An adaptive algorithm for image restoration using combined penalty functions
In this paper, we present an adaptive gradient based method to restore images degraded by the effects of both noise and blur. The approach combines two penalty functions. The first derivative of the Canny operator is employed as a roughness penalty function to improve the high frequency information...
Saved in:
Published in | Pattern recognition letters Vol. 27; no. 12; pp. 1336 - 1341 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.09.2006
|
Subjects | |
Online Access | Get full text |
ISSN | 0167-8655 1872-7344 |
DOI | 10.1016/j.patrec.2006.01.009 |
Cover
Loading…
Abstract | In this paper, we present an adaptive gradient based method to restore images degraded by the effects of both noise and blur. The approach combines two penalty functions. The first derivative of the Canny operator is employed as a roughness penalty function to improve the high frequency information content of the image and a smoothing penalty term is used to remove noise. An adaptive algorithm is used to select the roughness and smoothing control parameters. We evaluate our approach using the Richardson–Lucy EM algorithm as a benchmark. The results highlight some of the difficulties in restoring blurred images that are subject to noise and show that in this case an algorithm that uses a combined penalty function is able to produce better quality results. |
---|---|
AbstractList | In this paper, we present an adaptive gradient based method to restore images degraded by the effects of both noise and blur. The approach combines two penalty functions. The first derivative of the Canny operator is employed as a roughness penalty function to improve the high frequency information content of the image and a smoothing penalty term is used to remove noise. An adaptive algorithm is used to select the roughness and smoothing control parameters. We evaluate our approach using the Richardson–Lucy EM algorithm as a benchmark. The results highlight some of the difficulties in restoring blurred images that are subject to noise and show that in this case an algorithm that uses a combined penalty function is able to produce better quality results. |
Author | Razaz, Moe Fisher, Mark Zhu, Daan |
Author_xml | – sequence: 1 givenname: Daan surname: Zhu fullname: Zhu, Daan email: d.zhu@uea.ac.uk – sequence: 2 givenname: Moe surname: Razaz fullname: Razaz, Moe email: mr@cmp.uea.ac.uk – sequence: 3 givenname: Mark surname: Fisher fullname: Fisher, Mark email: mhf@cmp.uea.ac.uk |
BookMark | eNqFkM1KAzEUhYNUsK2-gYu8wIzJ_GXiQijFPyi40XW4k7lTU6ZJSdJC397UunKhq7s45zvcc2ZkYp1FQm45yznjzd0m30H0qPOCsSZnPGdMXpApb0WRibKqJmSabCJrm7q-IrMQNiwZS9lOyWphKfSwi-aAFMa18yZ-bungPDVbWCP1GKLzEI2zdB-MXVPttp2x2NMdWhjjkQ57q096uCaXA4wBb37unHw8Pb4vX7LV2_PrcrHKdCmKmJW6amsoykHquhNayLpAQICyawfZ1LxH0K1IalcVpeZDxwouay0FbzhoCeWc3J9ztXcheByUNvH7xejBjIozddpFbdR5F3XaRTGu0i4Jrn7BO5-q-uN_2MMZw1TsYNCroA1ajb1J1qh6Z_4O-ALHX4Mz |
CitedBy_id | crossref_primary_10_3390_s17040785 crossref_primary_10_1007_s11265_010_0451_3 crossref_primary_10_1587_transfun_E92_A_2560 crossref_primary_10_1117_1_3466799 crossref_primary_10_1109_ACCESS_2019_2962556 |
Cites_doi | 10.1016/S0165-1684(00)00275-9 10.1137/S0036142997320413 10.1016/j.rti.2003.09.007 10.1109/34.88568 10.1109/83.403415 10.1109/TPAMI.1986.4767851 10.1016/S0024-3795(00)00116-6 10.1016/1047-3203(92)90045-U 10.1016/S0165-1684(02)00336-5 10.1016/S0167-9473(97)00041-8 10.1016/j.compmedimag.2004.12.004 10.1109/83.551699 10.1088/0266-5611/18/5/313 10.1109/83.382494 10.1109/78.80894 10.1364/JOSAA.10.001078 10.1109/83.679423 10.1016/S0167-8655(03)00067-9 10.1109/42.363099 10.1016/S0262-8856(03)00140-9 |
ContentType | Journal Article |
Copyright | 2006 Elsevier B.V. |
Copyright_xml | – notice: 2006 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.patrec.2006.01.009 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1872-7344 |
EndPage | 1341 |
ExternalDocumentID | 10_1016_j_patrec_2006_01_009 S0167865506000122 |
GroupedDBID | --K --M .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WH7 WUQ XFK XPP Y6R ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c372t-3c485a23f9c5b7c7952eaeaa3b8f9651deac87f9cb423c1fb02195c97161ac9a3 |
IEDL.DBID | .~1 |
ISSN | 0167-8655 |
IngestDate | Thu Apr 24 23:05:55 EDT 2025 Tue Jul 01 04:31:22 EDT 2025 Fri Feb 23 02:34:02 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Combined penalty function Gradient descent Image restoration Regularization Penalized likelihood |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-3c485a23f9c5b7c7952eaeaa3b8f9651deac87f9cb423c1fb02195c97161ac9a3 |
PageCount | 6 |
ParticipantIDs | crossref_citationtrail_10_1016_j_patrec_2006_01_009 crossref_primary_10_1016_j_patrec_2006_01_009 elsevier_sciencedirect_doi_10_1016_j_patrec_2006_01_009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2006-09-01 |
PublicationDateYYYYMMDD | 2006-09-01 |
PublicationDate_xml | – month: 09 year: 2006 text: 2006-09-01 day: 01 |
PublicationDecade | 2000 |
PublicationTitle | Pattern recognition letters |
PublicationYear | 2006 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Lantéri, Roche, Aime (bib16) 2002; 18 Heijden, Glasbey (bib7) 2003; 9 Razaz, Lee, Shaw (bib21) 1997 Zhu, D., Razaz, M., Lee, R.A., 2002. Adaptive penalty likelihood for image restoration and roughness parameter selection based on canny enhancement. In: Internat. Conf. on Recent Advances in Soft Computing 2002, pp. 488–493. Machado, W., Mascarenhas, N., Costa, J., (2003). Restoration of Solar Radio images using adaptive regularization techniques. In: 16th Brazilian Symp. on Computer Graphics and Image Processing. Katsaggelos, Lay (bib13) 1991; 39 Lantéri, Roche, Cuevas, Aime (bib14) 2001; 81 Pratt (bib20) 2003 Palmer, A., (2004). Adaptive image restoration algorithms using intelligent techniques. Ph.D. Thesis, University of East Anglia, 2004. Katsaggelos, Kang (bib12) 1992; 3 Charbonnier, Blanc-Féraud, Aubert, Barlaud (bib3) 1997; 6 Mumcogˇlu, Leahy, Cherry, Zhou (bib18) 1994; 13 Hebert, Lu Keming (bib6) 1995; 4 Canny (bib1) 1986; 8 Hudson, Lee (bib8) 1998; 26 Joshi, Miller (bib10) 1993; 10 Vogel, Oman (bib24) 1998; 7 Zhu, Razaz, Lee (bib26) 2005; 29 van Kempen (bib23) 1999 Kang, Kastsaggelos (bib11) 1995; 4 Hanke, Nagy, Vogel (bib5) 2000; 316 Chojnacki, Brooks, Hengel, Gawley (bib4) 2004; 22 Lantéri, Roche, Gaucherel, Aime (bib15) 2002; 82 Ibáñez, Simó (bib9) 2003; 24 Carasso (bib2) 1999; 36 Thompson, Brown, Kay, Titterington (bib22) 1991; 13 Hebert (10.1016/j.patrec.2006.01.009_bib6) 1995; 4 Katsaggelos (10.1016/j.patrec.2006.01.009_bib12) 1992; 3 Joshi (10.1016/j.patrec.2006.01.009_bib10) 1993; 10 Lantéri (10.1016/j.patrec.2006.01.009_bib14) 2001; 81 Lantéri (10.1016/j.patrec.2006.01.009_bib15) 2002; 82 Mumcogˇlu (10.1016/j.patrec.2006.01.009_bib18) 1994; 13 10.1016/j.patrec.2006.01.009_bib25 Hanke (10.1016/j.patrec.2006.01.009_bib5) 2000; 316 Thompson (10.1016/j.patrec.2006.01.009_bib22) 1991; 13 Pratt (10.1016/j.patrec.2006.01.009_bib20) 2003 Ibáñez (10.1016/j.patrec.2006.01.009_bib9) 2003; 24 Zhu (10.1016/j.patrec.2006.01.009_bib26) 2005; 29 Canny (10.1016/j.patrec.2006.01.009_bib1) 1986; 8 10.1016/j.patrec.2006.01.009_bib19 Carasso (10.1016/j.patrec.2006.01.009_bib2) 1999; 36 10.1016/j.patrec.2006.01.009_bib17 Razaz (10.1016/j.patrec.2006.01.009_bib21) 1997 Lantéri (10.1016/j.patrec.2006.01.009_bib16) 2002; 18 Chojnacki (10.1016/j.patrec.2006.01.009_bib4) 2004; 22 van Kempen (10.1016/j.patrec.2006.01.009_bib23) 1999 Charbonnier (10.1016/j.patrec.2006.01.009_bib3) 1997; 6 Kang (10.1016/j.patrec.2006.01.009_bib11) 1995; 4 Hudson (10.1016/j.patrec.2006.01.009_bib8) 1998; 26 Vogel (10.1016/j.patrec.2006.01.009_bib24) 1998; 7 Heijden (10.1016/j.patrec.2006.01.009_bib7) 2003; 9 Katsaggelos (10.1016/j.patrec.2006.01.009_bib13) 1991; 39 |
References_xml | – volume: 13 start-page: 326 year: 1991 end-page: 339 ident: bib22 article-title: A study of methods of choosing the smoothing parameter in image restoration by regularization publication-title: IEEE Trans. Pattern Anal. Machine Intell. – volume: 18 start-page: 1397 year: 2002 end-page: 1419 ident: bib16 article-title: Penalized maximum likelihood image restoration with positivity constraints: multiplicative algorithms publication-title: Inverse Problem – reference: Machado, W., Mascarenhas, N., Costa, J., (2003). Restoration of Solar Radio images using adaptive regularization techniques. In: 16th Brazilian Symp. on Computer Graphics and Image Processing. – reference: Palmer, A., (2004). Adaptive image restoration algorithms using intelligent techniques. Ph.D. Thesis, University of East Anglia, 2004. – volume: 24 start-page: 2377 year: 2003 end-page: 2389 ident: bib9 article-title: Parameter estimation in Markov random field image modeling with imperfect observations. A comparative study publication-title: Pattern Recognition Lett. – volume: 81 start-page: 945 year: 2001 end-page: 974 ident: bib14 article-title: A general method to devise maximum-likelihood signal restoration multiplicative algorithms with non-negativity constraints publication-title: Signal Process. – volume: 8 start-page: 679 year: 1986 end-page: 698 ident: bib1 article-title: A computational approach to edge detection publication-title: IEEE Trans. Pattern Anal. Machine Intell. – volume: 6 start-page: 298 year: 1997 end-page: 311 ident: bib3 article-title: Deterministic edge-preserving regularization in computed imaging publication-title: IEEE Trans. Image Process. – volume: 22 start-page: 85 year: 2004 end-page: 91 ident: bib4 article-title: A new constraint parameter estimator for computer vision application publication-title: Image Vision Comput. – volume: 3 start-page: 446 year: 1992 end-page: 455 ident: bib12 article-title: Iterative evaluation of the regularization parameter in regularized image restoration publication-title: J. Vis. Comm. Image Repres. – year: 2003 ident: bib20 article-title: Digital Image Processing – volume: 36 start-page: 1659 year: 1999 end-page: 1689 ident: bib2 article-title: Linear and nonlinear image deblurring: a documented study publication-title: SIAM J. Numer. Anal. – volume: 4 start-page: 594 year: 1995 end-page: 602 ident: bib11 article-title: General choice of the regularization functional in regularized image restoration publication-title: IEEE Trans. Image Process. – volume: 26 start-page: 393 year: 1998 end-page: 410 ident: bib8 article-title: Maximum likelihood restoration and choice of smoothing parameter in deconvolution of image data subject to Poisson noise publication-title: Comput. Statist. Data Anal. – volume: 4 start-page: 1084 year: 1995 end-page: 1095 ident: bib6 article-title: Expectation-maximization algorithms, null spaces, and MAP image restoration publication-title: IEEE Trans. Image Process. – volume: 316 start-page: 223 year: 2000 end-page: 236 ident: bib5 article-title: Quasi-Newton approach to nonnegative image restorations publication-title: Linear Algebra Appl. – year: 1997 ident: bib21 publication-title: Restoration of 3D real images using projection onto convex sets – volume: 39 start-page: 729 year: 1991 end-page: 733 ident: bib13 article-title: Maximum likelihood blur identification and image restoration using the EM algorithm publication-title: IEEE Trans. Signal Process. – volume: 10 start-page: 1078 year: 1993 end-page: 1085 ident: bib10 article-title: Maximum a posteriori estimation with good’s roughness for optical sectioning microscopy publication-title: Opt. Soc. Amer. A – volume: 7 start-page: 813 year: 1998 end-page: 824 ident: bib24 article-title: Fast, robust total variation-based reconstruction of noisy, blurred images publication-title: IEEE Trans. Image Process. – reference: Zhu, D., Razaz, M., Lee, R.A., 2002. Adaptive penalty likelihood for image restoration and roughness parameter selection based on canny enhancement. In: Internat. Conf. on Recent Advances in Soft Computing 2002, pp. 488–493. – volume: 29 start-page: 319 year: 2005 end-page: 331 ident: bib26 article-title: Adaptive penalty likelihood for reconstruction of multidimensional confocal microscopy images publication-title: Comput. Med. Imag. Graphics – volume: 82 start-page: 1481 year: 2002 end-page: 1504 ident: bib15 article-title: Ringing reduction in image restoration algorithms using a constraint on the inferior bound of the solution publication-title: Signal Process. – year: 1999 ident: bib23 article-title: Image Restoration in Fluorescence Microscopy – volume: 13 start-page: 687 year: 1994 end-page: 701 ident: bib18 article-title: Fast gradient-based methods for Bayesian reconstruction of transmission and emission PET images publication-title: IEEE Trans. Medical Imag. – volume: 9 start-page: 231 year: 2003 end-page: 236 ident: bib7 article-title: Calibrating spectral images using penalized likelihood publication-title: Real-Time Imag. – volume: 81 start-page: 945 year: 2001 ident: 10.1016/j.patrec.2006.01.009_bib14 article-title: A general method to devise maximum-likelihood signal restoration multiplicative algorithms with non-negativity constraints publication-title: Signal Process. doi: 10.1016/S0165-1684(00)00275-9 – volume: 36 start-page: 1659 year: 1999 ident: 10.1016/j.patrec.2006.01.009_bib2 article-title: Linear and nonlinear image deblurring: a documented study publication-title: SIAM J. Numer. Anal. doi: 10.1137/S0036142997320413 – volume: 9 start-page: 231 year: 2003 ident: 10.1016/j.patrec.2006.01.009_bib7 article-title: Calibrating spectral images using penalized likelihood publication-title: Real-Time Imag. doi: 10.1016/j.rti.2003.09.007 – year: 1997 ident: 10.1016/j.patrec.2006.01.009_bib21 – volume: 13 start-page: 326 year: 1991 ident: 10.1016/j.patrec.2006.01.009_bib22 article-title: A study of methods of choosing the smoothing parameter in image restoration by regularization publication-title: IEEE Trans. Pattern Anal. Machine Intell. doi: 10.1109/34.88568 – volume: 4 start-page: 1084 year: 1995 ident: 10.1016/j.patrec.2006.01.009_bib6 article-title: Expectation-maximization algorithms, null spaces, and MAP image restoration publication-title: IEEE Trans. Image Process. doi: 10.1109/83.403415 – year: 2003 ident: 10.1016/j.patrec.2006.01.009_bib20 – volume: 8 start-page: 679 year: 1986 ident: 10.1016/j.patrec.2006.01.009_bib1 article-title: A computational approach to edge detection publication-title: IEEE Trans. Pattern Anal. Machine Intell. doi: 10.1109/TPAMI.1986.4767851 – volume: 316 start-page: 223 year: 2000 ident: 10.1016/j.patrec.2006.01.009_bib5 article-title: Quasi-Newton approach to nonnegative image restorations publication-title: Linear Algebra Appl. doi: 10.1016/S0024-3795(00)00116-6 – volume: 3 start-page: 446 year: 1992 ident: 10.1016/j.patrec.2006.01.009_bib12 article-title: Iterative evaluation of the regularization parameter in regularized image restoration publication-title: J. Vis. Comm. Image Repres. doi: 10.1016/1047-3203(92)90045-U – volume: 82 start-page: 1481 year: 2002 ident: 10.1016/j.patrec.2006.01.009_bib15 article-title: Ringing reduction in image restoration algorithms using a constraint on the inferior bound of the solution publication-title: Signal Process. doi: 10.1016/S0165-1684(02)00336-5 – volume: 26 start-page: 393 year: 1998 ident: 10.1016/j.patrec.2006.01.009_bib8 article-title: Maximum likelihood restoration and choice of smoothing parameter in deconvolution of image data subject to Poisson noise publication-title: Comput. Statist. Data Anal. doi: 10.1016/S0167-9473(97)00041-8 – volume: 29 start-page: 319 year: 2005 ident: 10.1016/j.patrec.2006.01.009_bib26 article-title: Adaptive penalty likelihood for reconstruction of multidimensional confocal microscopy images publication-title: Comput. Med. Imag. Graphics doi: 10.1016/j.compmedimag.2004.12.004 – volume: 6 start-page: 298 year: 1997 ident: 10.1016/j.patrec.2006.01.009_bib3 article-title: Deterministic edge-preserving regularization in computed imaging publication-title: IEEE Trans. Image Process. doi: 10.1109/83.551699 – volume: 18 start-page: 1397 year: 2002 ident: 10.1016/j.patrec.2006.01.009_bib16 article-title: Penalized maximum likelihood image restoration with positivity constraints: multiplicative algorithms publication-title: Inverse Problem doi: 10.1088/0266-5611/18/5/313 – ident: 10.1016/j.patrec.2006.01.009_bib25 – volume: 4 start-page: 594 year: 1995 ident: 10.1016/j.patrec.2006.01.009_bib11 article-title: General choice of the regularization functional in regularized image restoration publication-title: IEEE Trans. Image Process. doi: 10.1109/83.382494 – ident: 10.1016/j.patrec.2006.01.009_bib17 – year: 1999 ident: 10.1016/j.patrec.2006.01.009_bib23 – volume: 39 start-page: 729 year: 1991 ident: 10.1016/j.patrec.2006.01.009_bib13 article-title: Maximum likelihood blur identification and image restoration using the EM algorithm publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.80894 – volume: 10 start-page: 1078 year: 1993 ident: 10.1016/j.patrec.2006.01.009_bib10 article-title: Maximum a posteriori estimation with good’s roughness for optical sectioning microscopy publication-title: Opt. Soc. Amer. A doi: 10.1364/JOSAA.10.001078 – volume: 7 start-page: 813 year: 1998 ident: 10.1016/j.patrec.2006.01.009_bib24 article-title: Fast, robust total variation-based reconstruction of noisy, blurred images publication-title: IEEE Trans. Image Process. doi: 10.1109/83.679423 – volume: 24 start-page: 2377 year: 2003 ident: 10.1016/j.patrec.2006.01.009_bib9 article-title: Parameter estimation in Markov random field image modeling with imperfect observations. A comparative study publication-title: Pattern Recognition Lett. doi: 10.1016/S0167-8655(03)00067-9 – volume: 13 start-page: 687 year: 1994 ident: 10.1016/j.patrec.2006.01.009_bib18 article-title: Fast gradient-based methods for Bayesian reconstruction of transmission and emission PET images publication-title: IEEE Trans. Medical Imag. doi: 10.1109/42.363099 – ident: 10.1016/j.patrec.2006.01.009_bib19 – volume: 22 start-page: 85 year: 2004 ident: 10.1016/j.patrec.2006.01.009_bib4 article-title: A new constraint parameter estimator for computer vision application publication-title: Image Vision Comput. doi: 10.1016/S0262-8856(03)00140-9 |
SSID | ssj0006398 |
Score | 1.8297678 |
Snippet | In this paper, we present an adaptive gradient based method to restore images degraded by the effects of both noise and blur. The approach combines two penalty... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1336 |
SubjectTerms | Combined penalty function Gradient descent Image restoration Penalized likelihood Regularization |
Title | An adaptive algorithm for image restoration using combined penalty functions |
URI | https://dx.doi.org/10.1016/j.patrec.2006.01.009 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssDAo4AoL3lgTRvHTh2PVUVVXl2gUrfo4jilqE2jKgws_HZ8eUCREEisiU9Jzs535_N3d4RcSclZAsp1lEk8RwSJ6wBA5PiR0NwIBoJj7vDDuDeaiNupP22QQZ0Lg7TKCvtLTC_QurrSrbTZzebz7iMS6DGt0u0V4RTEYSEk1s_vvH_RPKwFDur63ji6Tp8rOF4Ybza6OpJgHRdpiT-Zpw2TM9wnu5WvSPvl6xyQhklbZK_uw0Cr37JFdjaKCh6S-35KIYYMcYzCYray2__nJbXOKZ0vLXrQddFMppgRirT3GbUfbzfIJqaZsQ_M3yhau2JBHpHJ8PppMHKqngmO5tLLHa5F4IPHE6X9SGqpfM-AAeBRkKiez2ILtIG0dyPrR2mWRNbGK19jISkGWgE_Js10lZoTQlkcQ-IKsD4VCCU9MLEvLB6ZBN08ptqE16oKdVVQHPtaLMKaOfYSlgrGXpe90GWhVXCbOJ9SWVlQ44_xsp6F8NvCCC3m_yp5-m_JM7JdRlqQSnZOmvn61VxY3yOPLovFdUm2-jd3o_EHO8ralQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqGICBRwFRnh5YQ-PYjuOxqqgKlC6AxBZdHKcUtSFCZWDht3POg4eEQGJNfEpyvnx3tr-7I-RUKc4y0L6nbRZ4Isp8DwASTybCcCsYCO5yh6_H4fBOXN7L-xbpN7kwjlZZY3-F6SVa11e6tTa7xXTavXEEepdW6Yfldgri8LKQXDnTPnv75HmgC46aAt9ueJM_V5K83IazNfWZBDvzHS_xJ__0xecMNsl6HSzSXvU-W6Rl8zbZaBox0Pq_bJO1L1UFt8mol1NIoXBARmE2ecL1_8OcYnRKp3OED_pcdpMpp4Q63vuE4tfjCtmmtLD4wMUrde6utMgdcjc4v-0Pvbppgme4ChYeNyKSEPBMG5koo7QMLFgAnkSZDiVLEWkjhXcTDKQMyxJ08loaV0mKgdHAd8lS_pTbPUJZmkLmC8CgCoRWAdhUCgQkm7k4j-kO4Y2qYlNXFHeNLWZxQx17jCsFu2aXYeyzGBXcId6HVFFV1PhjvGpmIf5mGTGC_q-S-_-WPCErw9vrUTy6GF8dkNVq28Xxyg7J0uL5xR5hILJIjktDewdtRNwr |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+adaptive+algorithm+for+image+restoration+using+combined+penalty+functions&rft.jtitle=Pattern+recognition+letters&rft.au=Zhu%2C+Daan&rft.au=Razaz%2C+Moe&rft.au=Fisher%2C+Mark&rft.date=2006-09-01&rft.pub=Elsevier+B.V&rft.issn=0167-8655&rft.eissn=1872-7344&rft.volume=27&rft.issue=12&rft.spage=1336&rft.epage=1341&rft_id=info:doi/10.1016%2Fj.patrec.2006.01.009&rft.externalDocID=S0167865506000122 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8655&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8655&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8655&client=summon |