Efficient quantum dots anchored nanocomposite for highly active ORR/OER electrocatalyst of advanced metal-air batteries

High activity bifunctional non-noble electrocatalysts, targeting both ORR and OER, are rationally designed by integrating the merits of both NiFe2O4 quantum dots and carbons nanotubes (CNTs) (NiFe2O4(QDs)/CNTs), which possesses large specific surface area (584 m2 g−1), abundant NiFe2O4 quantum dots...

Full description

Saved in:
Bibliographic Details
Published inNano energy Vol. 57; pp. 176 - 185
Main Authors Xu, Nengneng, Zhang, Yanxing, Zhang, Tao, Liu, Yuyu, Qiao, Jinli
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.03.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract High activity bifunctional non-noble electrocatalysts, targeting both ORR and OER, are rationally designed by integrating the merits of both NiFe2O4 quantum dots and carbons nanotubes (CNTs) (NiFe2O4(QDs)/CNTs), which possesses large specific surface area (584 m2 g−1), abundant NiFe2O4 quantum dots and superior conductivity. Specially, the mechanism for the formation of quantum dots in relation to Fe/Ni ratio and the corresponding activity of ORR and OER are studied carefully. Consequently, NiFe2O4(QDs)/CNTs exhibits superior bifunctional oxygen electrocatalytic activities with the lowest the potential difference (ΔE) of 0.9 V, outperforming well-known commercial Pt/C and IrO2, directly demonstrating the advantages of quantum dots catalysts on providing more effective actives sites and adsorption-desorption sites to promote oxygen reaction kinetics. NiFe2O4(QDs)/CNTs, as high-performance catalyst used in liquid and flexible metal-air batteries, realize high power density, high specific capacity, long-term rechargeability (over 800 h), and extremely low charge-discharge voltage gaps (only 0.62 V) in ambient atmosphere. Furthermore, the metal-air batteries with flexible configuration effectively prevent the migration of Zn2+/Mg2+, the production of carbonate and the hydrogen evolution reaction. Density functional theory calculations further illustrate that the NiFe2O4(QDs) on CNT has a very active ORR and OER site at the interface Ni site. The work offers prospects for the rational design of quantum dots containing composites to achieve their practicalities in next generation of metal-air batteries. Quantum dots bifunctional catalyst is synthesized on the basis of a governable nanoscale designed strategy. The mechanism of the formation of quantum dots is revealed. Importantly, NiFe2O4(QDs)/CNTs, due to the effect of quantum dots and the strong coupling, can rapidly accelerates the oxygen electrochemical process and demonstrates enormous potential in liquid and flexible metal-air battery. [Display omitted] •A tunable nanoscale designed strategy was proposed to synthesize newly bifunctional quantum dot catalyst.•NiFe2O4(QDs)/CNTs demonstrates excellent activity and stability for ORR and OER.•NiFe2O4(QDs)/CNTs is used as a cathode material for metal-air battery and its flexible devices for the first time.•Liquid/ flexible magnesium-air batteries assembled with NiFe2O4(QDs)/CNTs exhibits the best performance ever reported.•DFT calculations illustrate that the NiFe2O4(QDs) on CNT have an active ORR and OER site at the interface Ni site.
AbstractList High activity bifunctional non-noble electrocatalysts, targeting both ORR and OER, are rationally designed by integrating the merits of both NiFe2O4 quantum dots and carbons nanotubes (CNTs) (NiFe2O4(QDs)/CNTs), which possesses large specific surface area (584 m2 g−1), abundant NiFe2O4 quantum dots and superior conductivity. Specially, the mechanism for the formation of quantum dots in relation to Fe/Ni ratio and the corresponding activity of ORR and OER are studied carefully. Consequently, NiFe2O4(QDs)/CNTs exhibits superior bifunctional oxygen electrocatalytic activities with the lowest the potential difference (ΔE) of 0.9 V, outperforming well-known commercial Pt/C and IrO2, directly demonstrating the advantages of quantum dots catalysts on providing more effective actives sites and adsorption-desorption sites to promote oxygen reaction kinetics. NiFe2O4(QDs)/CNTs, as high-performance catalyst used in liquid and flexible metal-air batteries, realize high power density, high specific capacity, long-term rechargeability (over 800 h), and extremely low charge-discharge voltage gaps (only 0.62 V) in ambient atmosphere. Furthermore, the metal-air batteries with flexible configuration effectively prevent the migration of Zn2+/Mg2+, the production of carbonate and the hydrogen evolution reaction. Density functional theory calculations further illustrate that the NiFe2O4(QDs) on CNT has a very active ORR and OER site at the interface Ni site. The work offers prospects for the rational design of quantum dots containing composites to achieve their practicalities in next generation of metal-air batteries. Quantum dots bifunctional catalyst is synthesized on the basis of a governable nanoscale designed strategy. The mechanism of the formation of quantum dots is revealed. Importantly, NiFe2O4(QDs)/CNTs, due to the effect of quantum dots and the strong coupling, can rapidly accelerates the oxygen electrochemical process and demonstrates enormous potential in liquid and flexible metal-air battery. [Display omitted] •A tunable nanoscale designed strategy was proposed to synthesize newly bifunctional quantum dot catalyst.•NiFe2O4(QDs)/CNTs demonstrates excellent activity and stability for ORR and OER.•NiFe2O4(QDs)/CNTs is used as a cathode material for metal-air battery and its flexible devices for the first time.•Liquid/ flexible magnesium-air batteries assembled with NiFe2O4(QDs)/CNTs exhibits the best performance ever reported.•DFT calculations illustrate that the NiFe2O4(QDs) on CNT have an active ORR and OER site at the interface Ni site.
Author Xu, Nengneng
Liu, Yuyu
Zhang, Yanxing
Zhang, Tao
Qiao, Jinli
Author_xml – sequence: 1
  givenname: Nengneng
  surname: Xu
  fullname: Xu, Nengneng
  organization: State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, 2999 Ren’min North Road, Shanghai 201620, China
– sequence: 2
  givenname: Yanxing
  surname: Zhang
  fullname: Zhang, Yanxing
  organization: College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007, China
– sequence: 3
  givenname: Tao
  surname: Zhang
  fullname: Zhang, Tao
  email: taozhang@mail.sic.ac.cn
  organization: State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
– sequence: 4
  givenname: Yuyu
  orcidid: 0000-0001-6542-2325
  surname: Liu
  fullname: Liu, Yuyu
  organization: Institute for Sustainable Energy (ISE)/College of Science, Shanghai University, 99 Shangda Road, BaoShan District, Shanghai 200444, China
– sequence: 5
  givenname: Jinli
  surname: Qiao
  fullname: Qiao, Jinli
  email: qiaojl@dhu.edu.cn
  organization: State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, 2999 Ren’min North Road, Shanghai 201620, China
BookMark eNqFkMtKAzEUQLOoYK39Axf5gZkmmZlMdSFIqQ8QCkXXIZPc2JRpUpO00r83Q1250Gwu5HIO3HOFRs47QOiGkpISymfb0knnwZWM0HlJWUloO0Jjxigt2LxpLtE0xi3Jjze0pWyMvpbGWGXBJfx5kC4ddlj7FLF0auMDaDwIld_tfbQJsPEBb-zHpj9hqZI9Al6t17PVco2hB5WCVzLJ_hQT9gZLfcya7NhB_iykDbiTKUGwEK_RhZF9hOnPnKD3x-Xb4rl4XT29LB5eC1W1LBVVTbhpZKWbioHm0LCKd7ylkrKuhltCWVPxlrVgNFNMdnlTd4Z1ujHQVYZXE3R39qrgYwxghLJJJutdCtL2ghIxlBNbcS4nhnKCMpHLZbj-Be-D3clw-g-7P2OQDztaCCIOhXMJG3Ikob39W_ANBJCRFQ
CitedBy_id crossref_primary_10_1016_j_jallcom_2019_153015
crossref_primary_10_1049_mnl_2019_0407
crossref_primary_10_1021_acsami_0c09385
crossref_primary_10_1007_s11595_022_2539_6
crossref_primary_10_1016_j_apsusc_2020_146624
crossref_primary_10_1016_j_apcatb_2020_118953
crossref_primary_10_1039_D0TA05985D
crossref_primary_10_1016_j_jallcom_2023_171819
crossref_primary_10_1002_aenm_202100866
crossref_primary_10_1016_j_cej_2024_153452
crossref_primary_10_1016_j_cej_2021_134256
crossref_primary_10_3390_molecules27217438
crossref_primary_10_1016_j_ijhydene_2024_10_225
crossref_primary_10_1016_j_jcis_2022_04_123
crossref_primary_10_1002_adfm_202418489
crossref_primary_10_1002_cctc_202200630
crossref_primary_10_1016_j_jcis_2024_07_212
crossref_primary_10_1021_acsami_2c16826
crossref_primary_10_1021_acsphyschemau_2c00003
crossref_primary_10_1016_j_ceramint_2021_11_202
crossref_primary_10_1002_cctc_201901337
crossref_primary_10_1016_j_cclet_2021_03_082
crossref_primary_10_1021_acsami_9b16224
crossref_primary_10_1007_s40097_021_00436_3
crossref_primary_10_1016_j_est_2025_115444
crossref_primary_10_1021_acsami_1c10192
crossref_primary_10_1021_acs_inorgchem_3c01375
crossref_primary_10_1007_s12598_022_02021_1
crossref_primary_10_1039_C9TA08661G
crossref_primary_10_1002_smll_201903610
crossref_primary_10_1016_j_jelechem_2024_118632
crossref_primary_10_1016_j_apsusc_2024_162055
crossref_primary_10_1016_j_jelechem_2019_113621
crossref_primary_10_1016_j_nanoen_2020_105714
crossref_primary_10_1039_D0TA02544E
crossref_primary_10_1016_j_jpowsour_2019_227561
crossref_primary_10_1016_j_jcis_2022_02_129
crossref_primary_10_1016_j_cej_2021_128492
crossref_primary_10_1016_j_carbon_2022_05_019
crossref_primary_10_1002_adfm_201908167
crossref_primary_10_1016_j_chphi_2024_100693
crossref_primary_10_1016_j_ijhydene_2024_02_283
crossref_primary_10_1016_j_rser_2023_113451
crossref_primary_10_5796_electrochemistry_24_00123
crossref_primary_10_1016_j_jiec_2024_11_057
crossref_primary_10_1016_j_gee_2022_09_006
crossref_primary_10_1016_j_jcis_2020_11_095
crossref_primary_10_1016_j_cej_2023_142411
crossref_primary_10_1039_D4CP00424H
crossref_primary_10_3390_nano9091284
crossref_primary_10_1016_j_cej_2024_150673
crossref_primary_10_1016_j_apcata_2022_118777
crossref_primary_10_1002_solr_202300548
crossref_primary_10_1016_j_jiec_2023_02_014
crossref_primary_10_1088_1361_6528_abeb9d
crossref_primary_10_1002_cey2_253
crossref_primary_10_1002_aesr_202000106
crossref_primary_10_1007_s40242_024_4072_y
crossref_primary_10_1039_D1TA05646H
crossref_primary_10_2139_ssrn_4136977
crossref_primary_10_1016_j_matt_2021_01_004
crossref_primary_10_1016_j_cej_2022_137705
crossref_primary_10_1002_ange_201914245
crossref_primary_10_1039_C9TA05981D
crossref_primary_10_1039_D4QI00987H
crossref_primary_10_1021_acsaem_3c02299
crossref_primary_10_1002_adfm_202107928
crossref_primary_10_1002_adfm_201906081
crossref_primary_10_1007_s10853_020_04698_0
crossref_primary_10_1007_s40843_019_9439_9
crossref_primary_10_1021_acsami_0c16760
crossref_primary_10_1021_acscatal_9b04060
crossref_primary_10_1016_j_mcat_2022_112625
crossref_primary_10_1016_j_jcis_2022_12_121
crossref_primary_10_1016_j_mcat_2022_112502
crossref_primary_10_1016_j_apsusc_2020_148817
crossref_primary_10_1016_j_ensm_2020_09_014
crossref_primary_10_1016_j_physleta_2019_06_020
crossref_primary_10_1039_D4QI02744B
crossref_primary_10_1016_j_ijhydene_2022_04_222
crossref_primary_10_1016_j_pnsc_2020_10_014
crossref_primary_10_1016_j_jelechem_2023_117381
crossref_primary_10_1016_j_catcom_2019_105800
crossref_primary_10_1515_ntrev_2021_0008
crossref_primary_10_1016_j_clay_2021_106360
crossref_primary_10_1002_aenm_201902084
crossref_primary_10_1002_anie_201914245
crossref_primary_10_1016_j_jmat_2021_07_001
crossref_primary_10_1016_j_gee_2021_11_008
crossref_primary_10_1016_j_jallcom_2024_176440
crossref_primary_10_1021_acsami_0c16081
crossref_primary_10_1021_acs_langmuir_4c04034
crossref_primary_10_1002_masy_202300060
crossref_primary_10_1016_j_carbon_2023_04_006
crossref_primary_10_1021_acsami_0c10734
crossref_primary_10_3390_molecules29010210
crossref_primary_10_1002_aenm_202101242
crossref_primary_10_1007_s43207_021_00113_9
crossref_primary_10_1039_D3CY01746J
crossref_primary_10_1002_smll_202409129
crossref_primary_10_3390_catal9050458
crossref_primary_10_1016_j_apcatb_2022_122067
crossref_primary_10_1002_elsa_202100034
crossref_primary_10_1016_j_ensm_2021_06_016
crossref_primary_10_1002_chem_201901848
crossref_primary_10_1002_cey2_158
crossref_primary_10_1002_cctc_202301379
crossref_primary_10_1002_smll_202304863
crossref_primary_10_1016_j_ijhydene_2024_05_228
crossref_primary_10_1088_1742_6596_1838_1_012018
crossref_primary_10_1039_C9TA12255A
crossref_primary_10_1039_D4QI00793J
crossref_primary_10_1002_cnl2_110
crossref_primary_10_1016_j_carbon_2020_06_002
crossref_primary_10_1016_j_colsurfa_2024_133629
crossref_primary_10_1021_acsami_9b17476
crossref_primary_10_1016_j_nanoen_2019_104021
crossref_primary_10_1039_D1CY01818C
crossref_primary_10_1016_j_jcis_2020_08_101
crossref_primary_10_1021_acsami_0c17479
crossref_primary_10_1016_j_ijhydene_2021_05_182
crossref_primary_10_1016_j_surfin_2025_105739
crossref_primary_10_1002_smll_202106122
crossref_primary_10_1016_j_jallcom_2023_171754
crossref_primary_10_1021_acssuschemeng_0c00830
crossref_primary_10_1021_acssuschemeng_9b06920
crossref_primary_10_1021_acssuschemeng_9b05833
crossref_primary_10_1002_cctc_202301760
crossref_primary_10_1016_j_jpowsour_2019_227482
crossref_primary_10_1002_cssc_202400799
crossref_primary_10_1007_s10853_021_05798_1
crossref_primary_10_1016_j_cej_2019_122058
crossref_primary_10_1039_D0TA08674F
crossref_primary_10_1149_1945_7111_ac766a
crossref_primary_10_1016_j_ijhydene_2024_06_270
crossref_primary_10_1002_ange_202501266
crossref_primary_10_1016_j_surfin_2023_103100
crossref_primary_10_1021_acs_langmuir_1c00857
crossref_primary_10_1039_D0RA07284B
crossref_primary_10_1002_smll_202203148
crossref_primary_10_1016_j_mtcomm_2020_101524
crossref_primary_10_1016_j_jpowsour_2021_229525
crossref_primary_10_1149_1945_7111_ab6e5d
crossref_primary_10_1016_j_jechem_2024_09_009
crossref_primary_10_1021_acssuschemeng_9b02052
crossref_primary_10_1002_smtd_202101116
crossref_primary_10_1016_j_cej_2023_143706
crossref_primary_10_1021_acsami_3c14995
crossref_primary_10_1007_s11581_021_03963_9
crossref_primary_10_1021_acscatal_0c00352
crossref_primary_10_1039_C9NR03430G
crossref_primary_10_1021_acs_nanolett_1c00077
crossref_primary_10_1002_asia_202000468
crossref_primary_10_1016_j_cej_2022_139404
crossref_primary_10_1016_j_nantod_2021_101245
crossref_primary_10_1021_acsami_1c00484
crossref_primary_10_1016_j_jcis_2021_09_045
crossref_primary_10_1016_j_jechem_2020_05_032
crossref_primary_10_1016_j_jpowsour_2020_229099
crossref_primary_10_1016_j_nanoen_2024_109268
crossref_primary_10_1016_j_carbon_2021_03_030
crossref_primary_10_1016_j_fuel_2024_133334
crossref_primary_10_1016_j_ijhydene_2020_11_098
crossref_primary_10_1016_j_jpcs_2024_112221
crossref_primary_10_1039_D1TA10881F
crossref_primary_10_1002_anie_202501266
crossref_primary_10_1016_j_apenergy_2020_115876
crossref_primary_10_1039_D0TA07362H
crossref_primary_10_1039_D1SE00275A
crossref_primary_10_2174_0115734137252527230919110809
crossref_primary_10_1002_adfm_202213770
crossref_primary_10_1016_S1872_2067_20_63606_3
crossref_primary_10_1016_j_mtphys_2020_100338
crossref_primary_10_1016_j_spmi_2019_106210
crossref_primary_10_1016_j_chemosphere_2021_131908
crossref_primary_10_1016_j_ccr_2025_216462
crossref_primary_10_3390_ma15020458
crossref_primary_10_1002_adfm_202414379
crossref_primary_10_1016_j_cattod_2022_06_014
crossref_primary_10_1016_j_jpowsour_2024_235239
crossref_primary_10_3390_nano11082106
crossref_primary_10_1039_D0NJ00289E
crossref_primary_10_1002_adfm_202110572
crossref_primary_10_1016_j_jallcom_2024_176525
crossref_primary_10_1039_D1CP05392B
crossref_primary_10_1002_smtd_202200515
crossref_primary_10_1016_j_cej_2022_140401
crossref_primary_10_1016_j_jiec_2023_01_014
crossref_primary_10_1039_D1NR08035K
crossref_primary_10_1016_j_nanoen_2019_104208
crossref_primary_10_1039_C9TA14231B
Cites_doi 10.1002/adma.201702526
10.1039/c3ta01402a
10.1021/ja4027715
10.1039/b816478a
10.1038/nchem.931
10.1021/la501246e
10.1016/j.carbon.2015.12.011
10.1021/acscatal.7b01070
10.1016/j.jpowsour.2013.11.024
10.1039/C4TA04115A
10.1021/acsami.6b09888
10.1002/anie.201503612
10.1016/j.nanoen.2016.06.033
10.1016/j.scib.2017.08.006
10.1016/j.cattod.2017.04.001
10.1021/jacs.6b00332
10.1038/srep33590
10.1021/acsami.5b11840
10.1038/ncomms8345
10.1039/C7SE00346C
10.1038/natrevmats.2016.80
10.1002/anie.201600750
10.1021/acsenergylett.7b00989
10.1016/j.carbon.2016.10.057
10.1149/2.058209jes
10.1002/anie.200700894
10.1002/anie.201705778
10.1016/j.cattod.2017.10.020
10.1002/aenm.201700869
10.1002/adma.201506197
10.1039/C4CS00015C
10.1021/acs.chemrev.5b00073
10.1002/adma.201604685
10.1002/adfm.201403554
10.1021/acs.langmuir.6b02413
10.1021/am4007897
10.1002/smll.201700740
10.1016/j.carbon.2015.03.021
10.1016/j.nanoen.2014.11.008
10.1021/acscatal.5b02804
10.1016/j.jelechem.2006.11.008
10.1021/acscatal.5b02291
10.1021/acsenergylett.7b00835
10.1039/C4TC00167B
10.1016/j.jpowsour.2014.06.108
10.1021/jacs.5b10977
10.1039/C3MH00059A
10.1021/jacs.6b05046
10.1016/j.electacta.2013.02.030
10.1021/acsenergylett.7b00206
10.1016/j.apenergy.2016.04.036
10.1016/j.nanoen.2016.12.008
10.1021/am505985z
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright_xml – notice: 2018 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.nanoen.2018.12.017
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 185
ExternalDocumentID 10_1016_j_nanoen_2018_12_017
S2211285518309212
GroupedDBID --K
--M
.~1
0R~
1~.
1~5
4.4
457
4G.
5VS
7-5
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FNPLU
FYGXN
GBLVA
HZ~
JARJE
KOM
M41
MAGPM
MO0
O-L
O9-
OAUVE
P-8
P-9
PC.
Q38
RIG
ROL
SDF
SPC
SPCBC
SSM
SSR
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c372t-3406f5a3d532ed6e5236b671a12b4e9012536727efd2c2ab71a4bf2bd5feb3f63
IEDL.DBID .~1
ISSN 2211-2855
IngestDate Tue Jul 01 01:56:05 EDT 2025
Thu Apr 24 22:57:47 EDT 2025
Fri Feb 23 02:27:46 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Bifunctional electrocatalyst
Quantum dot
Metal-air battery
ORR/OER mechanism
Low voltage drop
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-3406f5a3d532ed6e5236b671a12b4e9012536727efd2c2ab71a4bf2bd5feb3f63
ORCID 0000-0001-6542-2325
PageCount 10
ParticipantIDs crossref_citationtrail_10_1016_j_nanoen_2018_12_017
crossref_primary_10_1016_j_nanoen_2018_12_017
elsevier_sciencedirect_doi_10_1016_j_nanoen_2018_12_017
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2019
2019-03-00
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: March 2019
PublicationDecade 2010
PublicationTitle Nano energy
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Li, Han, Cheng, Hu, Chen, Chen (bib9) 2015; 6
Rossmeisl, Qu, Zhu, Kroes, Nørskov (bib54) 2007; 607
Yan, Yang, Bian, Yang (bib48) 2015; 92
Chen, Waje, Li, Yan (bib11) 2007; 46
Zhang, Li, Sun, Zhang, Wang (bib3) 2017; 298
Qiu, Xin, Li (bib40) 2014; 30
Li, Zhang, Li, Yoo, Chi, An, Liu, Yu, Wang, Yao (bib17) 2016; 27
Zhang, Tao, Chen (bib53) 2014; 1
Chakthranont, Kibsgaard, Gallo, Park, Mitani, Sokaras, Kroll, Sinclair, Mogensen, Jaramillo (bib1) 2017; 7
Gorlin, Chernev, Ferreira de Araujo, Reier, Dresp, Paul, Krahnert, Dau, Strasser (bib32) 2016; 138
Li, Hu, You, Chen (bib28) 2017; 111
Liu, Bian, Yang, Tian, Jin, Shen, Zhou, Yang (bib47) 2014; 2
Chandrasekaran, Muthusamy (bib43) 2017; 33
Liang, Wu, Chen, Li, Yu (bib19) 2015; 11
Xu, Liu, Zhang, Li, Li, Qiao, Zhang (bib30) 2016; 6
Gong, Li, Wang, Liang, Wu, Zhou, Wang, Regier, Wei, Dai (bib45) 2013; 135
Li, Sun, Gebert, Chou (bib51) 2017; 7
Nurlaela, Shinagawa, Qureshi, Dhawale, Takanabe (bib34) 2016; 6
Jia, Yang, Wang, Zhao, Vijayaraghavan, MacFarlane, Forsyth, Wallace (bib50) 2014; 6
Qiao, Xu, Liu, Xu, Shi, Liu, Tian (bib37) 2013; 96
Han, Wu, Zhong, Deng, Zhao, Hu (bib21) 2017; 31
Lin, Shinde, Wang, Sun, Chen, Zhang, Li, Lee (bib25) 2017; 1
Cheng, Shen, Peng, Pan, Tao, Chen (bib16) 2011; 3
Li, Wang, Fu, Li, Park, Zhang, Lui, Chen (bib4) 2016; 55
Zhang, Xu, Li, Li, Yang, Liang (bib44) 2015; 6
Peng, Liang, Tao, Chen (bib52) 2009; 19
Bian, Yang, Strasser, Yang (bib46) 2014; 250
Meng, Zhong, Bao, Yan, Zhang (bib7) 2016; 138
Fu, Hassan, Zhong, Lu, Liu, Yu, Chen (bib22) 2017; 29
Ahn, Bard (bib26) 2016; 138
Vignesh, Prabu, Shanmugam (bib39) 2016; 8
Liu, Wang, Zhou, Yu, Yu, Chiang, Zhou, Zhao, Qiu (bib5) 2017; 29
Lee, Kim, Chen (bib24) 2013; 1
Chen, Chen, Baiyee, Shao, Ciucci (bib10) 2015; 115
Deng, Jiang, Luo, Fu, Liang, Cheng, Bai, Liu, Lei, Yang, Zhu, Chen (bib42) 2017; 2
Ding, Dai, Lin, Wang, Qiao (bib38) 2012; 159
Liu, Park, Kim, Gupta, Wu, Cho (bib13) 2015; 54
Lai, Zhu, Zhao, Liang, He, Chen (bib18) 2017; 13
Xu, Li, Li, Wei, Qiao (bib31) 2017; 62
Liu, Jin, Zhang (bib20) 2013; 5
Luo, Marti-Sanchez, Nafria, Joshua, de la Mata, Guardia, Flox, Martinez-Boubeta, Simeonidis, Llorca, Morante, Arbiol, Ibanez, Cabot (bib33) 2016; 8
Yan, Cao, Tian, Jin, Ke, Yang (bib49) 2016; 99
Li, Hu, Lee, Chang, Wang (bib23) 2014; 269
Xia, Hong, Li, Zhao, Lin, Zheng, Savilov, Aldoshin (bib36) 2015; 25
Xu, Qiao, Nie, Wang, Xu, Wang, Zhou (bib15) 2018; 138
Cui, Fu, Li, Goodenough (bib12) 2017; 56
Liang, Gandi, Xia, Hedhili, Anjum, Schwingenschlögl, Alshareef (bib27) 2017; 2
Liu, Cheng, Li, Ma, Su (bib35) 2016; 28
Park, Ryu, Wang, Cho (bib8) 2016; 2
Ji, Cao, Chen, Zhai, Bai (bib41) 2014; 2
Xu, Qiao, Zhang, Ma, Jian, Liu, Pei (bib29) 2016; 175
Li, Dai (bib2) 2014; 43
Kuang, Wang, Ge, Han, Gu, Al-Enizi, Zheng (bib6) 2017; 2
Fu, Cano, Park, Yu, Fowler, Chen (bib14) 2017; 29
Peng (10.1016/j.nanoen.2018.12.017_bib52) 2009; 19
Liang (10.1016/j.nanoen.2018.12.017_bib19) 2015; 11
Xu (10.1016/j.nanoen.2018.12.017_bib30) 2016; 6
Yan (10.1016/j.nanoen.2018.12.017_bib49) 2016; 99
Gong (10.1016/j.nanoen.2018.12.017_bib45) 2013; 135
Chen (10.1016/j.nanoen.2018.12.017_bib10) 2015; 115
Ding (10.1016/j.nanoen.2018.12.017_bib38) 2012; 159
Li (10.1016/j.nanoen.2018.12.017_bib9) 2015; 6
Xia (10.1016/j.nanoen.2018.12.017_bib36) 2015; 25
Jia (10.1016/j.nanoen.2018.12.017_bib50) 2014; 6
Fu (10.1016/j.nanoen.2018.12.017_bib22) 2017; 29
Fu (10.1016/j.nanoen.2018.12.017_bib14) 2017; 29
Deng (10.1016/j.nanoen.2018.12.017_bib42) 2017; 2
Chandrasekaran (10.1016/j.nanoen.2018.12.017_bib43) 2017; 33
Xu (10.1016/j.nanoen.2018.12.017_bib29) 2016; 175
Zhang (10.1016/j.nanoen.2018.12.017_bib3) 2017; 298
Li (10.1016/j.nanoen.2018.12.017_bib4) 2016; 55
Han (10.1016/j.nanoen.2018.12.017_bib21) 2017; 31
Chen (10.1016/j.nanoen.2018.12.017_bib11) 2007; 46
Zhang (10.1016/j.nanoen.2018.12.017_bib53) 2014; 1
Gorlin (10.1016/j.nanoen.2018.12.017_bib32) 2016; 138
Ahn (10.1016/j.nanoen.2018.12.017_bib26) 2016; 138
Luo (10.1016/j.nanoen.2018.12.017_bib33) 2016; 8
Liu (10.1016/j.nanoen.2018.12.017_bib5) 2017; 29
Cheng (10.1016/j.nanoen.2018.12.017_bib16) 2011; 3
Qiao (10.1016/j.nanoen.2018.12.017_bib37) 2013; 96
Liu (10.1016/j.nanoen.2018.12.017_bib35) 2016; 28
Li (10.1016/j.nanoen.2018.12.017_bib17) 2016; 27
Qiu (10.1016/j.nanoen.2018.12.017_bib40) 2014; 30
Xu (10.1016/j.nanoen.2018.12.017_bib15) 2018; 138
Lee (10.1016/j.nanoen.2018.12.017_bib24) 2013; 1
Xu (10.1016/j.nanoen.2018.12.017_bib31) 2017; 62
Li (10.1016/j.nanoen.2018.12.017_bib51) 2017; 7
Liu (10.1016/j.nanoen.2018.12.017_bib20) 2013; 5
Vignesh (10.1016/j.nanoen.2018.12.017_bib39) 2016; 8
Liang (10.1016/j.nanoen.2018.12.017_bib27) 2017; 2
Ji (10.1016/j.nanoen.2018.12.017_bib41) 2014; 2
Zhang (10.1016/j.nanoen.2018.12.017_bib44) 2015; 6
Li (10.1016/j.nanoen.2018.12.017_bib2) 2014; 43
Bian (10.1016/j.nanoen.2018.12.017_bib46) 2014; 250
Kuang (10.1016/j.nanoen.2018.12.017_bib6) 2017; 2
Meng (10.1016/j.nanoen.2018.12.017_bib7) 2016; 138
Chakthranont (10.1016/j.nanoen.2018.12.017_bib1) 2017; 7
Cui (10.1016/j.nanoen.2018.12.017_bib12) 2017; 56
Lin (10.1016/j.nanoen.2018.12.017_bib25) 2017; 1
Yan (10.1016/j.nanoen.2018.12.017_bib48) 2015; 92
Lai (10.1016/j.nanoen.2018.12.017_bib18) 2017; 13
Liu (10.1016/j.nanoen.2018.12.017_bib13) 2015; 54
Li (10.1016/j.nanoen.2018.12.017_bib28) 2017; 111
Liu (10.1016/j.nanoen.2018.12.017_bib47) 2014; 2
Park (10.1016/j.nanoen.2018.12.017_bib8) 2016; 2
Nurlaela (10.1016/j.nanoen.2018.12.017_bib34) 2016; 6
Li (10.1016/j.nanoen.2018.12.017_bib23) 2014; 269
Rossmeisl (10.1016/j.nanoen.2018.12.017_bib54) 2007; 607
References_xml – volume: 31
  start-page: 541
  year: 2017
  end-page: 550
  ident: bib21
  publication-title: Nano Energy
– volume: 138
  start-page: 10226
  year: 2016
  end-page: 10231
  ident: bib7
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 1700740
  year: 2017
  ident: bib18
  publication-title: Small
– volume: 25
  start-page: 627
  year: 2015
  end-page: 635
  ident: bib36
  publication-title: Adv. Funct. Mater.
– volume: 2
  start-page: 2706
  year: 2017
  end-page: 2712
  ident: bib42
  publication-title: ACS Energy Lett.
– volume: 159
  start-page: F577
  year: 2012
  end-page: F584
  ident: bib38
  publication-title: J. Electrochem. Soc.
– volume: 2
  start-page: 16080
  year: 2016
  ident: bib8
  publication-title: Nat. Rev. Mater.
– volume: 11
  start-page: 366
  year: 2015
  end-page: 376
  ident: bib19
  publication-title: Nano Energy
– volume: 2
  start-page: 5944
  year: 2014
  end-page: 5953
  ident: bib41
  publication-title: J. Mater. Chem. C
– volume: 111
  start-page: 813
  year: 2017
  end-page: 821
  ident: bib28
  publication-title: Carbon
– volume: 8
  start-page: 29461
  year: 2016
  end-page: 29469
  ident: bib33
  publication-title: ACS Appl. Mater. Interfaces
– volume: 1
  start-page: 1909
  year: 2017
  end-page: 1914
  ident: bib25
  publication-title: Sustain. Energy Fuels
– volume: 5
  start-page: 5002
  year: 2013
  end-page: 5008
  ident: bib20
  publication-title: ACS Appl. Mater. Interfaces
– volume: 2
  start-page: 18012
  year: 2014
  end-page: 18017
  ident: bib47
  publication-title: J. Mater. Chem. A
– volume: 19
  start-page: 2877
  year: 2009
  ident: bib52
  publication-title: J. Mater. Chem.
– volume: 43
  start-page: 5257
  year: 2014
  end-page: 5275
  ident: bib2
  publication-title: Chem. Soc. Rev.
– volume: 138
  start-page: 144
  year: 2018
  end-page: 149
  ident: bib15
  publication-title: Catal. Today
– volume: 2
  start-page: 1035
  year: 2017
  end-page: 1042
  ident: bib27
  publication-title: ACS Energy Lett.
– volume: 96
  start-page: 298
  year: 2013
  end-page: 305
  ident: bib37
  publication-title: Electrochim. Acta
– volume: 28
  start-page: 3777
  year: 2016
  end-page: 3784
  ident: bib35
  publication-title: Adv. Mater.
– volume: 175
  start-page: 495
  year: 2016
  end-page: 504
  ident: bib29
  publication-title: Appl. Energy
– volume: 29
  start-page: 1704898
  year: 2017
  ident: bib5
  publication-title: Adv. Mater.
– volume: 138
  start-page: 313
  year: 2016
  end-page: 318
  ident: bib26
  publication-title: J. Am. Chem. Soc.
– volume: 30
  start-page: 7893
  year: 2014
  end-page: 7901
  ident: bib40
  publication-title: Langmuir: ACS J. Surf. Colloids
– volume: 8
  start-page: 6019
  year: 2016
  end-page: 6031
  ident: bib39
  publication-title: ACS Appl. Mater. Interfaces
– volume: 135
  start-page: 8452
  year: 2013
  end-page: 8455
  ident: bib45
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 79
  year: 2011
  end-page: 84
  ident: bib16
  publication-title: Nat. Chem.
– volume: 6
  start-page: 21110
  year: 2014
  end-page: 21117
  ident: bib50
  publication-title: ACS Appl. Mater. Interfaces
– volume: 2
  start-page: 2498
  year: 2017
  end-page: 2505
  ident: bib6
  publication-title: ACS Energy Lett.
– volume: 29
  start-page: 1604685
  year: 2017
  ident: bib14
  publication-title: Adv. Mater.
– volume: 269
  start-page: 88
  year: 2014
  end-page: 97
  ident: bib23
  publication-title: J. Power Sources
– volume: 33
  start-page: 2
  year: 2017
  end-page: 10
  ident: bib43
  publication-title: Langmuir : ACS J. Surf. Colloids
– volume: 29
  start-page: 1702526
  year: 2017
  ident: bib22
  publication-title: Adv. Mater.
– volume: 1
  start-page: 196
  year: 2014
  end-page: 206
  ident: bib53
  publication-title: Mater. Horiz.
– volume: 6
  start-page: 33590
  year: 2016
  ident: bib30
  publication-title: Sci. Rep.
– volume: 250
  start-page: 196
  year: 2014
  end-page: 203
  ident: bib46
  publication-title: J. Power Sources
– volume: 138
  start-page: 5603
  year: 2016
  end-page: 5614
  ident: bib32
  publication-title: J. Am. Chem. Soc.
– volume: 27
  start-page: 8
  year: 2016
  end-page: 16
  ident: bib17
  publication-title: Nano Energy
– volume: 7
  start-page: 1700869
  year: 2017
  ident: bib51
  publication-title: Adv. Energy Mater.
– volume: 7
  start-page: 5399
  year: 2017
  end-page: 5409
  ident: bib1
  publication-title: ACS Catal.
– volume: 56
  start-page: 9901
  year: 2017
  end-page: 9905
  ident: bib12
  publication-title: Angew. Chem.
– volume: 298
  start-page: 241
  year: 2017
  end-page: 249
  ident: bib3
  publication-title: Catal. Today
– volume: 99
  start-page: 195
  year: 2016
  end-page: 202
  ident: bib49
  publication-title: Carbon
– volume: 54
  start-page: 9654
  year: 2015
  end-page: 9658
  ident: bib13
  publication-title: Angew. Chem.
– volume: 92
  start-page: 74
  year: 2015
  end-page: 83
  ident: bib48
  publication-title: Carbon
– volume: 1
  start-page: 4754
  year: 2013
  ident: bib24
  publication-title: J. Mater. Chem. A
– volume: 115
  start-page: 9869
  year: 2015
  end-page: 9921
  ident: bib10
  publication-title: Chem. Rev.
– volume: 46
  start-page: 4060
  year: 2007
  end-page: 4063
  ident: bib11
  publication-title: Angew. Chem.
– volume: 62
  start-page: 1216
  year: 2017
  end-page: 1226
  ident: bib31
  publication-title: Sci. Bull.
– volume: 6
  start-page: 7345
  year: 2015
  ident: bib9
  publication-title: Nat. Commun.
– volume: 607
  start-page: 83
  year: 2007
  end-page: 89
  ident: bib54
  publication-title: J. Electroanal. Chem.
– volume: 6
  start-page: 580
  year: 2015
  end-page: 588
  ident: bib44
  publication-title: ACS Catal.
– volume: 6
  start-page: 1713
  year: 2016
  end-page: 1722
  ident: bib34
  publication-title: ACS Catal.
– volume: 55
  start-page: 4977
  year: 2016
  end-page: 4982
  ident: bib4
  publication-title: Angew. Chem.
– volume: 29
  start-page: 1702526
  year: 2017
  ident: 10.1016/j.nanoen.2018.12.017_bib22
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201702526
– volume: 1
  start-page: 4754
  year: 2013
  ident: 10.1016/j.nanoen.2018.12.017_bib24
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta01402a
– volume: 135
  start-page: 8452
  year: 2013
  ident: 10.1016/j.nanoen.2018.12.017_bib45
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4027715
– volume: 19
  start-page: 2877
  year: 2009
  ident: 10.1016/j.nanoen.2018.12.017_bib52
  publication-title: J. Mater. Chem.
  doi: 10.1039/b816478a
– volume: 3
  start-page: 79
  year: 2011
  ident: 10.1016/j.nanoen.2018.12.017_bib16
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.931
– volume: 30
  start-page: 7893
  year: 2014
  ident: 10.1016/j.nanoen.2018.12.017_bib40
  publication-title: Langmuir: ACS J. Surf. Colloids
  doi: 10.1021/la501246e
– volume: 99
  start-page: 195
  year: 2016
  ident: 10.1016/j.nanoen.2018.12.017_bib49
  publication-title: Carbon
  doi: 10.1016/j.carbon.2015.12.011
– volume: 7
  start-page: 5399
  year: 2017
  ident: 10.1016/j.nanoen.2018.12.017_bib1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b01070
– volume: 250
  start-page: 196
  year: 2014
  ident: 10.1016/j.nanoen.2018.12.017_bib46
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.11.024
– volume: 2
  start-page: 18012
  year: 2014
  ident: 10.1016/j.nanoen.2018.12.017_bib47
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA04115A
– volume: 8
  start-page: 29461
  year: 2016
  ident: 10.1016/j.nanoen.2018.12.017_bib33
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b09888
– volume: 54
  start-page: 9654
  year: 2015
  ident: 10.1016/j.nanoen.2018.12.017_bib13
  publication-title: Angew. Chem.
  doi: 10.1002/anie.201503612
– volume: 27
  start-page: 8
  year: 2016
  ident: 10.1016/j.nanoen.2018.12.017_bib17
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.06.033
– volume: 62
  start-page: 1216
  year: 2017
  ident: 10.1016/j.nanoen.2018.12.017_bib31
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2017.08.006
– volume: 298
  start-page: 241
  year: 2017
  ident: 10.1016/j.nanoen.2018.12.017_bib3
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2017.04.001
– volume: 138
  start-page: 5603
  year: 2016
  ident: 10.1016/j.nanoen.2018.12.017_bib32
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b00332
– volume: 6
  start-page: 33590
  year: 2016
  ident: 10.1016/j.nanoen.2018.12.017_bib30
  publication-title: Sci. Rep.
  doi: 10.1038/srep33590
– volume: 8
  start-page: 6019
  year: 2016
  ident: 10.1016/j.nanoen.2018.12.017_bib39
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b11840
– volume: 6
  start-page: 7345
  year: 2015
  ident: 10.1016/j.nanoen.2018.12.017_bib9
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8345
– volume: 1
  start-page: 1909
  year: 2017
  ident: 10.1016/j.nanoen.2018.12.017_bib25
  publication-title: Sustain. Energy Fuels
  doi: 10.1039/C7SE00346C
– volume: 2
  start-page: 16080
  year: 2016
  ident: 10.1016/j.nanoen.2018.12.017_bib8
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.80
– volume: 55
  start-page: 4977
  year: 2016
  ident: 10.1016/j.nanoen.2018.12.017_bib4
  publication-title: Angew. Chem.
  doi: 10.1002/anie.201600750
– volume: 2
  start-page: 2706
  year: 2017
  ident: 10.1016/j.nanoen.2018.12.017_bib42
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00989
– volume: 111
  start-page: 813
  year: 2017
  ident: 10.1016/j.nanoen.2018.12.017_bib28
  publication-title: Carbon
  doi: 10.1016/j.carbon.2016.10.057
– volume: 159
  start-page: F577
  year: 2012
  ident: 10.1016/j.nanoen.2018.12.017_bib38
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.058209jes
– volume: 46
  start-page: 4060
  year: 2007
  ident: 10.1016/j.nanoen.2018.12.017_bib11
  publication-title: Angew. Chem.
  doi: 10.1002/anie.200700894
– volume: 56
  start-page: 9901
  year: 2017
  ident: 10.1016/j.nanoen.2018.12.017_bib12
  publication-title: Angew. Chem.
  doi: 10.1002/anie.201705778
– volume: 138
  start-page: 144
  year: 2018
  ident: 10.1016/j.nanoen.2018.12.017_bib15
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2017.10.020
– volume: 7
  start-page: 1700869
  year: 2017
  ident: 10.1016/j.nanoen.2018.12.017_bib51
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201700869
– volume: 28
  start-page: 3777
  year: 2016
  ident: 10.1016/j.nanoen.2018.12.017_bib35
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201506197
– volume: 43
  start-page: 5257
  year: 2014
  ident: 10.1016/j.nanoen.2018.12.017_bib2
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00015C
– volume: 115
  start-page: 9869
  year: 2015
  ident: 10.1016/j.nanoen.2018.12.017_bib10
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00073
– volume: 29
  start-page: 1604685
  year: 2017
  ident: 10.1016/j.nanoen.2018.12.017_bib14
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201604685
– volume: 25
  start-page: 627
  year: 2015
  ident: 10.1016/j.nanoen.2018.12.017_bib36
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201403554
– volume: 33
  start-page: 2
  year: 2017
  ident: 10.1016/j.nanoen.2018.12.017_bib43
  publication-title: Langmuir : ACS J. Surf. Colloids
  doi: 10.1021/acs.langmuir.6b02413
– volume: 5
  start-page: 5002
  year: 2013
  ident: 10.1016/j.nanoen.2018.12.017_bib20
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am4007897
– volume: 13
  start-page: 1700740
  year: 2017
  ident: 10.1016/j.nanoen.2018.12.017_bib18
  publication-title: Small
  doi: 10.1002/smll.201700740
– volume: 92
  start-page: 74
  year: 2015
  ident: 10.1016/j.nanoen.2018.12.017_bib48
  publication-title: Carbon
  doi: 10.1016/j.carbon.2015.03.021
– volume: 11
  start-page: 366
  year: 2015
  ident: 10.1016/j.nanoen.2018.12.017_bib19
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.11.008
– volume: 6
  start-page: 1713
  year: 2016
  ident: 10.1016/j.nanoen.2018.12.017_bib34
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b02804
– volume: 607
  start-page: 83
  year: 2007
  ident: 10.1016/j.nanoen.2018.12.017_bib54
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2006.11.008
– volume: 6
  start-page: 580
  year: 2015
  ident: 10.1016/j.nanoen.2018.12.017_bib44
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b02291
– volume: 2
  start-page: 2498
  year: 2017
  ident: 10.1016/j.nanoen.2018.12.017_bib6
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00835
– volume: 2
  start-page: 5944
  year: 2014
  ident: 10.1016/j.nanoen.2018.12.017_bib41
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C4TC00167B
– volume: 269
  start-page: 88
  year: 2014
  ident: 10.1016/j.nanoen.2018.12.017_bib23
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.06.108
– volume: 138
  start-page: 313
  year: 2016
  ident: 10.1016/j.nanoen.2018.12.017_bib26
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b10977
– volume: 1
  start-page: 196
  year: 2014
  ident: 10.1016/j.nanoen.2018.12.017_bib53
  publication-title: Mater. Horiz.
  doi: 10.1039/C3MH00059A
– volume: 138
  start-page: 10226
  year: 2016
  ident: 10.1016/j.nanoen.2018.12.017_bib7
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b05046
– volume: 29
  start-page: 1704898
  year: 2017
  ident: 10.1016/j.nanoen.2018.12.017_bib5
  publication-title: Adv. Mater.
– volume: 96
  start-page: 298
  year: 2013
  ident: 10.1016/j.nanoen.2018.12.017_bib37
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2013.02.030
– volume: 2
  start-page: 1035
  year: 2017
  ident: 10.1016/j.nanoen.2018.12.017_bib27
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00206
– volume: 175
  start-page: 495
  year: 2016
  ident: 10.1016/j.nanoen.2018.12.017_bib29
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.04.036
– volume: 31
  start-page: 541
  year: 2017
  ident: 10.1016/j.nanoen.2018.12.017_bib21
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.12.008
– volume: 6
  start-page: 21110
  year: 2014
  ident: 10.1016/j.nanoen.2018.12.017_bib50
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am505985z
SSID ssj0000651712
Score 2.599057
Snippet High activity bifunctional non-noble electrocatalysts, targeting both ORR and OER, are rationally designed by integrating the merits of both NiFe2O4 quantum...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 176
SubjectTerms Bifunctional electrocatalyst
Low voltage drop
Metal-air battery
ORR/OER mechanism
Quantum dot
Title Efficient quantum dots anchored nanocomposite for highly active ORR/OER electrocatalyst of advanced metal-air batteries
URI https://dx.doi.org/10.1016/j.nanoen.2018.12.017
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6kXvQgPvFZ9uB1bfeRpDlKaamKFapCb2E3mcWKTWttkV787c5ukqIgCh6T7JAwO5nH7rffEHJuTBgZyDKG5hIxFXPBdIA_HsTCRqlJLUh3UPi2H_Ye1fUwGK6RdnUWxsEqS99f-HTvrcs7jVKbjelo1LgXWLuIlmMUk81Y-E7DSkXOyi8--GqdBUMsj_ympxvPnEB1gs7DvHKdT8ARofKWXxf0nct-iFBfok53m2yV6SK9LL5oh6xBvks2v5AI7pH3jmeBwOBBXxeop8WYYqX5RnE6nyYzyKh7t0OOO3gWUExSqeMofllS7X0dvRsMGnedAS074vgFneXbnE4srRACdAx4k-nRjBpPyIn19T557HYe2j1WtlNgqYzEnEmM3TbQMgukgCwELEFDnCmuuTAKMC8QgXT7smAzkQpt8IkyVpgssFhx21AekFo-yeGQUMhAa96yodJKSbBGp01oxVYJHUqu4YjISoVJWnKNu5YXL0kFKntOCsUnTvEJFwkq_oiwldS04Nr4Y3xUzU7yzWYSDAe_Sh7_W_KEbOBVXKDQTkltPlvAGaYlc1P3dlcn65dXN73-J_7S5W8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROLQcqra0KpRSH9qju_iRZHPooWoXLeUlLSBxc-1krC6CLOxDaC_9U_2DjJ0EgYSohMTVziTWeDLjsT9_A_DZuTRzWJaczCXjOheS24R-PMylzwpXeFThovDefto_1r9OkpMF-NfehQmwysb31z49euumpdNos3MxHHYOJeUushsYxdRmTh64QVbu4PyK8rbJt-2fNMlfpNzqHf3o86a0AC9UJqdcURzziVVloiSWKVI6ltKohRXSaaQYKRMVzijRl7KQ1lGPdl66MvGUffpU0XufwZImdxHKJnz9K242diimiyyesoYB8jDC9spexJVVthphYF4V3bgRGUul3RMSb4W5rVfwslmfsu-1Cl7DAlZvYPkWa-EKXPUi7QRFK3Y5o4mZnTNKbSeM7OfPaIwlC98OUPWAB0NGq2IWSJHP5sxG58oOBoPOQW_AmhI8cQdpPpmykWctJIGdIzVyOxwzFxlAKaF_C8dPouR3sFiNKnwPDEu0VnR9qq3WCr2zxSZ2c6-lTZWwuAqqVaEpGnLzUGPjzLQotlNTK94ExRshDSl-FfiN1EVN7vGf57N2dswdIzUUfx6UXHu05Cd43j_a2zW72_s7H-AF9eQ1BG4dFqfjGX6kNdHUbUQbZPD7qY3-GrtZIRY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+quantum+dots+anchored+nanocomposite+for+highly+active+ORR%2FOER+electrocatalyst+of+advanced+metal-air+batteries&rft.jtitle=Nano+energy&rft.au=Xu%2C+Nengneng&rft.au=Zhang%2C+Yanxing&rft.au=Zhang%2C+Tao&rft.au=Liu%2C+Yuyu&rft.date=2019-03-01&rft.pub=Elsevier+Ltd&rft.issn=2211-2855&rft.volume=57&rft.spage=176&rft.epage=185&rft_id=info:doi/10.1016%2Fj.nanoen.2018.12.017&rft.externalDocID=S2211285518309212
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-2855&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-2855&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-2855&client=summon