Predictive maintenance of systems subject to hard failure based on proportional hazards model

•A Weibull proportional hazards model is adopted to model the hazard rate of the hard failure.•The degradation level is treated as a multiplicative time-varying covariate.•The closed-form of the RUL distribution is derived based on the Brownian bridge theory.•The optimal maintenance schedule is upda...

Full description

Saved in:
Bibliographic Details
Published inReliability engineering & system safety Vol. 196; p. 106707
Main Authors Hu, Jiawen, Chen, Piao
Format Journal Article
LanguageEnglish
Published Barking Elsevier Ltd 01.04.2020
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A Weibull proportional hazards model is adopted to model the hazard rate of the hard failure.•The degradation level is treated as a multiplicative time-varying covariate.•The closed-form of the RUL distribution is derived based on the Brownian bridge theory.•The optimal maintenance schedule is updated when new degradation signals are available. The remaining useful lifetime (RUL) estimated from the in-situ degradation data has shown to be useful for online predictive maintenance. In the literature, the RUL is often estimated by assuming a soft-failure threshold for the degradation data. In practice, however, systems may not be subject to the degradation-induced soft failures. Instead, the systems are deemed to be fail when they cannot perform the intended function, and such failures are known as hard failures. Because there are no fixed thresholds for hard failures, the corresponding RUL estimation is not an easy task, which causes difficulties in finding the optimal maintenance schedule. In this study, a Weibull proportional hazards model is proposed to jointly model the degradation data and the failure time data. The degradation data are treated as the time-varying covariates so that the degradation does not directly lead to system failures, but increases the hazard rate of hard failures. A random-effects Wiener process is proposed to model the degradation data by considering the system heterogeneities. Based on the developed proportional hazards model, closed-form distribution of the RUL is derived upon each inspection and the optimal maintenance schedule is then obtained by minimizing the system maintenance cost. The proposed maintenance strategy is successfully applied to predictive maintenance of lead-acid batteries.
AbstractList The remaining useful lifetime (RUL) estimated from the in-situ degradation data has shown to be useful for online predictive maintenance. In the literature, the RUL is often estimated by assuming a soft-failure threshold for the degradation data. In practice, however, systems may not be subject to the degradation-induced soft failures. Instead, the systems are deemed to be fail when they cannot perform the intended function, and such failures are known as hard failures. Because there are no fixed thresholds for hard failures, the corresponding RUL estimation is not an easy task, which causes difficulties in finding the optimal maintenance schedule. In this study, a Weibull proportional hazards model is proposed to jointly model the degradation data and the failure time data. The degradation data are treated as the time-varying covariates so that the degradation does not directly lead to system failures, but increases the hazard rate of hard failures. A random-effects Wiener process is proposed to model the degradation data by considering the system heterogeneities. Based on the developed proportional hazards model, closed-form distribution of the RUL is derived upon each inspection and the optimal maintenance schedule is then obtained by minimizing the system maintenance cost. The proposed maintenance strategy is successfully applied to predictive maintenance of lead-acid batteries.
•A Weibull proportional hazards model is adopted to model the hazard rate of the hard failure.•The degradation level is treated as a multiplicative time-varying covariate.•The closed-form of the RUL distribution is derived based on the Brownian bridge theory.•The optimal maintenance schedule is updated when new degradation signals are available. The remaining useful lifetime (RUL) estimated from the in-situ degradation data has shown to be useful for online predictive maintenance. In the literature, the RUL is often estimated by assuming a soft-failure threshold for the degradation data. In practice, however, systems may not be subject to the degradation-induced soft failures. Instead, the systems are deemed to be fail when they cannot perform the intended function, and such failures are known as hard failures. Because there are no fixed thresholds for hard failures, the corresponding RUL estimation is not an easy task, which causes difficulties in finding the optimal maintenance schedule. In this study, a Weibull proportional hazards model is proposed to jointly model the degradation data and the failure time data. The degradation data are treated as the time-varying covariates so that the degradation does not directly lead to system failures, but increases the hazard rate of hard failures. A random-effects Wiener process is proposed to model the degradation data by considering the system heterogeneities. Based on the developed proportional hazards model, closed-form distribution of the RUL is derived upon each inspection and the optimal maintenance schedule is then obtained by minimizing the system maintenance cost. The proposed maintenance strategy is successfully applied to predictive maintenance of lead-acid batteries.
ArticleNumber 106707
Author Hu, Jiawen
Chen, Piao
Author_xml – sequence: 1
  givenname: Jiawen
  surname: Hu
  fullname: Hu, Jiawen
  email: hdl@sjtu.edu.cn
  organization: Department of Industrial and Systems Engineering, National University of Singapore, Singapore
– sequence: 2
  givenname: Piao
  surname: Chen
  fullname: Chen, Piao
  email: isechenp@gmail.com
  organization: Delft Institute of Applied Mathematics, Delft University of Technology, Delft, the Netherlands
BookMark eNp9kM9LwzAUx4NMcJv-A54CnjuTpm0a8CLDXzDQgx4lpMkrprTNTNLB_OvNmCcPOz14fD-P9_0s0Gx0IyB0TcmKElrddisPIaxyQkVaVJzwMzSnNRcZqVk1Q3MiSprVLCcXaBFCRwgpRMnn6PPNg7E62h3gQdkxwqhGDdi1OOxDhCHgMDUd6Iijw1_KG9wq208ecKMCGOxGvPVu63y0blR9ivykUMCDM9BfovNW9QGu_uYSfTw-vK-fs83r08v6fpNpxvOYMUMb1eS65KystDakpipVaEjBVVvQHGqhBKNVywttoOWmKvKSQNGIuhRKM7ZEN8e76ZXvCUKUnZt8eifInHHKOROsSKn8mNLeheChlVtvB-X3khJ50Cg7edAoDxrlUWOC6n-QtlEdykafRJxG744opOo7C14GbSHZNdYnodI4ewr_BTwRkTQ
CitedBy_id crossref_primary_10_3390_logistics6010004
crossref_primary_10_1016_j_cie_2020_106291
crossref_primary_10_1016_j_cie_2023_109564
crossref_primary_10_1016_j_cie_2022_108478
crossref_primary_10_1016_j_ress_2021_107628
crossref_primary_10_1109_TII_2021_3138558
crossref_primary_10_1016_j_cor_2021_105284
crossref_primary_10_1016_j_isatra_2023_01_013
crossref_primary_10_1016_j_ress_2021_107743
crossref_primary_10_1109_TR_2020_2981136
crossref_primary_10_1016_j_ress_2021_107919
crossref_primary_10_1007_s00170_021_08047_6
crossref_primary_10_1109_JSEN_2022_3175722
crossref_primary_10_1007_s42524_021_0166_0
crossref_primary_10_1109_JSEN_2021_3133622
crossref_primary_10_1016_j_spc_2021_03_023
crossref_primary_10_1109_JAS_2021_1004051
crossref_primary_10_1002_qre_3108
crossref_primary_10_5194_wes_8_557_2023
crossref_primary_10_1080_0305215X_2022_2122457
crossref_primary_10_1016_j_apm_2019_12_017
crossref_primary_10_3390_sym14051047
crossref_primary_10_1016_j_cirp_2020_04_004
crossref_primary_10_3390_sym14112379
crossref_primary_10_1016_j_ifacol_2023_10_1334
crossref_primary_10_1002_qre_3473
crossref_primary_10_1016_j_ifacol_2020_11_047
crossref_primary_10_17531_ein_2021_1_16
crossref_primary_10_1007_s40313_021_00803_z
crossref_primary_10_1016_j_ress_2022_108779
crossref_primary_10_1016_j_ress_2022_108652
crossref_primary_10_3390_en13226014
crossref_primary_10_1016_j_ress_2022_108379
crossref_primary_10_1016_j_ress_2022_108775
crossref_primary_10_1016_j_neucom_2021_11_005
crossref_primary_10_1016_j_cie_2022_108465
crossref_primary_10_3390_sym14122555
crossref_primary_10_3390_sym14081582
crossref_primary_10_1016_j_ress_2024_110233
crossref_primary_10_1088_1361_6501_ad4fb1
crossref_primary_10_1016_j_compeleceng_2024_109603
crossref_primary_10_1108_JQME_03_2020_0017
crossref_primary_10_1016_j_ress_2024_110072
crossref_primary_10_3390_sym14081617
crossref_primary_10_1016_j_engfailanal_2020_104953
crossref_primary_10_1016_j_ress_2021_107895
crossref_primary_10_1016_j_ymssp_2022_109666
crossref_primary_10_1016_j_ress_2021_107897
crossref_primary_10_1016_j_ress_2021_108181
crossref_primary_10_17531_ein_2021_4_10
crossref_primary_10_1016_j_cie_2023_109188
crossref_primary_10_1016_j_measurement_2024_114821
crossref_primary_10_1016_j_jmsy_2020_08_013
crossref_primary_10_3390_sym14071308
crossref_primary_10_1016_j_cirpj_2022_11_004
crossref_primary_10_1016_j_ress_2020_107144
crossref_primary_10_1016_j_ejor_2022_05_020
crossref_primary_10_1016_j_ress_2022_108993
crossref_primary_10_3390_sym14030555
crossref_primary_10_1109_TII_2020_3021054
crossref_primary_10_1016_j_ress_2020_107028
crossref_primary_10_1016_j_procs_2025_02_041
crossref_primary_10_1088_1742_6596_2369_1_012097
crossref_primary_10_1109_TPWRS_2020_3037558
crossref_primary_10_3390_sym14050968
crossref_primary_10_1080_16843703_2022_2126263
crossref_primary_10_1088_1742_6596_2369_1_012098
crossref_primary_10_3390_sym14040651
crossref_primary_10_3390_axioms12060572
crossref_primary_10_1088_1742_6596_2369_1_012094
crossref_primary_10_1002_qre_3423
crossref_primary_10_1002_qre_3424
crossref_primary_10_1016_j_ress_2022_108988
crossref_primary_10_1016_j_ress_2021_107676
crossref_primary_10_3934_mbe_2023550
crossref_primary_10_3390_sym14050954
crossref_primary_10_1109_TR_2022_3193353
crossref_primary_10_1109_TR_2022_3224170
crossref_primary_10_1002_qre_2788
crossref_primary_10_1109_TR_2023_3295943
crossref_primary_10_1002_qre_3630
crossref_primary_10_1016_j_ress_2024_110661
crossref_primary_10_1109_TIM_2021_3086881
crossref_primary_10_1016_j_apenergy_2024_124464
crossref_primary_10_1016_j_oceaneng_2023_116450
crossref_primary_10_1080_08982112_2022_2150084
crossref_primary_10_1016_j_ress_2021_108136
crossref_primary_10_1016_j_ress_2020_106993
crossref_primary_10_1016_j_ress_2021_107964
crossref_primary_10_1016_j_ress_2020_106995
crossref_primary_10_3390_su152115604
crossref_primary_10_1016_j_ress_2021_107560
crossref_primary_10_1007_s00170_022_09452_1
crossref_primary_10_1016_j_oceaneng_2020_108180
crossref_primary_10_1016_j_ress_2024_110030
crossref_primary_10_1155_2022_9930176
crossref_primary_10_1007_s42979_023_02107_2
crossref_primary_10_1002_qre_3528
crossref_primary_10_1007_s43684_022_00033_3
crossref_primary_10_1155_2021_8938767
crossref_primary_10_1016_j_ress_2023_109834
crossref_primary_10_1016_j_ress_2022_108603
crossref_primary_10_1016_j_ress_2023_109313
crossref_primary_10_1186_s10033_024_01055_z
crossref_primary_10_1016_j_ress_2022_108325
crossref_primary_10_1061__ASCE_WR_1943_5452_0001469
crossref_primary_10_1002_nav_22226
crossref_primary_10_1109_TR_2021_3111651
crossref_primary_10_1177_1748006X221102992
crossref_primary_10_1016_j_ress_2024_110711
crossref_primary_10_1088_1757_899X_1201_1_012088
crossref_primary_10_1016_j_ress_2023_109396
Cites_doi 10.1287/opre.50.3.552.7750
10.1017/S0021900200029843
10.1214/ss/1177011136
10.1109/TR.2011.2161049
10.1287/trsc.2013.0494
10.1002/qre.4680030204
10.1080/0740817X.2013.876126
10.1016/j.ress.2014.06.005
10.1016/j.ress.2015.02.005
10.1080/24725854.2018.1488308
10.1109/TR.2017.2778283
10.1080/15732479.2011.563090
10.1109/TR.2005.853278
10.1080/0740817X.2012.690930
10.1109/TR.2014.2355531
10.1002/asmb.2063
10.1016/j.ejor.2017.02.044
10.1016/j.cie.2018.09.015
10.1016/j.jmva.2008.12.007
10.1080/00401706.1993.10485038
10.1080/07408170701730818
10.1016/j.cie.2018.08.006
10.1016/j.ress.2017.04.010
ContentType Journal Article
Copyright 2019
Copyright Elsevier BV Apr 2020
Copyright_xml – notice: 2019
– notice: Copyright Elsevier BV Apr 2020
DBID AAYXX
CITATION
7ST
7TB
8FD
C1K
FR3
SOI
DOI 10.1016/j.ress.2019.106707
DatabaseName CrossRef
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Environment Abstracts
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Engineering Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0836
ExternalDocumentID 10_1016_j_ress_2019_106707
S0951832019306404
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABMMH
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSB
SSO
SST
SSZ
T5K
TN5
WUQ
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7ST
7TB
8FD
C1K
EFKBS
FR3
SOI
ID FETCH-LOGICAL-c372t-3d1bab2c57356ccd081a707b047af412e89a9316f74cdef7d64250e4b9859ac33
IEDL.DBID .~1
ISSN 0951-8320
IngestDate Wed Aug 13 06:12:13 EDT 2025
Thu Apr 24 22:56:15 EDT 2025
Tue Jul 01 00:45:01 EDT 2025
Fri Feb 23 02:49:26 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Wiener process
Degradation data
Weibull distribution
Condition-based maintenance
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-3d1bab2c57356ccd081a707b047af412e89a9316f74cdef7d64250e4b9859ac33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0951832019306404
PQID 2371773934
PQPubID 2045406
ParticipantIDs proquest_journals_2371773934
crossref_primary_10_1016_j_ress_2019_106707
crossref_citationtrail_10_1016_j_ress_2019_106707
elsevier_sciencedirect_doi_10_1016_j_ress_2019_106707
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2020
2020-04-00
20200401
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: April 2020
PublicationDecade 2020
PublicationPlace Barking
PublicationPlace_xml – name: Barking
PublicationTitle Reliability engineering & system safety
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Almuhtady, Lee, Romeijn, Wynblatt, Ni (bib0001) 2014; 48
Lu, Meeker (bib0015) 1993; 35
Man, Zhou (bib0016) 2018
Liu, Do, Iung, Xie (bib0012) 2019
Zhao, He, He, Xie (bib0031) 2018; 124
Mercier, Meier-Hirmer, Roussignol (bib0018) 2012; 8
Hong, Ye (bib0007) 2017
Keizer, Flapper, Teunter (bib0009) 2017; 261
Liu, Liang, Parlikad, Xie, Kuo (bib0013) 2017; 168
Sun, Ye, Chen (bib0025) 2018; 67
Cox (bib0002) 1992
Nakagawa (bib0020) 1986; 23
Murthy, Xie, Jiang (bib0019) 2004; vol. 505
Gelman, Rubin (bib0005) 1992; 7
Son, Zhang, Sankavaram, Zhou (bib0024) 2015; 64
Wu, Ryan (bib0027) 2011; 60
Wang (bib0026) 2010; 101
Jardine, Anderson, Mann (bib0008) 1987; 3
Lefebvre (bib0010) 2007
Elwany, Gebraeel (bib0004) 2008; 40
Ye, Xie (bib0029) 2015; 31
Peng, Li, Yang, Huang, Zuo (bib0022) 2014; 130
Meeker, Escobar (bib0017) 1998
Park, Padgett (bib0021) 2005; 54
Zhou, Son, Zhou, Mao, Salman (bib0032) 2014; 46
Dayanik, Gürler (bib0003) 2002; 50
Liao, Zhao, Guo (bib0011) 2006
Liu, Li, Al-Khalifa, Hamouda, Coit, Elsayed (bib0014) 2013; 45
SAEInternational (bib0023) 2013
Hoel, Port, Stone (bib0006) 1986
Ye, Chen, Shen (bib0028) 2015; 139
Zhao, Gaudoin, Doyen, Xie (bib0030) 2019; 51
Elwany (10.1016/j.ress.2019.106707_bib0004) 2008; 40
Wu (10.1016/j.ress.2019.106707_bib0027) 2011; 60
Zhao (10.1016/j.ress.2019.106707_bib0030) 2019; 51
Liu (10.1016/j.ress.2019.106707_bib0013) 2017; 168
Mercier (10.1016/j.ress.2019.106707_bib0018) 2012; 8
Ye (10.1016/j.ress.2019.106707_bib0028) 2015; 139
Cox (10.1016/j.ress.2019.106707_bib0002) 1992
Son (10.1016/j.ress.2019.106707_bib0024) 2015; 64
Murthy (10.1016/j.ress.2019.106707_bib0019) 2004; vol. 505
Ye (10.1016/j.ress.2019.106707_bib0029) 2015; 31
Almuhtady (10.1016/j.ress.2019.106707_bib0001) 2014; 48
Zhou (10.1016/j.ress.2019.106707_bib0032) 2014; 46
Lefebvre (10.1016/j.ress.2019.106707_bib0010) 2007
SAEInternational (10.1016/j.ress.2019.106707_bib0023) 2013
Peng (10.1016/j.ress.2019.106707_bib0022) 2014; 130
Nakagawa (10.1016/j.ress.2019.106707_bib0020) 1986; 23
Dayanik (10.1016/j.ress.2019.106707_bib0003) 2002; 50
Man (10.1016/j.ress.2019.106707_bib0016) 2018
Liu (10.1016/j.ress.2019.106707_bib0012) 2019
Liu (10.1016/j.ress.2019.106707_bib0014) 2013; 45
Park (10.1016/j.ress.2019.106707_bib0021) 2005; 54
Sun (10.1016/j.ress.2019.106707_bib0025) 2018; 67
Hong (10.1016/j.ress.2019.106707_bib0007) 2017
Meeker (10.1016/j.ress.2019.106707_bib0017) 1998
Zhao (10.1016/j.ress.2019.106707_bib0031) 2018; 124
Hoel (10.1016/j.ress.2019.106707_bib0006) 1986
Keizer (10.1016/j.ress.2019.106707_bib0009) 2017; 261
Liao (10.1016/j.ress.2019.106707_bib0011) 2006
Lu (10.1016/j.ress.2019.106707_bib0015) 1993; 35
Jardine (10.1016/j.ress.2019.106707_bib0008) 1987; 3
Wang (10.1016/j.ress.2019.106707_bib0026) 2010; 101
Gelman (10.1016/j.ress.2019.106707_bib0005) 1992; 7
References_xml – volume: 130
  start-page: 175
  year: 2014
  end-page: 189
  ident: bib0022
  article-title: Inverse Gaussian process models for degradation analysis: a Bayesian perspective
  publication-title: Reliab Eng Syst Saf
– year: 2013
  ident: bib0023
  article-title: Comprehensive life test for 12 v automotive storage batteries
  publication-title: SAE Standards J2801
– volume: 40
  start-page: 629
  year: 2008
  end-page: 639
  ident: bib0004
  article-title: Sensor-driven prognostic models for equipment replacement and spare parts inventory
  publication-title: IIE Trans
– volume: 51
  start-page: 322
  year: 2019
  end-page: 336
  ident: bib0030
  article-title: Optimal inspection and replacement policy based on experimental degradation data with covariates
  publication-title: IISE Trans
– volume: 124
  start-page: 535
  year: 2018
  end-page: 544
  ident: bib0031
  article-title: Optimal condition-based maintenance policy with delay for systems subject to competing failures under continuous monitoring
  publication-title: Comput Ind Eng
– volume: 139
  start-page: 58
  year: 2015
  end-page: 67
  ident: bib0028
  article-title: A new class of wiener process models for degradation analysis
  publication-title: Reliab Eng Syst Saf
– volume: vol. 505
  year: 2004
  ident: bib0019
  article-title: Weibull models
– year: 2019
  ident: bib0012
  article-title: Stochastic filtering approach for condition-based maintenance considering sensor degradation
  publication-title: IEEE Trans Autom Sci Eng
– volume: 46
  start-page: 1017
  year: 2014
  end-page: 1030
  ident: bib0032
  article-title: Remaining useful life prediction of individual units subject to hard failure
  publication-title: IIE Trans.
– volume: 50
  start-page: 552
  year: 2002
  end-page: 558
  ident: bib0003
  article-title: An adaptive Bayesian replacement policy with minimal repair
  publication-title: Oper Res
– volume: 23
  start-page: 536
  year: 1986
  end-page: 542
  ident: bib0020
  article-title: Periodic and sequential preventive maintenance policies
  publication-title: J Appl Probab
– year: 2007
  ident: bib0010
  article-title: Applied stochastic processes
– volume: 35
  start-page: 161
  year: 1993
  end-page: 174
  ident: bib0015
  article-title: Using degradation measures to estimate a time-to-failure distribution
  publication-title: Technometrics
– volume: 8
  start-page: 357
  year: 2012
  end-page: 366
  ident: bib0018
  article-title: Bivariate gamma wear processes for track geometry modelling, with application to intervention scheduling
  publication-title: Struct Infrastruct Eng
– volume: 101
  start-page: 340
  year: 2010
  end-page: 351
  ident: bib0026
  article-title: Wiener processes with random effects for degradation data
  publication-title: J Multivar Anal
– volume: 3
  start-page: 77
  year: 1987
  end-page: 82
  ident: bib0008
  article-title: Application of the weibull proportional hazards model to aircraft and marine engine failure data
  publication-title: Qual Reliab Eng Int
– year: 2018
  ident: bib0016
  article-title: Prediction of hard failures with stochastic degradation signals using wiener process and proportional hazards model
  publication-title: Comput Ind Eng
– start-page: 1461
  year: 2017
  end-page: 1483
  ident: bib0007
  article-title: When is acceleration unnecessary in a degradation test?
  publication-title: Stat Sin
– year: 1986
  ident: bib0006
  article-title: Introduction to stochastic processes
– volume: 54
  start-page: 530
  year: 2005
  end-page: 540
  ident: bib0021
  article-title: New cumulative damage models for failure using stochastic processes as initial damage
  publication-title: IEEE Trans Reliab
– volume: 48
  start-page: 609
  year: 2014
  end-page: 618
  ident: bib0001
  article-title: A degradation-informed battery-swapping policy for fleets of electric or hybrid-electric vehicles
  publication-title: Transp Sci
– volume: 168
  start-page: 200
  year: 2017
  end-page: 209
  ident: bib0013
  article-title: Condition-based maintenance for systems with aging and cumulative damage based on proportional hazards model
  publication-title: Reliab Eng Syst Saf
– volume: 64
  start-page: 182
  year: 2015
  end-page: 196
  ident: bib0024
  article-title: Rul prediction for individual units based on condition monitoring signals with a change point
  publication-title: IEEE Trans Reliab
– volume: 261
  start-page: 405
  year: 2017
  end-page: 420
  ident: bib0009
  article-title: Condition-based maintenance policies for systems with multiple dependent components: a review
  publication-title: Eur J Oper Res
– volume: 7
  start-page: 457
  year: 1992
  end-page: 472
  ident: bib0005
  article-title: Inference from iterative simulation using multiple sequences
  publication-title: Stat Sci
– volume: 31
  start-page: 16
  year: 2015
  end-page: 32
  ident: bib0029
  article-title: Stochastic modelling and analysis of degradation for highly reliable products
  publication-title: Appl Stoch Models Bus Ind
– start-page: 527
  year: 1992
  end-page: 541
  ident: bib0002
  article-title: Regression models and life-tables
  publication-title: Breakthroughs in statistics
– year: 1998
  ident: bib0017
  article-title: Statistical methods for reliability data
– volume: 60
  start-page: 580
  year: 2011
  end-page: 589
  ident: bib0027
  article-title: Optimal replacement in the proportional hazards model with semi-Markovian covariate process and continuous monitoring
  publication-title: IEEE Trans Reliab
– start-page: 127
  year: 2006
  end-page: 132
  ident: bib0011
  article-title: Predicting remaining useful life of an individual unit using proportional hazards model and logistic regression model
  publication-title: Reliability and maintainability symposium, 2006. RAMS’06. Annual
– volume: 45
  start-page: 422
  year: 2013
  end-page: 435
  ident: bib0014
  article-title: Condition-based maintenance for continuously monitored degrading systems with multiple failure modes
  publication-title: IIE Trans
– volume: 67
  start-page: 401
  year: 2018
  end-page: 413
  ident: bib0025
  article-title: Optimal inspection and replacement policies for multi-unit systems subject to degradation
  publication-title: IEEE Trans Reliab
– volume: 50
  start-page: 552
  issue: 3
  year: 2002
  ident: 10.1016/j.ress.2019.106707_bib0003
  article-title: An adaptive Bayesian replacement policy with minimal repair
  publication-title: Oper Res
  doi: 10.1287/opre.50.3.552.7750
– year: 2007
  ident: 10.1016/j.ress.2019.106707_bib0010
– start-page: 1461
  year: 2017
  ident: 10.1016/j.ress.2019.106707_bib0007
  article-title: When is acceleration unnecessary in a degradation test?
  publication-title: Stat Sin
– volume: 23
  start-page: 536
  issue: 2
  year: 1986
  ident: 10.1016/j.ress.2019.106707_bib0020
  article-title: Periodic and sequential preventive maintenance policies
  publication-title: J Appl Probab
  doi: 10.1017/S0021900200029843
– volume: 7
  start-page: 457
  issue: 4
  year: 1992
  ident: 10.1016/j.ress.2019.106707_bib0005
  article-title: Inference from iterative simulation using multiple sequences
  publication-title: Stat Sci
  doi: 10.1214/ss/1177011136
– volume: 60
  start-page: 580
  issue: 3
  year: 2011
  ident: 10.1016/j.ress.2019.106707_bib0027
  article-title: Optimal replacement in the proportional hazards model with semi-Markovian covariate process and continuous monitoring
  publication-title: IEEE Trans Reliab
  doi: 10.1109/TR.2011.2161049
– start-page: 527
  year: 1992
  ident: 10.1016/j.ress.2019.106707_bib0002
  article-title: Regression models and life-tables
– volume: 48
  start-page: 609
  issue: 4
  year: 2014
  ident: 10.1016/j.ress.2019.106707_bib0001
  article-title: A degradation-informed battery-swapping policy for fleets of electric or hybrid-electric vehicles
  publication-title: Transp Sci
  doi: 10.1287/trsc.2013.0494
– year: 1998
  ident: 10.1016/j.ress.2019.106707_bib0017
– volume: vol. 505
  year: 2004
  ident: 10.1016/j.ress.2019.106707_bib0019
– volume: 3
  start-page: 77
  issue: 2
  year: 1987
  ident: 10.1016/j.ress.2019.106707_bib0008
  article-title: Application of the weibull proportional hazards model to aircraft and marine engine failure data
  publication-title: Qual Reliab Eng Int
  doi: 10.1002/qre.4680030204
– volume: 46
  start-page: 1017
  issue: 10
  year: 2014
  ident: 10.1016/j.ress.2019.106707_bib0032
  article-title: Remaining useful life prediction of individual units subject to hard failure
  publication-title: IIE Trans.
  doi: 10.1080/0740817X.2013.876126
– year: 1986
  ident: 10.1016/j.ress.2019.106707_bib0006
– volume: 130
  start-page: 175
  year: 2014
  ident: 10.1016/j.ress.2019.106707_bib0022
  article-title: Inverse Gaussian process models for degradation analysis: a Bayesian perspective
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2014.06.005
– year: 2013
  ident: 10.1016/j.ress.2019.106707_bib0023
  article-title: Comprehensive life test for 12 v automotive storage batteries
– volume: 139
  start-page: 58
  year: 2015
  ident: 10.1016/j.ress.2019.106707_bib0028
  article-title: A new class of wiener process models for degradation analysis
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2015.02.005
– volume: 51
  start-page: 322
  issue: 3
  year: 2019
  ident: 10.1016/j.ress.2019.106707_bib0030
  article-title: Optimal inspection and replacement policy based on experimental degradation data with covariates
  publication-title: IISE Trans
  doi: 10.1080/24725854.2018.1488308
– volume: 67
  start-page: 401
  issue: 1
  year: 2018
  ident: 10.1016/j.ress.2019.106707_bib0025
  article-title: Optimal inspection and replacement policies for multi-unit systems subject to degradation
  publication-title: IEEE Trans Reliab
  doi: 10.1109/TR.2017.2778283
– volume: 8
  start-page: 357
  issue: 4
  year: 2012
  ident: 10.1016/j.ress.2019.106707_bib0018
  article-title: Bivariate gamma wear processes for track geometry modelling, with application to intervention scheduling
  publication-title: Struct Infrastruct Eng
  doi: 10.1080/15732479.2011.563090
– volume: 54
  start-page: 530
  issue: 3
  year: 2005
  ident: 10.1016/j.ress.2019.106707_bib0021
  article-title: New cumulative damage models for failure using stochastic processes as initial damage
  publication-title: IEEE Trans Reliab
  doi: 10.1109/TR.2005.853278
– start-page: 127
  year: 2006
  ident: 10.1016/j.ress.2019.106707_bib0011
  article-title: Predicting remaining useful life of an individual unit using proportional hazards model and logistic regression model
– volume: 45
  start-page: 422
  issue: 4
  year: 2013
  ident: 10.1016/j.ress.2019.106707_bib0014
  article-title: Condition-based maintenance for continuously monitored degrading systems with multiple failure modes
  publication-title: IIE Trans
  doi: 10.1080/0740817X.2012.690930
– volume: 64
  start-page: 182
  issue: 1
  year: 2015
  ident: 10.1016/j.ress.2019.106707_bib0024
  article-title: Rul prediction for individual units based on condition monitoring signals with a change point
  publication-title: IEEE Trans Reliab
  doi: 10.1109/TR.2014.2355531
– volume: 31
  start-page: 16
  issue: 1
  year: 2015
  ident: 10.1016/j.ress.2019.106707_bib0029
  article-title: Stochastic modelling and analysis of degradation for highly reliable products
  publication-title: Appl Stoch Models Bus Ind
  doi: 10.1002/asmb.2063
– volume: 261
  start-page: 405
  issue: 2
  year: 2017
  ident: 10.1016/j.ress.2019.106707_bib0009
  article-title: Condition-based maintenance policies for systems with multiple dependent components: a review
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2017.02.044
– year: 2018
  ident: 10.1016/j.ress.2019.106707_bib0016
  article-title: Prediction of hard failures with stochastic degradation signals using wiener process and proportional hazards model
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2018.09.015
– volume: 101
  start-page: 340
  issue: 2
  year: 2010
  ident: 10.1016/j.ress.2019.106707_bib0026
  article-title: Wiener processes with random effects for degradation data
  publication-title: J Multivar Anal
  doi: 10.1016/j.jmva.2008.12.007
– volume: 35
  start-page: 161
  issue: 2
  year: 1993
  ident: 10.1016/j.ress.2019.106707_bib0015
  article-title: Using degradation measures to estimate a time-to-failure distribution
  publication-title: Technometrics
  doi: 10.1080/00401706.1993.10485038
– volume: 40
  start-page: 629
  issue: 7
  year: 2008
  ident: 10.1016/j.ress.2019.106707_bib0004
  article-title: Sensor-driven prognostic models for equipment replacement and spare parts inventory
  publication-title: IIE Trans
  doi: 10.1080/07408170701730818
– volume: 124
  start-page: 535
  year: 2018
  ident: 10.1016/j.ress.2019.106707_bib0031
  article-title: Optimal condition-based maintenance policy with delay for systems subject to competing failures under continuous monitoring
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2018.08.006
– volume: 168
  start-page: 200
  year: 2017
  ident: 10.1016/j.ress.2019.106707_bib0013
  article-title: Condition-based maintenance for systems with aging and cumulative damage based on proportional hazards model
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2017.04.010
– year: 2019
  ident: 10.1016/j.ress.2019.106707_bib0012
  article-title: Stochastic filtering approach for condition-based maintenance considering sensor degradation
  publication-title: IEEE Trans Autom Sci Eng
SSID ssj0004957
Score 2.6048415
Snippet •A Weibull proportional hazards model is adopted to model the hazard rate of the hard failure.•The degradation level is treated as a multiplicative...
The remaining useful lifetime (RUL) estimated from the in-situ degradation data has shown to be useful for online predictive maintenance. In the literature,...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 106707
SubjectTerms Condition-based maintenance
Degradation
Degradation data
Failure
Failure times
Hazards
Inspection
Lead acid batteries
Maintenance costs
Maintenance management
Predictive maintenance
Reliability engineering
Schedules
Statistical models
System failures
Weibull distribution
Wiener process
Title Predictive maintenance of systems subject to hard failure based on proportional hazards model
URI https://dx.doi.org/10.1016/j.ress.2019.106707
https://www.proquest.com/docview/2371773934
Volume 196
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIpCqTywobRpfInjsaqoCogKCSp1QZEdO1IRJFWbLgz8dnx58BLqwJrYUXK-3MP-7jtCLqS2fskPwAHDtQNMaie0kanDjWfji8AVbkGkfTcJxlO4mfmzBhnWtTAIq6xsf2nTC2tdXelV0uwt5vPeAwYHVh9tjIJRdMEJCsBRy7vvXzAPmwDwup08jq4KZ0qMF2a0CO8SXWRSw5ayfzunX2a68D2jPbJbBY10UL7XPmmY9IDsfKMSPCRP90s8ckHjRV8lkkAgk4ahWUJLsuYVXa0VbrrQPKNYakUTOUdMOkVHpmmW0gV2TFiWm4N2yBvWY9GiVc4RmY6uHodjp2qd4MSMe7nDdF9J5cU-Z34Qx9o6fmm_T7nAZQJ9z4RCCtYPEg6xNgnXNg3xXQNKhL6QMWPHpJlmqTkhNBAxCAgSFTIGkithFAgZhiLQPihIWqRfyyyKK15xbG_xEtUAsucI5RyhnKNSzi1y-TlnUbJqbBzt10sR_dCNyJr9jfPa9bpF1Z9p7zObwCINIJz-87FnZNvDpLuA77RJM1-uzbmNTHLVKVSvQ7YG17fjyQdldeIb
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8IHNSD8TOiqD14MxNY2209EiIB-YiJkHAxTbt2CUaBwLj419u3dX7FcPC69S3ba_fe77Xv_R5CN1Jbv8QC6lETao8Sqb3IIlMvNL7FF0GDNzIi7eEo6E7ow5RNS6hd1MJAWqWz_blNz6y1u1J32qwvZ7P6E4ADux4tRgEUDZygFWCnYmVUafX63dFXeSTPCT-hozwIuNqZPM0LglrI8OJ3QKYGXWX_9k-_LHXmfjoHaN_hRtzKX-0Qlcz8CO19YxM8Rs-PKzh1AfuF3yTwQACZhsGLBOd8zWu83ijYd8HpAkO1FU7kDNLSMfgyjRdzvISmCat8f9AOeYeSLJx1yzlBk879uN31XPcELyahn3pEN5VUfsxCwoI41tb3S_t9qkFDmdCmbyIuOWkGSUhjbZJQ20iENQxVPGJcxoScovJ8MTdnCAc8ppwGiYoIoTJU3CjKZRTxQDOqaFJFzUJnInbU4tDh4lUUOWQvAvQsQM8i13MV3X7KLHNija2jWTEV4sfyENbyb5WrFfMm3M9p7xMbwwITID3_52Ov0U53PByIQW_Uv0C7PsTgWTZPDZXT1cZcWqCSqiu3ED8ALLXkzA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predictive+maintenance+of+systems+subject+to+hard+failure+based+on+proportional+hazards+model&rft.jtitle=Reliability+engineering+%26+system+safety&rft.au=Hu%2C+Jiawen&rft.au=Chen%2C+Piao&rft.date=2020-04-01&rft.pub=Elsevier+BV&rft.issn=0951-8320&rft.eissn=1879-0836&rft.volume=196&rft.spage=1&rft_id=info:doi/10.1016%2Fj.ress.2019.106707&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8320&client=summon