Efficient quantum dots anchored nanocomposite for highly active ORR/OER electrocatalyst of advanced metal-air batteries
High activity bifunctional non-noble electrocatalysts, targeting both ORR and OER, are rationally designed by integrating the merits of both NiFe2O4 quantum dots and carbons nanotubes (CNTs) (NiFe2O4(QDs)/CNTs), which possesses large specific surface area (584 m2 g−1), abundant NiFe2O4 quantum dots...
Saved in:
Published in | Nano energy Vol. 57; pp. 176 - 185 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.03.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | High activity bifunctional non-noble electrocatalysts, targeting both ORR and OER, are rationally designed by integrating the merits of both NiFe2O4 quantum dots and carbons nanotubes (CNTs) (NiFe2O4(QDs)/CNTs), which possesses large specific surface area (584 m2 g−1), abundant NiFe2O4 quantum dots and superior conductivity. Specially, the mechanism for the formation of quantum dots in relation to Fe/Ni ratio and the corresponding activity of ORR and OER are studied carefully. Consequently, NiFe2O4(QDs)/CNTs exhibits superior bifunctional oxygen electrocatalytic activities with the lowest the potential difference (ΔE) of 0.9 V, outperforming well-known commercial Pt/C and IrO2, directly demonstrating the advantages of quantum dots catalysts on providing more effective actives sites and adsorption-desorption sites to promote oxygen reaction kinetics. NiFe2O4(QDs)/CNTs, as high-performance catalyst used in liquid and flexible metal-air batteries, realize high power density, high specific capacity, long-term rechargeability (over 800 h), and extremely low charge-discharge voltage gaps (only 0.62 V) in ambient atmosphere. Furthermore, the metal-air batteries with flexible configuration effectively prevent the migration of Zn2+/Mg2+, the production of carbonate and the hydrogen evolution reaction. Density functional theory calculations further illustrate that the NiFe2O4(QDs) on CNT has a very active ORR and OER site at the interface Ni site. The work offers prospects for the rational design of quantum dots containing composites to achieve their practicalities in next generation of metal-air batteries.
Quantum dots bifunctional catalyst is synthesized on the basis of a governable nanoscale designed strategy. The mechanism of the formation of quantum dots is revealed. Importantly, NiFe2O4(QDs)/CNTs, due to the effect of quantum dots and the strong coupling, can rapidly accelerates the oxygen electrochemical process and demonstrates enormous potential in liquid and flexible metal-air battery. [Display omitted]
•A tunable nanoscale designed strategy was proposed to synthesize newly bifunctional quantum dot catalyst.•NiFe2O4(QDs)/CNTs demonstrates excellent activity and stability for ORR and OER.•NiFe2O4(QDs)/CNTs is used as a cathode material for metal-air battery and its flexible devices for the first time.•Liquid/ flexible magnesium-air batteries assembled with NiFe2O4(QDs)/CNTs exhibits the best performance ever reported.•DFT calculations illustrate that the NiFe2O4(QDs) on CNT have an active ORR and OER site at the interface Ni site. |
---|---|
AbstractList | High activity bifunctional non-noble electrocatalysts, targeting both ORR and OER, are rationally designed by integrating the merits of both NiFe2O4 quantum dots and carbons nanotubes (CNTs) (NiFe2O4(QDs)/CNTs), which possesses large specific surface area (584 m2 g−1), abundant NiFe2O4 quantum dots and superior conductivity. Specially, the mechanism for the formation of quantum dots in relation to Fe/Ni ratio and the corresponding activity of ORR and OER are studied carefully. Consequently, NiFe2O4(QDs)/CNTs exhibits superior bifunctional oxygen electrocatalytic activities with the lowest the potential difference (ΔE) of 0.9 V, outperforming well-known commercial Pt/C and IrO2, directly demonstrating the advantages of quantum dots catalysts on providing more effective actives sites and adsorption-desorption sites to promote oxygen reaction kinetics. NiFe2O4(QDs)/CNTs, as high-performance catalyst used in liquid and flexible metal-air batteries, realize high power density, high specific capacity, long-term rechargeability (over 800 h), and extremely low charge-discharge voltage gaps (only 0.62 V) in ambient atmosphere. Furthermore, the metal-air batteries with flexible configuration effectively prevent the migration of Zn2+/Mg2+, the production of carbonate and the hydrogen evolution reaction. Density functional theory calculations further illustrate that the NiFe2O4(QDs) on CNT has a very active ORR and OER site at the interface Ni site. The work offers prospects for the rational design of quantum dots containing composites to achieve their practicalities in next generation of metal-air batteries.
Quantum dots bifunctional catalyst is synthesized on the basis of a governable nanoscale designed strategy. The mechanism of the formation of quantum dots is revealed. Importantly, NiFe2O4(QDs)/CNTs, due to the effect of quantum dots and the strong coupling, can rapidly accelerates the oxygen electrochemical process and demonstrates enormous potential in liquid and flexible metal-air battery. [Display omitted]
•A tunable nanoscale designed strategy was proposed to synthesize newly bifunctional quantum dot catalyst.•NiFe2O4(QDs)/CNTs demonstrates excellent activity and stability for ORR and OER.•NiFe2O4(QDs)/CNTs is used as a cathode material for metal-air battery and its flexible devices for the first time.•Liquid/ flexible magnesium-air batteries assembled with NiFe2O4(QDs)/CNTs exhibits the best performance ever reported.•DFT calculations illustrate that the NiFe2O4(QDs) on CNT have an active ORR and OER site at the interface Ni site. |
Author | Xu, Nengneng Liu, Yuyu Zhang, Yanxing Zhang, Tao Qiao, Jinli |
Author_xml | – sequence: 1 givenname: Nengneng surname: Xu fullname: Xu, Nengneng organization: State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, 2999 Ren’min North Road, Shanghai 201620, China – sequence: 2 givenname: Yanxing surname: Zhang fullname: Zhang, Yanxing organization: College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007, China – sequence: 3 givenname: Tao surname: Zhang fullname: Zhang, Tao email: taozhang@mail.sic.ac.cn organization: State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China – sequence: 4 givenname: Yuyu orcidid: 0000-0001-6542-2325 surname: Liu fullname: Liu, Yuyu organization: Institute for Sustainable Energy (ISE)/College of Science, Shanghai University, 99 Shangda Road, BaoShan District, Shanghai 200444, China – sequence: 5 givenname: Jinli surname: Qiao fullname: Qiao, Jinli email: qiaojl@dhu.edu.cn organization: State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, 2999 Ren’min North Road, Shanghai 201620, China |
BookMark | eNqFkMtKAzEUQLOoYK39Axf5gZkmmZlMdSFIqQ8QCkXXIZPc2JRpUpO00r83Q1250Gwu5HIO3HOFRs47QOiGkpISymfb0knnwZWM0HlJWUloO0Jjxigt2LxpLtE0xi3Jjze0pWyMvpbGWGXBJfx5kC4ddlj7FLF0auMDaDwIld_tfbQJsPEBb-zHpj9hqZI9Al6t17PVco2hB5WCVzLJ_hQT9gZLfcya7NhB_iykDbiTKUGwEK_RhZF9hOnPnKD3x-Xb4rl4XT29LB5eC1W1LBVVTbhpZKWbioHm0LCKd7ylkrKuhltCWVPxlrVgNFNMdnlTd4Z1ujHQVYZXE3R39qrgYwxghLJJJutdCtL2ghIxlBNbcS4nhnKCMpHLZbj-Be-D3clw-g-7P2OQDztaCCIOhXMJG3Ikob39W_ANBJCRFQ |
CitedBy_id | crossref_primary_10_1016_j_jallcom_2019_153015 crossref_primary_10_1049_mnl_2019_0407 crossref_primary_10_1021_acsami_0c09385 crossref_primary_10_1007_s11595_022_2539_6 crossref_primary_10_1016_j_apsusc_2020_146624 crossref_primary_10_1016_j_apcatb_2020_118953 crossref_primary_10_1039_D0TA05985D crossref_primary_10_1016_j_jallcom_2023_171819 crossref_primary_10_1002_aenm_202100866 crossref_primary_10_1016_j_cej_2024_153452 crossref_primary_10_1016_j_cej_2021_134256 crossref_primary_10_3390_molecules27217438 crossref_primary_10_1016_j_ijhydene_2024_10_225 crossref_primary_10_1016_j_jcis_2022_04_123 crossref_primary_10_1002_adfm_202418489 crossref_primary_10_1002_cctc_202200630 crossref_primary_10_1016_j_jcis_2024_07_212 crossref_primary_10_1021_acsami_2c16826 crossref_primary_10_1021_acsphyschemau_2c00003 crossref_primary_10_1016_j_ceramint_2021_11_202 crossref_primary_10_1002_cctc_201901337 crossref_primary_10_1016_j_cclet_2021_03_082 crossref_primary_10_1021_acsami_9b16224 crossref_primary_10_1007_s40097_021_00436_3 crossref_primary_10_1016_j_est_2025_115444 crossref_primary_10_1021_acsami_1c10192 crossref_primary_10_1021_acs_inorgchem_3c01375 crossref_primary_10_1007_s12598_022_02021_1 crossref_primary_10_1039_C9TA08661G crossref_primary_10_1002_smll_201903610 crossref_primary_10_1016_j_jelechem_2024_118632 crossref_primary_10_1016_j_apsusc_2024_162055 crossref_primary_10_1016_j_jelechem_2019_113621 crossref_primary_10_1016_j_nanoen_2020_105714 crossref_primary_10_1039_D0TA02544E crossref_primary_10_1016_j_jpowsour_2019_227561 crossref_primary_10_1016_j_jcis_2022_02_129 crossref_primary_10_1016_j_cej_2021_128492 crossref_primary_10_1016_j_carbon_2022_05_019 crossref_primary_10_1002_adfm_201908167 crossref_primary_10_1016_j_chphi_2024_100693 crossref_primary_10_1016_j_ijhydene_2024_02_283 crossref_primary_10_1016_j_rser_2023_113451 crossref_primary_10_5796_electrochemistry_24_00123 crossref_primary_10_1016_j_jiec_2024_11_057 crossref_primary_10_1016_j_gee_2022_09_006 crossref_primary_10_1016_j_jcis_2020_11_095 crossref_primary_10_1016_j_cej_2023_142411 crossref_primary_10_1039_D4CP00424H crossref_primary_10_3390_nano9091284 crossref_primary_10_1016_j_cej_2024_150673 crossref_primary_10_1016_j_apcata_2022_118777 crossref_primary_10_1002_solr_202300548 crossref_primary_10_1016_j_jiec_2023_02_014 crossref_primary_10_1088_1361_6528_abeb9d crossref_primary_10_1002_cey2_253 crossref_primary_10_1002_aesr_202000106 crossref_primary_10_1007_s40242_024_4072_y crossref_primary_10_1039_D1TA05646H crossref_primary_10_2139_ssrn_4136977 crossref_primary_10_1016_j_matt_2021_01_004 crossref_primary_10_1016_j_cej_2022_137705 crossref_primary_10_1002_ange_201914245 crossref_primary_10_1039_C9TA05981D crossref_primary_10_1039_D4QI00987H crossref_primary_10_1021_acsaem_3c02299 crossref_primary_10_1002_adfm_202107928 crossref_primary_10_1002_adfm_201906081 crossref_primary_10_1007_s10853_020_04698_0 crossref_primary_10_1007_s40843_019_9439_9 crossref_primary_10_1021_acsami_0c16760 crossref_primary_10_1021_acscatal_9b04060 crossref_primary_10_1016_j_mcat_2022_112625 crossref_primary_10_1016_j_jcis_2022_12_121 crossref_primary_10_1016_j_mcat_2022_112502 crossref_primary_10_1016_j_apsusc_2020_148817 crossref_primary_10_1016_j_ensm_2020_09_014 crossref_primary_10_1016_j_physleta_2019_06_020 crossref_primary_10_1039_D4QI02744B crossref_primary_10_1016_j_ijhydene_2022_04_222 crossref_primary_10_1016_j_pnsc_2020_10_014 crossref_primary_10_1016_j_jelechem_2023_117381 crossref_primary_10_1016_j_catcom_2019_105800 crossref_primary_10_1515_ntrev_2021_0008 crossref_primary_10_1016_j_clay_2021_106360 crossref_primary_10_1002_aenm_201902084 crossref_primary_10_1002_anie_201914245 crossref_primary_10_1016_j_jmat_2021_07_001 crossref_primary_10_1016_j_gee_2021_11_008 crossref_primary_10_1016_j_jallcom_2024_176440 crossref_primary_10_1021_acsami_0c16081 crossref_primary_10_1021_acs_langmuir_4c04034 crossref_primary_10_1002_masy_202300060 crossref_primary_10_1016_j_carbon_2023_04_006 crossref_primary_10_1021_acsami_0c10734 crossref_primary_10_3390_molecules29010210 crossref_primary_10_1002_aenm_202101242 crossref_primary_10_1007_s43207_021_00113_9 crossref_primary_10_1039_D3CY01746J crossref_primary_10_1002_smll_202409129 crossref_primary_10_3390_catal9050458 crossref_primary_10_1016_j_apcatb_2022_122067 crossref_primary_10_1002_elsa_202100034 crossref_primary_10_1016_j_ensm_2021_06_016 crossref_primary_10_1002_chem_201901848 crossref_primary_10_1002_cey2_158 crossref_primary_10_1002_cctc_202301379 crossref_primary_10_1002_smll_202304863 crossref_primary_10_1016_j_ijhydene_2024_05_228 crossref_primary_10_1088_1742_6596_1838_1_012018 crossref_primary_10_1039_C9TA12255A crossref_primary_10_1039_D4QI00793J crossref_primary_10_1002_cnl2_110 crossref_primary_10_1016_j_carbon_2020_06_002 crossref_primary_10_1016_j_colsurfa_2024_133629 crossref_primary_10_1021_acsami_9b17476 crossref_primary_10_1016_j_nanoen_2019_104021 crossref_primary_10_1039_D1CY01818C crossref_primary_10_1016_j_jcis_2020_08_101 crossref_primary_10_1021_acsami_0c17479 crossref_primary_10_1016_j_ijhydene_2021_05_182 crossref_primary_10_1016_j_surfin_2025_105739 crossref_primary_10_1002_smll_202106122 crossref_primary_10_1016_j_jallcom_2023_171754 crossref_primary_10_1021_acssuschemeng_0c00830 crossref_primary_10_1021_acssuschemeng_9b06920 crossref_primary_10_1021_acssuschemeng_9b05833 crossref_primary_10_1002_cctc_202301760 crossref_primary_10_1016_j_jpowsour_2019_227482 crossref_primary_10_1002_cssc_202400799 crossref_primary_10_1007_s10853_021_05798_1 crossref_primary_10_1016_j_cej_2019_122058 crossref_primary_10_1039_D0TA08674F crossref_primary_10_1149_1945_7111_ac766a crossref_primary_10_1016_j_ijhydene_2024_06_270 crossref_primary_10_1002_ange_202501266 crossref_primary_10_1016_j_surfin_2023_103100 crossref_primary_10_1021_acs_langmuir_1c00857 crossref_primary_10_1039_D0RA07284B crossref_primary_10_1002_smll_202203148 crossref_primary_10_1016_j_mtcomm_2020_101524 crossref_primary_10_1016_j_jpowsour_2021_229525 crossref_primary_10_1149_1945_7111_ab6e5d crossref_primary_10_1016_j_jechem_2024_09_009 crossref_primary_10_1021_acssuschemeng_9b02052 crossref_primary_10_1002_smtd_202101116 crossref_primary_10_1016_j_cej_2023_143706 crossref_primary_10_1021_acsami_3c14995 crossref_primary_10_1007_s11581_021_03963_9 crossref_primary_10_1021_acscatal_0c00352 crossref_primary_10_1039_C9NR03430G crossref_primary_10_1021_acs_nanolett_1c00077 crossref_primary_10_1002_asia_202000468 crossref_primary_10_1016_j_cej_2022_139404 crossref_primary_10_1016_j_nantod_2021_101245 crossref_primary_10_1021_acsami_1c00484 crossref_primary_10_1016_j_jcis_2021_09_045 crossref_primary_10_1016_j_jechem_2020_05_032 crossref_primary_10_1016_j_jpowsour_2020_229099 crossref_primary_10_1016_j_nanoen_2024_109268 crossref_primary_10_1016_j_carbon_2021_03_030 crossref_primary_10_1016_j_fuel_2024_133334 crossref_primary_10_1016_j_ijhydene_2020_11_098 crossref_primary_10_1016_j_jpcs_2024_112221 crossref_primary_10_1039_D1TA10881F crossref_primary_10_1002_anie_202501266 crossref_primary_10_1016_j_apenergy_2020_115876 crossref_primary_10_1039_D0TA07362H crossref_primary_10_1039_D1SE00275A crossref_primary_10_2174_0115734137252527230919110809 crossref_primary_10_1002_adfm_202213770 crossref_primary_10_1016_S1872_2067_20_63606_3 crossref_primary_10_1016_j_mtphys_2020_100338 crossref_primary_10_1016_j_spmi_2019_106210 crossref_primary_10_1016_j_chemosphere_2021_131908 crossref_primary_10_1016_j_ccr_2025_216462 crossref_primary_10_3390_ma15020458 crossref_primary_10_1002_adfm_202414379 crossref_primary_10_1016_j_cattod_2022_06_014 crossref_primary_10_1016_j_jpowsour_2024_235239 crossref_primary_10_3390_nano11082106 crossref_primary_10_1039_D0NJ00289E crossref_primary_10_1002_adfm_202110572 crossref_primary_10_1016_j_jallcom_2024_176525 crossref_primary_10_1039_D1CP05392B crossref_primary_10_1002_smtd_202200515 crossref_primary_10_1016_j_cej_2022_140401 crossref_primary_10_1016_j_jiec_2023_01_014 crossref_primary_10_1039_D1NR08035K crossref_primary_10_1016_j_nanoen_2019_104208 crossref_primary_10_1039_C9TA14231B |
Cites_doi | 10.1002/adma.201702526 10.1039/c3ta01402a 10.1021/ja4027715 10.1039/b816478a 10.1038/nchem.931 10.1021/la501246e 10.1016/j.carbon.2015.12.011 10.1021/acscatal.7b01070 10.1016/j.jpowsour.2013.11.024 10.1039/C4TA04115A 10.1021/acsami.6b09888 10.1002/anie.201503612 10.1016/j.nanoen.2016.06.033 10.1016/j.scib.2017.08.006 10.1016/j.cattod.2017.04.001 10.1021/jacs.6b00332 10.1038/srep33590 10.1021/acsami.5b11840 10.1038/ncomms8345 10.1039/C7SE00346C 10.1038/natrevmats.2016.80 10.1002/anie.201600750 10.1021/acsenergylett.7b00989 10.1016/j.carbon.2016.10.057 10.1149/2.058209jes 10.1002/anie.200700894 10.1002/anie.201705778 10.1016/j.cattod.2017.10.020 10.1002/aenm.201700869 10.1002/adma.201506197 10.1039/C4CS00015C 10.1021/acs.chemrev.5b00073 10.1002/adma.201604685 10.1002/adfm.201403554 10.1021/acs.langmuir.6b02413 10.1021/am4007897 10.1002/smll.201700740 10.1016/j.carbon.2015.03.021 10.1016/j.nanoen.2014.11.008 10.1021/acscatal.5b02804 10.1016/j.jelechem.2006.11.008 10.1021/acscatal.5b02291 10.1021/acsenergylett.7b00835 10.1039/C4TC00167B 10.1016/j.jpowsour.2014.06.108 10.1021/jacs.5b10977 10.1039/C3MH00059A 10.1021/jacs.6b05046 10.1016/j.electacta.2013.02.030 10.1021/acsenergylett.7b00206 10.1016/j.apenergy.2016.04.036 10.1016/j.nanoen.2016.12.008 10.1021/am505985z |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd |
Copyright_xml | – notice: 2018 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.nanoen.2018.12.017 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 185 |
ExternalDocumentID | 10_1016_j_nanoen_2018_12_017 S2211285518309212 |
GroupedDBID | --K --M .~1 0R~ 1~. 1~5 4.4 457 4G. 5VS 7-5 8P~ AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC EBS EFJIC EFLBG EJD FDB FIRID FNPLU FYGXN GBLVA HZ~ JARJE KOM M41 MAGPM MO0 O-L O9- OAUVE P-8 P-9 PC. Q38 RIG ROL SDF SPC SPCBC SSM SSR SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c372t-3406f5a3d532ed6e5236b671a12b4e9012536727efd2c2ab71a4bf2bd5feb3f63 |
IEDL.DBID | .~1 |
ISSN | 2211-2855 |
IngestDate | Tue Jul 01 01:56:05 EDT 2025 Thu Apr 24 22:57:47 EDT 2025 Fri Feb 23 02:27:46 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Bifunctional electrocatalyst Quantum dot Metal-air battery ORR/OER mechanism Low voltage drop |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-3406f5a3d532ed6e5236b671a12b4e9012536727efd2c2ab71a4bf2bd5feb3f63 |
ORCID | 0000-0001-6542-2325 |
PageCount | 10 |
ParticipantIDs | crossref_citationtrail_10_1016_j_nanoen_2018_12_017 crossref_primary_10_1016_j_nanoen_2018_12_017 elsevier_sciencedirect_doi_10_1016_j_nanoen_2018_12_017 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2019 2019-03-00 |
PublicationDateYYYYMMDD | 2019-03-01 |
PublicationDate_xml | – month: 03 year: 2019 text: March 2019 |
PublicationDecade | 2010 |
PublicationTitle | Nano energy |
PublicationYear | 2019 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Li, Han, Cheng, Hu, Chen, Chen (bib9) 2015; 6 Rossmeisl, Qu, Zhu, Kroes, Nørskov (bib54) 2007; 607 Yan, Yang, Bian, Yang (bib48) 2015; 92 Chen, Waje, Li, Yan (bib11) 2007; 46 Zhang, Li, Sun, Zhang, Wang (bib3) 2017; 298 Qiu, Xin, Li (bib40) 2014; 30 Li, Zhang, Li, Yoo, Chi, An, Liu, Yu, Wang, Yao (bib17) 2016; 27 Zhang, Tao, Chen (bib53) 2014; 1 Chakthranont, Kibsgaard, Gallo, Park, Mitani, Sokaras, Kroll, Sinclair, Mogensen, Jaramillo (bib1) 2017; 7 Gorlin, Chernev, Ferreira de Araujo, Reier, Dresp, Paul, Krahnert, Dau, Strasser (bib32) 2016; 138 Li, Hu, You, Chen (bib28) 2017; 111 Liu, Bian, Yang, Tian, Jin, Shen, Zhou, Yang (bib47) 2014; 2 Chandrasekaran, Muthusamy (bib43) 2017; 33 Liang, Wu, Chen, Li, Yu (bib19) 2015; 11 Xu, Liu, Zhang, Li, Li, Qiao, Zhang (bib30) 2016; 6 Gong, Li, Wang, Liang, Wu, Zhou, Wang, Regier, Wei, Dai (bib45) 2013; 135 Li, Sun, Gebert, Chou (bib51) 2017; 7 Nurlaela, Shinagawa, Qureshi, Dhawale, Takanabe (bib34) 2016; 6 Jia, Yang, Wang, Zhao, Vijayaraghavan, MacFarlane, Forsyth, Wallace (bib50) 2014; 6 Qiao, Xu, Liu, Xu, Shi, Liu, Tian (bib37) 2013; 96 Han, Wu, Zhong, Deng, Zhao, Hu (bib21) 2017; 31 Lin, Shinde, Wang, Sun, Chen, Zhang, Li, Lee (bib25) 2017; 1 Cheng, Shen, Peng, Pan, Tao, Chen (bib16) 2011; 3 Li, Wang, Fu, Li, Park, Zhang, Lui, Chen (bib4) 2016; 55 Zhang, Xu, Li, Li, Yang, Liang (bib44) 2015; 6 Peng, Liang, Tao, Chen (bib52) 2009; 19 Bian, Yang, Strasser, Yang (bib46) 2014; 250 Meng, Zhong, Bao, Yan, Zhang (bib7) 2016; 138 Fu, Hassan, Zhong, Lu, Liu, Yu, Chen (bib22) 2017; 29 Ahn, Bard (bib26) 2016; 138 Vignesh, Prabu, Shanmugam (bib39) 2016; 8 Liu, Wang, Zhou, Yu, Yu, Chiang, Zhou, Zhao, Qiu (bib5) 2017; 29 Lee, Kim, Chen (bib24) 2013; 1 Chen, Chen, Baiyee, Shao, Ciucci (bib10) 2015; 115 Deng, Jiang, Luo, Fu, Liang, Cheng, Bai, Liu, Lei, Yang, Zhu, Chen (bib42) 2017; 2 Ding, Dai, Lin, Wang, Qiao (bib38) 2012; 159 Liu, Park, Kim, Gupta, Wu, Cho (bib13) 2015; 54 Lai, Zhu, Zhao, Liang, He, Chen (bib18) 2017; 13 Xu, Li, Li, Wei, Qiao (bib31) 2017; 62 Liu, Jin, Zhang (bib20) 2013; 5 Luo, Marti-Sanchez, Nafria, Joshua, de la Mata, Guardia, Flox, Martinez-Boubeta, Simeonidis, Llorca, Morante, Arbiol, Ibanez, Cabot (bib33) 2016; 8 Yan, Cao, Tian, Jin, Ke, Yang (bib49) 2016; 99 Li, Hu, Lee, Chang, Wang (bib23) 2014; 269 Xia, Hong, Li, Zhao, Lin, Zheng, Savilov, Aldoshin (bib36) 2015; 25 Xu, Qiao, Nie, Wang, Xu, Wang, Zhou (bib15) 2018; 138 Cui, Fu, Li, Goodenough (bib12) 2017; 56 Liang, Gandi, Xia, Hedhili, Anjum, Schwingenschlögl, Alshareef (bib27) 2017; 2 Liu, Cheng, Li, Ma, Su (bib35) 2016; 28 Park, Ryu, Wang, Cho (bib8) 2016; 2 Ji, Cao, Chen, Zhai, Bai (bib41) 2014; 2 Xu, Qiao, Zhang, Ma, Jian, Liu, Pei (bib29) 2016; 175 Li, Dai (bib2) 2014; 43 Kuang, Wang, Ge, Han, Gu, Al-Enizi, Zheng (bib6) 2017; 2 Fu, Cano, Park, Yu, Fowler, Chen (bib14) 2017; 29 Peng (10.1016/j.nanoen.2018.12.017_bib52) 2009; 19 Liang (10.1016/j.nanoen.2018.12.017_bib19) 2015; 11 Xu (10.1016/j.nanoen.2018.12.017_bib30) 2016; 6 Yan (10.1016/j.nanoen.2018.12.017_bib49) 2016; 99 Gong (10.1016/j.nanoen.2018.12.017_bib45) 2013; 135 Chen (10.1016/j.nanoen.2018.12.017_bib10) 2015; 115 Ding (10.1016/j.nanoen.2018.12.017_bib38) 2012; 159 Li (10.1016/j.nanoen.2018.12.017_bib9) 2015; 6 Xia (10.1016/j.nanoen.2018.12.017_bib36) 2015; 25 Jia (10.1016/j.nanoen.2018.12.017_bib50) 2014; 6 Fu (10.1016/j.nanoen.2018.12.017_bib22) 2017; 29 Fu (10.1016/j.nanoen.2018.12.017_bib14) 2017; 29 Deng (10.1016/j.nanoen.2018.12.017_bib42) 2017; 2 Chandrasekaran (10.1016/j.nanoen.2018.12.017_bib43) 2017; 33 Xu (10.1016/j.nanoen.2018.12.017_bib29) 2016; 175 Zhang (10.1016/j.nanoen.2018.12.017_bib3) 2017; 298 Li (10.1016/j.nanoen.2018.12.017_bib4) 2016; 55 Han (10.1016/j.nanoen.2018.12.017_bib21) 2017; 31 Chen (10.1016/j.nanoen.2018.12.017_bib11) 2007; 46 Zhang (10.1016/j.nanoen.2018.12.017_bib53) 2014; 1 Gorlin (10.1016/j.nanoen.2018.12.017_bib32) 2016; 138 Ahn (10.1016/j.nanoen.2018.12.017_bib26) 2016; 138 Luo (10.1016/j.nanoen.2018.12.017_bib33) 2016; 8 Liu (10.1016/j.nanoen.2018.12.017_bib5) 2017; 29 Cheng (10.1016/j.nanoen.2018.12.017_bib16) 2011; 3 Qiao (10.1016/j.nanoen.2018.12.017_bib37) 2013; 96 Liu (10.1016/j.nanoen.2018.12.017_bib35) 2016; 28 Li (10.1016/j.nanoen.2018.12.017_bib17) 2016; 27 Qiu (10.1016/j.nanoen.2018.12.017_bib40) 2014; 30 Xu (10.1016/j.nanoen.2018.12.017_bib15) 2018; 138 Lee (10.1016/j.nanoen.2018.12.017_bib24) 2013; 1 Xu (10.1016/j.nanoen.2018.12.017_bib31) 2017; 62 Li (10.1016/j.nanoen.2018.12.017_bib51) 2017; 7 Liu (10.1016/j.nanoen.2018.12.017_bib20) 2013; 5 Vignesh (10.1016/j.nanoen.2018.12.017_bib39) 2016; 8 Liang (10.1016/j.nanoen.2018.12.017_bib27) 2017; 2 Ji (10.1016/j.nanoen.2018.12.017_bib41) 2014; 2 Zhang (10.1016/j.nanoen.2018.12.017_bib44) 2015; 6 Li (10.1016/j.nanoen.2018.12.017_bib2) 2014; 43 Bian (10.1016/j.nanoen.2018.12.017_bib46) 2014; 250 Kuang (10.1016/j.nanoen.2018.12.017_bib6) 2017; 2 Meng (10.1016/j.nanoen.2018.12.017_bib7) 2016; 138 Chakthranont (10.1016/j.nanoen.2018.12.017_bib1) 2017; 7 Cui (10.1016/j.nanoen.2018.12.017_bib12) 2017; 56 Lin (10.1016/j.nanoen.2018.12.017_bib25) 2017; 1 Yan (10.1016/j.nanoen.2018.12.017_bib48) 2015; 92 Lai (10.1016/j.nanoen.2018.12.017_bib18) 2017; 13 Liu (10.1016/j.nanoen.2018.12.017_bib13) 2015; 54 Li (10.1016/j.nanoen.2018.12.017_bib28) 2017; 111 Liu (10.1016/j.nanoen.2018.12.017_bib47) 2014; 2 Park (10.1016/j.nanoen.2018.12.017_bib8) 2016; 2 Nurlaela (10.1016/j.nanoen.2018.12.017_bib34) 2016; 6 Li (10.1016/j.nanoen.2018.12.017_bib23) 2014; 269 Rossmeisl (10.1016/j.nanoen.2018.12.017_bib54) 2007; 607 |
References_xml | – volume: 31 start-page: 541 year: 2017 end-page: 550 ident: bib21 publication-title: Nano Energy – volume: 138 start-page: 10226 year: 2016 end-page: 10231 ident: bib7 publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 1700740 year: 2017 ident: bib18 publication-title: Small – volume: 25 start-page: 627 year: 2015 end-page: 635 ident: bib36 publication-title: Adv. Funct. Mater. – volume: 2 start-page: 2706 year: 2017 end-page: 2712 ident: bib42 publication-title: ACS Energy Lett. – volume: 159 start-page: F577 year: 2012 end-page: F584 ident: bib38 publication-title: J. Electrochem. Soc. – volume: 2 start-page: 16080 year: 2016 ident: bib8 publication-title: Nat. Rev. Mater. – volume: 11 start-page: 366 year: 2015 end-page: 376 ident: bib19 publication-title: Nano Energy – volume: 2 start-page: 5944 year: 2014 end-page: 5953 ident: bib41 publication-title: J. Mater. Chem. C – volume: 111 start-page: 813 year: 2017 end-page: 821 ident: bib28 publication-title: Carbon – volume: 8 start-page: 29461 year: 2016 end-page: 29469 ident: bib33 publication-title: ACS Appl. Mater. Interfaces – volume: 1 start-page: 1909 year: 2017 end-page: 1914 ident: bib25 publication-title: Sustain. Energy Fuels – volume: 5 start-page: 5002 year: 2013 end-page: 5008 ident: bib20 publication-title: ACS Appl. Mater. Interfaces – volume: 2 start-page: 18012 year: 2014 end-page: 18017 ident: bib47 publication-title: J. Mater. Chem. A – volume: 19 start-page: 2877 year: 2009 ident: bib52 publication-title: J. Mater. Chem. – volume: 43 start-page: 5257 year: 2014 end-page: 5275 ident: bib2 publication-title: Chem. Soc. Rev. – volume: 138 start-page: 144 year: 2018 end-page: 149 ident: bib15 publication-title: Catal. Today – volume: 2 start-page: 1035 year: 2017 end-page: 1042 ident: bib27 publication-title: ACS Energy Lett. – volume: 96 start-page: 298 year: 2013 end-page: 305 ident: bib37 publication-title: Electrochim. Acta – volume: 28 start-page: 3777 year: 2016 end-page: 3784 ident: bib35 publication-title: Adv. Mater. – volume: 175 start-page: 495 year: 2016 end-page: 504 ident: bib29 publication-title: Appl. Energy – volume: 29 start-page: 1704898 year: 2017 ident: bib5 publication-title: Adv. Mater. – volume: 138 start-page: 313 year: 2016 end-page: 318 ident: bib26 publication-title: J. Am. Chem. Soc. – volume: 30 start-page: 7893 year: 2014 end-page: 7901 ident: bib40 publication-title: Langmuir: ACS J. Surf. Colloids – volume: 8 start-page: 6019 year: 2016 end-page: 6031 ident: bib39 publication-title: ACS Appl. Mater. Interfaces – volume: 135 start-page: 8452 year: 2013 end-page: 8455 ident: bib45 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 79 year: 2011 end-page: 84 ident: bib16 publication-title: Nat. Chem. – volume: 6 start-page: 21110 year: 2014 end-page: 21117 ident: bib50 publication-title: ACS Appl. Mater. Interfaces – volume: 2 start-page: 2498 year: 2017 end-page: 2505 ident: bib6 publication-title: ACS Energy Lett. – volume: 29 start-page: 1604685 year: 2017 ident: bib14 publication-title: Adv. Mater. – volume: 269 start-page: 88 year: 2014 end-page: 97 ident: bib23 publication-title: J. Power Sources – volume: 33 start-page: 2 year: 2017 end-page: 10 ident: bib43 publication-title: Langmuir : ACS J. Surf. Colloids – volume: 29 start-page: 1702526 year: 2017 ident: bib22 publication-title: Adv. Mater. – volume: 1 start-page: 196 year: 2014 end-page: 206 ident: bib53 publication-title: Mater. Horiz. – volume: 6 start-page: 33590 year: 2016 ident: bib30 publication-title: Sci. Rep. – volume: 250 start-page: 196 year: 2014 end-page: 203 ident: bib46 publication-title: J. Power Sources – volume: 138 start-page: 5603 year: 2016 end-page: 5614 ident: bib32 publication-title: J. Am. Chem. Soc. – volume: 27 start-page: 8 year: 2016 end-page: 16 ident: bib17 publication-title: Nano Energy – volume: 7 start-page: 1700869 year: 2017 ident: bib51 publication-title: Adv. Energy Mater. – volume: 7 start-page: 5399 year: 2017 end-page: 5409 ident: bib1 publication-title: ACS Catal. – volume: 56 start-page: 9901 year: 2017 end-page: 9905 ident: bib12 publication-title: Angew. Chem. – volume: 298 start-page: 241 year: 2017 end-page: 249 ident: bib3 publication-title: Catal. Today – volume: 99 start-page: 195 year: 2016 end-page: 202 ident: bib49 publication-title: Carbon – volume: 54 start-page: 9654 year: 2015 end-page: 9658 ident: bib13 publication-title: Angew. Chem. – volume: 92 start-page: 74 year: 2015 end-page: 83 ident: bib48 publication-title: Carbon – volume: 1 start-page: 4754 year: 2013 ident: bib24 publication-title: J. Mater. Chem. A – volume: 115 start-page: 9869 year: 2015 end-page: 9921 ident: bib10 publication-title: Chem. Rev. – volume: 46 start-page: 4060 year: 2007 end-page: 4063 ident: bib11 publication-title: Angew. Chem. – volume: 62 start-page: 1216 year: 2017 end-page: 1226 ident: bib31 publication-title: Sci. Bull. – volume: 6 start-page: 7345 year: 2015 ident: bib9 publication-title: Nat. Commun. – volume: 607 start-page: 83 year: 2007 end-page: 89 ident: bib54 publication-title: J. Electroanal. Chem. – volume: 6 start-page: 580 year: 2015 end-page: 588 ident: bib44 publication-title: ACS Catal. – volume: 6 start-page: 1713 year: 2016 end-page: 1722 ident: bib34 publication-title: ACS Catal. – volume: 55 start-page: 4977 year: 2016 end-page: 4982 ident: bib4 publication-title: Angew. Chem. – volume: 29 start-page: 1702526 year: 2017 ident: 10.1016/j.nanoen.2018.12.017_bib22 publication-title: Adv. Mater. doi: 10.1002/adma.201702526 – volume: 1 start-page: 4754 year: 2013 ident: 10.1016/j.nanoen.2018.12.017_bib24 publication-title: J. Mater. Chem. A doi: 10.1039/c3ta01402a – volume: 135 start-page: 8452 year: 2013 ident: 10.1016/j.nanoen.2018.12.017_bib45 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4027715 – volume: 19 start-page: 2877 year: 2009 ident: 10.1016/j.nanoen.2018.12.017_bib52 publication-title: J. Mater. Chem. doi: 10.1039/b816478a – volume: 3 start-page: 79 year: 2011 ident: 10.1016/j.nanoen.2018.12.017_bib16 publication-title: Nat. Chem. doi: 10.1038/nchem.931 – volume: 30 start-page: 7893 year: 2014 ident: 10.1016/j.nanoen.2018.12.017_bib40 publication-title: Langmuir: ACS J. Surf. Colloids doi: 10.1021/la501246e – volume: 99 start-page: 195 year: 2016 ident: 10.1016/j.nanoen.2018.12.017_bib49 publication-title: Carbon doi: 10.1016/j.carbon.2015.12.011 – volume: 7 start-page: 5399 year: 2017 ident: 10.1016/j.nanoen.2018.12.017_bib1 publication-title: ACS Catal. doi: 10.1021/acscatal.7b01070 – volume: 250 start-page: 196 year: 2014 ident: 10.1016/j.nanoen.2018.12.017_bib46 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.11.024 – volume: 2 start-page: 18012 year: 2014 ident: 10.1016/j.nanoen.2018.12.017_bib47 publication-title: J. Mater. Chem. A doi: 10.1039/C4TA04115A – volume: 8 start-page: 29461 year: 2016 ident: 10.1016/j.nanoen.2018.12.017_bib33 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b09888 – volume: 54 start-page: 9654 year: 2015 ident: 10.1016/j.nanoen.2018.12.017_bib13 publication-title: Angew. Chem. doi: 10.1002/anie.201503612 – volume: 27 start-page: 8 year: 2016 ident: 10.1016/j.nanoen.2018.12.017_bib17 publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.06.033 – volume: 62 start-page: 1216 year: 2017 ident: 10.1016/j.nanoen.2018.12.017_bib31 publication-title: Sci. Bull. doi: 10.1016/j.scib.2017.08.006 – volume: 298 start-page: 241 year: 2017 ident: 10.1016/j.nanoen.2018.12.017_bib3 publication-title: Catal. Today doi: 10.1016/j.cattod.2017.04.001 – volume: 138 start-page: 5603 year: 2016 ident: 10.1016/j.nanoen.2018.12.017_bib32 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b00332 – volume: 6 start-page: 33590 year: 2016 ident: 10.1016/j.nanoen.2018.12.017_bib30 publication-title: Sci. Rep. doi: 10.1038/srep33590 – volume: 8 start-page: 6019 year: 2016 ident: 10.1016/j.nanoen.2018.12.017_bib39 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b11840 – volume: 6 start-page: 7345 year: 2015 ident: 10.1016/j.nanoen.2018.12.017_bib9 publication-title: Nat. Commun. doi: 10.1038/ncomms8345 – volume: 1 start-page: 1909 year: 2017 ident: 10.1016/j.nanoen.2018.12.017_bib25 publication-title: Sustain. Energy Fuels doi: 10.1039/C7SE00346C – volume: 2 start-page: 16080 year: 2016 ident: 10.1016/j.nanoen.2018.12.017_bib8 publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.80 – volume: 55 start-page: 4977 year: 2016 ident: 10.1016/j.nanoen.2018.12.017_bib4 publication-title: Angew. Chem. doi: 10.1002/anie.201600750 – volume: 2 start-page: 2706 year: 2017 ident: 10.1016/j.nanoen.2018.12.017_bib42 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00989 – volume: 111 start-page: 813 year: 2017 ident: 10.1016/j.nanoen.2018.12.017_bib28 publication-title: Carbon doi: 10.1016/j.carbon.2016.10.057 – volume: 159 start-page: F577 year: 2012 ident: 10.1016/j.nanoen.2018.12.017_bib38 publication-title: J. Electrochem. Soc. doi: 10.1149/2.058209jes – volume: 46 start-page: 4060 year: 2007 ident: 10.1016/j.nanoen.2018.12.017_bib11 publication-title: Angew. Chem. doi: 10.1002/anie.200700894 – volume: 56 start-page: 9901 year: 2017 ident: 10.1016/j.nanoen.2018.12.017_bib12 publication-title: Angew. Chem. doi: 10.1002/anie.201705778 – volume: 138 start-page: 144 year: 2018 ident: 10.1016/j.nanoen.2018.12.017_bib15 publication-title: Catal. Today doi: 10.1016/j.cattod.2017.10.020 – volume: 7 start-page: 1700869 year: 2017 ident: 10.1016/j.nanoen.2018.12.017_bib51 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201700869 – volume: 28 start-page: 3777 year: 2016 ident: 10.1016/j.nanoen.2018.12.017_bib35 publication-title: Adv. Mater. doi: 10.1002/adma.201506197 – volume: 43 start-page: 5257 year: 2014 ident: 10.1016/j.nanoen.2018.12.017_bib2 publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00015C – volume: 115 start-page: 9869 year: 2015 ident: 10.1016/j.nanoen.2018.12.017_bib10 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00073 – volume: 29 start-page: 1604685 year: 2017 ident: 10.1016/j.nanoen.2018.12.017_bib14 publication-title: Adv. Mater. doi: 10.1002/adma.201604685 – volume: 25 start-page: 627 year: 2015 ident: 10.1016/j.nanoen.2018.12.017_bib36 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201403554 – volume: 33 start-page: 2 year: 2017 ident: 10.1016/j.nanoen.2018.12.017_bib43 publication-title: Langmuir : ACS J. Surf. Colloids doi: 10.1021/acs.langmuir.6b02413 – volume: 5 start-page: 5002 year: 2013 ident: 10.1016/j.nanoen.2018.12.017_bib20 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am4007897 – volume: 13 start-page: 1700740 year: 2017 ident: 10.1016/j.nanoen.2018.12.017_bib18 publication-title: Small doi: 10.1002/smll.201700740 – volume: 92 start-page: 74 year: 2015 ident: 10.1016/j.nanoen.2018.12.017_bib48 publication-title: Carbon doi: 10.1016/j.carbon.2015.03.021 – volume: 11 start-page: 366 year: 2015 ident: 10.1016/j.nanoen.2018.12.017_bib19 publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.11.008 – volume: 6 start-page: 1713 year: 2016 ident: 10.1016/j.nanoen.2018.12.017_bib34 publication-title: ACS Catal. doi: 10.1021/acscatal.5b02804 – volume: 607 start-page: 83 year: 2007 ident: 10.1016/j.nanoen.2018.12.017_bib54 publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2006.11.008 – volume: 6 start-page: 580 year: 2015 ident: 10.1016/j.nanoen.2018.12.017_bib44 publication-title: ACS Catal. doi: 10.1021/acscatal.5b02291 – volume: 2 start-page: 2498 year: 2017 ident: 10.1016/j.nanoen.2018.12.017_bib6 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00835 – volume: 2 start-page: 5944 year: 2014 ident: 10.1016/j.nanoen.2018.12.017_bib41 publication-title: J. Mater. Chem. C doi: 10.1039/C4TC00167B – volume: 269 start-page: 88 year: 2014 ident: 10.1016/j.nanoen.2018.12.017_bib23 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.06.108 – volume: 138 start-page: 313 year: 2016 ident: 10.1016/j.nanoen.2018.12.017_bib26 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b10977 – volume: 1 start-page: 196 year: 2014 ident: 10.1016/j.nanoen.2018.12.017_bib53 publication-title: Mater. Horiz. doi: 10.1039/C3MH00059A – volume: 138 start-page: 10226 year: 2016 ident: 10.1016/j.nanoen.2018.12.017_bib7 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b05046 – volume: 29 start-page: 1704898 year: 2017 ident: 10.1016/j.nanoen.2018.12.017_bib5 publication-title: Adv. Mater. – volume: 96 start-page: 298 year: 2013 ident: 10.1016/j.nanoen.2018.12.017_bib37 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2013.02.030 – volume: 2 start-page: 1035 year: 2017 ident: 10.1016/j.nanoen.2018.12.017_bib27 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00206 – volume: 175 start-page: 495 year: 2016 ident: 10.1016/j.nanoen.2018.12.017_bib29 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.04.036 – volume: 31 start-page: 541 year: 2017 ident: 10.1016/j.nanoen.2018.12.017_bib21 publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.12.008 – volume: 6 start-page: 21110 year: 2014 ident: 10.1016/j.nanoen.2018.12.017_bib50 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am505985z |
SSID | ssj0000651712 |
Score | 2.599057 |
Snippet | High activity bifunctional non-noble electrocatalysts, targeting both ORR and OER, are rationally designed by integrating the merits of both NiFe2O4 quantum... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 176 |
SubjectTerms | Bifunctional electrocatalyst Low voltage drop Metal-air battery ORR/OER mechanism Quantum dot |
Title | Efficient quantum dots anchored nanocomposite for highly active ORR/OER electrocatalyst of advanced metal-air batteries |
URI | https://dx.doi.org/10.1016/j.nanoen.2018.12.017 |
Volume | 57 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6kXvQgPvFZ9uB1bfeRpDlKaamKFapCb2E3mcWKTWttkV787c5ukqIgCh6T7JAwO5nH7rffEHJuTBgZyDKG5hIxFXPBdIA_HsTCRqlJLUh3UPi2H_Ye1fUwGK6RdnUWxsEqS99f-HTvrcs7jVKbjelo1LgXWLuIlmMUk81Y-E7DSkXOyi8--GqdBUMsj_ympxvPnEB1gs7DvHKdT8ARofKWXxf0nct-iFBfok53m2yV6SK9LL5oh6xBvks2v5AI7pH3jmeBwOBBXxeop8WYYqX5RnE6nyYzyKh7t0OOO3gWUExSqeMofllS7X0dvRsMGnedAS074vgFneXbnE4srRACdAx4k-nRjBpPyIn19T557HYe2j1WtlNgqYzEnEmM3TbQMgukgCwELEFDnCmuuTAKMC8QgXT7smAzkQpt8IkyVpgssFhx21AekFo-yeGQUMhAa96yodJKSbBGp01oxVYJHUqu4YjISoVJWnKNu5YXL0kFKntOCsUnTvEJFwkq_oiwldS04Nr4Y3xUzU7yzWYSDAe_Sh7_W_KEbOBVXKDQTkltPlvAGaYlc1P3dlcn65dXN73-J_7S5W8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROLQcqra0KpRSH9qju_iRZHPooWoXLeUlLSBxc-1krC6CLOxDaC_9U_2DjJ0EgYSohMTVziTWeDLjsT9_A_DZuTRzWJaczCXjOheS24R-PMylzwpXeFThovDefto_1r9OkpMF-NfehQmwysb31z49euumpdNos3MxHHYOJeUushsYxdRmTh64QVbu4PyK8rbJt-2fNMlfpNzqHf3o86a0AC9UJqdcURzziVVloiSWKVI6ltKohRXSaaQYKRMVzijRl7KQ1lGPdl66MvGUffpU0XufwZImdxHKJnz9K242diimiyyesoYB8jDC9spexJVVthphYF4V3bgRGUul3RMSb4W5rVfwslmfsu-1Cl7DAlZvYPkWa-EKXPUi7QRFK3Y5o4mZnTNKbSeM7OfPaIwlC98OUPWAB0NGq2IWSJHP5sxG58oOBoPOQW_AmhI8cQdpPpmykWctJIGdIzVyOxwzFxlAKaF_C8dPouR3sFiNKnwPDEu0VnR9qq3WCr2zxSZ2c6-lTZWwuAqqVaEpGnLzUGPjzLQotlNTK94ExRshDSl-FfiN1EVN7vGf57N2dswdIzUUfx6UXHu05Cd43j_a2zW72_s7H-AF9eQ1BG4dFqfjGX6kNdHUbUQbZPD7qY3-GrtZIRY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+quantum+dots+anchored+nanocomposite+for+highly+active+ORR%2FOER+electrocatalyst+of+advanced+metal-air+batteries&rft.jtitle=Nano+energy&rft.au=Xu%2C+Nengneng&rft.au=Zhang%2C+Yanxing&rft.au=Zhang%2C+Tao&rft.au=Liu%2C+Yuyu&rft.date=2019-03-01&rft.pub=Elsevier+Ltd&rft.issn=2211-2855&rft.volume=57&rft.spage=176&rft.epage=185&rft_id=info:doi/10.1016%2Fj.nanoen.2018.12.017&rft.externalDocID=S2211285518309212 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-2855&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-2855&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-2855&client=summon |