Degradation modeling and RUL prediction using Wiener process subject to multiple change points and unit heterogeneity
• A multiple change-point Wiener process based prognostic framework is proposed.• To consider unit-to-unit heterogeneity, a fully Bayesian approach is developed.• An empirical two-stage process is proposed for model estimation.• Online individual model updating is achieved through an exact recursive...
Saved in:
Published in | Reliability engineering & system safety Vol. 176; pp. 113 - 124 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Barking
Elsevier Ltd
01.08.2018
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | • A multiple change-point Wiener process based prognostic framework is proposed.• To consider unit-to-unit heterogeneity, a fully Bayesian approach is developed.• An empirical two-stage process is proposed for model estimation.• Online individual model updating is achieved through an exact recursive algorithm.• The effectiveness is demonstrated through simulation and real case studies.
Degradation modeling is critical for health condition monitoring and remaining useful life prediction (RUL). The prognostic accuracy highly depends on the capability of modeling the evolution of degradation signals. In many practical applications, however, the degradation signals show multiple phases, where the conventional degradation models are often inadequate. To better characterize the degradation signals of multiple-phase characteristics, we propose a multiple change-point Wiener process as a degradation model. To take into account the between-unit heterogeneity, a fully Bayesian approach is developed where all model parameters are assumed random. At the offline stage, an empirical two-stage process is proposed for model estimation, and a cross-validation approach is adopted for model selection. At the online stage, an exact recursive model updating algorithm is developed for online individual model estimation, and an effective Monte Carlo simulation approach is proposed for RUL prediction. The effectiveness of the proposed method is demonstrated through thorough simulation studies and real case study. |
---|---|
AbstractList | Degradation modeling is critical for health condition monitoring and remaining useful life prediction (RUL). The prognostic accuracy highly depends on the capability of modeling the evolution of degradation signals. In many practical applications, however, the degradation signals show multiple phases, where the conventional degradation models are often inadequate. To better characterize the degradation signals of multiple-phase characteristics, we propose a multiple change-point Wiener process as a degradation model. To take into account the between-unit heterogeneity, a fully Bayesian approach is developed where all model parameters are assumed random. At the offline stage, an empirical two-stage process is proposed for model estimation, and a cross-validation approach is adopted for model selection. At the online stage, an exact recursive model updating algorithm is developed for online individual model estimation, and an effective Monte Carlo simulation approach is proposed for RUL prediction. The effectiveness of the proposed method is demonstrated through thorough simulation studies and real case study. • A multiple change-point Wiener process based prognostic framework is proposed.• To consider unit-to-unit heterogeneity, a fully Bayesian approach is developed.• An empirical two-stage process is proposed for model estimation.• Online individual model updating is achieved through an exact recursive algorithm.• The effectiveness is demonstrated through simulation and real case studies. Degradation modeling is critical for health condition monitoring and remaining useful life prediction (RUL). The prognostic accuracy highly depends on the capability of modeling the evolution of degradation signals. In many practical applications, however, the degradation signals show multiple phases, where the conventional degradation models are often inadequate. To better characterize the degradation signals of multiple-phase characteristics, we propose a multiple change-point Wiener process as a degradation model. To take into account the between-unit heterogeneity, a fully Bayesian approach is developed where all model parameters are assumed random. At the offline stage, an empirical two-stage process is proposed for model estimation, and a cross-validation approach is adopted for model selection. At the online stage, an exact recursive model updating algorithm is developed for online individual model estimation, and an effective Monte Carlo simulation approach is proposed for RUL prediction. The effectiveness of the proposed method is demonstrated through thorough simulation studies and real case study. |
Author | Tseng, Tzu-Liang(Bill) Das, Devashish Wu, Jianguo Wen, Yuxin |
Author_xml | – sequence: 1 givenname: Yuxin surname: Wen fullname: Wen, Yuxin organization: Department of Electrical and Computer Engineering (ECE), University of Texas at El Paso, USA – sequence: 2 givenname: Jianguo surname: Wu fullname: Wu, Jianguo email: jwu2@utep.edu, j.wu@pku.edu.cn organization: Department of Industrial Engineering and Management, Peking University, China – sequence: 3 givenname: Devashish surname: Das fullname: Das, Devashish organization: Department of Industrial and Management Systems Engineering, University of South Florida, USA – sequence: 4 givenname: Tzu-Liang(Bill) surname: Tseng fullname: Tseng, Tzu-Liang(Bill) organization: Department of Industrial, Manufacturing and Systems Engineering, University of Texas at El Paso, USA |
BookMark | eNp9kEtrGzEQgEVwoM7jD_Qk6Hk3I8m7K0EuxW3SgqFQGnIUinbW0bKWXElb8L-vbPfUg08DM_PN47shCx88EvKRQc2AtQ9jHTGlmgOTNaxqgOaKLJnsVAVStAuyBNWwSgoOH8hNSiMArFTTLcn8BbfR9Ca74Oku9Dg5v6XG9_Tny4buI_bOnmpzOhZeHXqMJR9s2UfT_DaizTQHupun7PYTUvtu_BbpPjif02nS7F2m75gxhm3BXT7ckevBTAnv_8Vb8vL09df6W7X58fx9_XlTWdHxXAmUXABCa5kcuOzlIIc3xbhFAa1p1NAraIVtODOKgeIGB9MJbJTCruccxS35dJ5bDv49Y8p6DHP0ZaXmIGXXqFY2pYufu2wMKUUc9D66nYkHzUAf9epRH_Xqo14NK130Fkj-B1mXTxpzNG66jD6eUSyv_3EYdbLFqy2uY7Gp--Au4X8BIlOaWw |
CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3374776 crossref_primary_10_1002_qre_3177 crossref_primary_10_1016_j_ress_2021_107628 crossref_primary_10_1016_j_est_2023_110376 crossref_primary_10_1109_TR_2024_3359212 crossref_primary_10_1016_j_ress_2020_107341 crossref_primary_10_1080_01605682_2024_2346610 crossref_primary_10_1109_JSEN_2021_3136622 crossref_primary_10_1016_j_eswa_2023_120588 crossref_primary_10_1016_j_ress_2023_109800 crossref_primary_10_1016_j_cie_2020_106443 crossref_primary_10_1016_j_ress_2019_106751 crossref_primary_10_1002_qre_3623 crossref_primary_10_1016_j_ejor_2024_06_032 crossref_primary_10_1016_j_cie_2021_107533 crossref_primary_10_1016_j_engfailanal_2022_106565 crossref_primary_10_1109_TIE_2021_3127035 crossref_primary_10_1109_TNNLS_2020_2977132 crossref_primary_10_1177_14759217241287864 crossref_primary_10_1109_TR_2023_3319497 crossref_primary_10_1016_j_ress_2021_107916 crossref_primary_10_1016_j_ress_2021_107631 crossref_primary_10_1016_j_ress_2022_108945 crossref_primary_10_1109_TIM_2024_3472855 crossref_primary_10_1016_j_ress_2023_109897 crossref_primary_10_1016_j_ress_2021_107877 crossref_primary_10_1109_TIM_2021_3086906 crossref_primary_10_1109_TASE_2023_3242355 crossref_primary_10_1016_j_measurement_2023_113156 crossref_primary_10_1016_j_measurement_2024_115772 crossref_primary_10_1016_j_ress_2021_107928 crossref_primary_10_1016_j_ymssp_2022_109677 crossref_primary_10_1016_j_ress_2019_106618 crossref_primary_10_1080_03610926_2021_1954196 crossref_primary_10_1016_j_measurement_2021_110276 crossref_primary_10_1088_2631_8695_accdb5 crossref_primary_10_1007_s11432_020_3134_8 crossref_primary_10_1016_j_ress_2020_107361 crossref_primary_10_1007_s42524_025_4109_z crossref_primary_10_1016_j_microrel_2024_115509 crossref_primary_10_1016_j_ress_2023_109480 crossref_primary_10_3390_s22134763 crossref_primary_10_1016_j_eswa_2024_125808 crossref_primary_10_1109_JSEN_2021_3082953 crossref_primary_10_1155_2024_5427464 crossref_primary_10_1002_qre_2636 crossref_primary_10_3390_app12136766 crossref_primary_10_1007_s00170_023_12648_8 crossref_primary_10_1109_JSEN_2023_3323476 crossref_primary_10_1109_TIM_2024_3381295 crossref_primary_10_1016_j_psep_2025_106974 crossref_primary_10_1177_1748006X221128363 crossref_primary_10_1016_j_ress_2021_107897 crossref_primary_10_1016_j_ijfatigue_2022_107481 crossref_primary_10_1088_1361_6501_ab8fed crossref_primary_10_3390_math13010130 crossref_primary_10_1016_j_est_2022_106193 crossref_primary_10_1002_qre_3417 crossref_primary_10_1115_1_4043255 crossref_primary_10_1080_03610918_2020_1851713 crossref_primary_10_1109_TNNLS_2020_3026644 crossref_primary_10_1109_TR_2019_2895352 crossref_primary_10_1016_j_ymssp_2023_110646 crossref_primary_10_1016_j_ress_2022_109041 crossref_primary_10_1007_s11668_022_01532_4 crossref_primary_10_1016_j_ress_2023_109182 crossref_primary_10_1002_qre_3300 crossref_primary_10_1002_qre_3147 crossref_primary_10_1093_imaman_dpaa009 crossref_primary_10_1016_j_isatra_2024_12_019 crossref_primary_10_1080_24725854_2022_2030881 crossref_primary_10_1016_j_knosys_2022_110070 crossref_primary_10_1109_ACCESS_2020_3044681 crossref_primary_10_1109_TIM_2022_3195280 crossref_primary_10_1016_j_measurement_2021_110565 crossref_primary_10_1088_1361_6501_ad762e crossref_primary_10_1016_j_ress_2020_107138 crossref_primary_10_1016_j_ress_2019_106601 crossref_primary_10_1016_j_ress_2025_110833 crossref_primary_10_1002_cjce_23666 crossref_primary_10_1016_j_ress_2023_109696 crossref_primary_10_1016_j_est_2023_107557 crossref_primary_10_3390_su13158548 crossref_primary_10_1016_j_cie_2024_110496 crossref_primary_10_1016_j_measurement_2019_107097 crossref_primary_10_1109_ACCESS_2020_2987332 crossref_primary_10_1016_j_ymssp_2020_107378 crossref_primary_10_1109_ACCESS_2018_2877630 crossref_primary_10_3389_fmech_2021_719718 crossref_primary_10_1088_1757_899X_806_1_012041 crossref_primary_10_1016_j_ress_2025_110908 crossref_primary_10_17531_ein_2021_2_20 crossref_primary_10_1016_j_ress_2022_109021 crossref_primary_10_1002_qre_2674 crossref_primary_10_1080_24725854_2024_2351905 crossref_primary_10_1038_s41529_024_00484_4 crossref_primary_10_1109_TIM_2023_3251391 crossref_primary_10_1016_j_apm_2023_09_007 crossref_primary_10_3390_sym14020353 crossref_primary_10_1109_TIT_2022_3169885 crossref_primary_10_1007_s12204_021_2323_3 crossref_primary_10_1016_j_ress_2021_108263 |
Cites_doi | 10.1080/02664760903406488 10.1016/j.ymssp.2005.09.012 10.1109/TR.2013.2241216 10.1080/00401706.2013.830074 10.1016/j.engfailanal.2014.11.020 10.1002/qre.1504 10.1016/j.measurement.2017.08.030 10.1109/TR.2014.2355531 10.1002/asmb.2063 10.1023/A:1009664101413 10.1016/j.ress.2011.03.014 10.1016/j.ress.2014.10.009 10.1109/TR.2017.2711621 10.1109/TR.2013.2284733 10.1016/j.ress.2015.07.026 10.1016/j.ymssp.2008.12.006 10.1016/j.ymssp.2012.08.016 10.1080/0740817X.2014.955153 10.1002/qre.1609 10.1016/j.ymssp.2010.11.018 10.1080/00401706.1993.10485038 10.1080/03610926.2014.988262 10.1080/00401706.2012.694780 10.1016/S0951-8320(01)00123-5 10.1002/qre.995 10.1007/s00170-009-2482-0 10.1007/s11222-009-9163-6 10.1002/nav.10042 10.1214/aos/1176344136 10.1080/03610918.2011.624241 10.1109/TR.2008.916867 10.1080/07408170590929018 10.1109/TR.2017.2710319 10.1109/TASE.2009.2038170 10.1080/15732470601012154 10.1080/0740817X.2012.706376 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd Copyright Elsevier BV Aug 2018 |
Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright Elsevier BV Aug 2018 |
DBID | AAYXX CITATION 7ST 7TB 8FD C1K FR3 SOI |
DOI | 10.1016/j.ress.2018.04.005 |
DatabaseName | CrossRef Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Environment Abstracts |
DatabaseTitle | CrossRef Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Environment Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Engineering Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-0836 |
EndPage | 124 |
ExternalDocumentID | 10_1016_j_ress_2018_04_005 S0951832017313625 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN 9JO AABNK AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABJNI ABMAC ABMMH ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK ASPBG AVARZ AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PRBVW Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SSB SSO SST SSZ T5K TN5 WUQ XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7ST 7TB 8FD C1K EFKBS FR3 SOI |
ID | FETCH-LOGICAL-c372t-3e8230e06c18f28d8f8fb912ce306a59fd9063c521a91092aefa73e599e7d22e3 |
IEDL.DBID | .~1 |
ISSN | 0951-8320 |
IngestDate | Wed Aug 13 06:36:40 EDT 2025 Thu Apr 24 23:06:06 EDT 2025 Tue Jul 01 00:44:58 EDT 2025 Fri Feb 23 02:27:59 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Multiple change-point model Remaining useful life prediction Wiener process Degradation modeling |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-3e8230e06c18f28d8f8fb912ce306a59fd9063c521a91092aefa73e599e7d22e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://digitalcommons.chapman.edu/context/engineering_articles/article/1134/viewcontent/final_RESS.pdf |
PQID | 2088759685 |
PQPubID | 2045406 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2088759685 crossref_primary_10_1016_j_ress_2018_04_005 crossref_citationtrail_10_1016_j_ress_2018_04_005 elsevier_sciencedirect_doi_10_1016_j_ress_2018_04_005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2018 2018-08-00 20180801 |
PublicationDateYYYYMMDD | 2018-08-01 |
PublicationDate_xml | – month: 08 year: 2018 text: August 2018 |
PublicationDecade | 2010 |
PublicationPlace | Barking |
PublicationPlace_xml | – name: Barking |
PublicationTitle | Reliability engineering & system safety |
PublicationYear | 2018 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Schwarz (bib0038) 1978; 6 Nelson (bib0002) 2009 Fearnhead, Liu (bib0036) 2011; 21 Gebraeel, Lawley, Li, Ryan (bib0003) 2005; 37 Ye, Wang, Tsui, Pecht (bib0035) 2013; 62 Son, Zhang, Sankavaram, Zhou (bib0025) 2015; 64 Bae, Yuan, Ning, Kuo (bib0028) 2015; 134 Vachtsevanos, Lewis, Hess, Wu (bib0013) 2006 Lu, Meeker (bib0017) 1993; 35 Pandey, Yuan, Van Noortwijk (bib0020) 2009; 5 Lim, Yum (bib0016) 2011; 38 Camci, Chinnam (bib0009) 2010; 7 Zhao, Tian, Zeng (bib0004) 2013; 62 Vališ, Žák, Pokora, Lánský (bib0006) 2016; 145 Bian, Gebraeel, Kharoufeh (bib0001) 2015; 47 Ye, Chen, Tsui (bib0023) 2015; 31 Hasilová, Vališ (bib0027) 2018; 113 Vališ, Žák, Pokora (bib0008) 2015; 229 Peng, Dong, Zuo (bib0014) 2010; 50 Si, Wang, Hu, Chen, Zhou (bib0040) 2013; 35 Wu, Chang (bib0015) 2002; 76 Pan, Balakrishnan (bib0021) 2011; 96 Heng, Tan, Mathew, Montgomery, Banjevic, Jardine (bib0011) 2009; 23 Ye, Chen (bib0022) 2014; 56 Wen, Wu, Yuan (bib0031) 2017; 66 Vališ, Žák, Pokora (bib0007) 2015; 56 Ye, Xie (bib0019) 2015; 31 Tseng, Tang, Ku (bib0005) 2003; 50 Chen, Tsui (bib0026) 2013; 45 Whitmore, Schenkelberg (bib0024) 1997; 3 Kong, Balakrishnan, Cui (bib0033) 2017 Hannart, Naveau (bib0039) 2012; 54 Sikorska, Hodkiewicz, Ma (bib0010) 2011; 25 Yan, Song, Duan, Shi (bib0034) 2017; 46 Ng (bib0032) 2008; 57 Wang, Jiang, Guo, Cheng (bib0030) 2014; 30 Akaike (bib0037) 1998 Jardine, Lin, Banjevic (bib0012) 2006; 20 Freitas, de Toledo, Colosimo, Pires (bib0018) 2009; 25 Feng, Sun, Jin (bib0029) 2012; 41 Yan (10.1016/j.ress.2018.04.005_bib0034) 2017; 46 Fearnhead (10.1016/j.ress.2018.04.005_bib0036) 2011; 21 Ng (10.1016/j.ress.2018.04.005_bib0032) 2008; 57 Chen (10.1016/j.ress.2018.04.005_bib0026) 2013; 45 Pan (10.1016/j.ress.2018.04.005_bib0021) 2011; 96 Peng (10.1016/j.ress.2018.04.005_bib0014) 2010; 50 Ye (10.1016/j.ress.2018.04.005_bib0019) 2015; 31 Akaike (10.1016/j.ress.2018.04.005_bib0037) 1998 Bian (10.1016/j.ress.2018.04.005_bib0001) 2015; 47 Heng (10.1016/j.ress.2018.04.005_bib0011) 2009; 23 Ye (10.1016/j.ress.2018.04.005_bib0022) 2014; 56 Tseng (10.1016/j.ress.2018.04.005_bib0005) 2003; 50 Hannart (10.1016/j.ress.2018.04.005_bib0039) 2012; 54 Wen (10.1016/j.ress.2018.04.005_bib0031) 2017; 66 Wang (10.1016/j.ress.2018.04.005_bib0030) 2014; 30 Ye (10.1016/j.ress.2018.04.005_bib0035) 2013; 62 Wu (10.1016/j.ress.2018.04.005_bib0015) 2002; 76 Vališ (10.1016/j.ress.2018.04.005_bib0008) 2015; 229 Hasilová (10.1016/j.ress.2018.04.005_bib0027) 2018; 113 Vališ (10.1016/j.ress.2018.04.005_bib0007) 2015; 56 Vališ (10.1016/j.ress.2018.04.005_bib0006) 2016; 145 Nelson (10.1016/j.ress.2018.04.005_bib0002) 2009 Camci (10.1016/j.ress.2018.04.005_bib0009) 2010; 7 Lim (10.1016/j.ress.2018.04.005_bib0016) 2011; 38 Sikorska (10.1016/j.ress.2018.04.005_bib0010) 2011; 25 Kong (10.1016/j.ress.2018.04.005_bib0033) 2017 Vachtsevanos (10.1016/j.ress.2018.04.005_bib0013) 2006 Gebraeel (10.1016/j.ress.2018.04.005_bib0003) 2005; 37 Whitmore (10.1016/j.ress.2018.04.005_bib0024) 1997; 3 Schwarz (10.1016/j.ress.2018.04.005_bib0038) 1978; 6 Si (10.1016/j.ress.2018.04.005_bib0040) 2013; 35 Zhao (10.1016/j.ress.2018.04.005_bib0004) 2013; 62 Pandey (10.1016/j.ress.2018.04.005_bib0020) 2009; 5 Son (10.1016/j.ress.2018.04.005_bib0025) 2015; 64 Lu (10.1016/j.ress.2018.04.005_bib0017) 1993; 35 Freitas (10.1016/j.ress.2018.04.005_bib0018) 2009; 25 Feng (10.1016/j.ress.2018.04.005_bib0029) 2012; 41 Jardine (10.1016/j.ress.2018.04.005_bib0012) 2006; 20 Ye (10.1016/j.ress.2018.04.005_bib0023) 2015; 31 Bae (10.1016/j.ress.2018.04.005_bib0028) 2015; 134 |
References_xml | – volume: 25 start-page: 607 year: 2009 end-page: 629 ident: bib0018 article-title: Using degradation data to assess reliability: a case study on train wheel degradation publication-title: Qual Reliab Eng Int – volume: 47 start-page: 471 year: 2015 end-page: 486 ident: bib0001 article-title: Degradation modeling for real-time estimation of residual lifetimes in dynamic environments publication-title: IIE Trans – volume: 145 start-page: 231 year: 2016 end-page: 242 ident: bib0006 article-title: Perspective analysis outcomes of selected tribodiagnostic data used as input for condition based maintenance publication-title: Reliab Eng Syst Saf – volume: 229 start-page: 36 year: 2015 end-page: 45 ident: bib0008 article-title: Contribution to system failure occurrence prediction and to system remaining useful life estimation based on oil field data publication-title: Proc Inst Mech Eng Part O – volume: 21 start-page: 217 year: 2011 end-page: 229 ident: bib0036 article-title: Efficient Bayesian analysis of multiple changepoint models with dependence across segments publication-title: Stat Comput – volume: 96 start-page: 949 year: 2011 end-page: 957 ident: bib0021 article-title: Reliability modeling of degradation of products with multiple performance characteristics based on gamma processes publication-title: Reliab Eng Syst Saf – volume: 5 start-page: 145 year: 2009 end-page: 156 ident: bib0020 article-title: The influence of temporal uncertainty of deterioration on life-cycle management of structures publication-title: Struct Infrastruct Eng – volume: 35 start-page: 161 year: 1993 end-page: 174 ident: bib0017 article-title: Using degradation measures to estimate a time-to-failure distribution publication-title: Technometrics – volume: 62 start-page: 146 year: 2013 end-page: 159 ident: bib0004 article-title: Uncertainty quantification in gear remaining useful life prediction through an integrated prognostics method publication-title: IEEE Trans Reliab – volume: 38 start-page: 309 year: 2011 end-page: 325 ident: bib0016 article-title: Optimal design of accelerated degradation tests based on Wiener process models publication-title: J Appl Statistics – volume: 54 start-page: 256 year: 2012 end-page: 268 ident: bib0039 article-title: An improved Bayesian information criterion for multiple change-point models publication-title: Technometrics – year: 2006 ident: bib0013 article-title: Intelligent fault diagnosis and prognosis for engineering systems – volume: 31 start-page: 16 year: 2015 end-page: 32 ident: bib0019 article-title: Stochastic modelling and analysis of degradation for highly reliable products publication-title: Appl Stochastic Models Bus Ind – volume: 66 start-page: 924 year: 2017 end-page: 938 ident: bib0031 article-title: Multiple-phase modeling of degradation signal for condition monitoring and remaining useful life prediction publication-title: IEEE Trans Reliab – volume: 64 start-page: 182 year: 2015 end-page: 196 ident: bib0025 article-title: RUL prediction for individual units based on condition monitoring signals with a change point publication-title: IEEE Trans Reliab – volume: 57 start-page: 2 year: 2008 end-page: 13 ident: bib0032 article-title: An application of the EM algorithm to degradation modeling publication-title: IEEE Trans Reliab – year: 2017 ident: bib0033 article-title: Two-phase degradation process model with abrupt jump at change point governed by Wiener process publication-title: IEEE Trans Reliab – volume: 50 start-page: 1 year: 2003 end-page: 14 ident: bib0005 article-title: Determination of burn‐in parameters and residual life for highly reliable products publication-title: Nav Res Logist (NRL) – volume: 35 start-page: 219 year: 2013 end-page: 237 ident: bib0040 article-title: A Wiener-process-based degradation model with a recursive filter algorithm for remaining useful life estimation publication-title: Mech Syst Signal Process – volume: 23 start-page: 1600 year: 2009 end-page: 1614 ident: bib0011 article-title: Intelligent condition-based prediction of machinery reliability publication-title: Mech Syst Signal Process – volume: 76 start-page: 109 year: 2002 end-page: 115 ident: bib0015 article-title: Optimal design of degradation tests in presence of cost constraint publication-title: Reliab Eng Syst Saf – volume: 37 start-page: 543 year: 2005 end-page: 557 ident: bib0003 article-title: Residual-life distributions from component degradation signals: a Bayesian approach publication-title: IIE Trans – volume: 25 start-page: 1803 year: 2011 end-page: 1836 ident: bib0010 article-title: Prognostic modelling options for remaining useful life estimation by industry publication-title: Mech Syst Signal Process – volume: 56 start-page: 501 year: 2015 end-page: 511 ident: bib0007 article-title: Failure prediction of diesel engine based on occurrence of selected wear particles in oil publication-title: Eng Fail Anal – volume: 31 start-page: 513 year: 2015 end-page: 522 ident: bib0023 article-title: A Bayesian approach to condition monitoring with imperfect inspections publication-title: Qual Reliab Eng Int – volume: 41 start-page: 1317 year: 2012 end-page: 1335 ident: bib0029 article-title: Storage life prediction for a high-performance capacitor using multi-phase Wiener degradation model publication-title: Commun Stat Simul Comput – volume: 113 start-page: 82 year: 2018 end-page: 91 ident: bib0027 article-title: Non-parametric estimates of the first hitting time of Li-ion battery publication-title: Measurement – volume: 62 start-page: 772 year: 2013 end-page: 780 ident: bib0035 article-title: Degradation data analysis using Wiener processes with measurement errors publication-title: IEEE Trans Reliab – volume: 6 start-page: 461 year: 1978 end-page: 464 ident: bib0038 article-title: Estimating the dimension of a model publication-title: Ann Stat – volume: 45 start-page: 939 year: 2013 end-page: 952 ident: bib0026 article-title: Condition monitoring and remaining useful life prediction using degradation signals: revisited publication-title: IIE Trans – volume: 134 start-page: 66 year: 2015 end-page: 74 ident: bib0028 article-title: A Bayesian approach to modeling two-phase degradation using change-point regression publication-title: Reliab Eng Syst Saf – volume: 46 start-page: 176 year: 2017 end-page: 188 ident: bib0034 article-title: Real-time reliability evaluation of two-phase Wiener degradation process publication-title: Commun Stat Theory Methods – year: 2009 ident: bib0002 article-title: Accelerated testing: statistical models, test plans, and data analysis – volume: 7 start-page: 581 year: 2010 end-page: 597 ident: bib0009 article-title: Health-state estimation and prognostics in machining processes publication-title: IEEE Trans Autom Sci Eng – volume: 56 start-page: 302 year: 2014 end-page: 311 ident: bib0022 article-title: The inverse Gaussian process as a degradation model publication-title: Technometrics – start-page: 199 year: 1998 end-page: 213 ident: bib0037 article-title: Information theory and an extension of the maximum likelihood principle publication-title: Selected papers of hirotugu akaike – volume: 30 start-page: 513 year: 2014 end-page: 525 ident: bib0030 article-title: Real‐time reliability evaluation for an individual product based on change‐point gamma and Wiener process publication-title: Qual Reliab Eng Int – volume: 20 start-page: 1483 year: 2006 end-page: 1510 ident: bib0012 article-title: A review on machinery diagnostics and prognostics implementing condition-based maintenance publication-title: Mech Syst Signal Process – volume: 50 start-page: 297 year: 2010 end-page: 313 ident: bib0014 article-title: Current status of machine prognostics in condition-based maintenance: a review publication-title: Int J Adv Manuf Technol – volume: 3 start-page: 27 year: 1997 end-page: 45 ident: bib0024 article-title: Modelling accelerated degradation data using Wiener diffusion with a time scale transformation publication-title: Lifetime Data Anal – volume: 38 start-page: 309 issue: 2 year: 2011 ident: 10.1016/j.ress.2018.04.005_bib0016 article-title: Optimal design of accelerated degradation tests based on Wiener process models publication-title: J Appl Statistics doi: 10.1080/02664760903406488 – volume: 20 start-page: 1483 issue: 7 year: 2006 ident: 10.1016/j.ress.2018.04.005_bib0012 article-title: A review on machinery diagnostics and prognostics implementing condition-based maintenance publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2005.09.012 – volume: 62 start-page: 146 issue: 1 year: 2013 ident: 10.1016/j.ress.2018.04.005_bib0004 article-title: Uncertainty quantification in gear remaining useful life prediction through an integrated prognostics method publication-title: IEEE Trans Reliab doi: 10.1109/TR.2013.2241216 – volume: 56 start-page: 302 issue: 3 year: 2014 ident: 10.1016/j.ress.2018.04.005_bib0022 article-title: The inverse Gaussian process as a degradation model publication-title: Technometrics doi: 10.1080/00401706.2013.830074 – volume: 56 start-page: 501 year: 2015 ident: 10.1016/j.ress.2018.04.005_bib0007 article-title: Failure prediction of diesel engine based on occurrence of selected wear particles in oil publication-title: Eng Fail Anal doi: 10.1016/j.engfailanal.2014.11.020 – volume: 30 start-page: 513 issue: 4 year: 2014 ident: 10.1016/j.ress.2018.04.005_bib0030 article-title: Real‐time reliability evaluation for an individual product based on change‐point gamma and Wiener process publication-title: Qual Reliab Eng Int doi: 10.1002/qre.1504 – volume: 113 start-page: 82 year: 2018 ident: 10.1016/j.ress.2018.04.005_bib0027 article-title: Non-parametric estimates of the first hitting time of Li-ion battery publication-title: Measurement doi: 10.1016/j.measurement.2017.08.030 – volume: 64 start-page: 182 issue: 1 year: 2015 ident: 10.1016/j.ress.2018.04.005_bib0025 article-title: RUL prediction for individual units based on condition monitoring signals with a change point publication-title: IEEE Trans Reliab doi: 10.1109/TR.2014.2355531 – volume: 31 start-page: 16 issue: 1 year: 2015 ident: 10.1016/j.ress.2018.04.005_bib0019 article-title: Stochastic modelling and analysis of degradation for highly reliable products publication-title: Appl Stochastic Models Bus Ind doi: 10.1002/asmb.2063 – volume: 3 start-page: 27 issue: 1 year: 1997 ident: 10.1016/j.ress.2018.04.005_bib0024 article-title: Modelling accelerated degradation data using Wiener diffusion with a time scale transformation publication-title: Lifetime Data Anal doi: 10.1023/A:1009664101413 – volume: 229 start-page: 36 issue: 1 year: 2015 ident: 10.1016/j.ress.2018.04.005_bib0008 article-title: Contribution to system failure occurrence prediction and to system remaining useful life estimation based on oil field data publication-title: Proc Inst Mech Eng Part O – volume: 96 start-page: 949 issue: 8 year: 2011 ident: 10.1016/j.ress.2018.04.005_bib0021 article-title: Reliability modeling of degradation of products with multiple performance characteristics based on gamma processes publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2011.03.014 – volume: 134 start-page: 66 year: 2015 ident: 10.1016/j.ress.2018.04.005_bib0028 article-title: A Bayesian approach to modeling two-phase degradation using change-point regression publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2014.10.009 – year: 2017 ident: 10.1016/j.ress.2018.04.005_bib0033 article-title: Two-phase degradation process model with abrupt jump at change point governed by Wiener process publication-title: IEEE Trans Reliab doi: 10.1109/TR.2017.2711621 – year: 2009 ident: 10.1016/j.ress.2018.04.005_bib0002 – volume: 62 start-page: 772 issue: 4 year: 2013 ident: 10.1016/j.ress.2018.04.005_bib0035 article-title: Degradation data analysis using Wiener processes with measurement errors publication-title: IEEE Trans Reliab doi: 10.1109/TR.2013.2284733 – volume: 145 start-page: 231 year: 2016 ident: 10.1016/j.ress.2018.04.005_bib0006 article-title: Perspective analysis outcomes of selected tribodiagnostic data used as input for condition based maintenance publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2015.07.026 – volume: 23 start-page: 1600 issue: 5 year: 2009 ident: 10.1016/j.ress.2018.04.005_bib0011 article-title: Intelligent condition-based prediction of machinery reliability publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2008.12.006 – volume: 35 start-page: 219 issue: 1 year: 2013 ident: 10.1016/j.ress.2018.04.005_bib0040 article-title: A Wiener-process-based degradation model with a recursive filter algorithm for remaining useful life estimation publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2012.08.016 – volume: 47 start-page: 471 issue: 5 year: 2015 ident: 10.1016/j.ress.2018.04.005_bib0001 article-title: Degradation modeling for real-time estimation of residual lifetimes in dynamic environments publication-title: IIE Trans doi: 10.1080/0740817X.2014.955153 – volume: 31 start-page: 513 issue: 3 year: 2015 ident: 10.1016/j.ress.2018.04.005_bib0023 article-title: A Bayesian approach to condition monitoring with imperfect inspections publication-title: Qual Reliab Eng Int doi: 10.1002/qre.1609 – volume: 25 start-page: 1803 issue: 5 year: 2011 ident: 10.1016/j.ress.2018.04.005_bib0010 article-title: Prognostic modelling options for remaining useful life estimation by industry publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2010.11.018 – volume: 35 start-page: 161 issue: 2 year: 1993 ident: 10.1016/j.ress.2018.04.005_bib0017 article-title: Using degradation measures to estimate a time-to-failure distribution publication-title: Technometrics doi: 10.1080/00401706.1993.10485038 – volume: 46 start-page: 176 issue: 1 year: 2017 ident: 10.1016/j.ress.2018.04.005_bib0034 article-title: Real-time reliability evaluation of two-phase Wiener degradation process publication-title: Commun Stat Theory Methods doi: 10.1080/03610926.2014.988262 – volume: 54 start-page: 256 issue: 3 year: 2012 ident: 10.1016/j.ress.2018.04.005_bib0039 article-title: An improved Bayesian information criterion for multiple change-point models publication-title: Technometrics doi: 10.1080/00401706.2012.694780 – volume: 76 start-page: 109 issue: 2 year: 2002 ident: 10.1016/j.ress.2018.04.005_bib0015 article-title: Optimal design of degradation tests in presence of cost constraint publication-title: Reliab Eng Syst Saf doi: 10.1016/S0951-8320(01)00123-5 – volume: 25 start-page: 607 issue: 5 year: 2009 ident: 10.1016/j.ress.2018.04.005_bib0018 article-title: Using degradation data to assess reliability: a case study on train wheel degradation publication-title: Qual Reliab Eng Int doi: 10.1002/qre.995 – volume: 50 start-page: 297 issue: 1 year: 2010 ident: 10.1016/j.ress.2018.04.005_bib0014 article-title: Current status of machine prognostics in condition-based maintenance: a review publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-009-2482-0 – volume: 21 start-page: 217 issue: 2 year: 2011 ident: 10.1016/j.ress.2018.04.005_bib0036 article-title: Efficient Bayesian analysis of multiple changepoint models with dependence across segments publication-title: Stat Comput doi: 10.1007/s11222-009-9163-6 – volume: 50 start-page: 1 issue: 1 year: 2003 ident: 10.1016/j.ress.2018.04.005_bib0005 article-title: Determination of burn‐in parameters and residual life for highly reliable products publication-title: Nav Res Logist (NRL) doi: 10.1002/nav.10042 – start-page: 199 year: 1998 ident: 10.1016/j.ress.2018.04.005_bib0037 article-title: Information theory and an extension of the maximum likelihood principle – volume: 6 start-page: 461 issue: 2 year: 1978 ident: 10.1016/j.ress.2018.04.005_bib0038 article-title: Estimating the dimension of a model publication-title: Ann Stat doi: 10.1214/aos/1176344136 – volume: 41 start-page: 1317 issue: 8 year: 2012 ident: 10.1016/j.ress.2018.04.005_bib0029 article-title: Storage life prediction for a high-performance capacitor using multi-phase Wiener degradation model publication-title: Commun Stat Simul Comput doi: 10.1080/03610918.2011.624241 – volume: 57 start-page: 2 issue: 1 year: 2008 ident: 10.1016/j.ress.2018.04.005_bib0032 article-title: An application of the EM algorithm to degradation modeling publication-title: IEEE Trans Reliab doi: 10.1109/TR.2008.916867 – volume: 37 start-page: 543 issue: 6 year: 2005 ident: 10.1016/j.ress.2018.04.005_bib0003 article-title: Residual-life distributions from component degradation signals: a Bayesian approach publication-title: IIE Trans doi: 10.1080/07408170590929018 – volume: 66 start-page: 924 issue: 3 year: 2017 ident: 10.1016/j.ress.2018.04.005_bib0031 article-title: Multiple-phase modeling of degradation signal for condition monitoring and remaining useful life prediction publication-title: IEEE Trans Reliab doi: 10.1109/TR.2017.2710319 – year: 2006 ident: 10.1016/j.ress.2018.04.005_bib0013 – volume: 7 start-page: 581 issue: 3 year: 2010 ident: 10.1016/j.ress.2018.04.005_bib0009 article-title: Health-state estimation and prognostics in machining processes publication-title: IEEE Trans Autom Sci Eng doi: 10.1109/TASE.2009.2038170 – volume: 5 start-page: 145 issue: 2 year: 2009 ident: 10.1016/j.ress.2018.04.005_bib0020 article-title: The influence of temporal uncertainty of deterioration on life-cycle management of structures publication-title: Struct Infrastruct Eng doi: 10.1080/15732470601012154 – volume: 45 start-page: 939 issue: 9 year: 2013 ident: 10.1016/j.ress.2018.04.005_bib0026 article-title: Condition monitoring and remaining useful life prediction using degradation signals: revisited publication-title: IIE Trans doi: 10.1080/0740817X.2012.706376 |
SSID | ssj0004957 |
Score | 2.573585 |
Snippet | • A multiple change-point Wiener process based prognostic framework is proposed.• To consider unit-to-unit heterogeneity, a fully Bayesian approach is... Degradation modeling is critical for health condition monitoring and remaining useful life prediction (RUL). The prognostic accuracy highly depends on the... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 113 |
SubjectTerms | Bayesian analysis Computer simulation Condition monitoring Degradation Degradation modeling Estimating techniques Heterogeneity Internet Life prediction Mathematical models Medical prognosis Model updating Modelling Monte Carlo simulation Multiple change-point model Reliability engineering Remaining useful life prediction Signal processing Wiener process |
Title | Degradation modeling and RUL prediction using Wiener process subject to multiple change points and unit heterogeneity |
URI | https://dx.doi.org/10.1016/j.ress.2018.04.005 https://www.proquest.com/docview/2088759685 |
Volume | 176 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIpCqTywodDEjhN7rApVeXUAKrpZeTgQhNKoTVd-O3d58BJiYIril6Lz-R7xd3eEnCgWYp0i2wps41musLmljO9ZYRB6MfP8JFEYjXw78cZT92omZi0ybGJhEFZZy_5KppfSum7p19Ts52nav0fjAPgRWIo7IIYx0Nx1feTys7dPmAc4AH5TTh5H14EzFcYLPVqEd8ky3SmWsPtdOf0Q06XuGW2RzdpopIPqu7ZJy2Q7ZONLKsFdsjrHrA9VgSRalreBZhpkMb2b3tB8gfcxZR8C3Z_oY4rppmlehQnQ5SrE_zG0mNMGYUirkGCaz9OsWJYrreD402fEz8yB7QzY73tkOrp4GI6tuqSCFXGfFRY3eLFmbC9yZMJkLBOZhMphkQHXIRAqiRXYLBHo9ADsCMUCkwQ-N0LBBsaMGb5P2tk8MweECh6yxHCuDJduJKTEh48Wj8uAPZ0OcRpa6qjON45lL151Ayx70Uh_jfTXtquB_h1y-jEnr7Jt_DlaNFukv_GMBnXw57xus5-6PrHYD-JWKE-Kw38ue0TW8a1CB3ZJu1iszDFYLEXYK1myR9YGl9fjyTtb9uxR |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7BcgAOiEcrXi0-cKuiTew4sY-IhxZY9kBZlZuVh0O3QtkIsv-fmdgBWiEOPUWyYysaT2bG9jffABxrnlOdojDIQpsEsQxFoG2aBHmWJyVP0qrSlI18M0lG0_jqXt4vwWmfC0OwSm_7nU3vrLVvGXppDpvZbPiTggPUR1QpEaEZlsuwQuxUcgArJ5fXo8lbeqR2hJ9UUZ4G-NwZB_OiTS0hvFTHeEpV7D72T_9Y6s79XGzCho8b2Yn7tC1YsvU2rL9jE9yBxRkRP7gaSayrcIPNLKtLdjsds-aJrmS6PsK6P7BfM2KcZo3LFGDPi5yOZFg7Zz3IkLmsYNbMZ3X73M20QAvAfhOEZo6aZzGE_wLTi_O701HgqyoEhUh5GwhLd2s2TIpIVVyVqlJVriNeWNw9ZFJXpcawpUC3nmEooXlmqywVVmpcw5JzK77CoJ7XdheYFDmvrBDaChUXUil6pBT0xBw1NNqDqJelKTzlOFW-eDQ9tuyPIfkbkr8JY4Py34Mfr2MaR7jx6duyXyLzl9oY9Aifjjvs19P4n5b60eJKnSi5_5_THsHq6O5mbMaXk-sDWKMeBxY8hEH7tLDfMIBp8-9eQV8AdnPvAg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Degradation+modeling+and+RUL+prediction+using+Wiener+process+subject+to+multiple+change+points+and+unit+heterogeneity&rft.jtitle=Reliability+engineering+%26+system+safety&rft.au=Wen%2C+Yuxin&rft.au=Wu%2C+Jianguo&rft.au=Das%2C+Devashish&rft.au=Tseng%2C+Tzu-Liang%28Bill%29&rft.date=2018-08-01&rft.issn=0951-8320&rft.volume=176&rft.spage=113&rft.epage=124&rft_id=info:doi/10.1016%2Fj.ress.2018.04.005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ress_2018_04_005 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8320&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8320&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8320&client=summon |