An adaptive algorithm for image restoration using combined penalty functions

In this paper, we present an adaptive gradient based method to restore images degraded by the effects of both noise and blur. The approach combines two penalty functions. The first derivative of the Canny operator is employed as a roughness penalty function to improve the high frequency information...

Full description

Saved in:
Bibliographic Details
Published inPattern recognition letters Vol. 27; no. 12; pp. 1336 - 1341
Main Authors Zhu, Daan, Razaz, Moe, Fisher, Mark
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2006
Subjects
Online AccessGet full text
ISSN0167-8655
1872-7344
DOI10.1016/j.patrec.2006.01.009

Cover

Loading…
Abstract In this paper, we present an adaptive gradient based method to restore images degraded by the effects of both noise and blur. The approach combines two penalty functions. The first derivative of the Canny operator is employed as a roughness penalty function to improve the high frequency information content of the image and a smoothing penalty term is used to remove noise. An adaptive algorithm is used to select the roughness and smoothing control parameters. We evaluate our approach using the Richardson–Lucy EM algorithm as a benchmark. The results highlight some of the difficulties in restoring blurred images that are subject to noise and show that in this case an algorithm that uses a combined penalty function is able to produce better quality results.
AbstractList In this paper, we present an adaptive gradient based method to restore images degraded by the effects of both noise and blur. The approach combines two penalty functions. The first derivative of the Canny operator is employed as a roughness penalty function to improve the high frequency information content of the image and a smoothing penalty term is used to remove noise. An adaptive algorithm is used to select the roughness and smoothing control parameters. We evaluate our approach using the Richardson–Lucy EM algorithm as a benchmark. The results highlight some of the difficulties in restoring blurred images that are subject to noise and show that in this case an algorithm that uses a combined penalty function is able to produce better quality results.
Author Razaz, Moe
Fisher, Mark
Zhu, Daan
Author_xml – sequence: 1
  givenname: Daan
  surname: Zhu
  fullname: Zhu, Daan
  email: d.zhu@uea.ac.uk
– sequence: 2
  givenname: Moe
  surname: Razaz
  fullname: Razaz, Moe
  email: mr@cmp.uea.ac.uk
– sequence: 3
  givenname: Mark
  surname: Fisher
  fullname: Fisher, Mark
  email: mhf@cmp.uea.ac.uk
BookMark eNqFkM1KAzEUhYNUsK2-gYu8wIzJ_GXiQijFPyi40XW4k7lTU6ZJSdJC397UunKhq7s45zvcc2ZkYp1FQm45yznjzd0m30H0qPOCsSZnPGdMXpApb0WRibKqJmSabCJrm7q-IrMQNiwZS9lOyWphKfSwi-aAFMa18yZ-bungPDVbWCP1GKLzEI2zdB-MXVPttp2x2NMdWhjjkQ57q096uCaXA4wBb37unHw8Pb4vX7LV2_PrcrHKdCmKmJW6amsoykHquhNayLpAQICyawfZ1LxH0K1IalcVpeZDxwouay0FbzhoCeWc3J9ztXcheByUNvH7xejBjIozddpFbdR5F3XaRTGu0i4Jrn7BO5-q-uN_2MMZw1TsYNCroA1ajb1J1qh6Z_4O-ALHX4Mz
CitedBy_id crossref_primary_10_3390_s17040785
crossref_primary_10_1007_s11265_010_0451_3
crossref_primary_10_1587_transfun_E92_A_2560
crossref_primary_10_1117_1_3466799
crossref_primary_10_1109_ACCESS_2019_2962556
Cites_doi 10.1016/S0165-1684(00)00275-9
10.1137/S0036142997320413
10.1016/j.rti.2003.09.007
10.1109/34.88568
10.1109/83.403415
10.1109/TPAMI.1986.4767851
10.1016/S0024-3795(00)00116-6
10.1016/1047-3203(92)90045-U
10.1016/S0165-1684(02)00336-5
10.1016/S0167-9473(97)00041-8
10.1016/j.compmedimag.2004.12.004
10.1109/83.551699
10.1088/0266-5611/18/5/313
10.1109/83.382494
10.1109/78.80894
10.1364/JOSAA.10.001078
10.1109/83.679423
10.1016/S0167-8655(03)00067-9
10.1109/42.363099
10.1016/S0262-8856(03)00140-9
ContentType Journal Article
Copyright 2006 Elsevier B.V.
Copyright_xml – notice: 2006 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.patrec.2006.01.009
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1872-7344
EndPage 1341
ExternalDocumentID 10_1016_j_patrec_2006_01_009
S0167865506000122
GroupedDBID --K
--M
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WH7
WUQ
XFK
XPP
Y6R
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c372t-3c485a23f9c5b7c7952eaeaa3b8f9651deac87f9cb423c1fb02195c97161ac9a3
IEDL.DBID .~1
ISSN 0167-8655
IngestDate Thu Apr 24 23:05:55 EDT 2025
Tue Jul 01 04:31:22 EDT 2025
Fri Feb 23 02:34:02 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Combined penalty function
Gradient descent
Image restoration
Regularization
Penalized likelihood
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-3c485a23f9c5b7c7952eaeaa3b8f9651deac87f9cb423c1fb02195c97161ac9a3
PageCount 6
ParticipantIDs crossref_citationtrail_10_1016_j_patrec_2006_01_009
crossref_primary_10_1016_j_patrec_2006_01_009
elsevier_sciencedirect_doi_10_1016_j_patrec_2006_01_009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2006-09-01
PublicationDateYYYYMMDD 2006-09-01
PublicationDate_xml – month: 09
  year: 2006
  text: 2006-09-01
  day: 01
PublicationDecade 2000
PublicationTitle Pattern recognition letters
PublicationYear 2006
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Lantéri, Roche, Aime (bib16) 2002; 18
Heijden, Glasbey (bib7) 2003; 9
Razaz, Lee, Shaw (bib21) 1997
Zhu, D., Razaz, M., Lee, R.A., 2002. Adaptive penalty likelihood for image restoration and roughness parameter selection based on canny enhancement. In: Internat. Conf. on Recent Advances in Soft Computing 2002, pp. 488–493.
Machado, W., Mascarenhas, N., Costa, J., (2003). Restoration of Solar Radio images using adaptive regularization techniques. In: 16th Brazilian Symp. on Computer Graphics and Image Processing.
Katsaggelos, Lay (bib13) 1991; 39
Lantéri, Roche, Cuevas, Aime (bib14) 2001; 81
Pratt (bib20) 2003
Palmer, A., (2004). Adaptive image restoration algorithms using intelligent techniques. Ph.D. Thesis, University of East Anglia, 2004.
Katsaggelos, Kang (bib12) 1992; 3
Charbonnier, Blanc-Féraud, Aubert, Barlaud (bib3) 1997; 6
Mumcogˇlu, Leahy, Cherry, Zhou (bib18) 1994; 13
Hebert, Lu Keming (bib6) 1995; 4
Canny (bib1) 1986; 8
Hudson, Lee (bib8) 1998; 26
Joshi, Miller (bib10) 1993; 10
Vogel, Oman (bib24) 1998; 7
Zhu, Razaz, Lee (bib26) 2005; 29
van Kempen (bib23) 1999
Kang, Kastsaggelos (bib11) 1995; 4
Hanke, Nagy, Vogel (bib5) 2000; 316
Chojnacki, Brooks, Hengel, Gawley (bib4) 2004; 22
Lantéri, Roche, Gaucherel, Aime (bib15) 2002; 82
Ibáñez, Simó (bib9) 2003; 24
Carasso (bib2) 1999; 36
Thompson, Brown, Kay, Titterington (bib22) 1991; 13
Hebert (10.1016/j.patrec.2006.01.009_bib6) 1995; 4
Katsaggelos (10.1016/j.patrec.2006.01.009_bib12) 1992; 3
Joshi (10.1016/j.patrec.2006.01.009_bib10) 1993; 10
Lantéri (10.1016/j.patrec.2006.01.009_bib14) 2001; 81
Lantéri (10.1016/j.patrec.2006.01.009_bib15) 2002; 82
Mumcogˇlu (10.1016/j.patrec.2006.01.009_bib18) 1994; 13
10.1016/j.patrec.2006.01.009_bib25
Hanke (10.1016/j.patrec.2006.01.009_bib5) 2000; 316
Thompson (10.1016/j.patrec.2006.01.009_bib22) 1991; 13
Pratt (10.1016/j.patrec.2006.01.009_bib20) 2003
Ibáñez (10.1016/j.patrec.2006.01.009_bib9) 2003; 24
Zhu (10.1016/j.patrec.2006.01.009_bib26) 2005; 29
Canny (10.1016/j.patrec.2006.01.009_bib1) 1986; 8
10.1016/j.patrec.2006.01.009_bib19
Carasso (10.1016/j.patrec.2006.01.009_bib2) 1999; 36
10.1016/j.patrec.2006.01.009_bib17
Razaz (10.1016/j.patrec.2006.01.009_bib21) 1997
Lantéri (10.1016/j.patrec.2006.01.009_bib16) 2002; 18
Chojnacki (10.1016/j.patrec.2006.01.009_bib4) 2004; 22
van Kempen (10.1016/j.patrec.2006.01.009_bib23) 1999
Charbonnier (10.1016/j.patrec.2006.01.009_bib3) 1997; 6
Kang (10.1016/j.patrec.2006.01.009_bib11) 1995; 4
Hudson (10.1016/j.patrec.2006.01.009_bib8) 1998; 26
Vogel (10.1016/j.patrec.2006.01.009_bib24) 1998; 7
Heijden (10.1016/j.patrec.2006.01.009_bib7) 2003; 9
Katsaggelos (10.1016/j.patrec.2006.01.009_bib13) 1991; 39
References_xml – volume: 13
  start-page: 326
  year: 1991
  end-page: 339
  ident: bib22
  article-title: A study of methods of choosing the smoothing parameter in image restoration by regularization
  publication-title: IEEE Trans. Pattern Anal. Machine Intell.
– volume: 18
  start-page: 1397
  year: 2002
  end-page: 1419
  ident: bib16
  article-title: Penalized maximum likelihood image restoration with positivity constraints: multiplicative algorithms
  publication-title: Inverse Problem
– reference: Machado, W., Mascarenhas, N., Costa, J., (2003). Restoration of Solar Radio images using adaptive regularization techniques. In: 16th Brazilian Symp. on Computer Graphics and Image Processing.
– reference: Palmer, A., (2004). Adaptive image restoration algorithms using intelligent techniques. Ph.D. Thesis, University of East Anglia, 2004.
– volume: 24
  start-page: 2377
  year: 2003
  end-page: 2389
  ident: bib9
  article-title: Parameter estimation in Markov random field image modeling with imperfect observations. A comparative study
  publication-title: Pattern Recognition Lett.
– volume: 81
  start-page: 945
  year: 2001
  end-page: 974
  ident: bib14
  article-title: A general method to devise maximum-likelihood signal restoration multiplicative algorithms with non-negativity constraints
  publication-title: Signal Process.
– volume: 8
  start-page: 679
  year: 1986
  end-page: 698
  ident: bib1
  article-title: A computational approach to edge detection
  publication-title: IEEE Trans. Pattern Anal. Machine Intell.
– volume: 6
  start-page: 298
  year: 1997
  end-page: 311
  ident: bib3
  article-title: Deterministic edge-preserving regularization in computed imaging
  publication-title: IEEE Trans. Image Process.
– volume: 22
  start-page: 85
  year: 2004
  end-page: 91
  ident: bib4
  article-title: A new constraint parameter estimator for computer vision application
  publication-title: Image Vision Comput.
– volume: 3
  start-page: 446
  year: 1992
  end-page: 455
  ident: bib12
  article-title: Iterative evaluation of the regularization parameter in regularized image restoration
  publication-title: J. Vis. Comm. Image Repres.
– year: 2003
  ident: bib20
  article-title: Digital Image Processing
– volume: 36
  start-page: 1659
  year: 1999
  end-page: 1689
  ident: bib2
  article-title: Linear and nonlinear image deblurring: a documented study
  publication-title: SIAM J. Numer. Anal.
– volume: 4
  start-page: 594
  year: 1995
  end-page: 602
  ident: bib11
  article-title: General choice of the regularization functional in regularized image restoration
  publication-title: IEEE Trans. Image Process.
– volume: 26
  start-page: 393
  year: 1998
  end-page: 410
  ident: bib8
  article-title: Maximum likelihood restoration and choice of smoothing parameter in deconvolution of image data subject to Poisson noise
  publication-title: Comput. Statist. Data Anal.
– volume: 4
  start-page: 1084
  year: 1995
  end-page: 1095
  ident: bib6
  article-title: Expectation-maximization algorithms, null spaces, and MAP image restoration
  publication-title: IEEE Trans. Image Process.
– volume: 316
  start-page: 223
  year: 2000
  end-page: 236
  ident: bib5
  article-title: Quasi-Newton approach to nonnegative image restorations
  publication-title: Linear Algebra Appl.
– year: 1997
  ident: bib21
  publication-title: Restoration of 3D real images using projection onto convex sets
– volume: 39
  start-page: 729
  year: 1991
  end-page: 733
  ident: bib13
  article-title: Maximum likelihood blur identification and image restoration using the EM algorithm
  publication-title: IEEE Trans. Signal Process.
– volume: 10
  start-page: 1078
  year: 1993
  end-page: 1085
  ident: bib10
  article-title: Maximum a posteriori estimation with good’s roughness for optical sectioning microscopy
  publication-title: Opt. Soc. Amer. A
– volume: 7
  start-page: 813
  year: 1998
  end-page: 824
  ident: bib24
  article-title: Fast, robust total variation-based reconstruction of noisy, blurred images
  publication-title: IEEE Trans. Image Process.
– reference: Zhu, D., Razaz, M., Lee, R.A., 2002. Adaptive penalty likelihood for image restoration and roughness parameter selection based on canny enhancement. In: Internat. Conf. on Recent Advances in Soft Computing 2002, pp. 488–493.
– volume: 29
  start-page: 319
  year: 2005
  end-page: 331
  ident: bib26
  article-title: Adaptive penalty likelihood for reconstruction of multidimensional confocal microscopy images
  publication-title: Comput. Med. Imag. Graphics
– volume: 82
  start-page: 1481
  year: 2002
  end-page: 1504
  ident: bib15
  article-title: Ringing reduction in image restoration algorithms using a constraint on the inferior bound of the solution
  publication-title: Signal Process.
– year: 1999
  ident: bib23
  article-title: Image Restoration in Fluorescence Microscopy
– volume: 13
  start-page: 687
  year: 1994
  end-page: 701
  ident: bib18
  article-title: Fast gradient-based methods for Bayesian reconstruction of transmission and emission PET images
  publication-title: IEEE Trans. Medical Imag.
– volume: 9
  start-page: 231
  year: 2003
  end-page: 236
  ident: bib7
  article-title: Calibrating spectral images using penalized likelihood
  publication-title: Real-Time Imag.
– volume: 81
  start-page: 945
  year: 2001
  ident: 10.1016/j.patrec.2006.01.009_bib14
  article-title: A general method to devise maximum-likelihood signal restoration multiplicative algorithms with non-negativity constraints
  publication-title: Signal Process.
  doi: 10.1016/S0165-1684(00)00275-9
– volume: 36
  start-page: 1659
  year: 1999
  ident: 10.1016/j.patrec.2006.01.009_bib2
  article-title: Linear and nonlinear image deblurring: a documented study
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S0036142997320413
– volume: 9
  start-page: 231
  year: 2003
  ident: 10.1016/j.patrec.2006.01.009_bib7
  article-title: Calibrating spectral images using penalized likelihood
  publication-title: Real-Time Imag.
  doi: 10.1016/j.rti.2003.09.007
– year: 1997
  ident: 10.1016/j.patrec.2006.01.009_bib21
– volume: 13
  start-page: 326
  year: 1991
  ident: 10.1016/j.patrec.2006.01.009_bib22
  article-title: A study of methods of choosing the smoothing parameter in image restoration by regularization
  publication-title: IEEE Trans. Pattern Anal. Machine Intell.
  doi: 10.1109/34.88568
– volume: 4
  start-page: 1084
  year: 1995
  ident: 10.1016/j.patrec.2006.01.009_bib6
  article-title: Expectation-maximization algorithms, null spaces, and MAP image restoration
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.403415
– year: 2003
  ident: 10.1016/j.patrec.2006.01.009_bib20
– volume: 8
  start-page: 679
  year: 1986
  ident: 10.1016/j.patrec.2006.01.009_bib1
  article-title: A computational approach to edge detection
  publication-title: IEEE Trans. Pattern Anal. Machine Intell.
  doi: 10.1109/TPAMI.1986.4767851
– volume: 316
  start-page: 223
  year: 2000
  ident: 10.1016/j.patrec.2006.01.009_bib5
  article-title: Quasi-Newton approach to nonnegative image restorations
  publication-title: Linear Algebra Appl.
  doi: 10.1016/S0024-3795(00)00116-6
– volume: 3
  start-page: 446
  year: 1992
  ident: 10.1016/j.patrec.2006.01.009_bib12
  article-title: Iterative evaluation of the regularization parameter in regularized image restoration
  publication-title: J. Vis. Comm. Image Repres.
  doi: 10.1016/1047-3203(92)90045-U
– volume: 82
  start-page: 1481
  year: 2002
  ident: 10.1016/j.patrec.2006.01.009_bib15
  article-title: Ringing reduction in image restoration algorithms using a constraint on the inferior bound of the solution
  publication-title: Signal Process.
  doi: 10.1016/S0165-1684(02)00336-5
– volume: 26
  start-page: 393
  year: 1998
  ident: 10.1016/j.patrec.2006.01.009_bib8
  article-title: Maximum likelihood restoration and choice of smoothing parameter in deconvolution of image data subject to Poisson noise
  publication-title: Comput. Statist. Data Anal.
  doi: 10.1016/S0167-9473(97)00041-8
– volume: 29
  start-page: 319
  year: 2005
  ident: 10.1016/j.patrec.2006.01.009_bib26
  article-title: Adaptive penalty likelihood for reconstruction of multidimensional confocal microscopy images
  publication-title: Comput. Med. Imag. Graphics
  doi: 10.1016/j.compmedimag.2004.12.004
– volume: 6
  start-page: 298
  year: 1997
  ident: 10.1016/j.patrec.2006.01.009_bib3
  article-title: Deterministic edge-preserving regularization in computed imaging
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.551699
– volume: 18
  start-page: 1397
  year: 2002
  ident: 10.1016/j.patrec.2006.01.009_bib16
  article-title: Penalized maximum likelihood image restoration with positivity constraints: multiplicative algorithms
  publication-title: Inverse Problem
  doi: 10.1088/0266-5611/18/5/313
– ident: 10.1016/j.patrec.2006.01.009_bib25
– volume: 4
  start-page: 594
  year: 1995
  ident: 10.1016/j.patrec.2006.01.009_bib11
  article-title: General choice of the regularization functional in regularized image restoration
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.382494
– ident: 10.1016/j.patrec.2006.01.009_bib17
– year: 1999
  ident: 10.1016/j.patrec.2006.01.009_bib23
– volume: 39
  start-page: 729
  year: 1991
  ident: 10.1016/j.patrec.2006.01.009_bib13
  article-title: Maximum likelihood blur identification and image restoration using the EM algorithm
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.80894
– volume: 10
  start-page: 1078
  year: 1993
  ident: 10.1016/j.patrec.2006.01.009_bib10
  article-title: Maximum a posteriori estimation with good’s roughness for optical sectioning microscopy
  publication-title: Opt. Soc. Amer. A
  doi: 10.1364/JOSAA.10.001078
– volume: 7
  start-page: 813
  year: 1998
  ident: 10.1016/j.patrec.2006.01.009_bib24
  article-title: Fast, robust total variation-based reconstruction of noisy, blurred images
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.679423
– volume: 24
  start-page: 2377
  year: 2003
  ident: 10.1016/j.patrec.2006.01.009_bib9
  article-title: Parameter estimation in Markov random field image modeling with imperfect observations. A comparative study
  publication-title: Pattern Recognition Lett.
  doi: 10.1016/S0167-8655(03)00067-9
– volume: 13
  start-page: 687
  year: 1994
  ident: 10.1016/j.patrec.2006.01.009_bib18
  article-title: Fast gradient-based methods for Bayesian reconstruction of transmission and emission PET images
  publication-title: IEEE Trans. Medical Imag.
  doi: 10.1109/42.363099
– ident: 10.1016/j.patrec.2006.01.009_bib19
– volume: 22
  start-page: 85
  year: 2004
  ident: 10.1016/j.patrec.2006.01.009_bib4
  article-title: A new constraint parameter estimator for computer vision application
  publication-title: Image Vision Comput.
  doi: 10.1016/S0262-8856(03)00140-9
SSID ssj0006398
Score 1.8297678
Snippet In this paper, we present an adaptive gradient based method to restore images degraded by the effects of both noise and blur. The approach combines two penalty...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 1336
SubjectTerms Combined penalty function
Gradient descent
Image restoration
Penalized likelihood
Regularization
Title An adaptive algorithm for image restoration using combined penalty functions
URI https://dx.doi.org/10.1016/j.patrec.2006.01.009
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssDAo4AoL3lgTRvHTh2PVUVVXl2gUrfo4jilqE2jKgws_HZ8eUCREEisiU9Jzs535_N3d4RcSclZAsp1lEk8RwSJ6wBA5PiR0NwIBoJj7vDDuDeaiNupP22QQZ0Lg7TKCvtLTC_QurrSrbTZzebz7iMS6DGt0u0V4RTEYSEk1s_vvH_RPKwFDur63ji6Tp8rOF4Ybza6OpJgHRdpiT-Zpw2TM9wnu5WvSPvl6xyQhklbZK_uw0Cr37JFdjaKCh6S-35KIYYMcYzCYray2__nJbXOKZ0vLXrQddFMppgRirT3GbUfbzfIJqaZsQ_M3yhau2JBHpHJ8PppMHKqngmO5tLLHa5F4IPHE6X9SGqpfM-AAeBRkKiez2ILtIG0dyPrR2mWRNbGK19jISkGWgE_Js10lZoTQlkcQ-IKsD4VCCU9MLEvLB6ZBN08ptqE16oKdVVQHPtaLMKaOfYSlgrGXpe90GWhVXCbOJ9SWVlQ44_xsp6F8NvCCC3m_yp5-m_JM7JdRlqQSnZOmvn61VxY3yOPLovFdUm2-jd3o_EHO8ralQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqGICBRwFRnh5YQ-PYjuOxqqgKlC6AxBZdHKcUtSFCZWDht3POg4eEQGJNfEpyvnx3tr-7I-RUKc4y0L6nbRZ4Isp8DwASTybCcCsYCO5yh6_H4fBOXN7L-xbpN7kwjlZZY3-F6SVa11e6tTa7xXTavXEEepdW6Yfldgri8LKQXDnTPnv75HmgC46aAt9ueJM_V5K83IazNfWZBDvzHS_xJ__0xecMNsl6HSzSXvU-W6Rl8zbZaBox0Pq_bJO1L1UFt8mol1NIoXBARmE2ecL1_8OcYnRKp3OED_pcdpMpp4Q63vuE4tfjCtmmtLD4wMUrde6utMgdcjc4v-0Pvbppgme4ChYeNyKSEPBMG5koo7QMLFgAnkSZDiVLEWkjhXcTDKQMyxJ08loaV0mKgdHAd8lS_pTbPUJZmkLmC8CgCoRWAdhUCgQkm7k4j-kO4Y2qYlNXFHeNLWZxQx17jCsFu2aXYeyzGBXcId6HVFFV1PhjvGpmIf5mGTGC_q-S-_-WPCErw9vrUTy6GF8dkNVq28Xxyg7J0uL5xR5hILJIjktDewdtRNwr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+adaptive+algorithm+for+image+restoration+using+combined+penalty+functions&rft.jtitle=Pattern+recognition+letters&rft.au=Zhu%2C+Daan&rft.au=Razaz%2C+Moe&rft.au=Fisher%2C+Mark&rft.date=2006-09-01&rft.pub=Elsevier+B.V&rft.issn=0167-8655&rft.eissn=1872-7344&rft.volume=27&rft.issue=12&rft.spage=1336&rft.epage=1341&rft_id=info:doi/10.1016%2Fj.patrec.2006.01.009&rft.externalDocID=S0167865506000122
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8655&client=summon