Neural network based adaptive nonsingular practical predefined-time fault-tolerant control for hypersonic morphing aircraft

This paper develops a novel Neural Network (NN)-based adaptive nonsingular practical predefined-time controller for the hypersonic morphing aircraft subject to actuator faults. Firstly, a novel Lyapunov criterion of practical predefined-time stability is established. Following the proposed criterion...

Full description

Saved in:
Bibliographic Details
Published inChinese journal of aeronautics Vol. 37; no. 4; pp. 421 - 435
Main Authors XU, Shihao, WEI, Changzhu, ZHANG, Litao, MU, Rongjun
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.04.2024
School of Astronautics,Harbin Institute of Technology,Harbin 150001,China%Beijing Institute of Control & Electronics Technology,Beijing 100038,China
Subjects
Online AccessGet full text
ISSN1000-9361
DOI10.1016/j.cja.2023.12.020

Cover

Loading…
Abstract This paper develops a novel Neural Network (NN)-based adaptive nonsingular practical predefined-time controller for the hypersonic morphing aircraft subject to actuator faults. Firstly, a novel Lyapunov criterion of practical predefined-time stability is established. Following the proposed criterion, a tangent function based nonsingular predefined-time sliding manifold and the control strategy are developed. Secondly, the radial basis function NN with a low-complexity adaptation mechanism is incorporated into the controller to tackle the actuator faults and uncertainties. Thirdly, rigorous theoretical proof reveals that the attitude tracking errors can converge to a small region around the origin within a predefined time, while all signals in the closed-loop system remain bounded. Finally, numerical simulation results are presented to verify the effectiveness and improved performance of the proposed control scheme.
AbstractList This paper develops a novel Neural Network (NN)-based adaptive nonsingular practical predefined-time controller for the hypersonic morphing aircraft subject to actuator faults. Firstly, a novel Lyapunov criterion of practical predefined-time stability is established. Following the proposed criterion, a tangent function based nonsingular predefined-time sliding manifold and the control strategy are developed. Secondly, the radial basis function NN with a low-complexity adaptation mechanism is incorporated into the controller to tackle the actuator faults and uncertainties. Thirdly, rigorous theoretical proof reveals that the attitude tracking errors can converge to a small region around the origin within a predefined time, while all signals in the closed-loop system remain bounded. Finally, numerical simulation results are presented to verify the effectiveness and improved performance of the proposed control scheme.
This paper develops a novel Neural Network(NN)-based adaptive nonsingular practical predefined-time controller for the hypersonic morphing aircraft subject to actuator faults.Firstly,a novel Lyapunov criterion of practical predefined-time stability is established.Following the pro-posed criterion,a tangent function based nonsingular predefined-time sliding manifold and the con-trol strategy are developed.Secondly,the radial basis function NN with a low-complexity adaptation mechanism is incorporated into the controller to tackle the actuator faults and uncer-tainties.Thirdly,rigorous theoretical proof reveals that the attitude tracking errors can converge to a small region around the origin within a predefined time,while all signals in the closed-loop sys-tem remain bounded.Finally,numerical simulation results are presented to verify the effectiveness and improved performance of the proposed control scheme.
Author WEI, Changzhu
ZHANG, Litao
XU, Shihao
MU, Rongjun
AuthorAffiliation School of Astronautics,Harbin Institute of Technology,Harbin 150001,China%Beijing Institute of Control & Electronics Technology,Beijing 100038,China
AuthorAffiliation_xml – name: School of Astronautics,Harbin Institute of Technology,Harbin 150001,China%Beijing Institute of Control & Electronics Technology,Beijing 100038,China
Author_xml – sequence: 1
  givenname: Shihao
  surname: XU
  fullname: XU, Shihao
  organization: School of Astronautics, Harbin Institute of Technology, Harbin 150001, China
– sequence: 2
  givenname: Changzhu
  surname: WEI
  fullname: WEI, Changzhu
  email: weichangzhu@hit.edu.cn
  organization: School of Astronautics, Harbin Institute of Technology, Harbin 150001, China
– sequence: 3
  givenname: Litao
  surname: ZHANG
  fullname: ZHANG, Litao
  organization: Beijing Institute of Control & Electronics Technology, Beijing 100038, China
– sequence: 4
  givenname: Rongjun
  surname: MU
  fullname: MU, Rongjun
  organization: School of Astronautics, Harbin Institute of Technology, Harbin 150001, China
BookMark eNp9kLtu3DAQRVk4gB_JB7hj50oKHxJlIVVg5AUYSZPUxGg08lLWksKIa8fIz4eLTZXC1TT33Is5l-IspkhCXGtVa6Xd-7nGGWqjjK21qZVRZ-JCK6Wq3jp9Li63bVbK9p1WF-LPdzowLDJSfk78KAfYaJQwwprDE8nSvIX4cFiA5cqAOWAJr0wjTSHSWOWwJznBYclVTgsxxCwxxcxpkVNiuXtZibcUA8p94nVXyiQERoYpvxVvJlg2evfvXolfnz_9vPta3f_48u3u432FtjO5sj12FruxnbC3g2ld05uusWiQyGHrWjdY1K5XZB0iKbSDVWTcAHCLrhnslbg59T5DnCA--DkdOJZFv3v8PXgqphrVKNOWpD4lkdO2MU1-5bAHfvFa-aNbP_vi1h_dem18cVuY7j8GQ4YcjhIgLK-SH04kleefArHfMFBEGgMTZj-m8Ar9F8Zgmzc
CitedBy_id crossref_primary_10_1007_s11071_025_10900_2
crossref_primary_10_1016_j_engappai_2024_109962
crossref_primary_10_1038_s41598_025_86783_5
crossref_primary_10_1007_s10489_024_06219_x
crossref_primary_10_1016_j_ast_2025_110102
Cites_doi 10.1007/s11431-018-9377-8
10.1016/j.ast.2017.08.013
10.1007/s11071-016-3196-0
10.1016/j.isatra.2022.02.003
10.1007/s12555-020-0694-0
10.1007/s11071-019-04834-9
10.1016/j.cja.2013.06.004
10.1016/j.cja.2021.09.013
10.1061/(ASCE)AS.1943-5525.0001047
10.1016/j.neucom.2021.08.069
10.1016/j.jfranklin.2022.10.002
10.1016/j.ast.2022.107985
10.1016/j.ast.2015.11.039
10.1016/j.ast.2021.107204
10.1016/B978-0-12-811318-9.00028-4
10.1016/j.cja.2019.03.029
10.1109/TAC.2020.2967555
10.1109/TMECH.2019.2906289
10.1016/j.ast.2022.107959
10.1016/j.ast.2020.106314
10.1016/j.conengprac.2020.104682
10.1049/cth2.12380
10.1016/j.ast.2019.05.063
10.1177/0020294019830434
10.1016/0893-6080(90)90005-6
10.1109/TAES.2022.3230633
10.1109/9.486648
10.1016/j.automatica.2010.02.018
10.1016/j.ins.2020.08.059
10.1109/TII.2019.2945861
10.1016/j.jfranklin.2022.05.011
10.1109/TAES.2022.3222294
10.1109/ACCESS.2021.3074912
10.1016/j.cja.2021.10.037
10.1007/s11432-015-5349-z
10.1007/s12555-020-0764-3
ContentType Journal Article
Copyright 2023 Chinese Society of Aeronautics and Astronautics
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: 2023 Chinese Society of Aeronautics and Astronautics
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1016/j.cja.2023.12.020
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 435
ExternalDocumentID hkxb_e202404025
10_1016_j_cja_2023_12_020
S1000936123004351
GroupedDBID --K
-SC
-S~
0R~
0SF
1B1
1~5
29B
2B.
2C0
4.4
457
4G.
5GY
5VR
5VS
5XA
5XD
6I.
7-5
71M
92H
92I
92R
93N
9D9
9DC
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAQFI
AAXDM
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
ADMUD
AEKER
AENEX
AEXQZ
AFTJW
AFUIB
AGHFR
AI.
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
CAJEC
CAJUS
CCEZO
CEKLB
CHBEP
CS3
CW9
DU5
EBS
EJD
EO9
EP2
EP3
FA0
FDB
FNPLU
GBLVA
GROUPED_DOAJ
HZ~
IPNFZ
IXB
J1W
KQ8
M41
N9A
NCXOZ
O-L
O9-
OK1
OZT
Q--
Q-2
RIG
ROL
SDF
SDG
SES
SSZ
TCJ
TGT
U1G
U5M
VH1
~M3
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
CITATION
4A8
PSX
ID FETCH-LOGICAL-c372t-39c73c7d5fc93b256492743c2cee6c5656b3c1690e36cce0c3b30e26baa8c64b3
IEDL.DBID IXB
ISSN 1000-9361
IngestDate Thu May 29 03:54:26 EDT 2025
Thu Apr 24 22:57:18 EDT 2025
Tue Jul 01 01:17:53 EDT 2025
Sat May 25 15:40:37 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Hypersonic morphing aircraft (HMA)
Neural network (NN)
Practical predefined-time control
Fault-tolerant control
Adaptive control
Hypersonic morphing air-craft(HMA)
Neural network(NN)
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-39c73c7d5fc93b256492743c2cee6c5656b3c1690e36cce0c3b30e26baa8c64b3
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1000936123004351
PageCount 15
ParticipantIDs wanfang_journals_hkxb_e202404025
crossref_primary_10_1016_j_cja_2023_12_020
crossref_citationtrail_10_1016_j_cja_2023_12_020
elsevier_sciencedirect_doi_10_1016_j_cja_2023_12_020
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationTitle Chinese journal of aeronautics
PublicationTitle_FL Chinese Journal of Aeronautics
PublicationYear 2024
Publisher Elsevier Ltd
School of Astronautics,Harbin Institute of Technology,Harbin 150001,China%Beijing Institute of Control & Electronics Technology,Beijing 100038,China
Publisher_xml – name: Elsevier Ltd
– name: School of Astronautics,Harbin Institute of Technology,Harbin 150001,China%Beijing Institute of Control & Electronics Technology,Beijing 100038,China
References Ma, Peng (b0125) 2021; 119
Faris H, Aljarah I, Mirjalili S. Evolving radial basis function networks using moth–flame optimizer.
Jiao, Fidan, Jiang (b0085) 2015; 58
Sun, Zhang (b0160) 2021; 546
Cai, Yang, Mu (b0040) 2023; 17
Polycarpou (b0165) 1996; 41
Bao, Wang, Tang (b0190) 2023; 59
Liu, Whidborne (b0130) 2021; 464
Liang, Wang, Xu (b0140) 2021; 19
Amsterdam: Elsevier, 2017. p. 537–50.
Wu, Zhang, Wu (b0050) 2019; 62
Chu, Li, Gu (b0010) 2022; 35
Gong, Wang, Dong (b0055) 2019; 96
Hornik, Stinchcombe, White (b0175) 1990; 3
Bai, Dong (b0025) 2014
Dai, Yan, Liu (b0145) 2021; 9
Yuan, Wang, Xu (b0045) 2023; 132
Yan, Li, Dai (b0015) 2019; 32
Ding, Yue, Chen (b0115) 2022; 35
Dai, Yan, Han (b0150) 2023; 59
Jiménez-Rodríguez, Muñoz-Vázquez, Sánchez-Torres (b0090) 2020; 65
Muñoz-Vázquez, Sánchez-Torres, Jiménez-Rodríguez (b0100) 2019; 24
Qiao, Shi, Qu (b0180) 2022; 20
Gong, Wang, Dong (b0060) 2019; 52
Wu, Lu, Zhou (b0065) 2017; 87
Hu, Zhang, Zou (b0155) 2022; 359
Sun, Pu, Yi (b0195) 2020; 16
Yue, Zhang, Wang (b0070) 2017; 70
Chao, Qi, Jiang (b0120) 2022; 359
Yue, Wang, Ai (b0030) 2013; 26
Yan, Dai, Liu (b0075) 2019; 92
Puyou, Berard (b0020) 2007; 40
Liang, Ge, Liu (b0105) 2021; 107
Ajaj, Beaverstock, Friswell (b0005) 2016; 49
Liang, Wang, Hu (b0135) 2020; 107
Xie, Chen (b0095) 2022; 69
Ju, Wei, Xu (b0110) 2022; 129
Gao, Fu (b0035) 2019; 32
Liu, Shan, Wang (b0080) 2022; 131
Vamvoudakis, Lewis (b0170) 2010; 46
Liu (10.1016/j.cja.2023.12.020_b0130) 2021; 464
10.1016/j.cja.2023.12.020_b0185
Polycarpou (10.1016/j.cja.2023.12.020_b0165) 1996; 41
Puyou (10.1016/j.cja.2023.12.020_b0020) 2007; 40
Dai (10.1016/j.cja.2023.12.020_b0145) 2021; 9
Vamvoudakis (10.1016/j.cja.2023.12.020_b0170) 2010; 46
Bao (10.1016/j.cja.2023.12.020_b0190) 2023; 59
Yue (10.1016/j.cja.2023.12.020_b0030) 2013; 26
Wu (10.1016/j.cja.2023.12.020_b0050) 2019; 62
Liang (10.1016/j.cja.2023.12.020_b0105) 2021; 107
Hu (10.1016/j.cja.2023.12.020_b0155) 2022; 359
Qiao (10.1016/j.cja.2023.12.020_b0180) 2022; 20
Dai (10.1016/j.cja.2023.12.020_b0150) 2023; 59
Sun (10.1016/j.cja.2023.12.020_b0195) 2020; 16
Yan (10.1016/j.cja.2023.12.020_b0015) 2019; 32
Ajaj (10.1016/j.cja.2023.12.020_b0005) 2016; 49
Gong (10.1016/j.cja.2023.12.020_b0055) 2019; 96
Ding (10.1016/j.cja.2023.12.020_b0115) 2022; 35
Chu (10.1016/j.cja.2023.12.020_b0010) 2022; 35
Wu (10.1016/j.cja.2023.12.020_b0065) 2017; 87
Cai (10.1016/j.cja.2023.12.020_b0040) 2023; 17
Yuan (10.1016/j.cja.2023.12.020_b0045) 2023; 132
Yue (10.1016/j.cja.2023.12.020_b0070) 2017; 70
Liang (10.1016/j.cja.2023.12.020_b0135) 2020; 107
Gong (10.1016/j.cja.2023.12.020_b0060) 2019; 52
Jiménez-Rodríguez (10.1016/j.cja.2023.12.020_b0090) 2020; 65
Bai (10.1016/j.cja.2023.12.020_b0025) 2014
Sun (10.1016/j.cja.2023.12.020_b0160) 2021; 546
Chao (10.1016/j.cja.2023.12.020_b0120) 2022; 359
Jiao (10.1016/j.cja.2023.12.020_b0085) 2015; 58
Muñoz-Vázquez (10.1016/j.cja.2023.12.020_b0100) 2019; 24
Xie (10.1016/j.cja.2023.12.020_b0095) 2022; 69
Yan (10.1016/j.cja.2023.12.020_b0075) 2019; 92
Ma (10.1016/j.cja.2023.12.020_b0125) 2021; 119
Gao (10.1016/j.cja.2023.12.020_b0035) 2019; 32
Liu (10.1016/j.cja.2023.12.020_b0080) 2022; 131
Liang (10.1016/j.cja.2023.12.020_b0140) 2021; 19
Ju (10.1016/j.cja.2023.12.020_b0110) 2022; 129
Hornik (10.1016/j.cja.2023.12.020_b0175) 1990; 3
References_xml – reference: . Amsterdam: Elsevier, 2017. p. 537–50.
– volume: 70
  start-page: 328
  year: 2017
  end-page: 338
  ident: b0070
  article-title: Flight dynamic modeling and control for a telescopic wing morphing aircraft via asymmetric wing morphing
  publication-title: Aerosp Sci Technol
– volume: 58
  start-page: 1
  year: 2015
  end-page: 15
  ident: b0085
  article-title: Adaptive mode switching of hypersonic morphing aircraft based on type-2 TSK fuzzy sliding mode control
  publication-title: Sci China Inf Sci
– volume: 59
  start-page: 3713
  year: 2023
  end-page: 3725
  ident: b0190
  article-title: Data-driven based model-free adaptive optimal control method for hypersonic morphing vehicle
  publication-title: IEEE Trans Aerosp Electron Syst
– volume: 32
  year: 2019
  ident: b0015
  article-title: Aerodynamic analysis, dynamic modeling, and control of a morphing aircraft
  publication-title: J Aerosp Eng
– volume: 52
  start-page: 608
  year: 2019
  end-page: 624
  ident: b0060
  article-title: Prescribed performance control of morphing aircraft based on switched nonlinear systems and reinforcement learning
  publication-title: Meas Contr
– reference: Faris H, Aljarah I, Mirjalili S. Evolving radial basis function networks using moth–flame optimizer.
– volume: 35
  start-page: 220
  year: 2022
  end-page: 246
  ident: b0010
  article-title: Design, modeling, and control of morphing aircraft: A review
  publication-title: Chin J Aeronaut
– volume: 32
  start-page: 1588
  year: 2019
  end-page: 1602
  ident: b0035
  article-title: Robust LPV modeling and control of aircraft flying through wind disturbance
  publication-title: Chin J Aeronaut
– volume: 132
  year: 2023
  ident: b0045
  article-title: Adaptive fault-tolerant controller for morphing aircraft based on the L2 gain and a neural network
  publication-title: Aerosp Sci Technol
– volume: 464
  start-page: 546
  year: 2021
  end-page: 561
  ident: b0130
  article-title: Observer-based incremental backstepping sliding-mode fault-tolerant control for blended-wing-body aircrafts
  publication-title: Neurocomputing
– volume: 359
  start-page: 9522
  year: 2022
  end-page: 9543
  ident: b0155
  article-title: Practical predefined-time attitude coordination control for multiple rigid spacecraft
  publication-title: J Frankl Inst
– volume: 69
  start-page: 189
  year: 2022
  end-page: 193
  ident: b0095
  article-title: Adaptive nonsingular predefined-time control for attitude stabilization of rigid spacecrafts
  publication-title: IEEE Trans Circuits Syst II
– volume: 359
  start-page: 5458
  year: 2022
  end-page: 5487
  ident: b0120
  article-title: Adaptive fault-tolerant attitude control for hypersonic reentry vehicle subject to complex uncertainties
  publication-title: J Frankl Inst
– volume: 17
  start-page: 493
  year: 2023
  end-page: 503
  ident: b0040
  article-title: Design of linear parameter-varying controller for morphing aircraft using inexact scheduling parameters
  publication-title: IET Contr Theory Appl
– volume: 40
  start-page: 497
  year: 2007
  end-page: 502
  ident: b0020
  article-title: Gain-scheduled flight control law for flexible aircraft: a practical approach
  publication-title: IFAC Proc
– volume: 59
  start-page: 3071
  year: 2023
  end-page: 3081
  ident: b0150
  article-title: Barrier Lyapunov function based model predictive control of a morphing waverider with input saturation and full-state constraints
  publication-title: IEEE Trans Aerosp Electron Syst
– volume: 546
  start-page: 742
  year: 2021
  end-page: 752
  ident: b0160
  article-title: Fixed-time adaptive fuzzy control for uncertain strict feedback switched systems
  publication-title: Inf Sci
– volume: 87
  start-page: 2367
  year: 2017
  end-page: 2383
  ident: b0065
  article-title: Modified adaptive neural dynamic surface control for morphing aircraft with input and output constraints
  publication-title: Nonlinear Dyn
– volume: 107
  year: 2020
  ident: b0135
  article-title: Fixed-time observer based fault tolerant attitude control for reusable launch vehicle with actuator faults
  publication-title: Aerosp Sci Technol
– volume: 41
  start-page: 447
  year: 1996
  end-page: 451
  ident: b0165
  article-title: Stable adaptive neural control scheme for nonlinear systems
  publication-title: IEEE Trans Autom Contr
– volume: 65
  start-page: 4922
  year: 2020
  end-page: 4927
  ident: b0090
  article-title: A Lyapunov-like characterization of predefined-time stability
  publication-title: IEEE Trans Autom Contr
– volume: 26
  start-page: 909
  year: 2013
  end-page: 917
  ident: b0030
  article-title: Gain self-scheduled
  publication-title: Chin J Aeronaut
– volume: 24
  start-page: 1033
  year: 2019
  end-page: 1040
  ident: b0100
  article-title: Predefined-time robust stabilization of robotic manipulators
  publication-title: IEEE/ASME Trans Mechatron
– volume: 119
  year: 2021
  ident: b0125
  article-title: Adaptive model-free fault-tolerant control based on integral reinforcement learning for a highly flexible aircraft with actuator faults
  publication-title: Aerosp Sci Technol
– volume: 9
  start-page: 63510
  year: 2021
  end-page: 63520
  ident: b0145
  article-title: Modeling and nonlinear model predictive control of a variable-sweep-wing morphing waverider
  publication-title: IEEE Access
– volume: 20
  start-page: 678
  year: 2022
  end-page: 690
  ident: b0180
  article-title: Adaptive back-stepping neural control for an embedded and tiltable V-tail morphing aircraft
  publication-title: Int J Control Autom Syst
– start-page: 148
  year: 2014
  end-page: 151
  ident: b0025
  article-title: Modeling and LQR switch control of morphing aircraft
  publication-title: 2013 6th international symposium on computational intelligence and design
– volume: 92
  start-page: 198
  year: 2019
  end-page: 210
  ident: b0075
  article-title: Adaptive super-twisting sliding mode control of variable sweep morphing aircraft
  publication-title: Aerosp Sci Technol
– volume: 49
  start-page: 154
  year: 2016
  end-page: 166
  ident: b0005
  article-title: Morphing aircraft: The need for a new design philosophy
  publication-title: Aerosp Sci Technol
– volume: 96
  start-page: 975
  year: 2019
  end-page: 995
  ident: b0055
  article-title: Disturbance rejection control of morphing aircraft based on switched nonlinear systems
  publication-title: Nonlinear Dyn
– volume: 16
  start-page: 1192
  year: 2020
  end-page: 1203
  ident: b0195
  article-title: Fixed-time control with uncertainty and measurement noise suppression for hypersonic vehicles via augmented sliding mode observers
  publication-title: IEEE Trans Ind Inform
– volume: 46
  start-page: 878
  year: 2010
  end-page: 888
  ident: b0170
  article-title: Online actor-critic algorithm to solve the continuous-time infinite horizon optimal control problem
  publication-title: Automatica
– volume: 107
  year: 2021
  ident: b0105
  article-title: Predefined-time formation tracking control of networked marine surface vehicles
  publication-title: Contr Eng Pract
– volume: 129
  start-page: 55
  year: 2022
  end-page: 72
  ident: b0110
  article-title: Fractional-order sliding mode control with a predefined-time observer for VTVL reusable launch vehicles under actuator faults and saturation constraints
  publication-title: ISA Trans
– volume: 35
  start-page: 1
  year: 2022
  end-page: 18
  ident: b0115
  article-title: Review of control and guidance technology on hypersonic vehicle
  publication-title: Chin J Aeronaut
– volume: 62
  start-page: 1845
  year: 2019
  end-page: 1853
  ident: b0050
  article-title: A new control design for a morphing UAV based on disturbance observer and command filtered backstepping techniques
  publication-title: Sci China Technol Sci
– volume: 19
  start-page: 3924
  year: 2021
  end-page: 3936
  ident: b0140
  article-title: Back-stepping fault-tolerant control for morphing aircraft based on fixed-time observer
  publication-title: Int J Contr Autom Syst
– volume: 3
  start-page: 551
  year: 1990
  end-page: 560
  ident: b0175
  article-title: Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks
  publication-title: Neural Netw
– volume: 131
  year: 2022
  ident: b0080
  article-title: Incremental sliding-mode control and allocation for morphing-wing aircraft fast manoeuvring
  publication-title: Aerosp Sci Technol
– volume: 62
  start-page: 1845
  issue: 10
  year: 2019
  ident: 10.1016/j.cja.2023.12.020_b0050
  article-title: A new control design for a morphing UAV based on disturbance observer and command filtered backstepping techniques
  publication-title: Sci China Technol Sci
  doi: 10.1007/s11431-018-9377-8
– volume: 70
  start-page: 328
  year: 2017
  ident: 10.1016/j.cja.2023.12.020_b0070
  article-title: Flight dynamic modeling and control for a telescopic wing morphing aircraft via asymmetric wing morphing
  publication-title: Aerosp Sci Technol
  doi: 10.1016/j.ast.2017.08.013
– volume: 87
  start-page: 2367
  issue: 4
  year: 2017
  ident: 10.1016/j.cja.2023.12.020_b0065
  article-title: Modified adaptive neural dynamic surface control for morphing aircraft with input and output constraints
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-016-3196-0
– volume: 129
  start-page: 55
  year: 2022
  ident: 10.1016/j.cja.2023.12.020_b0110
  article-title: Fractional-order sliding mode control with a predefined-time observer for VTVL reusable launch vehicles under actuator faults and saturation constraints
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2022.02.003
– volume: 20
  start-page: 678
  issue: 2
  year: 2022
  ident: 10.1016/j.cja.2023.12.020_b0180
  article-title: Adaptive back-stepping neural control for an embedded and tiltable V-tail morphing aircraft
  publication-title: Int J Control Autom Syst
  doi: 10.1007/s12555-020-0694-0
– volume: 96
  start-page: 975
  issue: 2
  year: 2019
  ident: 10.1016/j.cja.2023.12.020_b0055
  article-title: Disturbance rejection control of morphing aircraft based on switched nonlinear systems
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-019-04834-9
– volume: 26
  start-page: 909
  issue: 4
  year: 2013
  ident: 10.1016/j.cja.2023.12.020_b0030
  article-title: Gain self-scheduled H∞ control for morphing aircraft in the wing transition process based on an LPV model
  publication-title: Chin J Aeronaut
  doi: 10.1016/j.cja.2013.06.004
– volume: 35
  start-page: 220
  issue: 5
  year: 2022
  ident: 10.1016/j.cja.2023.12.020_b0010
  article-title: Design, modeling, and control of morphing aircraft: A review
  publication-title: Chin J Aeronaut
  doi: 10.1016/j.cja.2021.09.013
– volume: 32
  issue: 5
  year: 2019
  ident: 10.1016/j.cja.2023.12.020_b0015
  article-title: Aerodynamic analysis, dynamic modeling, and control of a morphing aircraft
  publication-title: J Aerosp Eng
  doi: 10.1061/(ASCE)AS.1943-5525.0001047
– volume: 464
  start-page: 546
  year: 2021
  ident: 10.1016/j.cja.2023.12.020_b0130
  article-title: Observer-based incremental backstepping sliding-mode fault-tolerant control for blended-wing-body aircrafts
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.08.069
– volume: 359
  start-page: 9522
  issue: 17
  year: 2022
  ident: 10.1016/j.cja.2023.12.020_b0155
  article-title: Practical predefined-time attitude coordination control for multiple rigid spacecraft
  publication-title: J Frankl Inst
  doi: 10.1016/j.jfranklin.2022.10.002
– volume: 40
  start-page: 497
  issue: 7
  year: 2007
  ident: 10.1016/j.cja.2023.12.020_b0020
  article-title: Gain-scheduled flight control law for flexible aircraft: a practical approach
  publication-title: IFAC Proc
– volume: 132
  year: 2023
  ident: 10.1016/j.cja.2023.12.020_b0045
  article-title: Adaptive fault-tolerant controller for morphing aircraft based on the L2 gain and a neural network
  publication-title: Aerosp Sci Technol
  doi: 10.1016/j.ast.2022.107985
– volume: 49
  start-page: 154
  year: 2016
  ident: 10.1016/j.cja.2023.12.020_b0005
  article-title: Morphing aircraft: The need for a new design philosophy
  publication-title: Aerosp Sci Technol
  doi: 10.1016/j.ast.2015.11.039
– volume: 119
  year: 2021
  ident: 10.1016/j.cja.2023.12.020_b0125
  article-title: Adaptive model-free fault-tolerant control based on integral reinforcement learning for a highly flexible aircraft with actuator faults
  publication-title: Aerosp Sci Technol
  doi: 10.1016/j.ast.2021.107204
– ident: 10.1016/j.cja.2023.12.020_b0185
  doi: 10.1016/B978-0-12-811318-9.00028-4
– volume: 32
  start-page: 1588
  issue: 7
  year: 2019
  ident: 10.1016/j.cja.2023.12.020_b0035
  article-title: Robust LPV modeling and control of aircraft flying through wind disturbance
  publication-title: Chin J Aeronaut
  doi: 10.1016/j.cja.2019.03.029
– volume: 65
  start-page: 4922
  issue: 11
  year: 2020
  ident: 10.1016/j.cja.2023.12.020_b0090
  article-title: A Lyapunov-like characterization of predefined-time stability
  publication-title: IEEE Trans Autom Contr
  doi: 10.1109/TAC.2020.2967555
– volume: 24
  start-page: 1033
  issue: 3
  year: 2019
  ident: 10.1016/j.cja.2023.12.020_b0100
  article-title: Predefined-time robust stabilization of robotic manipulators
  publication-title: IEEE/ASME Trans Mechatron
  doi: 10.1109/TMECH.2019.2906289
– volume: 131
  year: 2022
  ident: 10.1016/j.cja.2023.12.020_b0080
  article-title: Incremental sliding-mode control and allocation for morphing-wing aircraft fast manoeuvring
  publication-title: Aerosp Sci Technol
  doi: 10.1016/j.ast.2022.107959
– volume: 107
  year: 2020
  ident: 10.1016/j.cja.2023.12.020_b0135
  article-title: Fixed-time observer based fault tolerant attitude control for reusable launch vehicle with actuator faults
  publication-title: Aerosp Sci Technol
  doi: 10.1016/j.ast.2020.106314
– volume: 107
  year: 2021
  ident: 10.1016/j.cja.2023.12.020_b0105
  article-title: Predefined-time formation tracking control of networked marine surface vehicles
  publication-title: Contr Eng Pract
  doi: 10.1016/j.conengprac.2020.104682
– volume: 17
  start-page: 493
  issue: 4
  year: 2023
  ident: 10.1016/j.cja.2023.12.020_b0040
  article-title: Design of linear parameter-varying controller for morphing aircraft using inexact scheduling parameters
  publication-title: IET Contr Theory Appl
  doi: 10.1049/cth2.12380
– volume: 69
  start-page: 189
  issue: 1
  year: 2022
  ident: 10.1016/j.cja.2023.12.020_b0095
  article-title: Adaptive nonsingular predefined-time control for attitude stabilization of rigid spacecrafts
  publication-title: IEEE Trans Circuits Syst II
– volume: 92
  start-page: 198
  year: 2019
  ident: 10.1016/j.cja.2023.12.020_b0075
  article-title: Adaptive super-twisting sliding mode control of variable sweep morphing aircraft
  publication-title: Aerosp Sci Technol
  doi: 10.1016/j.ast.2019.05.063
– volume: 52
  start-page: 608
  issue: 5–6
  year: 2019
  ident: 10.1016/j.cja.2023.12.020_b0060
  article-title: Prescribed performance control of morphing aircraft based on switched nonlinear systems and reinforcement learning
  publication-title: Meas Contr
  doi: 10.1177/0020294019830434
– volume: 3
  start-page: 551
  issue: 5
  year: 1990
  ident: 10.1016/j.cja.2023.12.020_b0175
  article-title: Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks
  publication-title: Neural Netw
  doi: 10.1016/0893-6080(90)90005-6
– volume: 59
  start-page: 3713
  issue: 4
  year: 2023
  ident: 10.1016/j.cja.2023.12.020_b0190
  article-title: Data-driven based model-free adaptive optimal control method for hypersonic morphing vehicle
  publication-title: IEEE Trans Aerosp Electron Syst
  doi: 10.1109/TAES.2022.3230633
– volume: 41
  start-page: 447
  issue: 3
  year: 1996
  ident: 10.1016/j.cja.2023.12.020_b0165
  article-title: Stable adaptive neural control scheme for nonlinear systems
  publication-title: IEEE Trans Autom Contr
  doi: 10.1109/9.486648
– volume: 46
  start-page: 878
  issue: 5
  year: 2010
  ident: 10.1016/j.cja.2023.12.020_b0170
  article-title: Online actor-critic algorithm to solve the continuous-time infinite horizon optimal control problem
  publication-title: Automatica
  doi: 10.1016/j.automatica.2010.02.018
– volume: 546
  start-page: 742
  year: 2021
  ident: 10.1016/j.cja.2023.12.020_b0160
  article-title: Fixed-time adaptive fuzzy control for uncertain strict feedback switched systems
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2020.08.059
– volume: 16
  start-page: 1192
  issue: 2
  year: 2020
  ident: 10.1016/j.cja.2023.12.020_b0195
  article-title: Fixed-time control with uncertainty and measurement noise suppression for hypersonic vehicles via augmented sliding mode observers
  publication-title: IEEE Trans Ind Inform
  doi: 10.1109/TII.2019.2945861
– volume: 359
  start-page: 5458
  issue: 11
  year: 2022
  ident: 10.1016/j.cja.2023.12.020_b0120
  article-title: Adaptive fault-tolerant attitude control for hypersonic reentry vehicle subject to complex uncertainties
  publication-title: J Frankl Inst
  doi: 10.1016/j.jfranklin.2022.05.011
– volume: 59
  start-page: 3071
  issue: 3
  year: 2023
  ident: 10.1016/j.cja.2023.12.020_b0150
  article-title: Barrier Lyapunov function based model predictive control of a morphing waverider with input saturation and full-state constraints
  publication-title: IEEE Trans Aerosp Electron Syst
  doi: 10.1109/TAES.2022.3222294
– volume: 9
  start-page: 63510
  year: 2021
  ident: 10.1016/j.cja.2023.12.020_b0145
  article-title: Modeling and nonlinear model predictive control of a variable-sweep-wing morphing waverider
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3074912
– start-page: 148
  year: 2014
  ident: 10.1016/j.cja.2023.12.020_b0025
  article-title: Modeling and LQR switch control of morphing aircraft
– volume: 35
  start-page: 1
  issue: 7
  year: 2022
  ident: 10.1016/j.cja.2023.12.020_b0115
  article-title: Review of control and guidance technology on hypersonic vehicle
  publication-title: Chin J Aeronaut
  doi: 10.1016/j.cja.2021.10.037
– volume: 58
  start-page: 1
  issue: 7
  year: 2015
  ident: 10.1016/j.cja.2023.12.020_b0085
  article-title: Adaptive mode switching of hypersonic morphing aircraft based on type-2 TSK fuzzy sliding mode control
  publication-title: Sci China Inf Sci
  doi: 10.1007/s11432-015-5349-z
– volume: 19
  start-page: 3924
  issue: 12
  year: 2021
  ident: 10.1016/j.cja.2023.12.020_b0140
  article-title: Back-stepping fault-tolerant control for morphing aircraft based on fixed-time observer
  publication-title: Int J Contr Autom Syst
  doi: 10.1007/s12555-020-0764-3
SSID ssj0039710
Score 2.3732057
Snippet This paper develops a novel Neural Network (NN)-based adaptive nonsingular practical predefined-time controller for the hypersonic morphing aircraft subject to...
This paper develops a novel Neural Network(NN)-based adaptive nonsingular practical predefined-time controller for the hypersonic morphing aircraft subject to...
SourceID wanfang
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 421
SubjectTerms Adaptive control
Fault-tolerant control
Hypersonic morphing aircraft (HMA)
Neural network (NN)
Practical predefined-time control
Title Neural network based adaptive nonsingular practical predefined-time fault-tolerant control for hypersonic morphing aircraft
URI https://dx.doi.org/10.1016/j.cja.2023.12.020
https://d.wanfangdata.com.cn/periodical/hkxb-e202404025
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6LIOhBfOKbHDwJYbtNX3tUcRFBLyrsLUymqa6u3aVWFPzzzrSpKIgHr2U6hHzpPJqZb4Q4ShN0OnGgcoytitI4VZY8n8qYbDwLIcqaDu-r6-TiLrocx-OeOOt6Ybis0tv-1qY31to_6fvd7M8nk_7NoEnHmT6Er7OaNmpmauEmvvFpZ43J3XpGgiBQLN3dbDY1XvjI1EOhbv4I8sjv333T4huUBZT33zzPaFWs-JBRnrSrWhM9V66L5W9Eghvigzk2SKZsi7ol-6ZcQg5ztmay5CrYkofOV9K3RZHwvHK5K0hJrnjCvCzgdVqrejZ15L9q6YvYJUW18oGyVY7MJyifZ4QMKZMwqbCCot4Ud6Pz27ML5ccqKNRpWCs9xFRjmscFDrWlkCcaUmqqMSR_mSAHeFYj354RiIguQG114MLEAmSYRFZviQVat9sW0g0AijyPmCcsAgggKyzEjknCwoKg3hFBt6EGPec4j76Ymq647NEQBoYxMIPQEAY74vjrlXlLuPGXcNShZH6cGkMO4a_XpEfU-C_2xTw8vVvjQqZ8o5Q63v2f5j2xxCra0p59sVBXr-6AopbaHjbH8hP5i-wt
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS-RAEG7ERdTDsr5Q19U-eBKayaTzmqMryvi8qDC3prrS0dExDjGi4J-3KuksCosHr6FSNP116pGu-kqI3TRBpxMHKsfYqiiNU2XJ86mMycazEKKs6fA-v0iG19HJKB7NiIOuF4bLKr3tb216Y639k57fzd50PO5d9pt0nOlD-DqL26h_UDSQcF3X8ehvZ47J33pKgiBQLN5dbTZFXnjH3EOhbn4J8szv_zunuRcoCyhvPrieo1_ip48Z5X67rCUx48plsfiBSXBFvDHJBsmUbVW3ZOeUS8hhyuZMllwGW_LU-Ur6vigSnlYudwUpyRWPmJcFPE9qVT9OHDmwWvoqdklhrbyldJVD8zHKh0eChpRJGFdYQVGviuujw6uDofJzFRTqNKyVHmCqMc3jAgfaUswTDSg31RiSw0yQIzyrka_PCEVEF6C2OnBhYgEyTCKr18QsrdutC-n6AEWeR0wUFgEEkBUWYscsYWFBWG-IoNtQg550nGdfTExXXXZnCAPDGJh-aAiDDbH375Vpy7jxlXDUoWQ-HRtDHuGr16RH1PhP9snc3r9a40LmfKOcOt78nuYdMT-8Oj8zZ8cXp7_FAqtr63y2xGxdPbs_FMLUdrs5ou_y9e9U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+network+based+adaptive+nonsingular+practical+predefined-time+fault-tolerant+control+for+hypersonic+morphing+aircraft&rft.jtitle=Chinese+journal+of+aeronautics&rft.au=XU%2C+Shihao&rft.au=WEI%2C+Changzhu&rft.au=ZHANG%2C+Litao&rft.au=MU%2C+Rongjun&rft.date=2024-04-01&rft.issn=1000-9361&rft.volume=37&rft.issue=4&rft.spage=421&rft.epage=435&rft_id=info:doi/10.1016%2Fj.cja.2023.12.020&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cja_2023_12_020
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fhkxb-e%2Fhkxb-e.jpg