Predictive maintenance of systems subject to hard failure based on proportional hazards model
•A Weibull proportional hazards model is adopted to model the hazard rate of the hard failure.•The degradation level is treated as a multiplicative time-varying covariate.•The closed-form of the RUL distribution is derived based on the Brownian bridge theory.•The optimal maintenance schedule is upda...
Saved in:
Published in | Reliability engineering & system safety Vol. 196; p. 106707 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Barking
Elsevier Ltd
01.04.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A Weibull proportional hazards model is adopted to model the hazard rate of the hard failure.•The degradation level is treated as a multiplicative time-varying covariate.•The closed-form of the RUL distribution is derived based on the Brownian bridge theory.•The optimal maintenance schedule is updated when new degradation signals are available.
The remaining useful lifetime (RUL) estimated from the in-situ degradation data has shown to be useful for online predictive maintenance. In the literature, the RUL is often estimated by assuming a soft-failure threshold for the degradation data. In practice, however, systems may not be subject to the degradation-induced soft failures. Instead, the systems are deemed to be fail when they cannot perform the intended function, and such failures are known as hard failures. Because there are no fixed thresholds for hard failures, the corresponding RUL estimation is not an easy task, which causes difficulties in finding the optimal maintenance schedule. In this study, a Weibull proportional hazards model is proposed to jointly model the degradation data and the failure time data. The degradation data are treated as the time-varying covariates so that the degradation does not directly lead to system failures, but increases the hazard rate of hard failures. A random-effects Wiener process is proposed to model the degradation data by considering the system heterogeneities. Based on the developed proportional hazards model, closed-form distribution of the RUL is derived upon each inspection and the optimal maintenance schedule is then obtained by minimizing the system maintenance cost. The proposed maintenance strategy is successfully applied to predictive maintenance of lead-acid batteries. |
---|---|
AbstractList | The remaining useful lifetime (RUL) estimated from the in-situ degradation data has shown to be useful for online predictive maintenance. In the literature, the RUL is often estimated by assuming a soft-failure threshold for the degradation data. In practice, however, systems may not be subject to the degradation-induced soft failures. Instead, the systems are deemed to be fail when they cannot perform the intended function, and such failures are known as hard failures. Because there are no fixed thresholds for hard failures, the corresponding RUL estimation is not an easy task, which causes difficulties in finding the optimal maintenance schedule. In this study, a Weibull proportional hazards model is proposed to jointly model the degradation data and the failure time data. The degradation data are treated as the time-varying covariates so that the degradation does not directly lead to system failures, but increases the hazard rate of hard failures. A random-effects Wiener process is proposed to model the degradation data by considering the system heterogeneities. Based on the developed proportional hazards model, closed-form distribution of the RUL is derived upon each inspection and the optimal maintenance schedule is then obtained by minimizing the system maintenance cost. The proposed maintenance strategy is successfully applied to predictive maintenance of lead-acid batteries. •A Weibull proportional hazards model is adopted to model the hazard rate of the hard failure.•The degradation level is treated as a multiplicative time-varying covariate.•The closed-form of the RUL distribution is derived based on the Brownian bridge theory.•The optimal maintenance schedule is updated when new degradation signals are available. The remaining useful lifetime (RUL) estimated from the in-situ degradation data has shown to be useful for online predictive maintenance. In the literature, the RUL is often estimated by assuming a soft-failure threshold for the degradation data. In practice, however, systems may not be subject to the degradation-induced soft failures. Instead, the systems are deemed to be fail when they cannot perform the intended function, and such failures are known as hard failures. Because there are no fixed thresholds for hard failures, the corresponding RUL estimation is not an easy task, which causes difficulties in finding the optimal maintenance schedule. In this study, a Weibull proportional hazards model is proposed to jointly model the degradation data and the failure time data. The degradation data are treated as the time-varying covariates so that the degradation does not directly lead to system failures, but increases the hazard rate of hard failures. A random-effects Wiener process is proposed to model the degradation data by considering the system heterogeneities. Based on the developed proportional hazards model, closed-form distribution of the RUL is derived upon each inspection and the optimal maintenance schedule is then obtained by minimizing the system maintenance cost. The proposed maintenance strategy is successfully applied to predictive maintenance of lead-acid batteries. |
ArticleNumber | 106707 |
Author | Hu, Jiawen Chen, Piao |
Author_xml | – sequence: 1 givenname: Jiawen surname: Hu fullname: Hu, Jiawen email: hdl@sjtu.edu.cn organization: Department of Industrial and Systems Engineering, National University of Singapore, Singapore – sequence: 2 givenname: Piao surname: Chen fullname: Chen, Piao email: isechenp@gmail.com organization: Delft Institute of Applied Mathematics, Delft University of Technology, Delft, the Netherlands |
BookMark | eNp9kM9LwzAUx4NMcJv-A54CnjuTpm0a8CLDXzDQgx4lpMkrprTNTNLB_OvNmCcPOz14fD-P9_0s0Gx0IyB0TcmKElrddisPIaxyQkVaVJzwMzSnNRcZqVk1Q3MiSprVLCcXaBFCRwgpRMnn6PPNg7E62h3gQdkxwqhGDdi1OOxDhCHgMDUd6Iijw1_KG9wq208ecKMCGOxGvPVu63y0blR9ivykUMCDM9BfovNW9QGu_uYSfTw-vK-fs83r08v6fpNpxvOYMUMb1eS65KystDakpipVaEjBVVvQHGqhBKNVywttoOWmKvKSQNGIuhRKM7ZEN8e76ZXvCUKUnZt8eifInHHKOROsSKn8mNLeheChlVtvB-X3khJ50Cg7edAoDxrlUWOC6n-QtlEdykafRJxG744opOo7C14GbSHZNdYnodI4ewr_BTwRkTQ |
CitedBy_id | crossref_primary_10_3390_logistics6010004 crossref_primary_10_1016_j_cie_2020_106291 crossref_primary_10_1016_j_cie_2023_109564 crossref_primary_10_1016_j_cie_2022_108478 crossref_primary_10_1016_j_ress_2021_107628 crossref_primary_10_1109_TII_2021_3138558 crossref_primary_10_1016_j_cor_2021_105284 crossref_primary_10_1016_j_isatra_2023_01_013 crossref_primary_10_1016_j_ress_2021_107743 crossref_primary_10_1109_TR_2020_2981136 crossref_primary_10_1016_j_ress_2021_107919 crossref_primary_10_1007_s00170_021_08047_6 crossref_primary_10_1109_JSEN_2022_3175722 crossref_primary_10_1007_s42524_021_0166_0 crossref_primary_10_1109_JSEN_2021_3133622 crossref_primary_10_1016_j_spc_2021_03_023 crossref_primary_10_1109_JAS_2021_1004051 crossref_primary_10_1002_qre_3108 crossref_primary_10_5194_wes_8_557_2023 crossref_primary_10_1080_0305215X_2022_2122457 crossref_primary_10_1016_j_apm_2019_12_017 crossref_primary_10_3390_sym14051047 crossref_primary_10_1016_j_cirp_2020_04_004 crossref_primary_10_3390_sym14112379 crossref_primary_10_1016_j_ifacol_2023_10_1334 crossref_primary_10_1002_qre_3473 crossref_primary_10_1016_j_ifacol_2020_11_047 crossref_primary_10_17531_ein_2021_1_16 crossref_primary_10_1007_s40313_021_00803_z crossref_primary_10_1016_j_ress_2022_108779 crossref_primary_10_1016_j_ress_2022_108652 crossref_primary_10_3390_en13226014 crossref_primary_10_1016_j_ress_2022_108379 crossref_primary_10_1016_j_ress_2022_108775 crossref_primary_10_1016_j_neucom_2021_11_005 crossref_primary_10_1016_j_cie_2022_108465 crossref_primary_10_3390_sym14122555 crossref_primary_10_3390_sym14081582 crossref_primary_10_1016_j_ress_2024_110233 crossref_primary_10_1088_1361_6501_ad4fb1 crossref_primary_10_1016_j_compeleceng_2024_109603 crossref_primary_10_1108_JQME_03_2020_0017 crossref_primary_10_1016_j_ress_2024_110072 crossref_primary_10_3390_sym14081617 crossref_primary_10_1016_j_engfailanal_2020_104953 crossref_primary_10_1016_j_ress_2021_107895 crossref_primary_10_1016_j_ymssp_2022_109666 crossref_primary_10_1016_j_ress_2021_107897 crossref_primary_10_1016_j_ress_2021_108181 crossref_primary_10_17531_ein_2021_4_10 crossref_primary_10_1016_j_cie_2023_109188 crossref_primary_10_1016_j_measurement_2024_114821 crossref_primary_10_1016_j_jmsy_2020_08_013 crossref_primary_10_3390_sym14071308 crossref_primary_10_1016_j_cirpj_2022_11_004 crossref_primary_10_1016_j_ress_2020_107144 crossref_primary_10_1016_j_ejor_2022_05_020 crossref_primary_10_1016_j_ress_2022_108993 crossref_primary_10_3390_sym14030555 crossref_primary_10_1109_TII_2020_3021054 crossref_primary_10_1016_j_ress_2020_107028 crossref_primary_10_1016_j_procs_2025_02_041 crossref_primary_10_1088_1742_6596_2369_1_012097 crossref_primary_10_1109_TPWRS_2020_3037558 crossref_primary_10_3390_sym14050968 crossref_primary_10_1080_16843703_2022_2126263 crossref_primary_10_1088_1742_6596_2369_1_012098 crossref_primary_10_3390_sym14040651 crossref_primary_10_3390_axioms12060572 crossref_primary_10_1088_1742_6596_2369_1_012094 crossref_primary_10_1002_qre_3423 crossref_primary_10_1002_qre_3424 crossref_primary_10_1016_j_ress_2022_108988 crossref_primary_10_1016_j_ress_2021_107676 crossref_primary_10_3934_mbe_2023550 crossref_primary_10_3390_sym14050954 crossref_primary_10_1109_TR_2022_3193353 crossref_primary_10_1109_TR_2022_3224170 crossref_primary_10_1002_qre_2788 crossref_primary_10_1109_TR_2023_3295943 crossref_primary_10_1002_qre_3630 crossref_primary_10_1016_j_ress_2024_110661 crossref_primary_10_1109_TIM_2021_3086881 crossref_primary_10_1016_j_apenergy_2024_124464 crossref_primary_10_1016_j_oceaneng_2023_116450 crossref_primary_10_1080_08982112_2022_2150084 crossref_primary_10_1016_j_ress_2021_108136 crossref_primary_10_1016_j_ress_2020_106993 crossref_primary_10_1016_j_ress_2021_107964 crossref_primary_10_1016_j_ress_2020_106995 crossref_primary_10_3390_su152115604 crossref_primary_10_1016_j_ress_2021_107560 crossref_primary_10_1007_s00170_022_09452_1 crossref_primary_10_1016_j_oceaneng_2020_108180 crossref_primary_10_1016_j_ress_2024_110030 crossref_primary_10_1155_2022_9930176 crossref_primary_10_1007_s42979_023_02107_2 crossref_primary_10_1002_qre_3528 crossref_primary_10_1007_s43684_022_00033_3 crossref_primary_10_1155_2021_8938767 crossref_primary_10_1016_j_ress_2023_109834 crossref_primary_10_1016_j_ress_2022_108603 crossref_primary_10_1016_j_ress_2023_109313 crossref_primary_10_1186_s10033_024_01055_z crossref_primary_10_1016_j_ress_2022_108325 crossref_primary_10_1061__ASCE_WR_1943_5452_0001469 crossref_primary_10_1002_nav_22226 crossref_primary_10_1109_TR_2021_3111651 crossref_primary_10_1177_1748006X221102992 crossref_primary_10_1016_j_ress_2024_110711 crossref_primary_10_1088_1757_899X_1201_1_012088 crossref_primary_10_1016_j_ress_2023_109396 |
Cites_doi | 10.1287/opre.50.3.552.7750 10.1017/S0021900200029843 10.1214/ss/1177011136 10.1109/TR.2011.2161049 10.1287/trsc.2013.0494 10.1002/qre.4680030204 10.1080/0740817X.2013.876126 10.1016/j.ress.2014.06.005 10.1016/j.ress.2015.02.005 10.1080/24725854.2018.1488308 10.1109/TR.2017.2778283 10.1080/15732479.2011.563090 10.1109/TR.2005.853278 10.1080/0740817X.2012.690930 10.1109/TR.2014.2355531 10.1002/asmb.2063 10.1016/j.ejor.2017.02.044 10.1016/j.cie.2018.09.015 10.1016/j.jmva.2008.12.007 10.1080/00401706.1993.10485038 10.1080/07408170701730818 10.1016/j.cie.2018.08.006 10.1016/j.ress.2017.04.010 |
ContentType | Journal Article |
Copyright | 2019 Copyright Elsevier BV Apr 2020 |
Copyright_xml | – notice: 2019 – notice: Copyright Elsevier BV Apr 2020 |
DBID | AAYXX CITATION 7ST 7TB 8FD C1K FR3 SOI |
DOI | 10.1016/j.ress.2019.106707 |
DatabaseName | CrossRef Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Environment Abstracts |
DatabaseTitle | CrossRef Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Environment Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Engineering Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-0836 |
ExternalDocumentID | 10_1016_j_ress_2019_106707 S0951832019306404 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN 9JO AABNK AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABJNI ABMAC ABMMH ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK ASPBG AVARZ AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PRBVW Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SSB SSO SST SSZ T5K TN5 WUQ XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7ST 7TB 8FD C1K EFKBS FR3 SOI |
ID | FETCH-LOGICAL-c372t-3d1bab2c57356ccd081a707b047af412e89a9316f74cdef7d64250e4b9859ac33 |
IEDL.DBID | .~1 |
ISSN | 0951-8320 |
IngestDate | Wed Aug 13 06:12:13 EDT 2025 Thu Apr 24 22:56:15 EDT 2025 Tue Jul 01 00:45:01 EDT 2025 Fri Feb 23 02:49:26 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Wiener process Degradation data Weibull distribution Condition-based maintenance |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-3d1bab2c57356ccd081a707b047af412e89a9316f74cdef7d64250e4b9859ac33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0951832019306404 |
PQID | 2371773934 |
PQPubID | 2045406 |
ParticipantIDs | proquest_journals_2371773934 crossref_primary_10_1016_j_ress_2019_106707 crossref_citationtrail_10_1016_j_ress_2019_106707 elsevier_sciencedirect_doi_10_1016_j_ress_2019_106707 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2020 2020-04-00 20200401 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 04 year: 2020 text: April 2020 |
PublicationDecade | 2020 |
PublicationPlace | Barking |
PublicationPlace_xml | – name: Barking |
PublicationTitle | Reliability engineering & system safety |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Almuhtady, Lee, Romeijn, Wynblatt, Ni (bib0001) 2014; 48 Lu, Meeker (bib0015) 1993; 35 Man, Zhou (bib0016) 2018 Liu, Do, Iung, Xie (bib0012) 2019 Zhao, He, He, Xie (bib0031) 2018; 124 Mercier, Meier-Hirmer, Roussignol (bib0018) 2012; 8 Hong, Ye (bib0007) 2017 Keizer, Flapper, Teunter (bib0009) 2017; 261 Liu, Liang, Parlikad, Xie, Kuo (bib0013) 2017; 168 Sun, Ye, Chen (bib0025) 2018; 67 Cox (bib0002) 1992 Nakagawa (bib0020) 1986; 23 Murthy, Xie, Jiang (bib0019) 2004; vol. 505 Gelman, Rubin (bib0005) 1992; 7 Son, Zhang, Sankavaram, Zhou (bib0024) 2015; 64 Wu, Ryan (bib0027) 2011; 60 Wang (bib0026) 2010; 101 Jardine, Anderson, Mann (bib0008) 1987; 3 Lefebvre (bib0010) 2007 Elwany, Gebraeel (bib0004) 2008; 40 Ye, Xie (bib0029) 2015; 31 Peng, Li, Yang, Huang, Zuo (bib0022) 2014; 130 Meeker, Escobar (bib0017) 1998 Park, Padgett (bib0021) 2005; 54 Zhou, Son, Zhou, Mao, Salman (bib0032) 2014; 46 Dayanik, Gürler (bib0003) 2002; 50 Liao, Zhao, Guo (bib0011) 2006 Liu, Li, Al-Khalifa, Hamouda, Coit, Elsayed (bib0014) 2013; 45 SAEInternational (bib0023) 2013 Hoel, Port, Stone (bib0006) 1986 Ye, Chen, Shen (bib0028) 2015; 139 Zhao, Gaudoin, Doyen, Xie (bib0030) 2019; 51 Elwany (10.1016/j.ress.2019.106707_bib0004) 2008; 40 Wu (10.1016/j.ress.2019.106707_bib0027) 2011; 60 Zhao (10.1016/j.ress.2019.106707_bib0030) 2019; 51 Liu (10.1016/j.ress.2019.106707_bib0013) 2017; 168 Mercier (10.1016/j.ress.2019.106707_bib0018) 2012; 8 Ye (10.1016/j.ress.2019.106707_bib0028) 2015; 139 Cox (10.1016/j.ress.2019.106707_bib0002) 1992 Son (10.1016/j.ress.2019.106707_bib0024) 2015; 64 Murthy (10.1016/j.ress.2019.106707_bib0019) 2004; vol. 505 Ye (10.1016/j.ress.2019.106707_bib0029) 2015; 31 Almuhtady (10.1016/j.ress.2019.106707_bib0001) 2014; 48 Zhou (10.1016/j.ress.2019.106707_bib0032) 2014; 46 Lefebvre (10.1016/j.ress.2019.106707_bib0010) 2007 SAEInternational (10.1016/j.ress.2019.106707_bib0023) 2013 Peng (10.1016/j.ress.2019.106707_bib0022) 2014; 130 Nakagawa (10.1016/j.ress.2019.106707_bib0020) 1986; 23 Dayanik (10.1016/j.ress.2019.106707_bib0003) 2002; 50 Man (10.1016/j.ress.2019.106707_bib0016) 2018 Liu (10.1016/j.ress.2019.106707_bib0012) 2019 Liu (10.1016/j.ress.2019.106707_bib0014) 2013; 45 Park (10.1016/j.ress.2019.106707_bib0021) 2005; 54 Sun (10.1016/j.ress.2019.106707_bib0025) 2018; 67 Hong (10.1016/j.ress.2019.106707_bib0007) 2017 Meeker (10.1016/j.ress.2019.106707_bib0017) 1998 Zhao (10.1016/j.ress.2019.106707_bib0031) 2018; 124 Hoel (10.1016/j.ress.2019.106707_bib0006) 1986 Keizer (10.1016/j.ress.2019.106707_bib0009) 2017; 261 Liao (10.1016/j.ress.2019.106707_bib0011) 2006 Lu (10.1016/j.ress.2019.106707_bib0015) 1993; 35 Jardine (10.1016/j.ress.2019.106707_bib0008) 1987; 3 Wang (10.1016/j.ress.2019.106707_bib0026) 2010; 101 Gelman (10.1016/j.ress.2019.106707_bib0005) 1992; 7 |
References_xml | – volume: 130 start-page: 175 year: 2014 end-page: 189 ident: bib0022 article-title: Inverse Gaussian process models for degradation analysis: a Bayesian perspective publication-title: Reliab Eng Syst Saf – year: 2013 ident: bib0023 article-title: Comprehensive life test for 12 v automotive storage batteries publication-title: SAE Standards J2801 – volume: 40 start-page: 629 year: 2008 end-page: 639 ident: bib0004 article-title: Sensor-driven prognostic models for equipment replacement and spare parts inventory publication-title: IIE Trans – volume: 51 start-page: 322 year: 2019 end-page: 336 ident: bib0030 article-title: Optimal inspection and replacement policy based on experimental degradation data with covariates publication-title: IISE Trans – volume: 124 start-page: 535 year: 2018 end-page: 544 ident: bib0031 article-title: Optimal condition-based maintenance policy with delay for systems subject to competing failures under continuous monitoring publication-title: Comput Ind Eng – volume: 139 start-page: 58 year: 2015 end-page: 67 ident: bib0028 article-title: A new class of wiener process models for degradation analysis publication-title: Reliab Eng Syst Saf – volume: vol. 505 year: 2004 ident: bib0019 article-title: Weibull models – year: 2019 ident: bib0012 article-title: Stochastic filtering approach for condition-based maintenance considering sensor degradation publication-title: IEEE Trans Autom Sci Eng – volume: 46 start-page: 1017 year: 2014 end-page: 1030 ident: bib0032 article-title: Remaining useful life prediction of individual units subject to hard failure publication-title: IIE Trans. – volume: 50 start-page: 552 year: 2002 end-page: 558 ident: bib0003 article-title: An adaptive Bayesian replacement policy with minimal repair publication-title: Oper Res – volume: 23 start-page: 536 year: 1986 end-page: 542 ident: bib0020 article-title: Periodic and sequential preventive maintenance policies publication-title: J Appl Probab – year: 2007 ident: bib0010 article-title: Applied stochastic processes – volume: 35 start-page: 161 year: 1993 end-page: 174 ident: bib0015 article-title: Using degradation measures to estimate a time-to-failure distribution publication-title: Technometrics – volume: 8 start-page: 357 year: 2012 end-page: 366 ident: bib0018 article-title: Bivariate gamma wear processes for track geometry modelling, with application to intervention scheduling publication-title: Struct Infrastruct Eng – volume: 101 start-page: 340 year: 2010 end-page: 351 ident: bib0026 article-title: Wiener processes with random effects for degradation data publication-title: J Multivar Anal – volume: 3 start-page: 77 year: 1987 end-page: 82 ident: bib0008 article-title: Application of the weibull proportional hazards model to aircraft and marine engine failure data publication-title: Qual Reliab Eng Int – year: 2018 ident: bib0016 article-title: Prediction of hard failures with stochastic degradation signals using wiener process and proportional hazards model publication-title: Comput Ind Eng – start-page: 1461 year: 2017 end-page: 1483 ident: bib0007 article-title: When is acceleration unnecessary in a degradation test? publication-title: Stat Sin – year: 1986 ident: bib0006 article-title: Introduction to stochastic processes – volume: 54 start-page: 530 year: 2005 end-page: 540 ident: bib0021 article-title: New cumulative damage models for failure using stochastic processes as initial damage publication-title: IEEE Trans Reliab – volume: 48 start-page: 609 year: 2014 end-page: 618 ident: bib0001 article-title: A degradation-informed battery-swapping policy for fleets of electric or hybrid-electric vehicles publication-title: Transp Sci – volume: 168 start-page: 200 year: 2017 end-page: 209 ident: bib0013 article-title: Condition-based maintenance for systems with aging and cumulative damage based on proportional hazards model publication-title: Reliab Eng Syst Saf – volume: 64 start-page: 182 year: 2015 end-page: 196 ident: bib0024 article-title: Rul prediction for individual units based on condition monitoring signals with a change point publication-title: IEEE Trans Reliab – volume: 261 start-page: 405 year: 2017 end-page: 420 ident: bib0009 article-title: Condition-based maintenance policies for systems with multiple dependent components: a review publication-title: Eur J Oper Res – volume: 7 start-page: 457 year: 1992 end-page: 472 ident: bib0005 article-title: Inference from iterative simulation using multiple sequences publication-title: Stat Sci – volume: 31 start-page: 16 year: 2015 end-page: 32 ident: bib0029 article-title: Stochastic modelling and analysis of degradation for highly reliable products publication-title: Appl Stoch Models Bus Ind – start-page: 527 year: 1992 end-page: 541 ident: bib0002 article-title: Regression models and life-tables publication-title: Breakthroughs in statistics – year: 1998 ident: bib0017 article-title: Statistical methods for reliability data – volume: 60 start-page: 580 year: 2011 end-page: 589 ident: bib0027 article-title: Optimal replacement in the proportional hazards model with semi-Markovian covariate process and continuous monitoring publication-title: IEEE Trans Reliab – start-page: 127 year: 2006 end-page: 132 ident: bib0011 article-title: Predicting remaining useful life of an individual unit using proportional hazards model and logistic regression model publication-title: Reliability and maintainability symposium, 2006. RAMS’06. Annual – volume: 45 start-page: 422 year: 2013 end-page: 435 ident: bib0014 article-title: Condition-based maintenance for continuously monitored degrading systems with multiple failure modes publication-title: IIE Trans – volume: 67 start-page: 401 year: 2018 end-page: 413 ident: bib0025 article-title: Optimal inspection and replacement policies for multi-unit systems subject to degradation publication-title: IEEE Trans Reliab – volume: 50 start-page: 552 issue: 3 year: 2002 ident: 10.1016/j.ress.2019.106707_bib0003 article-title: An adaptive Bayesian replacement policy with minimal repair publication-title: Oper Res doi: 10.1287/opre.50.3.552.7750 – year: 2007 ident: 10.1016/j.ress.2019.106707_bib0010 – start-page: 1461 year: 2017 ident: 10.1016/j.ress.2019.106707_bib0007 article-title: When is acceleration unnecessary in a degradation test? publication-title: Stat Sin – volume: 23 start-page: 536 issue: 2 year: 1986 ident: 10.1016/j.ress.2019.106707_bib0020 article-title: Periodic and sequential preventive maintenance policies publication-title: J Appl Probab doi: 10.1017/S0021900200029843 – volume: 7 start-page: 457 issue: 4 year: 1992 ident: 10.1016/j.ress.2019.106707_bib0005 article-title: Inference from iterative simulation using multiple sequences publication-title: Stat Sci doi: 10.1214/ss/1177011136 – volume: 60 start-page: 580 issue: 3 year: 2011 ident: 10.1016/j.ress.2019.106707_bib0027 article-title: Optimal replacement in the proportional hazards model with semi-Markovian covariate process and continuous monitoring publication-title: IEEE Trans Reliab doi: 10.1109/TR.2011.2161049 – start-page: 527 year: 1992 ident: 10.1016/j.ress.2019.106707_bib0002 article-title: Regression models and life-tables – volume: 48 start-page: 609 issue: 4 year: 2014 ident: 10.1016/j.ress.2019.106707_bib0001 article-title: A degradation-informed battery-swapping policy for fleets of electric or hybrid-electric vehicles publication-title: Transp Sci doi: 10.1287/trsc.2013.0494 – year: 1998 ident: 10.1016/j.ress.2019.106707_bib0017 – volume: vol. 505 year: 2004 ident: 10.1016/j.ress.2019.106707_bib0019 – volume: 3 start-page: 77 issue: 2 year: 1987 ident: 10.1016/j.ress.2019.106707_bib0008 article-title: Application of the weibull proportional hazards model to aircraft and marine engine failure data publication-title: Qual Reliab Eng Int doi: 10.1002/qre.4680030204 – volume: 46 start-page: 1017 issue: 10 year: 2014 ident: 10.1016/j.ress.2019.106707_bib0032 article-title: Remaining useful life prediction of individual units subject to hard failure publication-title: IIE Trans. doi: 10.1080/0740817X.2013.876126 – year: 1986 ident: 10.1016/j.ress.2019.106707_bib0006 – volume: 130 start-page: 175 year: 2014 ident: 10.1016/j.ress.2019.106707_bib0022 article-title: Inverse Gaussian process models for degradation analysis: a Bayesian perspective publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2014.06.005 – year: 2013 ident: 10.1016/j.ress.2019.106707_bib0023 article-title: Comprehensive life test for 12 v automotive storage batteries – volume: 139 start-page: 58 year: 2015 ident: 10.1016/j.ress.2019.106707_bib0028 article-title: A new class of wiener process models for degradation analysis publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2015.02.005 – volume: 51 start-page: 322 issue: 3 year: 2019 ident: 10.1016/j.ress.2019.106707_bib0030 article-title: Optimal inspection and replacement policy based on experimental degradation data with covariates publication-title: IISE Trans doi: 10.1080/24725854.2018.1488308 – volume: 67 start-page: 401 issue: 1 year: 2018 ident: 10.1016/j.ress.2019.106707_bib0025 article-title: Optimal inspection and replacement policies for multi-unit systems subject to degradation publication-title: IEEE Trans Reliab doi: 10.1109/TR.2017.2778283 – volume: 8 start-page: 357 issue: 4 year: 2012 ident: 10.1016/j.ress.2019.106707_bib0018 article-title: Bivariate gamma wear processes for track geometry modelling, with application to intervention scheduling publication-title: Struct Infrastruct Eng doi: 10.1080/15732479.2011.563090 – volume: 54 start-page: 530 issue: 3 year: 2005 ident: 10.1016/j.ress.2019.106707_bib0021 article-title: New cumulative damage models for failure using stochastic processes as initial damage publication-title: IEEE Trans Reliab doi: 10.1109/TR.2005.853278 – start-page: 127 year: 2006 ident: 10.1016/j.ress.2019.106707_bib0011 article-title: Predicting remaining useful life of an individual unit using proportional hazards model and logistic regression model – volume: 45 start-page: 422 issue: 4 year: 2013 ident: 10.1016/j.ress.2019.106707_bib0014 article-title: Condition-based maintenance for continuously monitored degrading systems with multiple failure modes publication-title: IIE Trans doi: 10.1080/0740817X.2012.690930 – volume: 64 start-page: 182 issue: 1 year: 2015 ident: 10.1016/j.ress.2019.106707_bib0024 article-title: Rul prediction for individual units based on condition monitoring signals with a change point publication-title: IEEE Trans Reliab doi: 10.1109/TR.2014.2355531 – volume: 31 start-page: 16 issue: 1 year: 2015 ident: 10.1016/j.ress.2019.106707_bib0029 article-title: Stochastic modelling and analysis of degradation for highly reliable products publication-title: Appl Stoch Models Bus Ind doi: 10.1002/asmb.2063 – volume: 261 start-page: 405 issue: 2 year: 2017 ident: 10.1016/j.ress.2019.106707_bib0009 article-title: Condition-based maintenance policies for systems with multiple dependent components: a review publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2017.02.044 – year: 2018 ident: 10.1016/j.ress.2019.106707_bib0016 article-title: Prediction of hard failures with stochastic degradation signals using wiener process and proportional hazards model publication-title: Comput Ind Eng doi: 10.1016/j.cie.2018.09.015 – volume: 101 start-page: 340 issue: 2 year: 2010 ident: 10.1016/j.ress.2019.106707_bib0026 article-title: Wiener processes with random effects for degradation data publication-title: J Multivar Anal doi: 10.1016/j.jmva.2008.12.007 – volume: 35 start-page: 161 issue: 2 year: 1993 ident: 10.1016/j.ress.2019.106707_bib0015 article-title: Using degradation measures to estimate a time-to-failure distribution publication-title: Technometrics doi: 10.1080/00401706.1993.10485038 – volume: 40 start-page: 629 issue: 7 year: 2008 ident: 10.1016/j.ress.2019.106707_bib0004 article-title: Sensor-driven prognostic models for equipment replacement and spare parts inventory publication-title: IIE Trans doi: 10.1080/07408170701730818 – volume: 124 start-page: 535 year: 2018 ident: 10.1016/j.ress.2019.106707_bib0031 article-title: Optimal condition-based maintenance policy with delay for systems subject to competing failures under continuous monitoring publication-title: Comput Ind Eng doi: 10.1016/j.cie.2018.08.006 – volume: 168 start-page: 200 year: 2017 ident: 10.1016/j.ress.2019.106707_bib0013 article-title: Condition-based maintenance for systems with aging and cumulative damage based on proportional hazards model publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2017.04.010 – year: 2019 ident: 10.1016/j.ress.2019.106707_bib0012 article-title: Stochastic filtering approach for condition-based maintenance considering sensor degradation publication-title: IEEE Trans Autom Sci Eng |
SSID | ssj0004957 |
Score | 2.6048415 |
Snippet | •A Weibull proportional hazards model is adopted to model the hazard rate of the hard failure.•The degradation level is treated as a multiplicative... The remaining useful lifetime (RUL) estimated from the in-situ degradation data has shown to be useful for online predictive maintenance. In the literature,... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 106707 |
SubjectTerms | Condition-based maintenance Degradation Degradation data Failure Failure times Hazards Inspection Lead acid batteries Maintenance costs Maintenance management Predictive maintenance Reliability engineering Schedules Statistical models System failures Weibull distribution Wiener process |
Title | Predictive maintenance of systems subject to hard failure based on proportional hazards model |
URI | https://dx.doi.org/10.1016/j.ress.2019.106707 https://www.proquest.com/docview/2371773934 |
Volume | 196 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIpCqTywobRpfInjsaqoCogKCSp1QZEdO1IRJFWbLgz8dnx58BLqwJrYUXK-3MP-7jtCLqS2fskPwAHDtQNMaie0kanDjWfji8AVbkGkfTcJxlO4mfmzBhnWtTAIq6xsf2nTC2tdXelV0uwt5vPeAwYHVh9tjIJRdMEJCsBRy7vvXzAPmwDwup08jq4KZ0qMF2a0CO8SXWRSw5ayfzunX2a68D2jPbJbBY10UL7XPmmY9IDsfKMSPCRP90s8ckHjRV8lkkAgk4ahWUJLsuYVXa0VbrrQPKNYakUTOUdMOkVHpmmW0gV2TFiWm4N2yBvWY9GiVc4RmY6uHodjp2qd4MSMe7nDdF9J5cU-Z34Qx9o6fmm_T7nAZQJ9z4RCCtYPEg6xNgnXNg3xXQNKhL6QMWPHpJlmqTkhNBAxCAgSFTIGkithFAgZhiLQPihIWqRfyyyKK15xbG_xEtUAsucI5RyhnKNSzi1y-TlnUbJqbBzt10sR_dCNyJr9jfPa9bpF1Z9p7zObwCINIJz-87FnZNvDpLuA77RJM1-uzbmNTHLVKVSvQ7YG17fjyQdldeIb |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8IHNSD8TOiqD14MxNY2209EiIB-YiJkHAxTbt2CUaBwLj419u3dX7FcPC69S3ba_fe77Xv_R5CN1Jbv8QC6lETao8Sqb3IIlMvNL7FF0GDNzIi7eEo6E7ow5RNS6hd1MJAWqWz_blNz6y1u1J32qwvZ7P6E4ADux4tRgEUDZygFWCnYmVUafX63dFXeSTPCT-hozwIuNqZPM0LglrI8OJ3QKYGXWX_9k-_LHXmfjoHaN_hRtzKX-0Qlcz8CO19YxM8Rs-PKzh1AfuF3yTwQACZhsGLBOd8zWu83ijYd8HpAkO1FU7kDNLSMfgyjRdzvISmCat8f9AOeYeSLJx1yzlBk879uN31XPcELyahn3pEN5VUfsxCwoI41tb3S_t9qkFDmdCmbyIuOWkGSUhjbZJQ20iENQxVPGJcxoScovJ8MTdnCAc8ppwGiYoIoTJU3CjKZRTxQDOqaFJFzUJnInbU4tDh4lUUOWQvAvQsQM8i13MV3X7KLHNija2jWTEV4sfyENbyb5WrFfMm3M9p7xMbwwITID3_52Ov0U53PByIQW_Uv0C7PsTgWTZPDZXT1cZcWqCSqiu3ED8ALLXkzA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predictive+maintenance+of+systems+subject+to+hard+failure+based+on+proportional+hazards+model&rft.jtitle=Reliability+engineering+%26+system+safety&rft.au=Hu%2C+Jiawen&rft.au=Chen%2C+Piao&rft.date=2020-04-01&rft.pub=Elsevier+BV&rft.issn=0951-8320&rft.eissn=1879-0836&rft.volume=196&rft.spage=1&rft_id=info:doi/10.1016%2Fj.ress.2019.106707&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8320&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8320&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8320&client=summon |