Degradation modeling and RUL prediction using Wiener process subject to multiple change points and unit heterogeneity

• A multiple change-point Wiener process based prognostic framework is proposed.• To consider unit-to-unit heterogeneity, a fully Bayesian approach is developed.• An empirical two-stage process is proposed for model estimation.• Online individual model updating is achieved through an exact recursive...

Full description

Saved in:
Bibliographic Details
Published inReliability engineering & system safety Vol. 176; pp. 113 - 124
Main Authors Wen, Yuxin, Wu, Jianguo, Das, Devashish, Tseng, Tzu-Liang(Bill)
Format Journal Article
LanguageEnglish
Published Barking Elsevier Ltd 01.08.2018
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract • A multiple change-point Wiener process based prognostic framework is proposed.• To consider unit-to-unit heterogeneity, a fully Bayesian approach is developed.• An empirical two-stage process is proposed for model estimation.• Online individual model updating is achieved through an exact recursive algorithm.• The effectiveness is demonstrated through simulation and real case studies. Degradation modeling is critical for health condition monitoring and remaining useful life prediction (RUL). The prognostic accuracy highly depends on the capability of modeling the evolution of degradation signals. In many practical applications, however, the degradation signals show multiple phases, where the conventional degradation models are often inadequate. To better characterize the degradation signals of multiple-phase characteristics, we propose a multiple change-point Wiener process as a degradation model. To take into account the between-unit heterogeneity, a fully Bayesian approach is developed where all model parameters are assumed random. At the offline stage, an empirical two-stage process is proposed for model estimation, and a cross-validation approach is adopted for model selection. At the online stage, an exact recursive model updating algorithm is developed for online individual model estimation, and an effective Monte Carlo simulation approach is proposed for RUL prediction. The effectiveness of the proposed method is demonstrated through thorough simulation studies and real case study.
AbstractList Degradation modeling is critical for health condition monitoring and remaining useful life prediction (RUL). The prognostic accuracy highly depends on the capability of modeling the evolution of degradation signals. In many practical applications, however, the degradation signals show multiple phases, where the conventional degradation models are often inadequate. To better characterize the degradation signals of multiple-phase characteristics, we propose a multiple change-point Wiener process as a degradation model. To take into account the between-unit heterogeneity, a fully Bayesian approach is developed where all model parameters are assumed random. At the offline stage, an empirical two-stage process is proposed for model estimation, and a cross-validation approach is adopted for model selection. At the online stage, an exact recursive model updating algorithm is developed for online individual model estimation, and an effective Monte Carlo simulation approach is proposed for RUL prediction. The effectiveness of the proposed method is demonstrated through thorough simulation studies and real case study.
• A multiple change-point Wiener process based prognostic framework is proposed.• To consider unit-to-unit heterogeneity, a fully Bayesian approach is developed.• An empirical two-stage process is proposed for model estimation.• Online individual model updating is achieved through an exact recursive algorithm.• The effectiveness is demonstrated through simulation and real case studies. Degradation modeling is critical for health condition monitoring and remaining useful life prediction (RUL). The prognostic accuracy highly depends on the capability of modeling the evolution of degradation signals. In many practical applications, however, the degradation signals show multiple phases, where the conventional degradation models are often inadequate. To better characterize the degradation signals of multiple-phase characteristics, we propose a multiple change-point Wiener process as a degradation model. To take into account the between-unit heterogeneity, a fully Bayesian approach is developed where all model parameters are assumed random. At the offline stage, an empirical two-stage process is proposed for model estimation, and a cross-validation approach is adopted for model selection. At the online stage, an exact recursive model updating algorithm is developed for online individual model estimation, and an effective Monte Carlo simulation approach is proposed for RUL prediction. The effectiveness of the proposed method is demonstrated through thorough simulation studies and real case study.
Author Tseng, Tzu-Liang(Bill)
Das, Devashish
Wu, Jianguo
Wen, Yuxin
Author_xml – sequence: 1
  givenname: Yuxin
  surname: Wen
  fullname: Wen, Yuxin
  organization: Department of Electrical and Computer Engineering (ECE), University of Texas at El Paso, USA
– sequence: 2
  givenname: Jianguo
  surname: Wu
  fullname: Wu, Jianguo
  email: jwu2@utep.edu, j.wu@pku.edu.cn
  organization: Department of Industrial Engineering and Management, Peking University, China
– sequence: 3
  givenname: Devashish
  surname: Das
  fullname: Das, Devashish
  organization: Department of Industrial and Management Systems Engineering, University of South Florida, USA
– sequence: 4
  givenname: Tzu-Liang(Bill)
  surname: Tseng
  fullname: Tseng, Tzu-Liang(Bill)
  organization: Department of Industrial, Manufacturing and Systems Engineering, University of Texas at El Paso, USA
BookMark eNp9kEtrGzEQgEVwoM7jD_Qk6Hk3I8m7K0EuxW3SgqFQGnIUinbW0bKWXElb8L-vbPfUg08DM_PN47shCx88EvKRQc2AtQ9jHTGlmgOTNaxqgOaKLJnsVAVStAuyBNWwSgoOH8hNSiMArFTTLcn8BbfR9Ca74Oku9Dg5v6XG9_Tny4buI_bOnmpzOhZeHXqMJR9s2UfT_DaizTQHupun7PYTUvtu_BbpPjif02nS7F2m75gxhm3BXT7ckevBTAnv_8Vb8vL09df6W7X58fx9_XlTWdHxXAmUXABCa5kcuOzlIIc3xbhFAa1p1NAraIVtODOKgeIGB9MJbJTCruccxS35dJ5bDv49Y8p6DHP0ZaXmIGXXqFY2pYufu2wMKUUc9D66nYkHzUAf9epRH_Xqo14NK130Fkj-B1mXTxpzNG66jD6eUSyv_3EYdbLFqy2uY7Gp--Au4X8BIlOaWw
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3374776
crossref_primary_10_1002_qre_3177
crossref_primary_10_1016_j_ress_2021_107628
crossref_primary_10_1016_j_est_2023_110376
crossref_primary_10_1109_TR_2024_3359212
crossref_primary_10_1016_j_ress_2020_107341
crossref_primary_10_1080_01605682_2024_2346610
crossref_primary_10_1109_JSEN_2021_3136622
crossref_primary_10_1016_j_eswa_2023_120588
crossref_primary_10_1016_j_ress_2023_109800
crossref_primary_10_1016_j_cie_2020_106443
crossref_primary_10_1016_j_ress_2019_106751
crossref_primary_10_1002_qre_3623
crossref_primary_10_1016_j_ejor_2024_06_032
crossref_primary_10_1016_j_cie_2021_107533
crossref_primary_10_1016_j_engfailanal_2022_106565
crossref_primary_10_1109_TIE_2021_3127035
crossref_primary_10_1109_TNNLS_2020_2977132
crossref_primary_10_1177_14759217241287864
crossref_primary_10_1109_TR_2023_3319497
crossref_primary_10_1016_j_ress_2021_107916
crossref_primary_10_1016_j_ress_2021_107631
crossref_primary_10_1016_j_ress_2022_108945
crossref_primary_10_1109_TIM_2024_3472855
crossref_primary_10_1016_j_ress_2023_109897
crossref_primary_10_1016_j_ress_2021_107877
crossref_primary_10_1109_TIM_2021_3086906
crossref_primary_10_1109_TASE_2023_3242355
crossref_primary_10_1016_j_measurement_2023_113156
crossref_primary_10_1016_j_measurement_2024_115772
crossref_primary_10_1016_j_ress_2021_107928
crossref_primary_10_1016_j_ymssp_2022_109677
crossref_primary_10_1016_j_ress_2019_106618
crossref_primary_10_1080_03610926_2021_1954196
crossref_primary_10_1016_j_measurement_2021_110276
crossref_primary_10_1088_2631_8695_accdb5
crossref_primary_10_1007_s11432_020_3134_8
crossref_primary_10_1016_j_ress_2020_107361
crossref_primary_10_1007_s42524_025_4109_z
crossref_primary_10_1016_j_microrel_2024_115509
crossref_primary_10_1016_j_ress_2023_109480
crossref_primary_10_3390_s22134763
crossref_primary_10_1016_j_eswa_2024_125808
crossref_primary_10_1109_JSEN_2021_3082953
crossref_primary_10_1155_2024_5427464
crossref_primary_10_1002_qre_2636
crossref_primary_10_3390_app12136766
crossref_primary_10_1007_s00170_023_12648_8
crossref_primary_10_1109_JSEN_2023_3323476
crossref_primary_10_1109_TIM_2024_3381295
crossref_primary_10_1016_j_psep_2025_106974
crossref_primary_10_1177_1748006X221128363
crossref_primary_10_1016_j_ress_2021_107897
crossref_primary_10_1016_j_ijfatigue_2022_107481
crossref_primary_10_1088_1361_6501_ab8fed
crossref_primary_10_3390_math13010130
crossref_primary_10_1016_j_est_2022_106193
crossref_primary_10_1002_qre_3417
crossref_primary_10_1115_1_4043255
crossref_primary_10_1080_03610918_2020_1851713
crossref_primary_10_1109_TNNLS_2020_3026644
crossref_primary_10_1109_TR_2019_2895352
crossref_primary_10_1016_j_ymssp_2023_110646
crossref_primary_10_1016_j_ress_2022_109041
crossref_primary_10_1007_s11668_022_01532_4
crossref_primary_10_1016_j_ress_2023_109182
crossref_primary_10_1002_qre_3300
crossref_primary_10_1002_qre_3147
crossref_primary_10_1093_imaman_dpaa009
crossref_primary_10_1016_j_isatra_2024_12_019
crossref_primary_10_1080_24725854_2022_2030881
crossref_primary_10_1016_j_knosys_2022_110070
crossref_primary_10_1109_ACCESS_2020_3044681
crossref_primary_10_1109_TIM_2022_3195280
crossref_primary_10_1016_j_measurement_2021_110565
crossref_primary_10_1088_1361_6501_ad762e
crossref_primary_10_1016_j_ress_2020_107138
crossref_primary_10_1016_j_ress_2019_106601
crossref_primary_10_1016_j_ress_2025_110833
crossref_primary_10_1002_cjce_23666
crossref_primary_10_1016_j_ress_2023_109696
crossref_primary_10_1016_j_est_2023_107557
crossref_primary_10_3390_su13158548
crossref_primary_10_1016_j_cie_2024_110496
crossref_primary_10_1016_j_measurement_2019_107097
crossref_primary_10_1109_ACCESS_2020_2987332
crossref_primary_10_1016_j_ymssp_2020_107378
crossref_primary_10_1109_ACCESS_2018_2877630
crossref_primary_10_3389_fmech_2021_719718
crossref_primary_10_1088_1757_899X_806_1_012041
crossref_primary_10_1016_j_ress_2025_110908
crossref_primary_10_17531_ein_2021_2_20
crossref_primary_10_1016_j_ress_2022_109021
crossref_primary_10_1002_qre_2674
crossref_primary_10_1080_24725854_2024_2351905
crossref_primary_10_1038_s41529_024_00484_4
crossref_primary_10_1109_TIM_2023_3251391
crossref_primary_10_1016_j_apm_2023_09_007
crossref_primary_10_3390_sym14020353
crossref_primary_10_1109_TIT_2022_3169885
crossref_primary_10_1007_s12204_021_2323_3
crossref_primary_10_1016_j_ress_2021_108263
Cites_doi 10.1080/02664760903406488
10.1016/j.ymssp.2005.09.012
10.1109/TR.2013.2241216
10.1080/00401706.2013.830074
10.1016/j.engfailanal.2014.11.020
10.1002/qre.1504
10.1016/j.measurement.2017.08.030
10.1109/TR.2014.2355531
10.1002/asmb.2063
10.1023/A:1009664101413
10.1016/j.ress.2011.03.014
10.1016/j.ress.2014.10.009
10.1109/TR.2017.2711621
10.1109/TR.2013.2284733
10.1016/j.ress.2015.07.026
10.1016/j.ymssp.2008.12.006
10.1016/j.ymssp.2012.08.016
10.1080/0740817X.2014.955153
10.1002/qre.1609
10.1016/j.ymssp.2010.11.018
10.1080/00401706.1993.10485038
10.1080/03610926.2014.988262
10.1080/00401706.2012.694780
10.1016/S0951-8320(01)00123-5
10.1002/qre.995
10.1007/s00170-009-2482-0
10.1007/s11222-009-9163-6
10.1002/nav.10042
10.1214/aos/1176344136
10.1080/03610918.2011.624241
10.1109/TR.2008.916867
10.1080/07408170590929018
10.1109/TR.2017.2710319
10.1109/TASE.2009.2038170
10.1080/15732470601012154
10.1080/0740817X.2012.706376
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright Elsevier BV Aug 2018
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright Elsevier BV Aug 2018
DBID AAYXX
CITATION
7ST
7TB
8FD
C1K
FR3
SOI
DOI 10.1016/j.ress.2018.04.005
DatabaseName CrossRef
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Environment Abstracts
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Engineering Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0836
EndPage 124
ExternalDocumentID 10_1016_j_ress_2018_04_005
S0951832017313625
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABMMH
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSB
SSO
SST
SSZ
T5K
TN5
WUQ
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7ST
7TB
8FD
C1K
EFKBS
FR3
SOI
ID FETCH-LOGICAL-c372t-3e8230e06c18f28d8f8fb912ce306a59fd9063c521a91092aefa73e599e7d22e3
IEDL.DBID .~1
ISSN 0951-8320
IngestDate Wed Aug 13 06:36:40 EDT 2025
Thu Apr 24 23:06:06 EDT 2025
Tue Jul 01 00:44:58 EDT 2025
Fri Feb 23 02:27:59 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Multiple change-point model
Remaining useful life prediction
Wiener process
Degradation modeling
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-3e8230e06c18f28d8f8fb912ce306a59fd9063c521a91092aefa73e599e7d22e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://digitalcommons.chapman.edu/context/engineering_articles/article/1134/viewcontent/final_RESS.pdf
PQID 2088759685
PQPubID 2045406
PageCount 12
ParticipantIDs proquest_journals_2088759685
crossref_primary_10_1016_j_ress_2018_04_005
crossref_citationtrail_10_1016_j_ress_2018_04_005
elsevier_sciencedirect_doi_10_1016_j_ress_2018_04_005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2018
2018-08-00
20180801
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: August 2018
PublicationDecade 2010
PublicationPlace Barking
PublicationPlace_xml – name: Barking
PublicationTitle Reliability engineering & system safety
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Schwarz (bib0038) 1978; 6
Nelson (bib0002) 2009
Fearnhead, Liu (bib0036) 2011; 21
Gebraeel, Lawley, Li, Ryan (bib0003) 2005; 37
Ye, Wang, Tsui, Pecht (bib0035) 2013; 62
Son, Zhang, Sankavaram, Zhou (bib0025) 2015; 64
Bae, Yuan, Ning, Kuo (bib0028) 2015; 134
Vachtsevanos, Lewis, Hess, Wu (bib0013) 2006
Lu, Meeker (bib0017) 1993; 35
Pandey, Yuan, Van Noortwijk (bib0020) 2009; 5
Lim, Yum (bib0016) 2011; 38
Camci, Chinnam (bib0009) 2010; 7
Zhao, Tian, Zeng (bib0004) 2013; 62
Vališ, Žák, Pokora, Lánský (bib0006) 2016; 145
Bian, Gebraeel, Kharoufeh (bib0001) 2015; 47
Ye, Chen, Tsui (bib0023) 2015; 31
Hasilová, Vališ (bib0027) 2018; 113
Vališ, Žák, Pokora (bib0008) 2015; 229
Peng, Dong, Zuo (bib0014) 2010; 50
Si, Wang, Hu, Chen, Zhou (bib0040) 2013; 35
Wu, Chang (bib0015) 2002; 76
Pan, Balakrishnan (bib0021) 2011; 96
Heng, Tan, Mathew, Montgomery, Banjevic, Jardine (bib0011) 2009; 23
Ye, Chen (bib0022) 2014; 56
Wen, Wu, Yuan (bib0031) 2017; 66
Vališ, Žák, Pokora (bib0007) 2015; 56
Ye, Xie (bib0019) 2015; 31
Tseng, Tang, Ku (bib0005) 2003; 50
Chen, Tsui (bib0026) 2013; 45
Whitmore, Schenkelberg (bib0024) 1997; 3
Kong, Balakrishnan, Cui (bib0033) 2017
Hannart, Naveau (bib0039) 2012; 54
Sikorska, Hodkiewicz, Ma (bib0010) 2011; 25
Yan, Song, Duan, Shi (bib0034) 2017; 46
Ng (bib0032) 2008; 57
Wang, Jiang, Guo, Cheng (bib0030) 2014; 30
Akaike (bib0037) 1998
Jardine, Lin, Banjevic (bib0012) 2006; 20
Freitas, de Toledo, Colosimo, Pires (bib0018) 2009; 25
Feng, Sun, Jin (bib0029) 2012; 41
Yan (10.1016/j.ress.2018.04.005_bib0034) 2017; 46
Fearnhead (10.1016/j.ress.2018.04.005_bib0036) 2011; 21
Ng (10.1016/j.ress.2018.04.005_bib0032) 2008; 57
Chen (10.1016/j.ress.2018.04.005_bib0026) 2013; 45
Pan (10.1016/j.ress.2018.04.005_bib0021) 2011; 96
Peng (10.1016/j.ress.2018.04.005_bib0014) 2010; 50
Ye (10.1016/j.ress.2018.04.005_bib0019) 2015; 31
Akaike (10.1016/j.ress.2018.04.005_bib0037) 1998
Bian (10.1016/j.ress.2018.04.005_bib0001) 2015; 47
Heng (10.1016/j.ress.2018.04.005_bib0011) 2009; 23
Ye (10.1016/j.ress.2018.04.005_bib0022) 2014; 56
Tseng (10.1016/j.ress.2018.04.005_bib0005) 2003; 50
Hannart (10.1016/j.ress.2018.04.005_bib0039) 2012; 54
Wen (10.1016/j.ress.2018.04.005_bib0031) 2017; 66
Wang (10.1016/j.ress.2018.04.005_bib0030) 2014; 30
Ye (10.1016/j.ress.2018.04.005_bib0035) 2013; 62
Wu (10.1016/j.ress.2018.04.005_bib0015) 2002; 76
Vališ (10.1016/j.ress.2018.04.005_bib0008) 2015; 229
Hasilová (10.1016/j.ress.2018.04.005_bib0027) 2018; 113
Vališ (10.1016/j.ress.2018.04.005_bib0007) 2015; 56
Vališ (10.1016/j.ress.2018.04.005_bib0006) 2016; 145
Nelson (10.1016/j.ress.2018.04.005_bib0002) 2009
Camci (10.1016/j.ress.2018.04.005_bib0009) 2010; 7
Lim (10.1016/j.ress.2018.04.005_bib0016) 2011; 38
Sikorska (10.1016/j.ress.2018.04.005_bib0010) 2011; 25
Kong (10.1016/j.ress.2018.04.005_bib0033) 2017
Vachtsevanos (10.1016/j.ress.2018.04.005_bib0013) 2006
Gebraeel (10.1016/j.ress.2018.04.005_bib0003) 2005; 37
Whitmore (10.1016/j.ress.2018.04.005_bib0024) 1997; 3
Schwarz (10.1016/j.ress.2018.04.005_bib0038) 1978; 6
Si (10.1016/j.ress.2018.04.005_bib0040) 2013; 35
Zhao (10.1016/j.ress.2018.04.005_bib0004) 2013; 62
Pandey (10.1016/j.ress.2018.04.005_bib0020) 2009; 5
Son (10.1016/j.ress.2018.04.005_bib0025) 2015; 64
Lu (10.1016/j.ress.2018.04.005_bib0017) 1993; 35
Freitas (10.1016/j.ress.2018.04.005_bib0018) 2009; 25
Feng (10.1016/j.ress.2018.04.005_bib0029) 2012; 41
Jardine (10.1016/j.ress.2018.04.005_bib0012) 2006; 20
Ye (10.1016/j.ress.2018.04.005_bib0023) 2015; 31
Bae (10.1016/j.ress.2018.04.005_bib0028) 2015; 134
References_xml – volume: 25
  start-page: 607
  year: 2009
  end-page: 629
  ident: bib0018
  article-title: Using degradation data to assess reliability: a case study on train wheel degradation
  publication-title: Qual Reliab Eng Int
– volume: 47
  start-page: 471
  year: 2015
  end-page: 486
  ident: bib0001
  article-title: Degradation modeling for real-time estimation of residual lifetimes in dynamic environments
  publication-title: IIE Trans
– volume: 145
  start-page: 231
  year: 2016
  end-page: 242
  ident: bib0006
  article-title: Perspective analysis outcomes of selected tribodiagnostic data used as input for condition based maintenance
  publication-title: Reliab Eng Syst Saf
– volume: 229
  start-page: 36
  year: 2015
  end-page: 45
  ident: bib0008
  article-title: Contribution to system failure occurrence prediction and to system remaining useful life estimation based on oil field data
  publication-title: Proc Inst Mech Eng Part O
– volume: 21
  start-page: 217
  year: 2011
  end-page: 229
  ident: bib0036
  article-title: Efficient Bayesian analysis of multiple changepoint models with dependence across segments
  publication-title: Stat Comput
– volume: 96
  start-page: 949
  year: 2011
  end-page: 957
  ident: bib0021
  article-title: Reliability modeling of degradation of products with multiple performance characteristics based on gamma processes
  publication-title: Reliab Eng Syst Saf
– volume: 5
  start-page: 145
  year: 2009
  end-page: 156
  ident: bib0020
  article-title: The influence of temporal uncertainty of deterioration on life-cycle management of structures
  publication-title: Struct Infrastruct Eng
– volume: 35
  start-page: 161
  year: 1993
  end-page: 174
  ident: bib0017
  article-title: Using degradation measures to estimate a time-to-failure distribution
  publication-title: Technometrics
– volume: 62
  start-page: 146
  year: 2013
  end-page: 159
  ident: bib0004
  article-title: Uncertainty quantification in gear remaining useful life prediction through an integrated prognostics method
  publication-title: IEEE Trans Reliab
– volume: 38
  start-page: 309
  year: 2011
  end-page: 325
  ident: bib0016
  article-title: Optimal design of accelerated degradation tests based on Wiener process models
  publication-title: J Appl Statistics
– volume: 54
  start-page: 256
  year: 2012
  end-page: 268
  ident: bib0039
  article-title: An improved Bayesian information criterion for multiple change-point models
  publication-title: Technometrics
– year: 2006
  ident: bib0013
  article-title: Intelligent fault diagnosis and prognosis for engineering systems
– volume: 31
  start-page: 16
  year: 2015
  end-page: 32
  ident: bib0019
  article-title: Stochastic modelling and analysis of degradation for highly reliable products
  publication-title: Appl Stochastic Models Bus Ind
– volume: 66
  start-page: 924
  year: 2017
  end-page: 938
  ident: bib0031
  article-title: Multiple-phase modeling of degradation signal for condition monitoring and remaining useful life prediction
  publication-title: IEEE Trans Reliab
– volume: 64
  start-page: 182
  year: 2015
  end-page: 196
  ident: bib0025
  article-title: RUL prediction for individual units based on condition monitoring signals with a change point
  publication-title: IEEE Trans Reliab
– volume: 57
  start-page: 2
  year: 2008
  end-page: 13
  ident: bib0032
  article-title: An application of the EM algorithm to degradation modeling
  publication-title: IEEE Trans Reliab
– year: 2017
  ident: bib0033
  article-title: Two-phase degradation process model with abrupt jump at change point governed by Wiener process
  publication-title: IEEE Trans Reliab
– volume: 50
  start-page: 1
  year: 2003
  end-page: 14
  ident: bib0005
  article-title: Determination of burn‐in parameters and residual life for highly reliable products
  publication-title: Nav Res Logist (NRL)
– volume: 35
  start-page: 219
  year: 2013
  end-page: 237
  ident: bib0040
  article-title: A Wiener-process-based degradation model with a recursive filter algorithm for remaining useful life estimation
  publication-title: Mech Syst Signal Process
– volume: 23
  start-page: 1600
  year: 2009
  end-page: 1614
  ident: bib0011
  article-title: Intelligent condition-based prediction of machinery reliability
  publication-title: Mech Syst Signal Process
– volume: 76
  start-page: 109
  year: 2002
  end-page: 115
  ident: bib0015
  article-title: Optimal design of degradation tests in presence of cost constraint
  publication-title: Reliab Eng Syst Saf
– volume: 37
  start-page: 543
  year: 2005
  end-page: 557
  ident: bib0003
  article-title: Residual-life distributions from component degradation signals: a Bayesian approach
  publication-title: IIE Trans
– volume: 25
  start-page: 1803
  year: 2011
  end-page: 1836
  ident: bib0010
  article-title: Prognostic modelling options for remaining useful life estimation by industry
  publication-title: Mech Syst Signal Process
– volume: 56
  start-page: 501
  year: 2015
  end-page: 511
  ident: bib0007
  article-title: Failure prediction of diesel engine based on occurrence of selected wear particles in oil
  publication-title: Eng Fail Anal
– volume: 31
  start-page: 513
  year: 2015
  end-page: 522
  ident: bib0023
  article-title: A Bayesian approach to condition monitoring with imperfect inspections
  publication-title: Qual Reliab Eng Int
– volume: 41
  start-page: 1317
  year: 2012
  end-page: 1335
  ident: bib0029
  article-title: Storage life prediction for a high-performance capacitor using multi-phase Wiener degradation model
  publication-title: Commun Stat Simul Comput
– volume: 113
  start-page: 82
  year: 2018
  end-page: 91
  ident: bib0027
  article-title: Non-parametric estimates of the first hitting time of Li-ion battery
  publication-title: Measurement
– volume: 62
  start-page: 772
  year: 2013
  end-page: 780
  ident: bib0035
  article-title: Degradation data analysis using Wiener processes with measurement errors
  publication-title: IEEE Trans Reliab
– volume: 6
  start-page: 461
  year: 1978
  end-page: 464
  ident: bib0038
  article-title: Estimating the dimension of a model
  publication-title: Ann Stat
– volume: 45
  start-page: 939
  year: 2013
  end-page: 952
  ident: bib0026
  article-title: Condition monitoring and remaining useful life prediction using degradation signals: revisited
  publication-title: IIE Trans
– volume: 134
  start-page: 66
  year: 2015
  end-page: 74
  ident: bib0028
  article-title: A Bayesian approach to modeling two-phase degradation using change-point regression
  publication-title: Reliab Eng Syst Saf
– volume: 46
  start-page: 176
  year: 2017
  end-page: 188
  ident: bib0034
  article-title: Real-time reliability evaluation of two-phase Wiener degradation process
  publication-title: Commun Stat Theory Methods
– year: 2009
  ident: bib0002
  article-title: Accelerated testing: statistical models, test plans, and data analysis
– volume: 7
  start-page: 581
  year: 2010
  end-page: 597
  ident: bib0009
  article-title: Health-state estimation and prognostics in machining processes
  publication-title: IEEE Trans Autom Sci Eng
– volume: 56
  start-page: 302
  year: 2014
  end-page: 311
  ident: bib0022
  article-title: The inverse Gaussian process as a degradation model
  publication-title: Technometrics
– start-page: 199
  year: 1998
  end-page: 213
  ident: bib0037
  article-title: Information theory and an extension of the maximum likelihood principle
  publication-title: Selected papers of hirotugu akaike
– volume: 30
  start-page: 513
  year: 2014
  end-page: 525
  ident: bib0030
  article-title: Real‐time reliability evaluation for an individual product based on change‐point gamma and Wiener process
  publication-title: Qual Reliab Eng Int
– volume: 20
  start-page: 1483
  year: 2006
  end-page: 1510
  ident: bib0012
  article-title: A review on machinery diagnostics and prognostics implementing condition-based maintenance
  publication-title: Mech Syst Signal Process
– volume: 50
  start-page: 297
  year: 2010
  end-page: 313
  ident: bib0014
  article-title: Current status of machine prognostics in condition-based maintenance: a review
  publication-title: Int J Adv Manuf Technol
– volume: 3
  start-page: 27
  year: 1997
  end-page: 45
  ident: bib0024
  article-title: Modelling accelerated degradation data using Wiener diffusion with a time scale transformation
  publication-title: Lifetime Data Anal
– volume: 38
  start-page: 309
  issue: 2
  year: 2011
  ident: 10.1016/j.ress.2018.04.005_bib0016
  article-title: Optimal design of accelerated degradation tests based on Wiener process models
  publication-title: J Appl Statistics
  doi: 10.1080/02664760903406488
– volume: 20
  start-page: 1483
  issue: 7
  year: 2006
  ident: 10.1016/j.ress.2018.04.005_bib0012
  article-title: A review on machinery diagnostics and prognostics implementing condition-based maintenance
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2005.09.012
– volume: 62
  start-page: 146
  issue: 1
  year: 2013
  ident: 10.1016/j.ress.2018.04.005_bib0004
  article-title: Uncertainty quantification in gear remaining useful life prediction through an integrated prognostics method
  publication-title: IEEE Trans Reliab
  doi: 10.1109/TR.2013.2241216
– volume: 56
  start-page: 302
  issue: 3
  year: 2014
  ident: 10.1016/j.ress.2018.04.005_bib0022
  article-title: The inverse Gaussian process as a degradation model
  publication-title: Technometrics
  doi: 10.1080/00401706.2013.830074
– volume: 56
  start-page: 501
  year: 2015
  ident: 10.1016/j.ress.2018.04.005_bib0007
  article-title: Failure prediction of diesel engine based on occurrence of selected wear particles in oil
  publication-title: Eng Fail Anal
  doi: 10.1016/j.engfailanal.2014.11.020
– volume: 30
  start-page: 513
  issue: 4
  year: 2014
  ident: 10.1016/j.ress.2018.04.005_bib0030
  article-title: Real‐time reliability evaluation for an individual product based on change‐point gamma and Wiener process
  publication-title: Qual Reliab Eng Int
  doi: 10.1002/qre.1504
– volume: 113
  start-page: 82
  year: 2018
  ident: 10.1016/j.ress.2018.04.005_bib0027
  article-title: Non-parametric estimates of the first hitting time of Li-ion battery
  publication-title: Measurement
  doi: 10.1016/j.measurement.2017.08.030
– volume: 64
  start-page: 182
  issue: 1
  year: 2015
  ident: 10.1016/j.ress.2018.04.005_bib0025
  article-title: RUL prediction for individual units based on condition monitoring signals with a change point
  publication-title: IEEE Trans Reliab
  doi: 10.1109/TR.2014.2355531
– volume: 31
  start-page: 16
  issue: 1
  year: 2015
  ident: 10.1016/j.ress.2018.04.005_bib0019
  article-title: Stochastic modelling and analysis of degradation for highly reliable products
  publication-title: Appl Stochastic Models Bus Ind
  doi: 10.1002/asmb.2063
– volume: 3
  start-page: 27
  issue: 1
  year: 1997
  ident: 10.1016/j.ress.2018.04.005_bib0024
  article-title: Modelling accelerated degradation data using Wiener diffusion with a time scale transformation
  publication-title: Lifetime Data Anal
  doi: 10.1023/A:1009664101413
– volume: 229
  start-page: 36
  issue: 1
  year: 2015
  ident: 10.1016/j.ress.2018.04.005_bib0008
  article-title: Contribution to system failure occurrence prediction and to system remaining useful life estimation based on oil field data
  publication-title: Proc Inst Mech Eng Part O
– volume: 96
  start-page: 949
  issue: 8
  year: 2011
  ident: 10.1016/j.ress.2018.04.005_bib0021
  article-title: Reliability modeling of degradation of products with multiple performance characteristics based on gamma processes
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2011.03.014
– volume: 134
  start-page: 66
  year: 2015
  ident: 10.1016/j.ress.2018.04.005_bib0028
  article-title: A Bayesian approach to modeling two-phase degradation using change-point regression
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2014.10.009
– year: 2017
  ident: 10.1016/j.ress.2018.04.005_bib0033
  article-title: Two-phase degradation process model with abrupt jump at change point governed by Wiener process
  publication-title: IEEE Trans Reliab
  doi: 10.1109/TR.2017.2711621
– year: 2009
  ident: 10.1016/j.ress.2018.04.005_bib0002
– volume: 62
  start-page: 772
  issue: 4
  year: 2013
  ident: 10.1016/j.ress.2018.04.005_bib0035
  article-title: Degradation data analysis using Wiener processes with measurement errors
  publication-title: IEEE Trans Reliab
  doi: 10.1109/TR.2013.2284733
– volume: 145
  start-page: 231
  year: 2016
  ident: 10.1016/j.ress.2018.04.005_bib0006
  article-title: Perspective analysis outcomes of selected tribodiagnostic data used as input for condition based maintenance
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2015.07.026
– volume: 23
  start-page: 1600
  issue: 5
  year: 2009
  ident: 10.1016/j.ress.2018.04.005_bib0011
  article-title: Intelligent condition-based prediction of machinery reliability
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2008.12.006
– volume: 35
  start-page: 219
  issue: 1
  year: 2013
  ident: 10.1016/j.ress.2018.04.005_bib0040
  article-title: A Wiener-process-based degradation model with a recursive filter algorithm for remaining useful life estimation
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2012.08.016
– volume: 47
  start-page: 471
  issue: 5
  year: 2015
  ident: 10.1016/j.ress.2018.04.005_bib0001
  article-title: Degradation modeling for real-time estimation of residual lifetimes in dynamic environments
  publication-title: IIE Trans
  doi: 10.1080/0740817X.2014.955153
– volume: 31
  start-page: 513
  issue: 3
  year: 2015
  ident: 10.1016/j.ress.2018.04.005_bib0023
  article-title: A Bayesian approach to condition monitoring with imperfect inspections
  publication-title: Qual Reliab Eng Int
  doi: 10.1002/qre.1609
– volume: 25
  start-page: 1803
  issue: 5
  year: 2011
  ident: 10.1016/j.ress.2018.04.005_bib0010
  article-title: Prognostic modelling options for remaining useful life estimation by industry
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2010.11.018
– volume: 35
  start-page: 161
  issue: 2
  year: 1993
  ident: 10.1016/j.ress.2018.04.005_bib0017
  article-title: Using degradation measures to estimate a time-to-failure distribution
  publication-title: Technometrics
  doi: 10.1080/00401706.1993.10485038
– volume: 46
  start-page: 176
  issue: 1
  year: 2017
  ident: 10.1016/j.ress.2018.04.005_bib0034
  article-title: Real-time reliability evaluation of two-phase Wiener degradation process
  publication-title: Commun Stat Theory Methods
  doi: 10.1080/03610926.2014.988262
– volume: 54
  start-page: 256
  issue: 3
  year: 2012
  ident: 10.1016/j.ress.2018.04.005_bib0039
  article-title: An improved Bayesian information criterion for multiple change-point models
  publication-title: Technometrics
  doi: 10.1080/00401706.2012.694780
– volume: 76
  start-page: 109
  issue: 2
  year: 2002
  ident: 10.1016/j.ress.2018.04.005_bib0015
  article-title: Optimal design of degradation tests in presence of cost constraint
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/S0951-8320(01)00123-5
– volume: 25
  start-page: 607
  issue: 5
  year: 2009
  ident: 10.1016/j.ress.2018.04.005_bib0018
  article-title: Using degradation data to assess reliability: a case study on train wheel degradation
  publication-title: Qual Reliab Eng Int
  doi: 10.1002/qre.995
– volume: 50
  start-page: 297
  issue: 1
  year: 2010
  ident: 10.1016/j.ress.2018.04.005_bib0014
  article-title: Current status of machine prognostics in condition-based maintenance: a review
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-009-2482-0
– volume: 21
  start-page: 217
  issue: 2
  year: 2011
  ident: 10.1016/j.ress.2018.04.005_bib0036
  article-title: Efficient Bayesian analysis of multiple changepoint models with dependence across segments
  publication-title: Stat Comput
  doi: 10.1007/s11222-009-9163-6
– volume: 50
  start-page: 1
  issue: 1
  year: 2003
  ident: 10.1016/j.ress.2018.04.005_bib0005
  article-title: Determination of burn‐in parameters and residual life for highly reliable products
  publication-title: Nav Res Logist (NRL)
  doi: 10.1002/nav.10042
– start-page: 199
  year: 1998
  ident: 10.1016/j.ress.2018.04.005_bib0037
  article-title: Information theory and an extension of the maximum likelihood principle
– volume: 6
  start-page: 461
  issue: 2
  year: 1978
  ident: 10.1016/j.ress.2018.04.005_bib0038
  article-title: Estimating the dimension of a model
  publication-title: Ann Stat
  doi: 10.1214/aos/1176344136
– volume: 41
  start-page: 1317
  issue: 8
  year: 2012
  ident: 10.1016/j.ress.2018.04.005_bib0029
  article-title: Storage life prediction for a high-performance capacitor using multi-phase Wiener degradation model
  publication-title: Commun Stat Simul Comput
  doi: 10.1080/03610918.2011.624241
– volume: 57
  start-page: 2
  issue: 1
  year: 2008
  ident: 10.1016/j.ress.2018.04.005_bib0032
  article-title: An application of the EM algorithm to degradation modeling
  publication-title: IEEE Trans Reliab
  doi: 10.1109/TR.2008.916867
– volume: 37
  start-page: 543
  issue: 6
  year: 2005
  ident: 10.1016/j.ress.2018.04.005_bib0003
  article-title: Residual-life distributions from component degradation signals: a Bayesian approach
  publication-title: IIE Trans
  doi: 10.1080/07408170590929018
– volume: 66
  start-page: 924
  issue: 3
  year: 2017
  ident: 10.1016/j.ress.2018.04.005_bib0031
  article-title: Multiple-phase modeling of degradation signal for condition monitoring and remaining useful life prediction
  publication-title: IEEE Trans Reliab
  doi: 10.1109/TR.2017.2710319
– year: 2006
  ident: 10.1016/j.ress.2018.04.005_bib0013
– volume: 7
  start-page: 581
  issue: 3
  year: 2010
  ident: 10.1016/j.ress.2018.04.005_bib0009
  article-title: Health-state estimation and prognostics in machining processes
  publication-title: IEEE Trans Autom Sci Eng
  doi: 10.1109/TASE.2009.2038170
– volume: 5
  start-page: 145
  issue: 2
  year: 2009
  ident: 10.1016/j.ress.2018.04.005_bib0020
  article-title: The influence of temporal uncertainty of deterioration on life-cycle management of structures
  publication-title: Struct Infrastruct Eng
  doi: 10.1080/15732470601012154
– volume: 45
  start-page: 939
  issue: 9
  year: 2013
  ident: 10.1016/j.ress.2018.04.005_bib0026
  article-title: Condition monitoring and remaining useful life prediction using degradation signals: revisited
  publication-title: IIE Trans
  doi: 10.1080/0740817X.2012.706376
SSID ssj0004957
Score 2.573585
Snippet • A multiple change-point Wiener process based prognostic framework is proposed.• To consider unit-to-unit heterogeneity, a fully Bayesian approach is...
Degradation modeling is critical for health condition monitoring and remaining useful life prediction (RUL). The prognostic accuracy highly depends on the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 113
SubjectTerms Bayesian analysis
Computer simulation
Condition monitoring
Degradation
Degradation modeling
Estimating techniques
Heterogeneity
Internet
Life prediction
Mathematical models
Medical prognosis
Model updating
Modelling
Monte Carlo simulation
Multiple change-point model
Reliability engineering
Remaining useful life prediction
Signal processing
Wiener process
Title Degradation modeling and RUL prediction using Wiener process subject to multiple change points and unit heterogeneity
URI https://dx.doi.org/10.1016/j.ress.2018.04.005
https://www.proquest.com/docview/2088759685
Volume 176
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIpCqTywodDEjhN7rApVeXUAKrpZeTgQhNKoTVd-O3d58BJiYIril6Lz-R7xd3eEnCgWYp0i2wps41musLmljO9ZYRB6MfP8JFEYjXw78cZT92omZi0ybGJhEFZZy_5KppfSum7p19Ts52nav0fjAPgRWIo7IIYx0Nx1feTys7dPmAc4AH5TTh5H14EzFcYLPVqEd8ky3SmWsPtdOf0Q06XuGW2RzdpopIPqu7ZJy2Q7ZONLKsFdsjrHrA9VgSRalreBZhpkMb2b3tB8gfcxZR8C3Z_oY4rppmlehQnQ5SrE_zG0mNMGYUirkGCaz9OsWJYrreD402fEz8yB7QzY73tkOrp4GI6tuqSCFXGfFRY3eLFmbC9yZMJkLBOZhMphkQHXIRAqiRXYLBHo9ADsCMUCkwQ-N0LBBsaMGb5P2tk8MweECh6yxHCuDJduJKTEh48Wj8uAPZ0OcRpa6qjON45lL151Ayx70Uh_jfTXtquB_h1y-jEnr7Jt_DlaNFukv_GMBnXw57xus5-6PrHYD-JWKE-Kw38ue0TW8a1CB3ZJu1iszDFYLEXYK1myR9YGl9fjyTtb9uxR
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7BcgAOiEcrXi0-cKuiTew4sY-IhxZY9kBZlZuVh0O3QtkIsv-fmdgBWiEOPUWyYysaT2bG9jffABxrnlOdojDIQpsEsQxFoG2aBHmWJyVP0qrSlI18M0lG0_jqXt4vwWmfC0OwSm_7nU3vrLVvGXppDpvZbPiTggPUR1QpEaEZlsuwQuxUcgArJ5fXo8lbeqR2hJ9UUZ4G-NwZB_OiTS0hvFTHeEpV7D72T_9Y6s79XGzCho8b2Yn7tC1YsvU2rL9jE9yBxRkRP7gaSayrcIPNLKtLdjsds-aJrmS6PsK6P7BfM2KcZo3LFGDPi5yOZFg7Zz3IkLmsYNbMZ3X73M20QAvAfhOEZo6aZzGE_wLTi_O701HgqyoEhUh5GwhLd2s2TIpIVVyVqlJVriNeWNw9ZFJXpcawpUC3nmEooXlmqywVVmpcw5JzK77CoJ7XdheYFDmvrBDaChUXUil6pBT0xBw1NNqDqJelKTzlOFW-eDQ9tuyPIfkbkr8JY4Py34Mfr2MaR7jx6duyXyLzl9oY9Aifjjvs19P4n5b60eJKnSi5_5_THsHq6O5mbMaXk-sDWKMeBxY8hEH7tLDfMIBp8-9eQV8AdnPvAg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Degradation+modeling+and+RUL+prediction+using+Wiener+process+subject+to+multiple+change+points+and+unit+heterogeneity&rft.jtitle=Reliability+engineering+%26+system+safety&rft.au=Wen%2C+Yuxin&rft.au=Wu%2C+Jianguo&rft.au=Das%2C+Devashish&rft.au=Tseng%2C+Tzu-Liang%28Bill%29&rft.date=2018-08-01&rft.issn=0951-8320&rft.volume=176&rft.spage=113&rft.epage=124&rft_id=info:doi/10.1016%2Fj.ress.2018.04.005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ress_2018_04_005
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8320&client=summon