High-flux water desalination with interfacial salt sieving effect in nanoporous carbon composite membranes
Freshwater flux and energy consumption are two important benchmarks for the membrane desalination process. Here, we show that nanoporous carbon composite membranes, which comprise a layer of porous carbon fibre structures grown on a porous ceramic substrate, can exhibit 100% desalination and a fresh...
Saved in:
Published in | Nature nanotechnology Vol. 13; no. 4; pp. 345 - 350 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.04.2018
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Freshwater flux and energy consumption are two important benchmarks for the membrane desalination process. Here, we show that nanoporous carbon composite membranes, which comprise a layer of porous carbon fibre structures grown on a porous ceramic substrate, can exhibit 100% desalination and a freshwater flux that is 3–20 times higher than existing polymeric membranes. Thermal accounting experiments demonstrated that the carbon composite membrane saved over 80% of the latent heat consumption. Theoretical calculations combined with molecular dynamics simulations revealed the unique microscopic process occurring in the membrane. When the salt solution is stopped at the openings to the nanoscale porous channels and forms a meniscus, the vapour can rapidly transport across the nanoscale gap to condense on the permeate side. This process is driven by the chemical potential gradient and aided by the unique smoothness of the carbon surface. The high thermal conductivity of the carbon composite membrane ensures that most of the latent heat is recovered.
Nanoporous carbon composite membranes exhibit 100% salt rejection and high water flux due to the interfacial sieving effect and the fast transport of vapour in carbon pores, respectively. |
---|---|
AbstractList | Freshwater flux and energy consumption are two important benchmarks for the membrane desalination process. Here, we show that nanoporous carbon composite membranes, which comprise a layer of porous carbon fibre structures grown on a porous ceramic substrate, can exhibit 100% desalination and a freshwater flux that is 3-20 times higher than existing polymeric membranes. Thermal accounting experiments demonstrated that the carbon composite membrane saved over 80% of the latent heat consumption. Theoretical calculations combined with molecular dynamics simulations revealed the unique microscopic process occurring in the membrane. When the salt solution is stopped at the openings to the nanoscale porous channels and forms a meniscus, the vapour can rapidly transport across the nanoscale gap to condense on the permeate side. This process is driven by the chemical potential gradient and aided by the unique smoothness of the carbon surface. The high thermal conductivity of the carbon composite membrane ensures that most of the latent heat is recovered.Freshwater flux and energy consumption are two important benchmarks for the membrane desalination process. Here, we show that nanoporous carbon composite membranes, which comprise a layer of porous carbon fibre structures grown on a porous ceramic substrate, can exhibit 100% desalination and a freshwater flux that is 3-20 times higher than existing polymeric membranes. Thermal accounting experiments demonstrated that the carbon composite membrane saved over 80% of the latent heat consumption. Theoretical calculations combined with molecular dynamics simulations revealed the unique microscopic process occurring in the membrane. When the salt solution is stopped at the openings to the nanoscale porous channels and forms a meniscus, the vapour can rapidly transport across the nanoscale gap to condense on the permeate side. This process is driven by the chemical potential gradient and aided by the unique smoothness of the carbon surface. The high thermal conductivity of the carbon composite membrane ensures that most of the latent heat is recovered. Freshwater flux and energy consumption are two important benchmarks for the membrane desalination process. Here, we show that nanoporous carbon composite membranes, which comprise a layer of porous carbon fibre structures grown on a porous ceramic substrate, can exhibit 100% desalination and a freshwater flux that is 3-20 times higher than existing polymeric membranes. Thermal accounting experiments demonstrated that the carbon composite membrane saved over 80% of the latent heat consumption. Theoretical calculations combined with molecular dynamics simulations revealed the unique microscopic process occurring in the membrane. When the salt solution is stopped at the openings to the nanoscale porous channels and forms a meniscus, the vapour can rapidly transport across the nanoscale gap to condense on the permeate side. This process is driven by the chemical potential gradient and aided by the unique smoothness of the carbon surface. The high thermal conductivity of the carbon composite membrane ensures that most of the latent heat is recovered. Freshwater flux and energy consumption are two important benchmarks for the membrane desalination process. Here, we show that nanoporous carbon composite membranes, which comprise a layer of porous carbon fibre structures grown on a porous ceramic substrate, can exhibit 100% desalination and a freshwater flux that is 3–20 times higher than existing polymeric membranes. Thermal accounting experiments demonstrated that the carbon composite membrane saved over 80% of the latent heat consumption. Theoretical calculations combined with molecular dynamics simulations revealed the unique microscopic process occurring in the membrane. When the salt solution is stopped at the openings to the nanoscale porous channels and forms a meniscus, the vapour can rapidly transport across the nanoscale gap to condense on the permeate side. This process is driven by the chemical potential gradient and aided by the unique smoothness of the carbon surface. The high thermal conductivity of the carbon composite membrane ensures that most of the latent heat is recovered. Nanoporous carbon composite membranes exhibit 100% salt rejection and high water flux due to the interfacial sieving effect and the fast transport of vapour in carbon pores, respectively. |
Author | Chen, Wei Zhang, Xixiang Sheng, Ping Lai, Zhiping Zhang, Qiang Yin, Hang Fan, Zhongli Huang, Kuo-Wei Chen, Shuyu Liang, Tengfei |
Author_xml | – sequence: 1 givenname: Wei orcidid: 0000-0003-3122-2952 surname: Chen fullname: Chen, Wei organization: Division of Physical Science and Engineering, King Abdullah University of Science and Technology, CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences – sequence: 2 givenname: Shuyu surname: Chen fullname: Chen, Shuyu organization: Department of Physics, Hong Kong University of Science and Technology – sequence: 3 givenname: Tengfei surname: Liang fullname: Liang, Tengfei organization: Department of Physics, Hong Kong University of Science and Technology, School of Astronautics, Northwestern Polytechnical University – sequence: 4 givenname: Qiang surname: Zhang fullname: Zhang, Qiang organization: Division of Physical Science and Engineering, King Abdullah University of Science and Technology – sequence: 5 givenname: Zhongli surname: Fan fullname: Fan, Zhongli organization: Division of Physical Science and Engineering, King Abdullah University of Science and Technology – sequence: 6 givenname: Hang surname: Yin fullname: Yin, Hang organization: Division of Physical Science and Engineering, King Abdullah University of Science and Technology – sequence: 7 givenname: Kuo-Wei surname: Huang fullname: Huang, Kuo-Wei organization: Division of Physical Science and Engineering, King Abdullah University of Science and Technology – sequence: 8 givenname: Xixiang orcidid: 0000-0002-3478-6414 surname: Zhang fullname: Zhang, Xixiang organization: Division of Physical Science and Engineering, King Abdullah University of Science and Technology – sequence: 9 givenname: Zhiping orcidid: 0000-0001-9555-6009 surname: Lai fullname: Lai, Zhiping email: zhiping.lai@kaust.edu.sa organization: Division of Physical Science and Engineering, King Abdullah University of Science and Technology – sequence: 10 givenname: Ping surname: Sheng fullname: Sheng, Ping email: sheng@ust.hk organization: Department of Physics, Hong Kong University of Science and Technology, Institute for Advanced Study, Hong Kong University of Science and Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29507347$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtv1TAQhS1URF_8ADbIEptuAp4kfmSJKqBIlbpp15bjjG99ldgX26Hl3-P2tiBVgtWMZr4zOppzTA5CDEjIO2AfgXXqU-6BC94wUA1jQjb8FTkC2aum6wZ-8KdX8pAc57xljLdD278hh-3Amex6eUS2F35z27h5vad3pmCiE2Yz-2CKj4He-XJLfahzZ6w3M627QrPHnz5sKDqHttQ9DSbEXUxxzdSaNFaljcsuZl-QLriMyQTMp-S1M3PGt0_1hNx8_XJ9ftFcXn37fv75srGdbEvTAyo2CaaYGkENYAZUznLAgVvLDOulEiiMslMrHXIQTk0dH8FZWecCuxNytr-7S_HHirnoxWeL81xNVIe6ZQCtZAKgoh9eoNu4plDdVartJEimRKXeP1HruOCkd8kvJv3Sz1-sgNwDNsWcEzptfXn8YEnGzxqYfshL7_PSNS_9kJfmVQkvlM_H_6dp95pc2bDB9Nf0v0W_AU0hp_A |
CitedBy_id | crossref_primary_10_1016_j_jchromb_2019_04_030 crossref_primary_10_1016_j_matt_2020_09_024 crossref_primary_10_1016_j_carbon_2020_01_112 crossref_primary_10_1021_acs_est_1c08842 crossref_primary_10_1021_acsestengg_3c00010 crossref_primary_10_1021_acsomega_9b00188 crossref_primary_10_1016_j_polymer_2019_05_021 crossref_primary_10_1016_j_memsci_2023_121554 crossref_primary_10_1002_aenm_202400368 crossref_primary_10_1016_j_eng_2021_02_003 crossref_primary_10_1016_j_jwpe_2021_102528 crossref_primary_10_1016_j_memsci_2022_120592 crossref_primary_10_1016_j_desal_2024_117927 crossref_primary_10_1021_acsnano_8b03994 crossref_primary_10_1111_jace_18487 crossref_primary_10_1007_s42235_021_0005_3 crossref_primary_10_1021_acs_iecr_8b05212 crossref_primary_10_1038_s44221_023_00127_z crossref_primary_10_3390_w13101369 crossref_primary_10_1016_j_memsci_2020_118934 crossref_primary_10_1002_cjoc_202100831 crossref_primary_10_1016_j_solmat_2020_110913 crossref_primary_10_1002_adma_202001383 crossref_primary_10_1016_j_memsci_2020_118552 crossref_primary_10_1002_solr_202100427 crossref_primary_10_1021_acsapm_0c01230 crossref_primary_10_1002_anie_202005931 crossref_primary_10_1021_acsami_1c19605 crossref_primary_10_1021_acs_est_2c01858 crossref_primary_10_1016_j_matpr_2021_01_331 crossref_primary_10_1007_s10973_020_09494_1 crossref_primary_10_1016_j_cis_2022_102809 crossref_primary_10_1016_j_memsci_2018_10_002 crossref_primary_10_1016_j_seppur_2018_07_043 crossref_primary_10_3390_polym16243531 crossref_primary_10_1016_j_memsci_2019_117611 crossref_primary_10_1002_gch2_201800085 crossref_primary_10_1002_adma_202109718 crossref_primary_10_1016_j_mtnano_2021_100136 crossref_primary_10_1016_j_cclet_2019_09_030 crossref_primary_10_1007_s11708_022_0842_8 crossref_primary_10_1016_j_seppur_2021_119494 crossref_primary_10_1038_s41467_025_56358_z crossref_primary_10_1016_j_desal_2023_117270 crossref_primary_10_1039_C9TA05909A crossref_primary_10_1126_sciadv_aau3546 crossref_primary_10_1002_adsu_202100500 crossref_primary_10_1038_s41467_024_47916_y crossref_primary_10_1021_acs_jpclett_1c01620 crossref_primary_10_1016_j_cej_2024_153316 crossref_primary_10_1016_j_molliq_2020_114174 crossref_primary_10_1016_j_seppur_2023_123431 crossref_primary_10_1021_acsnano_1c00987 crossref_primary_10_1038_s41467_020_15038_w crossref_primary_10_1038_s41467_023_42204_7 crossref_primary_10_1039_D1TA00647A crossref_primary_10_1016_j_molliq_2022_118575 crossref_primary_10_1016_j_memsci_2019_04_006 crossref_primary_10_1039_C8TA04813D crossref_primary_10_1016_j_cej_2019_05_058 crossref_primary_10_1002_adma_201903954 crossref_primary_10_1021_acsnano_4c15010 crossref_primary_10_1016_j_jece_2024_114881 crossref_primary_10_1016_j_memsci_2022_121126 crossref_primary_10_1021_jacs_8b08788 crossref_primary_10_1021_acsnano_8b04187 crossref_primary_10_1021_acs_iecr_8b06081 crossref_primary_10_3390_nano12183206 crossref_primary_10_1557_mrs_2018_325 crossref_primary_10_1021_acs_est_3c08452 crossref_primary_10_1002_adma_202312765 crossref_primary_10_1002_ange_202005931 crossref_primary_10_1016_j_rineng_2024_102760 crossref_primary_10_1039_D0TA05790H crossref_primary_10_1038_s41467_020_16577_y crossref_primary_10_4028_p_wrtD3s crossref_primary_10_1016_j_memsci_2021_119437 crossref_primary_10_1021_acs_jpclett_9b03821 crossref_primary_10_1021_acsnano_9b01730 crossref_primary_10_1002_adts_201900016 crossref_primary_10_1002_idm2_12057 crossref_primary_10_1016_j_memsci_2020_118224 crossref_primary_10_1016_j_psep_2023_01_053 crossref_primary_10_3390_nano13202770 crossref_primary_10_1126_sciadv_adg6638 crossref_primary_10_1016_j_jeurceramsoc_2022_10_025 crossref_primary_10_1002_adfm_202300353 crossref_primary_10_1016_j_apmate_2023_100153 crossref_primary_10_1016_j_apsusc_2020_146308 crossref_primary_10_1039_D1EN01018B crossref_primary_10_1038_s41563_021_01052_w crossref_primary_10_1007_s11270_022_05611_y crossref_primary_10_1016_j_desal_2018_10_010 crossref_primary_10_1016_j_advmem_2022_100026 crossref_primary_10_1007_s11431_022_2332_3 crossref_primary_10_1016_j_memsci_2021_119682 crossref_primary_10_1021_acs_est_2c07765 crossref_primary_10_1063_5_0015975 crossref_primary_10_1038_s41598_022_17876_8 crossref_primary_10_1016_j_physrep_2022_11_001 crossref_primary_10_3390_en14196077 crossref_primary_10_1021_acsestengg_4c00144 crossref_primary_10_1038_s41893_018_0186_x crossref_primary_10_1007_s40242_022_1474_6 crossref_primary_10_1063_5_0028077 crossref_primary_10_1016_j_molliq_2021_115382 crossref_primary_10_1021_acsnano_0c04471 crossref_primary_10_1038_s41565_018_0118_y crossref_primary_10_1016_j_carbon_2021_01_140 crossref_primary_10_1038_s44221_023_00123_3 crossref_primary_10_1039_C9EW01124B crossref_primary_10_1126_sciadv_ade0413 crossref_primary_10_1016_j_desal_2022_115712 crossref_primary_10_1021_acsnano_3c03028 crossref_primary_10_1007_s10853_021_06420_0 crossref_primary_10_1016_j_colsurfa_2024_133348 crossref_primary_10_1016_j_solmat_2019_110111 crossref_primary_10_3390_chemengineering4040059 crossref_primary_10_1016_j_memsci_2021_119973 crossref_primary_10_1021_acs_langmuir_9b01179 crossref_primary_10_1063_1_5110197 crossref_primary_10_1007_s12274_023_5546_9 crossref_primary_10_1039_C9RA07109A crossref_primary_10_1016_j_molliq_2023_122920 crossref_primary_10_1016_j_memsci_2023_121737 crossref_primary_10_1039_D0CS00552E crossref_primary_10_1021_acs_estlett_3c00391 crossref_primary_10_1126_sciadv_aau8634 crossref_primary_10_1039_D0CS01347A crossref_primary_10_1016_j_memsci_2019_117185 crossref_primary_10_1080_08927022_2022_2074480 crossref_primary_10_1016_j_apsusc_2021_150022 crossref_primary_10_1016_j_carbon_2021_04_077 crossref_primary_10_1016_j_mtener_2019_100375 crossref_primary_10_1002_advs_202308187 crossref_primary_10_1016_S1872_5805_21_60066_5 crossref_primary_10_1021_acs_chemrev_1c00976 crossref_primary_10_1063_5_0161169 crossref_primary_10_1038_s41893_022_00870_3 crossref_primary_10_1016_j_jcis_2018_11_106 crossref_primary_10_1016_j_jpowsour_2021_229814 crossref_primary_10_3390_w11040696 crossref_primary_10_1002_chem_202302460 crossref_primary_10_1038_s41545_022_00209_7 crossref_primary_10_1016_j_watres_2023_120510 crossref_primary_10_1039_D3NR00777D crossref_primary_10_1016_j_cej_2021_130156 crossref_primary_10_1080_09593330_2019_1668862 crossref_primary_10_1016_j_joule_2020_07_001 crossref_primary_10_1016_j_joule_2019_12_010 crossref_primary_10_1016_j_memsci_2023_122314 crossref_primary_10_1016_j_memsci_2024_122455 crossref_primary_10_1021_jacs_3c10051 crossref_primary_10_1016_j_jiec_2019_12_007 crossref_primary_10_1002_smll_202406550 crossref_primary_10_1016_j_desal_2023_116889 crossref_primary_10_1016_j_physrep_2024_09_001 crossref_primary_10_1016_j_desal_2022_116106 crossref_primary_10_1063_5_0072800 crossref_primary_10_1002_app_56869 |
Cites_doi | 10.1016/j.memsci.2007.07.021 10.1038/nmat1192 10.1002/jcc.20090 10.1021/nl1021046 10.1063/1.470117 10.1016/j.rser.2011.11.002 10.1016/j.desal.2012.10.015 10.1126/science.1236098 10.1002/app.1974.070180316 10.1021/ja904708f 10.1016/0021-9991(77)90098-5 10.1016/j.memsci.2010.11.054 10.1021/ja304721r 10.1126/science.1245711 10.1038/nature06599 10.1126/science.1211694 10.1016/j.watres.2011.08.012 10.1039/c0ee00481b 10.1016/j.cej.2011.01.086 10.1126/science.1200488 10.1021/jp075913v 10.1063/1.3419751 10.1039/c0ee00541j 10.1021/jp810102u 10.1016/S0376-7388(98)00079-9 10.1002/smll.201303945 10.1103/PhysRevLett.89.185901 10.1063/1.448118 10.1073/pnas.0710437105 10.1016/S1383-5866(00)00163-5 10.1016/S0272-8842(03)00030-0 10.1002/jcc.20291 10.1126/science.1126298 10.1021/ja00007a021 10.1063/1.1622372 10.1002/smll.200700368 10.1021/jp0268112 10.1021/la304645w 10.1016/j.memsci.2015.09.041 10.1021/ct4008926 10.1021/nl071414u 10.1103/PhysRevLett.91.026102 10.1016/B978-0-08-093250-7.00038-4 |
ContentType | Journal Article |
Copyright | The Author(s) 2018 Copyright Nature Publishing Group Apr 2018 |
Copyright_xml | – notice: The Author(s) 2018 – notice: Copyright Nature Publishing Group Apr 2018 |
DBID | AAYXX CITATION NPM 3V. 7QO 7U5 7X7 7XB 88E 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO F28 FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB. L6V L7M LK8 M0S M1P M7P M7S P5Z P62 P64 PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 |
DOI | 10.1038/s41565-018-0067-5 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Biological Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Materials Science Database Advanced Technologies Database with Aerospace ProQuest Materials Science Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed ProQuest Central Student |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1748-3395 |
EndPage | 350 |
ExternalDocumentID | 29507347 10_1038_s41565_018_0067_5 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -~X 0R~ 123 29M 39C 3V. 4.4 53G 5BI 5M7 5S5 6OB 70F 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJCF ABJNI ABLJU ABUWG ACBWK ACGFS ACIWK ACPRK ACUHS ADBBV AENEX AEUYN AFANA AFBBN AFKRA AFLOW AFRAH AFSHS AFWHJ AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARAPS ARMCB ASPBG AVWKF AXYYD AZFZN BBNVY BENPR BGLVJ BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 D1I DB5 DU5 EBS EE. EJD EMOBN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA HCIFZ HMCUK HVGLF HZ~ I-F KB. L6V LK8 M1P M7P M7S MM. NNMJJ O9- ODYON P2P P62 PDBOC PQQKQ PROAC PSQYO PTHSS Q2X RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP ~8M AAYXX ACSTC ALPWD ATHPR CITATION PHGZM PHGZT ABFSG AEZWR AFHIU AHWEU AIXLP NFIDA NPM PJZUB PPXIY PQGLB 7QO 7U5 7XB 8FD 8FK AZQEC DWQXO F28 FR3 GNUQQ K9. L7M P64 PKEHL PQEST PQUKI PRINS 7X8 |
ID | FETCH-LOGICAL-c372t-41e80d60808b1891a9e8fc51e95cc0a04786e6a8cd27fe516f8d35b1fc76e66e3 |
IEDL.DBID | 7X7 |
ISSN | 1748-3387 1748-3395 |
IngestDate | Thu Jul 10 19:02:11 EDT 2025 Fri Jul 25 08:52:52 EDT 2025 Mon Jul 21 05:58:23 EDT 2025 Thu Apr 24 22:50:47 EDT 2025 Tue Jul 01 01:56:28 EDT 2025 Fri Feb 21 02:40:32 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-41e80d60808b1891a9e8fc51e95cc0a04786e6a8cd27fe516f8d35b1fc76e66e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3122-2952 0000-0002-3478-6414 0000-0001-9555-6009 |
PMID | 29507347 |
PQID | 2023717086 |
PQPubID | 546299 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2011270611 proquest_journals_2023717086 pubmed_primary_29507347 crossref_citationtrail_10_1038_s41565_018_0067_5 crossref_primary_10_1038_s41565_018_0067_5 springer_journals_10_1038_s41565_018_0067_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-04-01 |
PublicationDateYYYYMMDD | 2018-04-01 |
PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature nanotechnology |
PublicationTitleAbbrev | Nature Nanotech |
PublicationTitleAlternate | Nat Nanotechnol |
PublicationYear | 2018 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Joshi (CR21) 2014; 343 Ghaffour, Missimer, Amy (CR4) 2013; 309 Wang, Lai (CR40) 2012; 405–406 CR18 Peeters, Boom, Mulder, Srathmann (CR28) 1998; 145 CR17 CR37 Srivastava, Srivastava, Talapatra, Vajtai, Ajayan (CR12) 2004; 3 CR14 Kim, Jinschek, Chen, Sholl, Marand (CR16) 2007; 7 Verweij, Schillo, Li (CR9) 2007; 3 Van Der Spoel (CR41) 2005; 26 Wang, Teoh, Chung (CR25) 2011; 45 Skoulidas, Ackerman, Johnson, Sholl (CR36) 2002; 89 El-Ghonemy (CR5) 2012; 16 Shannon (CR2) 2008; 452 Holt (CR7) 2006; 312 Tofighy, Shirazi, Mohammadi, Park (CR13) 2011; 168 Geise, Park, Sagle, Freeman, Mcgrath (CR30) 2011; 369 Berendsen, Postma, van Gunsteren, DiNola, Haak (CR46) 1984; 81 Yasuda, Tsai (CR24) 1974; 18 Chekli (CR29) 2016; 497 Liu, Li, Hughes (CR39) 2003; 29 Corry (CR11) 2011; 4 Mi, Lin, Li (CR15) 2007; 304 Schaep, Vandecasteele, Mohammad, Bowen (CR27) 2001; 22–23 Ryckaert, Ciccotti, Berendsen (CR45) 1977; 23 Falk, Sedlmeier, Joly, Netz, Bocquet (CR38) 2010; 10 CR3 Mancinelli, Botti, Bruni, Ricci, Soper (CR32) 2007; 111 Nair, Wu, Jayaram, Grigorieva, Geim (CR20) 2012; 335 Fornasiero (CR26) 2008; 105 Taherian, Marcon, van der Vegt, Leroy (CR33) 2013; 29 Kumar, Habel, Shen, Meier, Walz (CR6) 2012; 134 CR23 Theresa, Pendergast, Hoek (CR8) 2011; 4 Essmann (CR47) 1995; 103 Kimmel (CR34) 2009; 131 Lee, Kim, Cho, Park (CR19) 2014; 10 Kim (CR22) 2013; 342 Werder, Walther, Jaffe, Halicioglu, Koumoutsakos (CR43) 2003; 107 Oostenbrink, Villa, Mark, van Gunsteren (CR44) 2004; 25 Weerasinghe, Smith (CR42) 2003; 119 Elimelech, Phillip (CR1) 2011; 333 Song, Corry (CR10) 2009; 113 Dang, Rice, Caldwell, Kollman (CR31) 1991; 113 Lee, Karnik (CR35) 2010; 108 Vanegas, Torres-Sánchez, Arroyo (CR48) 2014; 10 K Falk (67_CR38) 2010; 10 T Werder (67_CR43) 2003; 107 M Kumar (67_CR6) 2012; 134 HW Kim (67_CR22) 2013; 342 AMK El-Ghonemy (67_CR5) 2012; 16 JK Holt (67_CR7) 2006; 312 M Theresa (67_CR8) 2011; 4 J Lee (67_CR35) 2010; 108 S Weerasinghe (67_CR42) 2003; 119 JP Ryckaert (67_CR45) 1977; 23 67_CR18 RK Joshi (67_CR21) 2014; 343 67_CR37 C Song (67_CR10) 2009; 113 67_CR14 MA Tofighy (67_CR13) 2011; 168 67_CR17 H Verweij (67_CR9) 2007; 3 P Wang (67_CR25) 2011; 45 M Elimelech (67_CR1) 2011; 333 H Yasuda (67_CR24) 1974; 18 AI Skoulidas (67_CR36) 2002; 89 RR Nair (67_CR20) 2012; 335 U Essmann (67_CR47) 1995; 103 WL Mi (67_CR15) 2007; 304 N Ghaffour (67_CR4) 2013; 309 HD Lee (67_CR19) 2014; 10 GA Kimmel (67_CR34) 2009; 131 67_CR23 B Wang (67_CR40) 2012; 405–406 LX Dang (67_CR31) 1991; 113 F Fornasiero (67_CR26) 2008; 105 GM Geise (67_CR30) 2011; 369 R Mancinelli (67_CR32) 2007; 111 JM Vanegas (67_CR48) 2014; 10 JMM Peeters (67_CR28) 1998; 145 L Chekli (67_CR29) 2016; 497 C Oostenbrink (67_CR44) 2004; 25 A Srivastava (67_CR12) 2004; 3 B Corry (67_CR11) 2011; 4 SM Liu (67_CR39) 2003; 29 S Kim (67_CR16) 2007; 7 MA Shannon (67_CR2) 2008; 452 F Taherian (67_CR33) 2013; 29 J Schaep (67_CR27) 2001; 22–23 67_CR3 HJ Berendsen (67_CR46) 1984; 81 D Spoel Van Der (67_CR41) 2005; 26 29636588 - Nat Nanotechnol. 2018 Apr;13(4):273-274 |
References_xml | – ident: CR18 – volume: 304 start-page: 1 year: 2007 end-page: 7 ident: CR15 article-title: Vertically aligned carbon nanotube membranes on macroporous alumina supports publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2007.07.021 – volume: 3 start-page: 610 year: 2004 end-page: 614 ident: CR12 article-title: Carbon nanotube filters publication-title: Nat. Mater. doi: 10.1038/nmat1192 – volume: 25 start-page: 1656 year: 2004 end-page: 1676 ident: CR44 article-title: A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force‐field parameter sets 53A5 and 53A6 publication-title: J. Comp. Chem. doi: 10.1002/jcc.20090 – volume: 10 start-page: 4067 year: 2010 end-page: 4073 ident: CR38 article-title: Molecular origin of fast water transport in carbon nanotube membranes: superlubricity versus curvature dependent friction publication-title: Nano Lett. doi: 10.1021/nl1021046 – ident: CR14 – ident: CR37 – volume: 103 start-page: 8577 year: 1995 end-page: 8593 ident: CR47 article-title: A smooth particle mesh Ewald method publication-title: J. Chem. Phys. doi: 10.1063/1.470117 – volume: 16 start-page: 1537 year: 2012 end-page: 1556 ident: CR5 article-title: Water desalination systems powered by renewable energy sources: Review publication-title: Renew. Sust. Energy Rev. doi: 10.1016/j.rser.2011.11.002 – volume: 309 start-page: 197 year: 2013 end-page: 207 ident: CR4 article-title: Technical review and evaluation of the economics of water desalination: Current and future challenges for better water supply sustainability publication-title: Desalination doi: 10.1016/j.desal.2012.10.015 – volume: 342 start-page: 91 year: 2013 end-page: 95 ident: CR22 article-title: Selective gas transport through few-layered graphene and graphene oxide membranes publication-title: Science doi: 10.1126/science.1236098 – volume: 18 start-page: 805 year: 1974 end-page: 819 ident: CR24 article-title: Pore size of microporous polymer membranes publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.1974.070180316 – volume: 131 start-page: 12838 year: 2009 end-page: 12844 ident: CR34 article-title: No confinement needed: observation of a metastable hydrophobic wetting two-layer ice on graphene publication-title: J. Am. Chem. Soc. doi: 10.1021/ja904708f – volume: 23 start-page: 327 year: 1977 end-page: 341 ident: CR45 article-title: Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes publication-title: J. Comp. Phys. doi: 10.1016/0021-9991(77)90098-5 – volume: 369 start-page: 130 year: 2011 end-page: 138 ident: CR30 article-title: Water permeability and water/salt selectivity tradeoff in polymers for desalination publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2010.11.054 – volume: 134 start-page: 18631 year: 2012 end-page: 18637 ident: CR6 article-title: High-density reconstitution of functional water channels into vesicular and planar block copolymer membranes publication-title: J. Am. Chem. Soc. doi: 10.1021/ja304721r – volume: 343 start-page: 752 year: 2014 end-page: 754 ident: CR21 article-title: Precise and ultrafast molecular sieving through graphene oxide membranes publication-title: Science doi: 10.1126/science.1245711 – ident: CR23 – volume: 452 start-page: 301 year: 2008 end-page: 309 ident: CR2 article-title: Science and technology for water purification in the coming decades publication-title: Nature doi: 10.1038/nature06599 – volume: 335 start-page: 442 year: 2012 end-page: 444 ident: CR20 article-title: Unimpeded permeation of water through helium-leak-tight graphene-based membranes publication-title: Science doi: 10.1126/science.1211694 – volume: 45 start-page: 5489 year: 2011 end-page: 5500 ident: CR25 article-title: Morphological architecture of dual-layer hollow fiber for membrane distillation with higher desalination performance publication-title: Water Res doi: 10.1016/j.watres.2011.08.012 – volume: 4 start-page: 751 year: 2011 end-page: 759 ident: CR11 article-title: Water and ion transport through functionalised carbon nanotubes: implications for desalination technology publication-title: Energy Environ. Sci. doi: 10.1039/c0ee00481b – volume: 168 start-page: 1064 year: 2011 end-page: 1072 ident: CR13 article-title: Salty water desalination using carbon nanotubes membrane publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2011.01.086 – volume: 333 start-page: 712 year: 2011 end-page: 717 ident: CR1 article-title: The future of seawater desalination: energy, technology and the environment publication-title: Science doi: 10.1126/science.1200488 – volume: 111 start-page: 13570 year: 2007 end-page: 13577 ident: CR32 article-title: Hydration of sodium, potassium, and chloride ions in solution and the concept of structure maker/breaker publication-title: J. Phys. Chem. B doi: 10.1021/jp075913v – volume: 108 start-page: 044315 year: 2010 ident: CR35 article-title: Desalination of water by vapor-phase transport through hydrophobic nanopores publication-title: J. Appl. Phys. doi: 10.1063/1.3419751 – volume: 4 start-page: 1946 year: 2011 end-page: 1971 ident: CR8 article-title: A review of water treatment membrane nanotechnologies publication-title: Energy Environ. Sci. doi: 10.1039/c0ee00541j – volume: 113 start-page: 7642 year: 2009 end-page: 7649 ident: CR10 article-title: Intrinsic ion selectivity of narrow hydrophobic pores publication-title: J. Phys. Chem. B doi: 10.1021/jp810102u – ident: CR3 – volume: 145 start-page: 199 year: 1998 end-page: 209 ident: CR28 article-title: Retention measurements of nanofiltration membranes with electrolyte solutions publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(98)00079-9 – volume: 10 start-page: 2653 year: 2014 end-page: 2660 ident: CR19 article-title: Experimental evidence of rapid water transport through carbon nanotubes embedded in polymeric desalination membranes publication-title: Small doi: 10.1002/smll.201303945 – volume: 89 start-page: 185901 year: 2002 ident: CR36 article-title: Rapid transport of gases in carbon nanotubes publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.89.185901 – volume: 81 start-page: 3684 year: 1984 end-page: 3690 ident: CR46 article-title: Molecular dynamics with coupling to an external bath publication-title: J. Chem. Phys. doi: 10.1063/1.448118 – ident: CR17 – volume: 105 start-page: 17250 year: 2008 end-page: 17255 ident: CR26 article-title: Ion exclusion by sub-2-nm carbon nanotube pores publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0710437105 – volume: 22–23 start-page: 169 year: 2001 end-page: 179 ident: CR27 article-title: Modelling the retention of ionic components for different nanofiltration membranes publication-title: Sep. Purif. Technol. doi: 10.1016/S1383-5866(00)00163-5 – volume: 29 start-page: 875 year: 2003 end-page: 881 ident: CR39 article-title: Preparation of porous aluminium oxide (Al O ) hollow fibre membranes by a combined phase-inversion and sintering method publication-title: Ceram. Int doi: 10.1016/S0272-8842(03)00030-0 – volume: 26 start-page: 1701 year: 2005 end-page: 1718 ident: CR41 article-title: GROMACS: fast, flexible, and free publication-title: J. Comp. Chem. doi: 10.1002/jcc.20291 – volume: 405–406 start-page: 275 year: 2012 end-page: 283 ident: CR40 article-title: Finger-like voids induced by viscous fingering during phase-inversion of alumina/PES/NMP suspensions publication-title: J. Membr. Sci. – volume: 312 start-page: 1034 year: 2006 end-page: 1037 ident: CR7 article-title: Fast mass transport through sub-2-nanometer carbon nanotubes publication-title: Science doi: 10.1126/science.1126298 – volume: 113 start-page: 2481 year: 1991 end-page: 2486 ident: CR31 article-title: Ion solvation in polarizable water: molecular dynamics simulations publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00007a021 – volume: 119 start-page: 11342 year: 2003 end-page: 11349 ident: CR42 article-title: A Kirkwood–Buff derived force field for sodium chloride in water publication-title: J. Chem. Phys. doi: 10.1063/1.1622372 – volume: 3 start-page: 1996 year: 2007 end-page: 2004 ident: CR9 article-title: Fast mass transport through carbon nanotube membranes publication-title: Small doi: 10.1002/smll.200700368 – volume: 107 start-page: 1345 year: 2003 end-page: 1352 ident: CR43 article-title: On the water–carbon interaction for use in molecular dynamics simulations of graphite and carbon nanotubes publication-title: J. Phys. Chem. B doi: 10.1021/jp0268112 – volume: 29 start-page: 1457 year: 2013 end-page: 1465 ident: CR33 article-title: What is the contact angle of water on graphene? publication-title: Langmuir doi: 10.1021/la304645w – volume: 497 start-page: 430 year: 2016 end-page: 449 ident: CR29 article-title: A comprehensive review of hybrid forward osmosis systems: performance, applications and future prospects publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2015.09.041 – volume: 10 start-page: 691 year: 2014 end-page: 702 ident: CR48 article-title: Importance of force decomposition for local stress calculations in biomembrane molecularsimulations publication-title: J. Chem. Theory Comput. doi: 10.1021/ct4008926 – volume: 7 start-page: 2806 year: 2007 end-page: 2811 ident: CR16 article-title: Scalable fabrication of carbon nanotube/polymer nanocomposite membranes for high flux gas transport publication-title: Nano Lett. doi: 10.1021/nl071414u – volume: 16 start-page: 1537 year: 2012 ident: 67_CR5 publication-title: Renew. Sust. Energy Rev. doi: 10.1016/j.rser.2011.11.002 – volume: 22–23 start-page: 169 year: 2001 ident: 67_CR27 publication-title: Sep. Purif. Technol. doi: 10.1016/S1383-5866(00)00163-5 – volume: 10 start-page: 4067 year: 2010 ident: 67_CR38 publication-title: Nano Lett. doi: 10.1021/nl1021046 – ident: 67_CR18 – volume: 343 start-page: 752 year: 2014 ident: 67_CR21 publication-title: Science doi: 10.1126/science.1245711 – volume: 369 start-page: 130 year: 2011 ident: 67_CR30 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2010.11.054 – volume: 333 start-page: 712 year: 2011 ident: 67_CR1 publication-title: Science doi: 10.1126/science.1200488 – volume: 134 start-page: 18631 year: 2012 ident: 67_CR6 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja304721r – volume: 3 start-page: 1996 year: 2007 ident: 67_CR9 publication-title: Small doi: 10.1002/smll.200700368 – volume: 4 start-page: 751 year: 2011 ident: 67_CR11 publication-title: Energy Environ. Sci. doi: 10.1039/c0ee00481b – volume: 3 start-page: 610 year: 2004 ident: 67_CR12 publication-title: Nat. Mater. doi: 10.1038/nmat1192 – volume: 81 start-page: 3684 year: 1984 ident: 67_CR46 publication-title: J. Chem. Phys. doi: 10.1063/1.448118 – volume: 10 start-page: 691 year: 2014 ident: 67_CR48 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct4008926 – volume: 131 start-page: 12838 year: 2009 ident: 67_CR34 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja904708f – volume: 335 start-page: 442 year: 2012 ident: 67_CR20 publication-title: Science doi: 10.1126/science.1211694 – volume: 105 start-page: 17250 year: 2008 ident: 67_CR26 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0710437105 – volume: 26 start-page: 1701 year: 2005 ident: 67_CR41 publication-title: J. Comp. Chem. doi: 10.1002/jcc.20291 – volume: 119 start-page: 11342 year: 2003 ident: 67_CR42 publication-title: J. Chem. Phys. doi: 10.1063/1.1622372 – volume: 89 start-page: 185901 year: 2002 ident: 67_CR36 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.89.185901 – volume: 342 start-page: 91 year: 2013 ident: 67_CR22 publication-title: Science doi: 10.1126/science.1236098 – volume: 10 start-page: 2653 year: 2014 ident: 67_CR19 publication-title: Small doi: 10.1002/smll.201303945 – volume: 23 start-page: 327 year: 1977 ident: 67_CR45 publication-title: J. Comp. Phys. doi: 10.1016/0021-9991(77)90098-5 – volume: 103 start-page: 8577 year: 1995 ident: 67_CR47 publication-title: J. Chem. Phys. doi: 10.1063/1.470117 – ident: 67_CR37 doi: 10.1103/PhysRevLett.91.026102 – volume: 29 start-page: 875 year: 2003 ident: 67_CR39 publication-title: Ceram. Int doi: 10.1016/S0272-8842(03)00030-0 – ident: 67_CR17 – volume: 405–406 start-page: 275 year: 2012 ident: 67_CR40 publication-title: J. Membr. Sci. – volume: 145 start-page: 199 year: 1998 ident: 67_CR28 publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(98)00079-9 – volume: 309 start-page: 197 year: 2013 ident: 67_CR4 publication-title: Desalination doi: 10.1016/j.desal.2012.10.015 – volume: 113 start-page: 7642 year: 2009 ident: 67_CR10 publication-title: J. Phys. Chem. B doi: 10.1021/jp810102u – ident: 67_CR23 – ident: 67_CR14 doi: 10.1016/B978-0-08-093250-7.00038-4 – volume: 452 start-page: 301 year: 2008 ident: 67_CR2 publication-title: Nature doi: 10.1038/nature06599 – volume: 107 start-page: 1345 year: 2003 ident: 67_CR43 publication-title: J. Phys. Chem. B doi: 10.1021/jp0268112 – volume: 304 start-page: 1 year: 2007 ident: 67_CR15 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2007.07.021 – volume: 168 start-page: 1064 year: 2011 ident: 67_CR13 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2011.01.086 – ident: 67_CR3 – volume: 18 start-page: 805 year: 1974 ident: 67_CR24 publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.1974.070180316 – volume: 7 start-page: 2806 year: 2007 ident: 67_CR16 publication-title: Nano Lett. doi: 10.1021/nl071414u – volume: 113 start-page: 2481 year: 1991 ident: 67_CR31 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00007a021 – volume: 25 start-page: 1656 year: 2004 ident: 67_CR44 publication-title: J. Comp. Chem. doi: 10.1002/jcc.20090 – volume: 111 start-page: 13570 year: 2007 ident: 67_CR32 publication-title: J. Phys. Chem. B doi: 10.1021/jp075913v – volume: 29 start-page: 1457 year: 2013 ident: 67_CR33 publication-title: Langmuir doi: 10.1021/la304645w – volume: 108 start-page: 044315 year: 2010 ident: 67_CR35 publication-title: J. Appl. Phys. doi: 10.1063/1.3419751 – volume: 312 start-page: 1034 year: 2006 ident: 67_CR7 publication-title: Science doi: 10.1126/science.1126298 – volume: 45 start-page: 5489 year: 2011 ident: 67_CR25 publication-title: Water Res doi: 10.1016/j.watres.2011.08.012 – volume: 497 start-page: 430 year: 2016 ident: 67_CR29 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2015.09.041 – volume: 4 start-page: 1946 year: 2011 ident: 67_CR8 publication-title: Energy Environ. Sci. doi: 10.1039/c0ee00541j – reference: 29636588 - Nat Nanotechnol. 2018 Apr;13(4):273-274 |
SSID | ssj0052924 |
Score | 2.6069171 |
Snippet | Freshwater flux and energy consumption are two important benchmarks for the membrane desalination process. Here, we show that nanoporous carbon composite... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 345 |
SubjectTerms | 639/166/898 639/925/357/73 Benchmarks Carbon Carbon fiber reinforced plastics Ceramic fibers Chemical potential Chemistry and Materials Science Desalination Energy consumption Fluctuations Flux Latent heat Materials Science Membranes Molecular dynamics Nanotechnology Nanotechnology and Microengineering Smoothness Substrates Thermal conductivity |
Title | High-flux water desalination with interfacial salt sieving effect in nanoporous carbon composite membranes |
URI | https://link.springer.com/article/10.1038/s41565-018-0067-5 https://www.ncbi.nlm.nih.gov/pubmed/29507347 https://www.proquest.com/docview/2023717086 https://www.proquest.com/docview/2011270611 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB61cGkPqJQ-tgXkSpxaWY3t-JFTVRBbhASqEEh7sxzHkVpBFja7an9-Z_JYWqFyySHOw5qxJ9_MfJkBOAimqLJYRC5FaXmeCoFbKtM8ZaXTrg5Z6koKnZ2bk6v8dKZnQ8CtHWiVo03sDHU1jxQjJyddoeuBCPzL7R2nrlGUXR1aaDyFTSpdRpQuO1s7XFoWfVNbmzuOrpgds5rKfW7JcSHamuNksLn-97v0AGw-SJR235_pC9gagCP72mt6G56k5iU8_6uc4A78JNIGr69Xv9kvhJALVqU20A-3JHxGEVdG1SEWdaA4OcOxJWt_JAopsJ7XgeOsCc0cQfl81bIYFiXeSbRz4nYldpNu0LtG6_gKrqbHl0cnfOilwKOycslzkVxWGcSHrhSuEKFIro5apELHmAWq0WOSCS5W0tZJC1O7SulS1NHieZPUa9ho5k16C0wrbYKR-DBR5rJ0aCEzhUrWAjWrtJ1ANkrSx6HQOPW7uPZdwls53wvfo_A9Cd_rCXxc33LbV9l47OLdUT1-2HCtv18eE_iwHsatQvkPlAsKzRPWkRYBjJjAm16t67fJAoGxynHyn0Y93z_8v1N59_hU3sMz2a0wIvrswsZysUp7iGGW5X63UPHopt_2YfPw-Pz7xR9NRu7B |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoAeEO8uFDASXEAWsR079gEhBCxb-ji1Um_GcRwJ1GbLZleFP8VvZCbZbEEVvfUaJ441L3_jGc8AvAjGVVl0kUtRFjxPTqBKZZqnrLTa1iFLXUmhvX0zOcy_HOmjNfg93IWhtMrBJnaGuppGOiMnJ12h64EI_N3pD05doyi6OrTQ6MViJ_06Q5etfbv9Efn7Usrxp4MPE77sKsCjKuSc5yLZrDKIlGwprBPBJVtHLZLTMWaBqtWYZIKNlSzqpIWpbaV0KepY4HOTFM57Da7nSjnSKDv-PFh-LV3fRLfILUfXrxiiqMq-aclRojQ5y2mD4PrfffACuL0QmO32u_FtuLUEqux9L1l3YC01d2Hjr_KF9-A7JYnw-njxk50hZJ2xKrWBLvgSsxmd8DKqRjGrA53LMxybs_ZboiMM1ueR4DhrQjNFJ2C6aFkMsxK_pDR3yiVL7CSdoDeP1vg-HF4JlR_AejNt0iYwrbQJRuJkosxladEiZwqFSguUJKWLEWQDJX1cFjan_hrHvguwK-t74nskvifiez2CV6tPTvuqHpe9vDWwxy8VvPXn4jiC56thVE2KtyBdkGiesJUsEDCJETzs2br6m3QIxFWOi3898Pl88v8u5dHlS3kGNyYHe7t-d3t_5zHclJ20UZLRFqzPZ4v0BPHTvHzaCS2Dr1etJX8AkqApKg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4IN4sFDASXEAWsR0_ckAIUVYthYoDlfZmHMeRQG22bHZV-Gv8Omby2IIqeus1ThxrHvY8Ps8APAumqLJYRC5FaXmeCoEqlWmestJpV4csdSWFPu2bnYP8w0zPNuD3eBeGYJXjntht1NU8UoycnHSFrgf1BaoHWMTn7emb4x-cOkhRpnVsp9GLyF76dYLuW_t6dxt5_VzK6fsv73b40GGAR2XlkuciuawyaDW5UrhChCK5OmqRCh1jFqhyjUkmuFhJWyctTO0qpUtRR4vPTVI47yW4bJUWpGN2tnb2tCz6hro2dxzdQDtmVJV71ZLTRJA5x-mw4PrfM_GMoXsmSdudfdMbcH0wWtnbXspuwkZqbsG1v0oZ3obvBBjh9eHqJztB83XBqtQGuuxLjGcU7WVUmWJRB4rRMxxbsvZbonAG6zElOM6a0MzRIZivWhbDosQvCfJOuLLEjtIReva4M9-Bgwuh8l3YbOZNug9MK22CkTiZKHNZOtydM4UCpgVKldJ2AtlISR-HIufUa-PQd8l25XxPfI_E90R8ryfwYv3JcV_h47yXt0b2-EHZW38qmhN4uh5GNaXcC9IFiebJzpIWjScxgXs9W9d_kwUa5SrHxb8c-Xw6-X-X8uD8pTyBK6gf_uPu_t5DuCo7YSO80RZsLher9AhNqWX5uJNZBl8vWkn-AFuWLVc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-flux+water+desalination+with+interfacial+salt+sieving+effect+in+nanoporous+carbon+composite+membranes&rft.jtitle=Nature+nanotechnology&rft.au=Chen%2C+Wei&rft.au=Chen%2C+Shuyu&rft.au=Liang%2C+Tengfei&rft.au=Zhang%2C+Qiang&rft.date=2018-04-01&rft.eissn=1748-3395&rft.volume=13&rft.issue=4&rft.spage=345&rft_id=info:doi/10.1038%2Fs41565-018-0067-5&rft_id=info%3Apmid%2F29507347&rft.externalDocID=29507347 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-3387&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-3387&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-3387&client=summon |