10.1016/j.nanoen.2017.11.045_bib38
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.03.016
– volume: 414
  start-page: 332
  year: 2001
  ident: 10.1016/j.nanoen.2017.11.045_bib2
  publication-title: Nature
  doi: 10.1038/35104599
– volume: 6
  start-page: 241
  year: 2007
  ident: 10.1016/j.nanoen.2017.11.045_bib10
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1840
– volume: 285
  start-page: 687
  year: 1999
  ident: 10.1016/j.nanoen.2017.11.045_bib1
  publication-title: Science
  doi: 10.1126/science.285.5428.687
– start-page: 1700381
  year: 2017
  ident: 10.1016/j.nanoen.2017.11.045_bib51
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201700381
– volume: 139
  start-page: 8320
  year: 2017
  ident: 10.1016/j.nanoen.2017.11.045_bib39
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b03507
– volume: 135
  start-page: 12329
  year: 2013
  ident: 10.1016/j.nanoen.2017.11.045_bib65
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja405351s
– volume: 8
  start-page: 11052
  year: 2016
  ident: 10.1016/j.nanoen.2017.11.045_bib15
  publication-title: Nanoscale
  doi: 10.1039/C6NR02803A
– volume: 138
  start-page: 16632
  year: 2016
  ident: 10.1016/j.nanoen.2017.11.045_bib14
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b05940
– volume: 4
  start-page: 9844
  year: 2016
  ident: 10.1016/j.nanoen.2017.11.045_bib52
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA02492K
– volume: 29
  start-page: 1602441
  year: 2017
  ident: 10.1016/j.nanoen.2017.11.045_bib20
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201602441
– volume: 6
  start-page: 1601189
  year: 2016
  ident: 10.1016/j.nanoen.2017.11.045_bib48
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201601189
– volume: 8
  start-page: 15437
  year: 2017
  ident: 10.1016/j.nanoen.2017.11.045_bib69
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15437
– volume: 36
  start-page: 85
  year: 2017
  ident: 10.1016/j.nanoen.2017.11.045_bib49
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.04.032
– start-page: 1601390
  year: 2016
  ident: 10.1016/j.nanoen.2017.11.045_bib60
  publication-title: Adv. Energy Mater.
– start-page: 1604265
  year: 2017
  ident: 10.1016/j.nanoen.2017.11.045_bib47
  publication-title: Small
  doi: 10.1002/smll.201604265
– volume: 44
  start-page: 2060
  year: 2015
  ident: 10.1016/j.nanoen.2017.11.045_bib5
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00470A
– volume: 127
  start-page: 6349
  year: 2015
  ident: 10.1016/j.nanoen.2017.11.045_bib36
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201501616
– volume: 10
  start-page: 11337
  year: 2016
  ident: 10.1016/j.nanoen.2017.11.045_bib17
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b06580
– volume: 135
  start-page: 16977
  year: 2013
  ident: 10.1016/j.nanoen.2017.11.045_bib11
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja407115p
– volume: 2
  start-page: 18435
  year: 2014
  ident: 10.1016/j.nanoen.2017.11.045_bib28
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA03776F
– volume: 55
  start-page: 6502
  year: 2016
  ident: 10.1016/j.nanoen.2017.11.045_bib62
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201600686
– volume: 135
  start-page: 19186
  year: 2013
  ident: 10.1016/j.nanoen.2017.11.045_bib12
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4081056
– volume: 27
  start-page: 3247
  year: 2016
  ident: 10.1016/j.nanoen.2017.11.045_bib42
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.07.005
– volume: 137
  start-page: 4119
  year: 2015
  ident: 10.1016/j.nanoen.2017.11.045_bib46
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5119495
– volume: 2
  start-page: 1327
  year: 2017
  ident: 10.1016/j.nanoen.2017.11.045_bib27
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00229
– volume: 4
  start-page: 5713
  year: 2016
  ident: 10.1016/j.nanoen.2017.11.045_bib68
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA00356G
– start-page: 1701584
  year: 2017
  ident: 10.1016/j.nanoen.2017.11.045_bib72
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201701584
SSID ssj0000651712
Score 2.6475952
Snippet Developing the efficient and low-cost electrocatalysts for overall water splitting is of the great importance for the production of H2. The popular...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 353
SubjectTerms Heterostructures
Nickel molybdenum nitride
Nickel nitride
Water splitting
Title Integrating the active OER and HER components as the heterostructures for the efficient overall water splitting
URI https://dx.doi.org/10.1016/j.nanoen.2017.11.045
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6iFz2IT6wvcvAa2zx2szmW0tIqVvAB3pZkk2KlbIsPvPnbncnuFgVR8LRkdwbCZHZmsvvNF0LOik4KWTB1TBQ-Y8pnilnDLZMmMYm0RUcY7Ea-GqfDe3XxkDyskF7TC4Owyjr2VzE9Ruv6Tru2ZnsxnbZvBexdRAYZX6OfCozDSmn08vMPvvzOAimW6_jTE-UZKjQddBHmVdpyHpAIletzpPPEvqafMtSXrDPYIpt1uUi71Yy2yUood8jGFxLBXTIf1YwPMKJQzlEbQxi97t9QW3o6hCsCx-clYiaofYlCjwiDmVfssW-w5aZQvMYHIXJKgChFcKedzeg7lKPP9AWq1YiR3iP3g_5db8jqYxRYIbV4ZSq1njvteTBGO2FCyp1IrNbSpBMtXTZRyurEI_Mf59K6EOAlDqpji8CLIOU-WS1hjgeEWpl6YaxIhQ_Kmcx5nwQvPSw3FgKiRWRjuryoOcbxqItZ3oDJnvLK4DkaHLYfORi8RdhSa1FxbPwhr5tVyb_5Sg5p4FfNw39rHpF1GGUVXvuYrMLyhBMoR17dafS3U7LWHV0Ox5_I3uBj
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA6yPagP4hXnNQ--xi1J2zSPY2x0uk3QDXwrSRNRGd3wgn_fc3qRCaLgU2mTA-EkPedL-50vhFxknQiyYGSZyFzMAhcHzGhumNShDqXJOkJjNfJ4EiWz4Oo-vF8jvboWBmmVVewvY3oRrasn7cqb7eXTU_tOwN5FxJDxFa5TAXG4iepUYYM0u8PrZPL1qQWyLFfFf080YWhTF9EVTK_c5AuPWqhcXaKiJ5Y2_ZSkVhLPYJtsVYiRdstB7ZA1n--SzRUdwT2yGFaiD3BHAdFRU0QxetO_pSZ3NIErcscXOdImqHktOj0iE2ZRCsi-w66bAn4tGnwhKwFdKfI7zXxOPwCRvtBXAKwFTXqfzAb9aS9h1UkKLJNKvLEgMo5b5bjXWlmhfcStCI1SUkcPStr4IQiMCh2K_3EujfUe3mMfdEzmeealPCCNHMZ4SKiRkRPaiEg4H1gdW-dC76SDGUcsIFpE1q5Ls0pmHE-7mKc1n-w5LR2eosNhB5KCw1uEfVktS5mNP_qrelbSb8slhUzwq-XRvy3PyXoyHY_S0XByfUw2oCUu6dsnpAFT5U8BnbzZs2r1fQJ-1-MU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrating+the+active+OER+and+HER+components+as+the+heterostructures+for+the+efficient+overall+water+splitting&rft.jtitle=Nano+energy&rft.au=Wu%2C+Aiping&rft.au=Xie%2C+Ying&rft.au=Ma%2C+Hui&rft.au=Tian%2C+Chungui&rft.date=2018-02-01&rft.issn=2211-2855&rft.volume=44&rft.spage=353&rft.epage=363&rft_id=info:doi/10.1016%2Fj.nanoen.2017.11.045&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_nanoen_2017_11_045
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-2855&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-2855&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-2855&client=summon