High-flux water desalination with interfacial salt sieving effect in nanoporous carbon composite membranes

Freshwater flux and energy consumption are two important benchmarks for the membrane desalination process. Here, we show that nanoporous carbon composite membranes, which comprise a layer of porous carbon fibre structures grown on a porous ceramic substrate, can exhibit 100% desalination and a fresh...

Full description

Saved in:
Bibliographic Details
Published inNature nanotechnology Vol. 13; no. 4; pp. 345 - 350
Main Authors Chen, Wei, Chen, Shuyu, Liang, Tengfei, Zhang, Qiang, Fan, Zhongli, Yin, Hang, Huang, Kuo-Wei, Zhang, Xixiang, Lai, Zhiping, Sheng, Ping
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.04.2018
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Freshwater flux and energy consumption are two important benchmarks for the membrane desalination process. Here, we show that nanoporous carbon composite membranes, which comprise a layer of porous carbon fibre structures grown on a porous ceramic substrate, can exhibit 100% desalination and a freshwater flux that is 3–20 times higher than existing polymeric membranes. Thermal accounting experiments demonstrated that the carbon composite membrane saved over 80% of the latent heat consumption. Theoretical calculations combined with molecular dynamics simulations revealed the unique microscopic process occurring in the membrane. When the salt solution is stopped at the openings to the nanoscale porous channels and forms a meniscus, the vapour can rapidly transport across the nanoscale gap to condense on the permeate side. This process is driven by the chemical potential gradient and aided by the unique smoothness of the carbon surface. The high thermal conductivity of the carbon composite membrane ensures that most of the latent heat is recovered. Nanoporous carbon composite membranes exhibit 100% salt rejection and high water flux due to the interfacial sieving effect and the fast transport of vapour in carbon pores, respectively.
AbstractList Freshwater flux and energy consumption are two important benchmarks for the membrane desalination process. Here, we show that nanoporous carbon composite membranes, which comprise a layer of porous carbon fibre structures grown on a porous ceramic substrate, can exhibit 100% desalination and a freshwater flux that is 3-20 times higher than existing polymeric membranes. Thermal accounting experiments demonstrated that the carbon composite membrane saved over 80% of the latent heat consumption. Theoretical calculations combined with molecular dynamics simulations revealed the unique microscopic process occurring in the membrane. When the salt solution is stopped at the openings to the nanoscale porous channels and forms a meniscus, the vapour can rapidly transport across the nanoscale gap to condense on the permeate side. This process is driven by the chemical potential gradient and aided by the unique smoothness of the carbon surface. The high thermal conductivity of the carbon composite membrane ensures that most of the latent heat is recovered.Freshwater flux and energy consumption are two important benchmarks for the membrane desalination process. Here, we show that nanoporous carbon composite membranes, which comprise a layer of porous carbon fibre structures grown on a porous ceramic substrate, can exhibit 100% desalination and a freshwater flux that is 3-20 times higher than existing polymeric membranes. Thermal accounting experiments demonstrated that the carbon composite membrane saved over 80% of the latent heat consumption. Theoretical calculations combined with molecular dynamics simulations revealed the unique microscopic process occurring in the membrane. When the salt solution is stopped at the openings to the nanoscale porous channels and forms a meniscus, the vapour can rapidly transport across the nanoscale gap to condense on the permeate side. This process is driven by the chemical potential gradient and aided by the unique smoothness of the carbon surface. The high thermal conductivity of the carbon composite membrane ensures that most of the latent heat is recovered.
Freshwater flux and energy consumption are two important benchmarks for the membrane desalination process. Here, we show that nanoporous carbon composite membranes, which comprise a layer of porous carbon fibre structures grown on a porous ceramic substrate, can exhibit 100% desalination and a freshwater flux that is 3-20 times higher than existing polymeric membranes. Thermal accounting experiments demonstrated that the carbon composite membrane saved over 80% of the latent heat consumption. Theoretical calculations combined with molecular dynamics simulations revealed the unique microscopic process occurring in the membrane. When the salt solution is stopped at the openings to the nanoscale porous channels and forms a meniscus, the vapour can rapidly transport across the nanoscale gap to condense on the permeate side. This process is driven by the chemical potential gradient and aided by the unique smoothness of the carbon surface. The high thermal conductivity of the carbon composite membrane ensures that most of the latent heat is recovered.
Freshwater flux and energy consumption are two important benchmarks for the membrane desalination process. Here, we show that nanoporous carbon composite membranes, which comprise a layer of porous carbon fibre structures grown on a porous ceramic substrate, can exhibit 100% desalination and a freshwater flux that is 3–20 times higher than existing polymeric membranes. Thermal accounting experiments demonstrated that the carbon composite membrane saved over 80% of the latent heat consumption. Theoretical calculations combined with molecular dynamics simulations revealed the unique microscopic process occurring in the membrane. When the salt solution is stopped at the openings to the nanoscale porous channels and forms a meniscus, the vapour can rapidly transport across the nanoscale gap to condense on the permeate side. This process is driven by the chemical potential gradient and aided by the unique smoothness of the carbon surface. The high thermal conductivity of the carbon composite membrane ensures that most of the latent heat is recovered. Nanoporous carbon composite membranes exhibit 100% salt rejection and high water flux due to the interfacial sieving effect and the fast transport of vapour in carbon pores, respectively.
Author Chen, Wei
Zhang, Xixiang
Sheng, Ping
Lai, Zhiping
Zhang, Qiang
Yin, Hang
Fan, Zhongli
Huang, Kuo-Wei
Chen, Shuyu
Liang, Tengfei
Author_xml – sequence: 1
  givenname: Wei
  orcidid: 0000-0003-3122-2952
  surname: Chen
  fullname: Chen, Wei
  organization: Division of Physical Science and Engineering, King Abdullah University of Science and Technology, CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences
– sequence: 2
  givenname: Shuyu
  surname: Chen
  fullname: Chen, Shuyu
  organization: Department of Physics, Hong Kong University of Science and Technology
– sequence: 3
  givenname: Tengfei
  surname: Liang
  fullname: Liang, Tengfei
  organization: Department of Physics, Hong Kong University of Science and Technology, School of Astronautics, Northwestern Polytechnical University
– sequence: 4
  givenname: Qiang
  surname: Zhang
  fullname: Zhang, Qiang
  organization: Division of Physical Science and Engineering, King Abdullah University of Science and Technology
– sequence: 5
  givenname: Zhongli
  surname: Fan
  fullname: Fan, Zhongli
  organization: Division of Physical Science and Engineering, King Abdullah University of Science and Technology
– sequence: 6
  givenname: Hang
  surname: Yin
  fullname: Yin, Hang
  organization: Division of Physical Science and Engineering, King Abdullah University of Science and Technology
– sequence: 7
  givenname: Kuo-Wei
  surname: Huang
  fullname: Huang, Kuo-Wei
  organization: Division of Physical Science and Engineering, King Abdullah University of Science and Technology
– sequence: 8
  givenname: Xixiang
  orcidid: 0000-0002-3478-6414
  surname: Zhang
  fullname: Zhang, Xixiang
  organization: Division of Physical Science and Engineering, King Abdullah University of Science and Technology
– sequence: 9
  givenname: Zhiping
  orcidid: 0000-0001-9555-6009
  surname: Lai
  fullname: Lai, Zhiping
  email: zhiping.lai@kaust.edu.sa
  organization: Division of Physical Science and Engineering, King Abdullah University of Science and Technology
– sequence: 10
  givenname: Ping
  surname: Sheng
  fullname: Sheng, Ping
  email: sheng@ust.hk
  organization: Department of Physics, Hong Kong University of Science and Technology, Institute for Advanced Study, Hong Kong University of Science and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29507347$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtv1TAQhS1URF_8ADbIEptuAp4kfmSJKqBIlbpp15bjjG99ldgX26Hl3-P2tiBVgtWMZr4zOppzTA5CDEjIO2AfgXXqU-6BC94wUA1jQjb8FTkC2aum6wZ-8KdX8pAc57xljLdD278hh-3Amex6eUS2F35z27h5vad3pmCiE2Yz-2CKj4He-XJLfahzZ6w3M627QrPHnz5sKDqHttQ9DSbEXUxxzdSaNFaljcsuZl-QLriMyQTMp-S1M3PGt0_1hNx8_XJ9ftFcXn37fv75srGdbEvTAyo2CaaYGkENYAZUznLAgVvLDOulEiiMslMrHXIQTk0dH8FZWecCuxNytr-7S_HHirnoxWeL81xNVIe6ZQCtZAKgoh9eoNu4plDdVartJEimRKXeP1HruOCkd8kvJv3Sz1-sgNwDNsWcEzptfXn8YEnGzxqYfshL7_PSNS_9kJfmVQkvlM_H_6dp95pc2bDB9Nf0v0W_AU0hp_A
CitedBy_id crossref_primary_10_1016_j_jchromb_2019_04_030
crossref_primary_10_1016_j_matt_2020_09_024
crossref_primary_10_1016_j_carbon_2020_01_112
crossref_primary_10_1021_acs_est_1c08842
crossref_primary_10_1021_acsestengg_3c00010
crossref_primary_10_1021_acsomega_9b00188
crossref_primary_10_1016_j_polymer_2019_05_021
crossref_primary_10_1016_j_memsci_2023_121554
crossref_primary_10_1002_aenm_202400368
crossref_primary_10_1016_j_eng_2021_02_003
crossref_primary_10_1016_j_jwpe_2021_102528
crossref_primary_10_1016_j_memsci_2022_120592
crossref_primary_10_1016_j_desal_2024_117927
crossref_primary_10_1021_acsnano_8b03994
crossref_primary_10_1111_jace_18487
crossref_primary_10_1007_s42235_021_0005_3
crossref_primary_10_1021_acs_iecr_8b05212
crossref_primary_10_1038_s44221_023_00127_z
crossref_primary_10_3390_w13101369
crossref_primary_10_1016_j_memsci_2020_118934
crossref_primary_10_1002_cjoc_202100831
crossref_primary_10_1016_j_solmat_2020_110913
crossref_primary_10_1002_adma_202001383
crossref_primary_10_1016_j_memsci_2020_118552
crossref_primary_10_1002_solr_202100427
crossref_primary_10_1021_acsapm_0c01230
crossref_primary_10_1002_anie_202005931
crossref_primary_10_1021_acsami_1c19605
crossref_primary_10_1021_acs_est_2c01858
crossref_primary_10_1016_j_matpr_2021_01_331
crossref_primary_10_1007_s10973_020_09494_1
crossref_primary_10_1016_j_cis_2022_102809
crossref_primary_10_1016_j_memsci_2018_10_002
crossref_primary_10_1016_j_seppur_2018_07_043
crossref_primary_10_3390_polym16243531
crossref_primary_10_1016_j_memsci_2019_117611
crossref_primary_10_1002_gch2_201800085
crossref_primary_10_1002_adma_202109718
crossref_primary_10_1016_j_mtnano_2021_100136
crossref_primary_10_1016_j_cclet_2019_09_030
crossref_primary_10_1007_s11708_022_0842_8
crossref_primary_10_1016_j_seppur_2021_119494
crossref_primary_10_1038_s41467_025_56358_z
crossref_primary_10_1016_j_desal_2023_117270
crossref_primary_10_1039_C9TA05909A
crossref_primary_10_1126_sciadv_aau3546
crossref_primary_10_1002_adsu_202100500
crossref_primary_10_1038_s41467_024_47916_y
crossref_primary_10_1021_acs_jpclett_1c01620
crossref_primary_10_1016_j_cej_2024_153316
crossref_primary_10_1016_j_molliq_2020_114174
crossref_primary_10_1016_j_seppur_2023_123431
crossref_primary_10_1021_acsnano_1c00987
crossref_primary_10_1038_s41467_020_15038_w
crossref_primary_10_1038_s41467_023_42204_7
crossref_primary_10_1039_D1TA00647A
crossref_primary_10_1016_j_molliq_2022_118575
crossref_primary_10_1016_j_memsci_2019_04_006
crossref_primary_10_1039_C8TA04813D
crossref_primary_10_1016_j_cej_2019_05_058
crossref_primary_10_1002_adma_201903954
crossref_primary_10_1021_acsnano_4c15010
crossref_primary_10_1016_j_jece_2024_114881
crossref_primary_10_1016_j_memsci_2022_121126
crossref_primary_10_1021_jacs_8b08788
crossref_primary_10_1021_acsnano_8b04187
crossref_primary_10_1021_acs_iecr_8b06081
crossref_primary_10_3390_nano12183206
crossref_primary_10_1557_mrs_2018_325
crossref_primary_10_1021_acs_est_3c08452
crossref_primary_10_1002_adma_202312765
crossref_primary_10_1002_ange_202005931
crossref_primary_10_1016_j_rineng_2024_102760
crossref_primary_10_1039_D0TA05790H
crossref_primary_10_1038_s41467_020_16577_y
crossref_primary_10_4028_p_wrtD3s
crossref_primary_10_1016_j_memsci_2021_119437
crossref_primary_10_1021_acs_jpclett_9b03821
crossref_primary_10_1021_acsnano_9b01730
crossref_primary_10_1002_adts_201900016
crossref_primary_10_1002_idm2_12057
crossref_primary_10_1016_j_memsci_2020_118224
crossref_primary_10_1016_j_psep_2023_01_053
crossref_primary_10_3390_nano13202770
crossref_primary_10_1126_sciadv_adg6638
crossref_primary_10_1016_j_jeurceramsoc_2022_10_025
crossref_primary_10_1002_adfm_202300353
crossref_primary_10_1016_j_apmate_2023_100153
crossref_primary_10_1016_j_apsusc_2020_146308
crossref_primary_10_1039_D1EN01018B
crossref_primary_10_1038_s41563_021_01052_w
crossref_primary_10_1007_s11270_022_05611_y
crossref_primary_10_1016_j_desal_2018_10_010
crossref_primary_10_1016_j_advmem_2022_100026
crossref_primary_10_1007_s11431_022_2332_3
crossref_primary_10_1016_j_memsci_2021_119682
crossref_primary_10_1021_acs_est_2c07765
crossref_primary_10_1063_5_0015975
crossref_primary_10_1038_s41598_022_17876_8
crossref_primary_10_1016_j_physrep_2022_11_001
crossref_primary_10_3390_en14196077
crossref_primary_10_1021_acsestengg_4c00144
crossref_primary_10_1038_s41893_018_0186_x
crossref_primary_10_1007_s40242_022_1474_6
crossref_primary_10_1063_5_0028077
crossref_primary_10_1016_j_molliq_2021_115382
crossref_primary_10_1021_acsnano_0c04471
crossref_primary_10_1038_s41565_018_0118_y
crossref_primary_10_1016_j_carbon_2021_01_140
crossref_primary_10_1038_s44221_023_00123_3
crossref_primary_10_1039_C9EW01124B
crossref_primary_10_1126_sciadv_ade0413
crossref_primary_10_1016_j_desal_2022_115712
crossref_primary_10_1021_acsnano_3c03028
crossref_primary_10_1007_s10853_021_06420_0
crossref_primary_10_1016_j_colsurfa_2024_133348
crossref_primary_10_1016_j_solmat_2019_110111
crossref_primary_10_3390_chemengineering4040059
crossref_primary_10_1016_j_memsci_2021_119973
crossref_primary_10_1021_acs_langmuir_9b01179
crossref_primary_10_1063_1_5110197
crossref_primary_10_1007_s12274_023_5546_9
crossref_primary_10_1039_C9RA07109A
crossref_primary_10_1016_j_molliq_2023_122920
crossref_primary_10_1016_j_memsci_2023_121737
crossref_primary_10_1039_D0CS00552E
crossref_primary_10_1021_acs_estlett_3c00391
crossref_primary_10_1126_sciadv_aau8634
crossref_primary_10_1039_D0CS01347A
crossref_primary_10_1016_j_memsci_2019_117185
crossref_primary_10_1080_08927022_2022_2074480
crossref_primary_10_1016_j_apsusc_2021_150022
crossref_primary_10_1016_j_carbon_2021_04_077
crossref_primary_10_1016_j_mtener_2019_100375
crossref_primary_10_1002_advs_202308187
crossref_primary_10_1016_S1872_5805_21_60066_5
crossref_primary_10_1021_acs_chemrev_1c00976
crossref_primary_10_1063_5_0161169
crossref_primary_10_1038_s41893_022_00870_3
crossref_primary_10_1016_j_jcis_2018_11_106
crossref_primary_10_1016_j_jpowsour_2021_229814
crossref_primary_10_3390_w11040696
crossref_primary_10_1002_chem_202302460
crossref_primary_10_1038_s41545_022_00209_7
crossref_primary_10_1016_j_watres_2023_120510
crossref_primary_10_1039_D3NR00777D
crossref_primary_10_1016_j_cej_2021_130156
crossref_primary_10_1080_09593330_2019_1668862
crossref_primary_10_1016_j_joule_2020_07_001
crossref_primary_10_1016_j_joule_2019_12_010
crossref_primary_10_1016_j_memsci_2023_122314
crossref_primary_10_1016_j_memsci_2024_122455
crossref_primary_10_1021_jacs_3c10051
crossref_primary_10_1016_j_jiec_2019_12_007
crossref_primary_10_1002_smll_202406550
crossref_primary_10_1016_j_desal_2023_116889
crossref_primary_10_1016_j_physrep_2024_09_001
crossref_primary_10_1016_j_desal_2022_116106
crossref_primary_10_1063_5_0072800
crossref_primary_10_1002_app_56869
Cites_doi 10.1016/j.memsci.2007.07.021
10.1038/nmat1192
10.1002/jcc.20090
10.1021/nl1021046
10.1063/1.470117
10.1016/j.rser.2011.11.002
10.1016/j.desal.2012.10.015
10.1126/science.1236098
10.1002/app.1974.070180316
10.1021/ja904708f
10.1016/0021-9991(77)90098-5
10.1016/j.memsci.2010.11.054
10.1021/ja304721r
10.1126/science.1245711
10.1038/nature06599
10.1126/science.1211694
10.1016/j.watres.2011.08.012
10.1039/c0ee00481b
10.1016/j.cej.2011.01.086
10.1126/science.1200488
10.1021/jp075913v
10.1063/1.3419751
10.1039/c0ee00541j
10.1021/jp810102u
10.1016/S0376-7388(98)00079-9
10.1002/smll.201303945
10.1103/PhysRevLett.89.185901
10.1063/1.448118
10.1073/pnas.0710437105
10.1016/S1383-5866(00)00163-5
10.1016/S0272-8842(03)00030-0
10.1002/jcc.20291
10.1126/science.1126298
10.1021/ja00007a021
10.1063/1.1622372
10.1002/smll.200700368
10.1021/jp0268112
10.1021/la304645w
10.1016/j.memsci.2015.09.041
10.1021/ct4008926
10.1021/nl071414u
10.1103/PhysRevLett.91.026102
10.1016/B978-0-08-093250-7.00038-4
ContentType Journal Article
Copyright The Author(s) 2018
Copyright Nature Publishing Group Apr 2018
Copyright_xml – notice: The Author(s) 2018
– notice: Copyright Nature Publishing Group Apr 2018
DBID AAYXX
CITATION
NPM
3V.
7QO
7U5
7X7
7XB
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB.
L6V
L7M
LK8
M0S
M1P
M7P
M7S
P5Z
P62
P64
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
DOI 10.1038/s41565-018-0067-5
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Materials Science Database
Advanced Technologies Database with Aerospace
ProQuest Materials Science Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
ProQuest Central Student

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1748-3395
EndPage 350
ExternalDocumentID 29507347
10_1038_s41565_018_0067_5
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
0R~
123
29M
39C
3V.
4.4
53G
5BI
5M7
5S5
6OB
70F
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJCF
ABJNI
ABLJU
ABUWG
ACBWK
ACGFS
ACIWK
ACPRK
ACUHS
ADBBV
AENEX
AEUYN
AFANA
AFBBN
AFKRA
AFLOW
AFRAH
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
D1I
DB5
DU5
EBS
EE.
EJD
EMOBN
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
HCIFZ
HMCUK
HVGLF
HZ~
I-F
KB.
L6V
LK8
M1P
M7P
M7S
MM.
NNMJJ
O9-
ODYON
P2P
P62
PDBOC
PQQKQ
PROAC
PSQYO
PTHSS
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
~8M
AAYXX
ACSTC
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
ABFSG
AEZWR
AFHIU
AHWEU
AIXLP
NFIDA
NPM
PJZUB
PPXIY
PQGLB
7QO
7U5
7XB
8FD
8FK
AZQEC
DWQXO
F28
FR3
GNUQQ
K9.
L7M
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c372t-41e80d60808b1891a9e8fc51e95cc0a04786e6a8cd27fe516f8d35b1fc76e66e3
IEDL.DBID 7X7
ISSN 1748-3387
1748-3395
IngestDate Thu Jul 10 19:02:11 EDT 2025
Fri Jul 25 08:52:52 EDT 2025
Mon Jul 21 05:58:23 EDT 2025
Thu Apr 24 22:50:47 EDT 2025
Tue Jul 01 01:56:28 EDT 2025
Fri Feb 21 02:40:32 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-41e80d60808b1891a9e8fc51e95cc0a04786e6a8cd27fe516f8d35b1fc76e66e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3122-2952
0000-0002-3478-6414
0000-0001-9555-6009
PMID 29507347
PQID 2023717086
PQPubID 546299
PageCount 6
ParticipantIDs proquest_miscellaneous_2011270611
proquest_journals_2023717086
pubmed_primary_29507347
crossref_citationtrail_10_1038_s41565_018_0067_5
crossref_primary_10_1038_s41565_018_0067_5
springer_journals_10_1038_s41565_018_0067_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-04-01
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature nanotechnology
PublicationTitleAbbrev Nature Nanotech
PublicationTitleAlternate Nat Nanotechnol
PublicationYear 2018
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Joshi (CR21) 2014; 343
Ghaffour, Missimer, Amy (CR4) 2013; 309
Wang, Lai (CR40) 2012; 405–406
CR18
Peeters, Boom, Mulder, Srathmann (CR28) 1998; 145
CR17
CR37
Srivastava, Srivastava, Talapatra, Vajtai, Ajayan (CR12) 2004; 3
CR14
Kim, Jinschek, Chen, Sholl, Marand (CR16) 2007; 7
Verweij, Schillo, Li (CR9) 2007; 3
Van Der Spoel (CR41) 2005; 26
Wang, Teoh, Chung (CR25) 2011; 45
Skoulidas, Ackerman, Johnson, Sholl (CR36) 2002; 89
El-Ghonemy (CR5) 2012; 16
Shannon (CR2) 2008; 452
Holt (CR7) 2006; 312
Tofighy, Shirazi, Mohammadi, Park (CR13) 2011; 168
Geise, Park, Sagle, Freeman, Mcgrath (CR30) 2011; 369
Berendsen, Postma, van Gunsteren, DiNola, Haak (CR46) 1984; 81
Yasuda, Tsai (CR24) 1974; 18
Chekli (CR29) 2016; 497
Liu, Li, Hughes (CR39) 2003; 29
Corry (CR11) 2011; 4
Mi, Lin, Li (CR15) 2007; 304
Schaep, Vandecasteele, Mohammad, Bowen (CR27) 2001; 22–23
Ryckaert, Ciccotti, Berendsen (CR45) 1977; 23
Falk, Sedlmeier, Joly, Netz, Bocquet (CR38) 2010; 10
CR3
Mancinelli, Botti, Bruni, Ricci, Soper (CR32) 2007; 111
Nair, Wu, Jayaram, Grigorieva, Geim (CR20) 2012; 335
Fornasiero (CR26) 2008; 105
Taherian, Marcon, van der Vegt, Leroy (CR33) 2013; 29
Kumar, Habel, Shen, Meier, Walz (CR6) 2012; 134
CR23
Theresa, Pendergast, Hoek (CR8) 2011; 4
Essmann (CR47) 1995; 103
Kimmel (CR34) 2009; 131
Lee, Kim, Cho, Park (CR19) 2014; 10
Kim (CR22) 2013; 342
Werder, Walther, Jaffe, Halicioglu, Koumoutsakos (CR43) 2003; 107
Oostenbrink, Villa, Mark, van Gunsteren (CR44) 2004; 25
Weerasinghe, Smith (CR42) 2003; 119
Elimelech, Phillip (CR1) 2011; 333
Song, Corry (CR10) 2009; 113
Dang, Rice, Caldwell, Kollman (CR31) 1991; 113
Lee, Karnik (CR35) 2010; 108
Vanegas, Torres-Sánchez, Arroyo (CR48) 2014; 10
K Falk (67_CR38) 2010; 10
T Werder (67_CR43) 2003; 107
M Kumar (67_CR6) 2012; 134
HW Kim (67_CR22) 2013; 342
AMK El-Ghonemy (67_CR5) 2012; 16
JK Holt (67_CR7) 2006; 312
M Theresa (67_CR8) 2011; 4
J Lee (67_CR35) 2010; 108
S Weerasinghe (67_CR42) 2003; 119
JP Ryckaert (67_CR45) 1977; 23
67_CR18
RK Joshi (67_CR21) 2014; 343
67_CR37
C Song (67_CR10) 2009; 113
67_CR14
MA Tofighy (67_CR13) 2011; 168
67_CR17
H Verweij (67_CR9) 2007; 3
P Wang (67_CR25) 2011; 45
M Elimelech (67_CR1) 2011; 333
H Yasuda (67_CR24) 1974; 18
AI Skoulidas (67_CR36) 2002; 89
RR Nair (67_CR20) 2012; 335
U Essmann (67_CR47) 1995; 103
WL Mi (67_CR15) 2007; 304
N Ghaffour (67_CR4) 2013; 309
HD Lee (67_CR19) 2014; 10
GA Kimmel (67_CR34) 2009; 131
67_CR23
B Wang (67_CR40) 2012; 405–406
LX Dang (67_CR31) 1991; 113
F Fornasiero (67_CR26) 2008; 105
GM Geise (67_CR30) 2011; 369
R Mancinelli (67_CR32) 2007; 111
JM Vanegas (67_CR48) 2014; 10
JMM Peeters (67_CR28) 1998; 145
L Chekli (67_CR29) 2016; 497
C Oostenbrink (67_CR44) 2004; 25
A Srivastava (67_CR12) 2004; 3
B Corry (67_CR11) 2011; 4
SM Liu (67_CR39) 2003; 29
S Kim (67_CR16) 2007; 7
MA Shannon (67_CR2) 2008; 452
F Taherian (67_CR33) 2013; 29
J Schaep (67_CR27) 2001; 22–23
67_CR3
HJ Berendsen (67_CR46) 1984; 81
D Spoel Van Der (67_CR41) 2005; 26
29636588 - Nat Nanotechnol. 2018 Apr;13(4):273-274
References_xml – ident: CR18
– volume: 304
  start-page: 1
  year: 2007
  end-page: 7
  ident: CR15
  article-title: Vertically aligned carbon nanotube membranes on macroporous alumina supports
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2007.07.021
– volume: 3
  start-page: 610
  year: 2004
  end-page: 614
  ident: CR12
  article-title: Carbon nanotube filters
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1192
– volume: 25
  start-page: 1656
  year: 2004
  end-page: 1676
  ident: CR44
  article-title: A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force‐field parameter sets 53A5 and 53A6
  publication-title: J. Comp. Chem.
  doi: 10.1002/jcc.20090
– volume: 10
  start-page: 4067
  year: 2010
  end-page: 4073
  ident: CR38
  article-title: Molecular origin of fast water transport in carbon nanotube membranes: superlubricity versus curvature dependent friction
  publication-title: Nano Lett.
  doi: 10.1021/nl1021046
– ident: CR14
– ident: CR37
– volume: 103
  start-page: 8577
  year: 1995
  end-page: 8593
  ident: CR47
  article-title: A smooth particle mesh Ewald method
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.470117
– volume: 16
  start-page: 1537
  year: 2012
  end-page: 1556
  ident: CR5
  article-title: Water desalination systems powered by renewable energy sources: Review
  publication-title: Renew. Sust. Energy Rev.
  doi: 10.1016/j.rser.2011.11.002
– volume: 309
  start-page: 197
  year: 2013
  end-page: 207
  ident: CR4
  article-title: Technical review and evaluation of the economics of water desalination: Current and future challenges for better water supply sustainability
  publication-title: Desalination
  doi: 10.1016/j.desal.2012.10.015
– volume: 342
  start-page: 91
  year: 2013
  end-page: 95
  ident: CR22
  article-title: Selective gas transport through few-layered graphene and graphene oxide membranes
  publication-title: Science
  doi: 10.1126/science.1236098
– volume: 18
  start-page: 805
  year: 1974
  end-page: 819
  ident: CR24
  article-title: Pore size of microporous polymer membranes
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.1974.070180316
– volume: 131
  start-page: 12838
  year: 2009
  end-page: 12844
  ident: CR34
  article-title: No confinement needed: observation of a metastable hydrophobic wetting two-layer ice on graphene
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja904708f
– volume: 23
  start-page: 327
  year: 1977
  end-page: 341
  ident: CR45
  article-title: Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes
  publication-title: J. Comp. Phys.
  doi: 10.1016/0021-9991(77)90098-5
– volume: 369
  start-page: 130
  year: 2011
  end-page: 138
  ident: CR30
  article-title: Water permeability and water/salt selectivity tradeoff in polymers for desalination
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2010.11.054
– volume: 134
  start-page: 18631
  year: 2012
  end-page: 18637
  ident: CR6
  article-title: High-density reconstitution of functional water channels into vesicular and planar block copolymer membranes
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja304721r
– volume: 343
  start-page: 752
  year: 2014
  end-page: 754
  ident: CR21
  article-title: Precise and ultrafast molecular sieving through graphene oxide membranes
  publication-title: Science
  doi: 10.1126/science.1245711
– ident: CR23
– volume: 452
  start-page: 301
  year: 2008
  end-page: 309
  ident: CR2
  article-title: Science and technology for water purification in the coming decades
  publication-title: Nature
  doi: 10.1038/nature06599
– volume: 335
  start-page: 442
  year: 2012
  end-page: 444
  ident: CR20
  article-title: Unimpeded permeation of water through helium-leak-tight graphene-based membranes
  publication-title: Science
  doi: 10.1126/science.1211694
– volume: 45
  start-page: 5489
  year: 2011
  end-page: 5500
  ident: CR25
  article-title: Morphological architecture of dual-layer hollow fiber for membrane distillation with higher desalination performance
  publication-title: Water Res
  doi: 10.1016/j.watres.2011.08.012
– volume: 4
  start-page: 751
  year: 2011
  end-page: 759
  ident: CR11
  article-title: Water and ion transport through functionalised carbon nanotubes: implications for desalination technology
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c0ee00481b
– volume: 168
  start-page: 1064
  year: 2011
  end-page: 1072
  ident: CR13
  article-title: Salty water desalination using carbon nanotubes membrane
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2011.01.086
– volume: 333
  start-page: 712
  year: 2011
  end-page: 717
  ident: CR1
  article-title: The future of seawater desalination: energy, technology and the environment
  publication-title: Science
  doi: 10.1126/science.1200488
– volume: 111
  start-page: 13570
  year: 2007
  end-page: 13577
  ident: CR32
  article-title: Hydration of sodium, potassium, and chloride ions in solution and the concept of structure maker/breaker
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp075913v
– volume: 108
  start-page: 044315
  year: 2010
  ident: CR35
  article-title: Desalination of water by vapor-phase transport through hydrophobic nanopores
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3419751
– volume: 4
  start-page: 1946
  year: 2011
  end-page: 1971
  ident: CR8
  article-title: A review of water treatment membrane nanotechnologies
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c0ee00541j
– volume: 113
  start-page: 7642
  year: 2009
  end-page: 7649
  ident: CR10
  article-title: Intrinsic ion selectivity of narrow hydrophobic pores
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp810102u
– ident: CR3
– volume: 145
  start-page: 199
  year: 1998
  end-page: 209
  ident: CR28
  article-title: Retention measurements of nanofiltration membranes with electrolyte solutions
  publication-title: J. Membr. Sci.
  doi: 10.1016/S0376-7388(98)00079-9
– volume: 10
  start-page: 2653
  year: 2014
  end-page: 2660
  ident: CR19
  article-title: Experimental evidence of rapid water transport through carbon nanotubes embedded in polymeric desalination membranes
  publication-title: Small
  doi: 10.1002/smll.201303945
– volume: 89
  start-page: 185901
  year: 2002
  ident: CR36
  article-title: Rapid transport of gases in carbon nanotubes
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.89.185901
– volume: 81
  start-page: 3684
  year: 1984
  end-page: 3690
  ident: CR46
  article-title: Molecular dynamics with coupling to an external bath
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.448118
– ident: CR17
– volume: 105
  start-page: 17250
  year: 2008
  end-page: 17255
  ident: CR26
  article-title: Ion exclusion by sub-2-nm carbon nanotube pores
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0710437105
– volume: 22–23
  start-page: 169
  year: 2001
  end-page: 179
  ident: CR27
  article-title: Modelling the retention of ionic components for different nanofiltration membranes
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/S1383-5866(00)00163-5
– volume: 29
  start-page: 875
  year: 2003
  end-page: 881
  ident: CR39
  article-title: Preparation of porous aluminium oxide (Al O ) hollow fibre membranes by a combined phase-inversion and sintering method
  publication-title: Ceram. Int
  doi: 10.1016/S0272-8842(03)00030-0
– volume: 26
  start-page: 1701
  year: 2005
  end-page: 1718
  ident: CR41
  article-title: GROMACS: fast, flexible, and free
  publication-title: J. Comp. Chem.
  doi: 10.1002/jcc.20291
– volume: 405–406
  start-page: 275
  year: 2012
  end-page: 283
  ident: CR40
  article-title: Finger-like voids induced by viscous fingering during phase-inversion of alumina/PES/NMP suspensions
  publication-title: J. Membr. Sci.
– volume: 312
  start-page: 1034
  year: 2006
  end-page: 1037
  ident: CR7
  article-title: Fast mass transport through sub-2-nanometer carbon nanotubes
  publication-title: Science
  doi: 10.1126/science.1126298
– volume: 113
  start-page: 2481
  year: 1991
  end-page: 2486
  ident: CR31
  article-title: Ion solvation in polarizable water: molecular dynamics simulations
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00007a021
– volume: 119
  start-page: 11342
  year: 2003
  end-page: 11349
  ident: CR42
  article-title: A Kirkwood–Buff derived force field for sodium chloride in water
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1622372
– volume: 3
  start-page: 1996
  year: 2007
  end-page: 2004
  ident: CR9
  article-title: Fast mass transport through carbon nanotube membranes
  publication-title: Small
  doi: 10.1002/smll.200700368
– volume: 107
  start-page: 1345
  year: 2003
  end-page: 1352
  ident: CR43
  article-title: On the water–carbon interaction for use in molecular dynamics simulations of graphite and carbon nanotubes
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0268112
– volume: 29
  start-page: 1457
  year: 2013
  end-page: 1465
  ident: CR33
  article-title: What is the contact angle of water on graphene?
  publication-title: Langmuir
  doi: 10.1021/la304645w
– volume: 497
  start-page: 430
  year: 2016
  end-page: 449
  ident: CR29
  article-title: A comprehensive review of hybrid forward osmosis systems: performance, applications and future prospects
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2015.09.041
– volume: 10
  start-page: 691
  year: 2014
  end-page: 702
  ident: CR48
  article-title: Importance of force decomposition for local stress calculations in biomembrane molecularsimulations
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct4008926
– volume: 7
  start-page: 2806
  year: 2007
  end-page: 2811
  ident: CR16
  article-title: Scalable fabrication of carbon nanotube/polymer nanocomposite membranes for high flux gas transport
  publication-title: Nano Lett.
  doi: 10.1021/nl071414u
– volume: 16
  start-page: 1537
  year: 2012
  ident: 67_CR5
  publication-title: Renew. Sust. Energy Rev.
  doi: 10.1016/j.rser.2011.11.002
– volume: 22–23
  start-page: 169
  year: 2001
  ident: 67_CR27
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/S1383-5866(00)00163-5
– volume: 10
  start-page: 4067
  year: 2010
  ident: 67_CR38
  publication-title: Nano Lett.
  doi: 10.1021/nl1021046
– ident: 67_CR18
– volume: 343
  start-page: 752
  year: 2014
  ident: 67_CR21
  publication-title: Science
  doi: 10.1126/science.1245711
– volume: 369
  start-page: 130
  year: 2011
  ident: 67_CR30
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2010.11.054
– volume: 333
  start-page: 712
  year: 2011
  ident: 67_CR1
  publication-title: Science
  doi: 10.1126/science.1200488
– volume: 134
  start-page: 18631
  year: 2012
  ident: 67_CR6
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja304721r
– volume: 3
  start-page: 1996
  year: 2007
  ident: 67_CR9
  publication-title: Small
  doi: 10.1002/smll.200700368
– volume: 4
  start-page: 751
  year: 2011
  ident: 67_CR11
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c0ee00481b
– volume: 3
  start-page: 610
  year: 2004
  ident: 67_CR12
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1192
– volume: 81
  start-page: 3684
  year: 1984
  ident: 67_CR46
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.448118
– volume: 10
  start-page: 691
  year: 2014
  ident: 67_CR48
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct4008926
– volume: 131
  start-page: 12838
  year: 2009
  ident: 67_CR34
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja904708f
– volume: 335
  start-page: 442
  year: 2012
  ident: 67_CR20
  publication-title: Science
  doi: 10.1126/science.1211694
– volume: 105
  start-page: 17250
  year: 2008
  ident: 67_CR26
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0710437105
– volume: 26
  start-page: 1701
  year: 2005
  ident: 67_CR41
  publication-title: J. Comp. Chem.
  doi: 10.1002/jcc.20291
– volume: 119
  start-page: 11342
  year: 2003
  ident: 67_CR42
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1622372
– volume: 89
  start-page: 185901
  year: 2002
  ident: 67_CR36
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.89.185901
– volume: 342
  start-page: 91
  year: 2013
  ident: 67_CR22
  publication-title: Science
  doi: 10.1126/science.1236098
– volume: 10
  start-page: 2653
  year: 2014
  ident: 67_CR19
  publication-title: Small
  doi: 10.1002/smll.201303945
– volume: 23
  start-page: 327
  year: 1977
  ident: 67_CR45
  publication-title: J. Comp. Phys.
  doi: 10.1016/0021-9991(77)90098-5
– volume: 103
  start-page: 8577
  year: 1995
  ident: 67_CR47
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.470117
– ident: 67_CR37
  doi: 10.1103/PhysRevLett.91.026102
– volume: 29
  start-page: 875
  year: 2003
  ident: 67_CR39
  publication-title: Ceram. Int
  doi: 10.1016/S0272-8842(03)00030-0
– ident: 67_CR17
– volume: 405–406
  start-page: 275
  year: 2012
  ident: 67_CR40
  publication-title: J. Membr. Sci.
– volume: 145
  start-page: 199
  year: 1998
  ident: 67_CR28
  publication-title: J. Membr. Sci.
  doi: 10.1016/S0376-7388(98)00079-9
– volume: 309
  start-page: 197
  year: 2013
  ident: 67_CR4
  publication-title: Desalination
  doi: 10.1016/j.desal.2012.10.015
– volume: 113
  start-page: 7642
  year: 2009
  ident: 67_CR10
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp810102u
– ident: 67_CR23
– ident: 67_CR14
  doi: 10.1016/B978-0-08-093250-7.00038-4
– volume: 452
  start-page: 301
  year: 2008
  ident: 67_CR2
  publication-title: Nature
  doi: 10.1038/nature06599
– volume: 107
  start-page: 1345
  year: 2003
  ident: 67_CR43
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0268112
– volume: 304
  start-page: 1
  year: 2007
  ident: 67_CR15
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2007.07.021
– volume: 168
  start-page: 1064
  year: 2011
  ident: 67_CR13
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2011.01.086
– ident: 67_CR3
– volume: 18
  start-page: 805
  year: 1974
  ident: 67_CR24
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.1974.070180316
– volume: 7
  start-page: 2806
  year: 2007
  ident: 67_CR16
  publication-title: Nano Lett.
  doi: 10.1021/nl071414u
– volume: 113
  start-page: 2481
  year: 1991
  ident: 67_CR31
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00007a021
– volume: 25
  start-page: 1656
  year: 2004
  ident: 67_CR44
  publication-title: J. Comp. Chem.
  doi: 10.1002/jcc.20090
– volume: 111
  start-page: 13570
  year: 2007
  ident: 67_CR32
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp075913v
– volume: 29
  start-page: 1457
  year: 2013
  ident: 67_CR33
  publication-title: Langmuir
  doi: 10.1021/la304645w
– volume: 108
  start-page: 044315
  year: 2010
  ident: 67_CR35
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3419751
– volume: 312
  start-page: 1034
  year: 2006
  ident: 67_CR7
  publication-title: Science
  doi: 10.1126/science.1126298
– volume: 45
  start-page: 5489
  year: 2011
  ident: 67_CR25
  publication-title: Water Res
  doi: 10.1016/j.watres.2011.08.012
– volume: 497
  start-page: 430
  year: 2016
  ident: 67_CR29
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2015.09.041
– volume: 4
  start-page: 1946
  year: 2011
  ident: 67_CR8
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c0ee00541j
– reference: 29636588 - Nat Nanotechnol. 2018 Apr;13(4):273-274
SSID ssj0052924
Score 2.6069171
Snippet Freshwater flux and energy consumption are two important benchmarks for the membrane desalination process. Here, we show that nanoporous carbon composite...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 345
SubjectTerms 639/166/898
639/925/357/73
Benchmarks
Carbon
Carbon fiber reinforced plastics
Ceramic fibers
Chemical potential
Chemistry and Materials Science
Desalination
Energy consumption
Fluctuations
Flux
Latent heat
Materials Science
Membranes
Molecular dynamics
Nanotechnology
Nanotechnology and Microengineering
Smoothness
Substrates
Thermal conductivity
Title High-flux water desalination with interfacial salt sieving effect in nanoporous carbon composite membranes
URI https://link.springer.com/article/10.1038/s41565-018-0067-5
https://www.ncbi.nlm.nih.gov/pubmed/29507347
https://www.proquest.com/docview/2023717086
https://www.proquest.com/docview/2011270611
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB61cGkPqJQ-tgXkSpxaWY3t-JFTVRBbhASqEEh7sxzHkVpBFja7an9-Z_JYWqFyySHOw5qxJ9_MfJkBOAimqLJYRC5FaXmeCoFbKtM8ZaXTrg5Z6koKnZ2bk6v8dKZnQ8CtHWiVo03sDHU1jxQjJyddoeuBCPzL7R2nrlGUXR1aaDyFTSpdRpQuO1s7XFoWfVNbmzuOrpgds5rKfW7JcSHamuNksLn-97v0AGw-SJR235_pC9gagCP72mt6G56k5iU8_6uc4A78JNIGr69Xv9kvhJALVqU20A-3JHxGEVdG1SEWdaA4OcOxJWt_JAopsJ7XgeOsCc0cQfl81bIYFiXeSbRz4nYldpNu0LtG6_gKrqbHl0cnfOilwKOycslzkVxWGcSHrhSuEKFIro5apELHmAWq0WOSCS5W0tZJC1O7SulS1NHieZPUa9ho5k16C0wrbYKR-DBR5rJ0aCEzhUrWAjWrtJ1ANkrSx6HQOPW7uPZdwls53wvfo_A9Cd_rCXxc33LbV9l47OLdUT1-2HCtv18eE_iwHsatQvkPlAsKzRPWkRYBjJjAm16t67fJAoGxynHyn0Y93z_8v1N59_hU3sMz2a0wIvrswsZysUp7iGGW5X63UPHopt_2YfPw-Pz7xR9NRu7B
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoAeEO8uFDASXEAWsR079gEhBCxb-ji1Um_GcRwJ1GbLZleFP8VvZCbZbEEVvfUaJ441L3_jGc8AvAjGVVl0kUtRFjxPTqBKZZqnrLTa1iFLXUmhvX0zOcy_HOmjNfg93IWhtMrBJnaGuppGOiMnJ12h64EI_N3pD05doyi6OrTQ6MViJ_06Q5etfbv9Efn7Usrxp4MPE77sKsCjKuSc5yLZrDKIlGwprBPBJVtHLZLTMWaBqtWYZIKNlSzqpIWpbaV0KepY4HOTFM57Da7nSjnSKDv-PFh-LV3fRLfILUfXrxiiqMq-aclRojQ5y2mD4PrfffACuL0QmO32u_FtuLUEqux9L1l3YC01d2Hjr_KF9-A7JYnw-njxk50hZJ2xKrWBLvgSsxmd8DKqRjGrA53LMxybs_ZboiMM1ueR4DhrQjNFJ2C6aFkMsxK_pDR3yiVL7CSdoDeP1vg-HF4JlR_AejNt0iYwrbQJRuJkosxladEiZwqFSguUJKWLEWQDJX1cFjan_hrHvguwK-t74nskvifiez2CV6tPTvuqHpe9vDWwxy8VvPXn4jiC56thVE2KtyBdkGiesJUsEDCJETzs2br6m3QIxFWOi3898Pl88v8u5dHlS3kGNyYHe7t-d3t_5zHclJ20UZLRFqzPZ4v0BPHTvHzaCS2Dr1etJX8AkqApKg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4IN4sFDASXEAWsR0_ckAIUVYthYoDlfZmHMeRQG22bHZV-Gv8Omby2IIqeus1ThxrHvY8Ps8APAumqLJYRC5FaXmeCoEqlWmestJpV4csdSWFPu2bnYP8w0zPNuD3eBeGYJXjntht1NU8UoycnHSFrgf1BaoHWMTn7emb4x-cOkhRpnVsp9GLyF76dYLuW_t6dxt5_VzK6fsv73b40GGAR2XlkuciuawyaDW5UrhChCK5OmqRCh1jFqhyjUkmuFhJWyctTO0qpUtRR4vPTVI47yW4bJUWpGN2tnb2tCz6hro2dxzdQDtmVJV71ZLTRJA5x-mw4PrfM_GMoXsmSdudfdMbcH0wWtnbXspuwkZqbsG1v0oZ3obvBBjh9eHqJztB83XBqtQGuuxLjGcU7WVUmWJRB4rRMxxbsvZbonAG6zElOM6a0MzRIZivWhbDosQvCfJOuLLEjtIReva4M9-Bgwuh8l3YbOZNug9MK22CkTiZKHNZOtydM4UCpgVKldJ2AtlISR-HIufUa-PQd8l25XxPfI_E90R8ryfwYv3JcV_h47yXt0b2-EHZW38qmhN4uh5GNaXcC9IFiebJzpIWjScxgXs9W9d_kwUa5SrHxb8c-Xw6-X-X8uD8pTyBK6gf_uPu_t5DuCo7YSO80RZsLher9AhNqWX5uJNZBl8vWkn-AFuWLVc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-flux+water+desalination+with+interfacial+salt+sieving+effect+in+nanoporous+carbon+composite+membranes&rft.jtitle=Nature+nanotechnology&rft.au=Chen%2C+Wei&rft.au=Chen%2C+Shuyu&rft.au=Liang%2C+Tengfei&rft.au=Zhang%2C+Qiang&rft.date=2018-04-01&rft.eissn=1748-3395&rft.volume=13&rft.issue=4&rft.spage=345&rft_id=info:doi/10.1038%2Fs41565-018-0067-5&rft_id=info%3Apmid%2F29507347&rft.externalDocID=29507347
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-3387&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-3387&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-3387&client=summon