Quantum reinforcement learning during human decision-making

Classical reinforcement learning (CRL) has been widely applied in neuroscience and psychology; however, quantum reinforcement learning (QRL), which shows superior performance in computer simulations, has never been empirically tested on human decision-making. Moreover, all current successful quantum...

Full description

Saved in:
Bibliographic Details
Published inNature human behaviour Vol. 4; no. 3; pp. 294 - 307
Main Authors Li, Ji-An, Dong, Daoyi, Wei, Zhengde, Liu, Ying, Pan, Yu, Nori, Franco, Zhang, Xiaochu
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.03.2020
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Classical reinforcement learning (CRL) has been widely applied in neuroscience and psychology; however, quantum reinforcement learning (QRL), which shows superior performance in computer simulations, has never been empirically tested on human decision-making. Moreover, all current successful quantum models for human cognition lack connections to neuroscience. Here we studied whether QRL can properly explain value-based decision-making. We compared 2 QRL and 12 CRL models by using behavioural and functional magnetic resonance imaging data from healthy and cigarette-smoking subjects performing the Iowa Gambling Task. In all groups, the QRL models performed well when compared with the best CRL models and further revealed the representation of quantum-like internal-state-related variables in the medial frontal gyrus in both healthy subjects and smokers, suggesting that value-based decision-making can be illustrated by QRL at both the behavioural and neural levels. Li et al. show that human value-based decision-making can be modelled using the quantum reinforcement learning framework. These new models reveal the importance of the medial frontal cortex in this quantum-like decision-making process.
AbstractList Classical reinforcement learning (CRL) has been widely applied in neuroscience and psychology; however, quantum reinforcement learning (QRL), which shows superior performance in computer simulations, has never been empirically tested on human decision-making. Moreover, all current successful quantum models for human cognition lack connections to neuroscience. Here we studied whether QRL can properly explain value-based decision-making. We compared 2 QRL and 12 CRL models by using behavioural and functional magnetic resonance imaging data from healthy and cigarette-smoking subjects performing the Iowa Gambling Task. In all groups, the QRL models performed well when compared with the best CRL models and further revealed the representation of quantum-like internal-state-related variables in the medial frontal gyrus in both healthy subjects and smokers, suggesting that value-based decision-making can be illustrated by QRL at both the behavioural and neural levels. Li et al. show that human value-based decision-making can be modelled using the quantum reinforcement learning framework. These new models reveal the importance of the medial frontal cortex in this quantum-like decision-making process.
Classical reinforcement learning (CRL) has been widely applied in neuroscience and psychology; however, quantum reinforcement learning (QRL), which shows superior performance in computer simulations, has never been empirically tested on human decision-making. Moreover, all current successful quantum models for human cognition lack connections to neuroscience. Here we studied whether QRL can properly explain value-based decision-making. We compared 2 QRL and 12 CRL models by using behavioural and functional magnetic resonance imaging data from healthy and cigarette-smoking subjects performing the Iowa Gambling Task. In all groups, the QRL models performed well when compared with the best CRL models and further revealed the representation of quantum-like internal-state-related variables in the medial frontal gyrus in both healthy subjects and smokers, suggesting that value-based decision-making can be illustrated by QRL at both the behavioural and neural levels.Li et al. show that human value-based decision-making can be modelled using the quantum reinforcement learning framework. These new models reveal the importance of the medial frontal cortex in this quantum-like decision-making process.
Classical reinforcement learning (CRL) has been widely applied in neuroscience and psychology; however, quantum reinforcement learning (QRL), which shows superior performance in computer simulations, has never been empirically tested on human decision-making. Moreover, all current successful quantum models for human cognition lack connections to neuroscience. Here we studied whether QRL can properly explain value-based decision-making. We compared 2 QRL and 12 CRL models by using behavioural and functional magnetic resonance imaging data from healthy and cigarette-smoking subjects performing the Iowa Gambling Task. In all groups, the QRL models performed well when compared with the best CRL models and further revealed the representation of quantum-like internal-state-related variables in the medial frontal gyrus in both healthy subjects and smokers, suggesting that value-based decision-making can be illustrated by QRL at both the behavioural and neural levels.Classical reinforcement learning (CRL) has been widely applied in neuroscience and psychology; however, quantum reinforcement learning (QRL), which shows superior performance in computer simulations, has never been empirically tested on human decision-making. Moreover, all current successful quantum models for human cognition lack connections to neuroscience. Here we studied whether QRL can properly explain value-based decision-making. We compared 2 QRL and 12 CRL models by using behavioural and functional magnetic resonance imaging data from healthy and cigarette-smoking subjects performing the Iowa Gambling Task. In all groups, the QRL models performed well when compared with the best CRL models and further revealed the representation of quantum-like internal-state-related variables in the medial frontal gyrus in both healthy subjects and smokers, suggesting that value-based decision-making can be illustrated by QRL at both the behavioural and neural levels.
Classical reinforcement learning (CRL) has been widely applied in neuroscience and psychology; however, quantum reinforcement learning (QRL), which shows superior performance in computer simulations, has never been empirically tested on human decision-making. Moreover, all current successful quantum models for human cognition lack connections to neuroscience. Here we studied whether QRL can properly explain value-based decision-making. We compared 2 QRL and 12 CRL models by using behavioural and functional magnetic resonance imaging data from healthy and cigarette-smoking subjects performing the Iowa Gambling Task. In all groups, the QRL models performed well when compared with the best CRL models and further revealed the representation of quantum-like internal-state-related variables in the medial frontal gyrus in both healthy subjects and smokers, suggesting that value-based decision-making can be illustrated by QRL at both the behavioural and neural levels.
Author Liu, Ying
Nori, Franco
Li, Ji-An
Pan, Yu
Zhang, Xiaochu
Dong, Daoyi
Wei, Zhengde
Author_xml – sequence: 1
  givenname: Ji-An
  orcidid: 0000-0003-2419-2281
  surname: Li
  fullname: Li, Ji-An
  organization: Eye Center, Dept. of Ophthalmology, the First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Department of Statistics and Finance, School of Management, University of Science and Technology of China
– sequence: 2
  givenname: Daoyi
  orcidid: 0000-0002-7425-3559
  surname: Dong
  fullname: Dong, Daoyi
  organization: School of Engineering and Information Technology, University of New South Wales
– sequence: 3
  givenname: Zhengde
  surname: Wei
  fullname: Wei, Zhengde
  organization: Eye Center, Dept. of Ophthalmology, the First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Centre, Shanghai Jiao Tong University School of Medicine
– sequence: 4
  givenname: Ying
  surname: Liu
  fullname: Liu, Ying
  organization: The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China
– sequence: 5
  givenname: Yu
  surname: Pan
  fullname: Pan, Yu
  organization: Key Laboratory of Applied Brain and Cognitive Sciences, School of Business and Management, Shanghai International Studies University
– sequence: 6
  givenname: Franco
  orcidid: 0000-0003-3682-7432
  surname: Nori
  fullname: Nori, Franco
  organization: Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Department of Physics, The University of Michigan
– sequence: 7
  givenname: Xiaochu
  orcidid: 0000-0002-7541-0130
  surname: Zhang
  fullname: Zhang, Xiaochu
  email: zxcustc@ustc.edu.cn
  organization: Eye Center, Dept. of Ophthalmology, the First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei Medical Research Centre on Alcohol Addiction, Anhui Mental Health Centre, Academy of Psychology and Behaviour, Tianjin Normal University, Centres for Biomedical Engineering, University of Science and Technology of China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31959921$$D View this record in MEDLINE/PubMed
BookMark eNp9kMtKxDAUhoOMOOM4D-BGCm7cVHNr0-BKBm8wIIKuS5qeaMc2HZN24dub0vHCgK7O4fD9P4fvEE1sawGhY4LPCWbZheckSWmMiYxxhnlM99CMMilixgSf_NqnaOH9GuNAMi5FeoCmjMhESkpm6PKxV7brm8hBZU3rNDRgu6gG5WxlX6Kyd8N47RtloxJ05avWxo16C9cjtG9U7WGxnXP0fHP9tLyLVw-398urVayZoF1MSywzoQqsC2F0UVIKqoAs5YZpAhoKmWa6MFxqo43RlKYAmaEgSpoQSDSbo7Oxd-Pa9x58lzeV11DXykLb-5wyzjCnhMuAnu6g67Z3NnwXKCEkFynGgTrZUn3RQJlvXNUo95F_aQkAGQHtWu8dmG-E4Hywn4_28-A0H-yH9jkSOxlddaoLujqnqvrfJB2TfjPIBvfz9N-hT7rNmLU
CitedBy_id crossref_primary_10_1080_23746149_2023_2165452
crossref_primary_10_1007_s11768_021_00063_x
crossref_primary_10_1016_j_arcontrol_2022_04_011
crossref_primary_10_1140_epjd_s10053_021_00210_8
crossref_primary_10_1016_j_automatica_2022_110659
crossref_primary_10_1109_TNNLS_2023_3281604
crossref_primary_10_1093_pnasnexus_pgae016
crossref_primary_10_59400_issc_v3i1_294
crossref_primary_10_3390_math12081230
crossref_primary_10_1109_TCYB_2022_3170485
crossref_primary_10_1088_1742_6596_2948_1_012015
crossref_primary_10_1103_PhysRevA_102_032412
crossref_primary_10_1007_s11517_020_02309_3
crossref_primary_10_1016_j_asoc_2023_110157
crossref_primary_10_1371_journal_pone_0284610
crossref_primary_10_1038_s41467_024_50505_8
crossref_primary_10_1016_j_jfranklin_2023_01_012
crossref_primary_10_31857_S000233882305013X
crossref_primary_10_22331_q_2023_05_15_1007
crossref_primary_10_3390_s20154333
crossref_primary_10_1038_s41598_023_30990_5
crossref_primary_10_3280_IPN2021_001001
crossref_primary_10_1016_j_engappai_2022_105787
crossref_primary_10_1038_s41467_023_43891_y
crossref_primary_10_1109_TCYB_2021_3131252
crossref_primary_10_21105_joss_05694
crossref_primary_10_1038_s41534_024_00872_3
crossref_primary_10_1109_TNNLS_2021_3055499
crossref_primary_10_1016_j_automatica_2021_109551
crossref_primary_10_1016_j_addbeh_2021_106816
crossref_primary_10_3390_designs7030060
crossref_primary_10_1103_PhysRevA_105_062443
crossref_primary_10_1134_S1064230723050131
crossref_primary_10_3390_technologies12050064
crossref_primary_10_1007_s13194_024_00584_7
crossref_primary_10_1109_TVT_2022_3225524
crossref_primary_10_1109_TWC_2022_3162749
crossref_primary_10_1038_s41598_022_22855_0
crossref_primary_10_1038_s41598_021_02910_y
crossref_primary_10_1109_LWC_2021_3089876
crossref_primary_10_1109_TNNLS_2022_3230701
crossref_primary_10_1136_gpsych_2022_100985
crossref_primary_10_2144_fsoa_2020_0188
crossref_primary_10_1109_TCYB_2021_3053414
crossref_primary_10_1016_j_isci_2021_102081
crossref_primary_10_1007_s13042_022_01639_y
crossref_primary_10_1109_ACCESS_2024_3439407
crossref_primary_10_1016_j_engappai_2021_104451
crossref_primary_10_1116_1_5135170
crossref_primary_10_1109_TCST_2024_3437142
crossref_primary_10_1016_j_neuroimage_2022_119019
crossref_primary_10_1109_TNNLS_2022_3160173
crossref_primary_10_1007_s10701_024_00806_1
crossref_primary_10_1556_2006_2022_00006
crossref_primary_10_1109_TKDE_2023_3279207
crossref_primary_10_1016_j_adhoc_2024_103632
crossref_primary_10_26787_nydha_2618_8783_2023_8_3_31_36
crossref_primary_10_1016_j_drudis_2020_12_003
Cites_doi 10.1016/j.jmp.2008.12.005
10.1016/j.jmp.2009.03.005
10.1146/annurev.psych.55.090902.141429
10.1103/PhysRevA.84.032120
10.1016/j.neuron.2005.04.026
10.1109/TMECH.2010.2090896
10.1016/B978-0-12-800953-6.00004-9
10.1016/j.neuroimage.2009.12.097
10.1080/03640210802352992
10.1016/j.neuroimage.2006.02.047
10.1109/SMC.2017.8122616
10.1088/1367-2630/15/7/073022
10.1016/j.neuroimage.2014.09.003
10.1057/978-1-137-49276-0_10
10.1016/j.tics.2006.01.009
10.1093/cercor/bhq065
10.1037/1040-3590.14.3.253
10.1016/j.neuron.2010.03.033
10.1016/j.neuroimage.2017.11.048
10.1073/pnas.1500688112
10.1006/cbmr.1996.0014
10.1016/j.jmp.2006.11.002
10.1016/S0167-7152(96)00128-9
10.1093/cercor/bhn140
10.1037/dec0000017
10.3389/fpsyg.2013.00640
10.1038/nrn2478
10.1016/j.neuroimage.2017.05.041
10.1038/nature07200
10.1146/annurev-neuro-060909-153151
10.1214/aos/1176344136
10.1523/JNEUROSCI.1452-10.2011
10.1162/CPSY_a_00002
10.1109/TSMCB.2008.925743
10.1038/nn1954
10.1007/s00521-004-0446-8
10.3758/BF03193783
10.1016/j.jmp.2016.07.005
10.1126/science.aag2302
10.1016/j.pbiomolbio.2017.04.007
10.1146/annurev.neuro.29.051605.113038
10.1037/a0022542
10.1103/PhysRevLett.80.3408
10.1146/annurev-neuro-070815-014106
10.1146/annurev-neuro-062111-150512
10.1007/BF00236211
10.1016/j.biosystems.2009.05.012
10.1196/annals.1390.022
10.3758/s13415-015-0377-0
10.1038/s41598-018-28993-8
10.1111/adb.12239
10.1017/CBO9780511997716
10.1007/s10701-005-9013-0
10.3389/fnins.2011.00145
10.1080/21622965.2012.691065
10.1126/science.1142996
10.1016/j.concog.2017.04.011
10.1038/nrn2357
10.1038/nphys2474
10.1152/jn.1985.53.1.129
10.1016/j.neubiorev.2015.05.005
10.1037/a0020684
10.1016/bs.pbr.2015.07.032
10.1126/science.1115327
10.1145/237814.237866
10.1103/PhysRevA.64.014305
10.3389/fpsyg.2014.00849
10.1007/BF00122574
10.1016/0010-0277(94)90018-3
10.1038/nrn2497
10.1146/annurev-neuro-071013-014119
10.1146/annurev-neuro-071013-014017
10.3389/fnins.2014.00350
10.1038/nn2066
10.1523/JNEUROSCI.1342-12.2013
10.1016/B978-0-12-416008-8.00015-2
10.1038/nature23474
10.1109/TAC.1974.1100705
10.1142/S1793005713400073
10.1103/PhysRevLett.117.130501
10.1037/2325-9965.1.S.8
10.1016/j.pbiomolbio.2017.06.002
10.1098/rsta.2015.0100
10.1016/j.neuron.2010.09.031
10.1016/j.neuron.2013.04.037
10.1037/0033-295X.112.4.912
10.5334/jopd.ak
10.1016/j.mathsocsci.2015.02.004
10.1016/j.neuroimage.2009.03.025
10.1007/s10773-012-1381-6
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2020
2020© The Author(s), under exclusive licence to Springer Nature Limited 2020
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020
– notice: 2020© The Author(s), under exclusive licence to Springer Nature Limited 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
0-V
3V.
7XB
88G
88J
8BJ
8FI
8FJ
8FK
ABUWG
AFKRA
ALSLI
AZQEC
BENPR
CCPQU
DWQXO
FQK
FYUFA
GHDGH
GNUQQ
JBE
M2M
M2R
PHGZM
PHGZT
PKEHL
POGQB
PQEST
PQQKQ
PQUKI
PRINS
PRQQA
PSYQQ
Q9U
7X8
DOI 10.1038/s41562-019-0804-2
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Social Sciences Premium Collection【Remote access available】
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Psychology Database (Alumni)
Social Science Database (Alumni Edition)
International Bibliography of the Social Sciences (IBSS)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Social Science Premium Collection
ProQuest Central Essentials
ProQuest Central Database Suite (ProQuest)
ProQuest One
ProQuest Central
International Bibliography of the Social Sciences
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
International Bibliography of the Social Sciences
Psychology Database
Social Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest Sociology & Social Sciences Collection
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Social Sciences
ProQuest One Psychology
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Sociology & Social Sciences Collection
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Social Science Journals (Alumni Edition)
ProQuest Central (Alumni Edition)
ProQuest One Community College
Sociology & Social Sciences Collection
ProQuest Central China
ProQuest Central
Health Research Premium Collection
International Bibliography of the Social Sciences (IBSS)
ProQuest Central Korea
ProQuest Central (New)
Social Science Premium Collection
ProQuest One Social Sciences
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Social Science Journals
ProQuest Psychology Journals
ProQuest Social Sciences Premium Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
ProQuest One Psychology
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Psychology
EISSN 2397-3374
EndPage 307
ExternalDocumentID 31959921
10_1038_s41562_019_0804_2
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: MURI Center for Dynamic Magneto-Optics via the Air Force Office of Scientific Research (AFOSR) (FA9550-14-10040), Asian Office of Aerospace Research and Development (AOARD) (Grant No. FA2386-18-1-4045), NTT Research, Japan Science and Technology Agency (JST) (via the Q-LEAP program, and the CREST Grant No. JPMJCR1676), RIKEN-AIST Challenge Research Fund, Sir John Templeton Foundation, FQXi, Silicon Valley NTT Research Laboratory
– fundername: Silicon Valley Community Foundation (SVCF)
  funderid: https://doi.org/10.13039/100000923
– fundername: Australian Research Council's Discovery Projects funding scheme under Project DP190101566, US Office of Naval Research
– fundername: National Key Basic Research Program (2016YFA0400900 and 2018YFC0831101), Fundamental Research Funds for the Central Universities of China
– fundername: MEXT | Japan Society for the Promotion of Science (JSPS)
  grantid: JSPS-RFBR Grant No. 17-52-50023, and JSPS-FWO Grant No. VS.059.18N
  funderid: https://doi.org/10.13039/501100001691
– fundername: Alexander von Humboldt-Stiftung (Alexander von Humboldt Foundation)
  funderid: https://doi.org/10.13039/100005156
– fundername: United States Department of Defense | United States Army | U.S. Army Research, Development and Engineering Command | Army Research Office (ARO)
  grantid: W911NF-18-1-0358
  funderid: https://doi.org/10.13039/100000183
– fundername: National Science Foundation of China | National Natural Science Foundation of China-Yunnan Joint Fund (NSFC-Yunnan Joint Fund)
  grantid: 31471071
  funderid: https://doi.org/10.13039/501100011002
GroupedDBID 0R~
53G
8FI
8FJ
AAEEF
AARCD
AAYZH
ABJNI
ABLJU
ABUWG
ACGFS
ADBBV
AFKRA
AFSHS
AFWHJ
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ARMCB
AXYYD
AZQEC
BENPR
BKKNO
CCPQU
DWQXO
EBS
EJD
FSGXE
FYUFA
FZEXT
GNUQQ
M2M
M2R
NNMJJ
O9-
ODYON
PQQKQ
PSYQQ
RNT
SHXYY
SIXXV
SNYQT
SOJ
TAOOD
TBHMF
TDRGL
TSG
UKHRP
AAYXX
ACBWK
AFANA
ATHPR
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
0-V
3V.
7XB
8BJ
8FK
FQK
JBE
PKEHL
POGQB
PQEST
PQUKI
PRINS
PRQQA
PUEGO
Q9U
7X8
ID FETCH-LOGICAL-c372t-2d0987ab0cb7fcbd22eabe864f3c1eceb968cbf49cfcffc226ee8f2e7d251e5c3
IEDL.DBID BENPR
ISSN 2397-3374
IngestDate Fri Jul 11 10:22:08 EDT 2025
Sat Aug 23 12:42:01 EDT 2025
Wed Feb 19 02:31:05 EST 2025
Tue Jul 01 03:09:48 EDT 2025
Thu Apr 24 23:09:25 EDT 2025
Fri Feb 21 02:39:26 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-2d0987ab0cb7fcbd22eabe864f3c1eceb968cbf49cfcffc226ee8f2e7d251e5c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7541-0130
0000-0002-7425-3559
0000-0003-2419-2281
0000-0003-3682-7432
PMID 31959921
PQID 2377947600
PQPubID 4560800
PageCount 14
ParticipantIDs proquest_miscellaneous_2343042149
proquest_journals_2377947600
pubmed_primary_31959921
crossref_primary_10_1038_s41562_019_0804_2
crossref_citationtrail_10_1038_s41562_019_0804_2
springer_journals_10_1038_s41562_019_0804_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-01
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature human behaviour
PublicationTitleAbbrev Nat Hum Behav
PublicationTitleAlternate Nat Hum Behav
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References CrawfordDLevitAGhadermarzyNOberoiJSRonaghPReinforcement learning using quantum Boltzmann machinesQuantum Info. Comput.2018185174
KoudaNMatsuiNNishimuraHPeperFQubit neural network and its learning efficiencyNeural Comput. Appl.20051411412110.1007/s00521-004-0446-8
YuAJDayanPUncertainty, neuromodulation, and attentionNeuron2005466816921:CAS:528:DC%2BD2MXkslykurg%3D1594413510.1016/j.neuron.2005.04.026
BecharaADamasioARDamasioHAndersonSWInsensitivity to future consequences following damage to human prefrontal cortexCognition1994507151:STN:280:DyaK2czhtlynsg%3D%3D803937510.1016/0010-0277(94)90018-3
HeQAltered dynamics between neural systems sub-serving decisions for unhealthy foodFront. Neurosci.2014835025414630422012010.3389/fnins.2014.00350
ChuangILGershenfeldNKubinecMExperimental implementation of fast quantum searchingPhys. Rev. Lett.19988034081:CAS:528:DyaK1cXislSnsL4%3D10.1103/PhysRevLett.80.3408
IvakhnenkoOVShevchenkoSNNoriFSimulating quantum dynamical phenomena using classical oscillators: Landau-Zener-Stückelberg-Majorana interferometry, latching modulation, and motional averagingSci. Rep.201881:STN:280:DC%2BB3c7osFWiug%3D%3D30111853609391210.1038/s41598-018-28993-8
SanfeyAGLoewensteinGMcClureSMCohenJDNeuroeconomics: cross-currents in research on decision-makingTrends Cogn. Sci.2006101081161646952410.1016/j.tics.2006.01.009
BusemeyerJRWangZShiffrinRMBayesian model comparison favors quantum over standard decision theory account of dynamic inconsistencyDecision2015211210.1037/dec0000017
KvamPDPleskacTJYuSBusemeyerJRInterference effects of choice on confidence: quantum characteristics of evidence accumulationProc. Natl Acad. Sci. USA201511210645106501:CAS:528:DC%2BC2MXhtlSit7vO2626132210.1073/pnas.15006881124553814
BreversDNoëlXHeQMelroseJABecharaAIncreased ventral-striatal activity during monetary decision making is a marker of problem poker gambling severityAddict. Biol.2016216886992578164110.1111/adb.12239
AcerbiLJiWPractical Bayesian optimization for model fitting with Bayesian adaptive direct searchAdv. Neural Inf. Proc. Syst.20173018361846
TanjiJKurataKContrasting neuronal activity in supplementary and precentral motor cortex of monkeys. I. Responses to instructions determining motor responses to forthcoming signals of different modalitiesJ. Neurophysiol.1985531291411:STN:280:DyaL2M7jtlOrug%3D%3D397365410.1152/jn.1985.53.1.129
CarleoGTroyerMSolving the quantum many-body problem with artificial neural networksScience20173556026061:CAS:528:DC%2BC2sXit1Okur0%3D2818397310.1126/science.aag2302
ByrneKANorrisDDWorthyDADopamine, depressive symptoms, and decision-making: the relationship between spontaneous eye blink rate and depressive symptoms predicts Iowa Gambling Task performanceCogn. Affect. Behav. Neurosci.201616233626383904504214410.3758/s13415-015-0377-0
BusemeyerJRFakhariPKvamPNeural implementation of operations used in quantum cognitionProg. Biophys. Mol. Biol.201713053602848721810.1016/j.pbiomolbio.2017.04.007
AhnW-YKrawitzAKimWBusemeyerJRBrownJWA model-based fMRI analysis with hierarchical Bayesian parameter estimationDecision2013182310.1037/2325-9965.1.S.8
Grover, L. K. A fast quantum mechanical algorithm for database search. In Proc. 28th Annual ACM Symposium on Theory of Computing 212–219 (ACM, 1996).
BiamonteJQuantum machine learningNature20175491952021:CAS:528:DC%2BC2sXhsV2isLjI2890591710.1038/nature23474
AhnW-YHainesNZhangLRevealing neurocomputational mechanisms of reinforcement learning and decision-making with the hBayesDM packageComput. Psychiatr.20171245729601060586901310.1162/CPSY_a_00002
Wittek, P. Quantum Machine Learning: What Quantum Computing Means to Data Mining (Academic Press, 2014).
KrainALWilsonAMArbuckleRCastellanosFXMilhamMPDistinct neural mechanisms of risk and ambiguity: a meta-analysis of decision-makingNeuroImage2006324774841663238310.1016/j.neuroimage.2006.02.047
Payzan-LeNestourEDunneSBossaertsPO’DohertyJPThe neural representation of unexpected uncertainty during value-based decision makingNeuron2013791912011:CAS:528:DC%2BC3sXhtVyqtLzJ23849203488574510.1016/j.neuron.2013.04.037
HuHReward and aversionAnnu. Rev. Neurosci.2016392973241:CAS:528:DC%2BC28XntlKgsLg%3D2714591510.1146/annurev-neuro-070815-014106
DunjkoVTaylorJMBriegelHJQuantum-enhanced machine learningPhys. Rev. Lett.20161171305012771509910.1103/PhysRevLett.117.1305011:CAS:528:DC%2BC28XhvFKksrnM
YechiamEBusemeyerJRComparison of basic assumptions embedded in learning models for experience-based decision makingPsychon. Bull. Rev.2005123874021623562410.3758/BF03193783
O’NeillMSchultzWCoding of reward risk by orbitofrontal neurons is mostly distinct from coding of reward valueNeuron2010687898002109286610.1016/j.neuron.2010.09.0311:CAS:528:DC%2BC3cXhsVGntbrE
SchackRBrunTACavesCMQuantum Bayes rulePhys. Rev. A20016401430510.1103/PhysRevA.64.0143051:CAS:528:DC%2BD3MXksFynsLY%3D
KepecsAUchidaNZariwalaHAMainenZFNeural correlates, computation and behavioural impact of decision confidenceNature20084552272311:CAS:528:DC%2BD1cXhtV2qtLnO1869021010.1038/nature07200
KornmeierJFriedelEWittmannMAtmanspacherHEEG correlates of cognitive time scales in the Necker-Zeno model for bistable perceptionConscious. Cogn.2017531361501:STN:280:DC%2BC1cjjsVanuw%3D%3D2866618610.1016/j.concog.2017.04.011
HsuMBhattMAdolphsRTranelDCamererCFNeural systems responding to degrees of uncertainty in human decision-makingScience2005310168016831:CAS:528:DC%2BD2MXhtlSntb7J1633944510.1126/science.1115327
Busemeyer, J. R. & Bruza, P. D. Quantum Models of Cognition and Decision (Cambridge Univ. Press, 2012).
OkanoKTanjiJNeuronal activities in the primate motor fields of the agranular frontal cortex preceding visually triggered and self-paced movementExp. Brain Res.1987661551661:STN:280:DyaL2s3hvVyqtQ%3D%3D358252910.1007/BF00236211
SulJHKimHHuhNLeeDJungMWDistinct roles of rodent orbitofrontal and medial prefrontal cortex in decision makingNeuron2010664494601:CAS:528:DC%2BC3cXms1art7g%3D20471357287262910.1016/j.neuron.2010.03.033
BuelowMTSuhrJARisky decision making in smoking and nonsmoking college students: examination of Iowa Gambling Task performance by deck type selectionsAppl. Neuropsychol. Child2014338442423694010.1080/21622965.2012.691065
BusemeyerJRPothosEMFrancoRTruebloodJSA quantum theoretical explanation for probability judgment errorsPsychol. Rev.20111181932182148073910.1037/a0022542
BachDRHulmeOPennyWDDolanRJThe known unknowns: neural representation of second-order uncertainty, and ambiguityJ. Neurosci.201131481148201:CAS:528:DC%2BC3MXkslSlt7Y%3D21451019316685110.1523/JNEUROSCI.1452-10.2011
BehrensTEJWoolrichMWWaltonMERushworthMFSLearning the value of information in an uncertain worldNat. Neurosci.200710121412211:CAS:528:DC%2BD2sXps1Sgurg%3D1767605710.1038/nn1954
FakhariPRajagopalKBalakrishnanSNBusemeyerJRQuantum inspired reinforcement learning in changing environmentNew Math. Nat. Comput.2013927329410.1142/S1793005713400073
YearsleyJMAdvanced tools and concepts for quantum cognition: a tutorialJ. Math. Psychol.201778243910.1016/j.jmp.2016.07.005
AkaikeHA new look at the statistical model identificationIEEE Trans. Automat. Contr.19741971672310.1109/TAC.1974.1100705
LambertNQuantum biologyNat. Phys.2013910181:CAS:528:DC%2BC38Xhsl2lu7nK10.1038/nphys2474
YechiamEErtEEvaluating the reliance on past choices in adaptive learning modelsJ. Math. Psychol.200751758410.1016/j.jmp.2006.11.002
CoxRWAFNI: software for analysis and visualization of functional magnetic resonance neuroimagesComput. Biomed. Res.1996291621731:STN:280:DyaK28vgvVChug%3D%3D881206810.1006/cbmr.1996.0014
RoskiesALHow does neuroscience affect our conception of volition?Annu. Rev. Neurosci.2010331091301:CAS:528:DC%2BC3cXhsFartrzE2057276910.1146/annurev-neuro-060909-153151
Sutton, R. S. & Barto, A. G. Reinforcement Learning: An Introduction, Vol. 1 (MIT Press, 1998).
NivYReinforcement learning in the brainJ. Math. Psychol.20095313915410.1016/j.jmp.2008.12.005
ChenCTakahashiTNakagawaSInoueTKusumiIReinforcement learning in depression: a review of computational researchNeurosci. Biobehav. Rev.2015552472672597914010.1016/j.neubiorev.2015.05.005
Piotrowski, E. W. & Sladkowski, J. The next stage: quantum game theory. in Mathematical Physics Research at the Cutting Edge (ed. Benton, C. V.) 247–268 (Nova Science Publishers, 2004).
de Barros, J. A. & Oas, G. in The Palgrave Handbook of Quantum Models in Social Science (eds Haven, E. & Khrennikov, A.) 195–228 (Springer, 2017).
Wagner, A. R. & Rescorla, R. A. in Inhibition and Learning (eds Boakes, R. A. & Halliday, M. S.) 301–336 (1972).
Dunjko, V., Taylor, J. M. & Briegel, H. J. Advances in quantum reinforcement learning. In Proc. 2017 IEEE International Conference on Systems, Man, and Cybernetics 282–287 (IEEE, 2017).
SteingroeverHData from 617 healthy participants performing the Iowa gambling task: a “many labs” collaborationJ. Open Psychol. Data2015334035310.5334/jopd.ak
NachevPKennardCHusainMFunctional role of the supplementary and pre-supplementary motor areasNat. Rev. Neurosci.200898568691:CAS:528:DC%2BD1cXht1GrtrbF1884327110.1038/nrn2478
RangelACamererCMontaguePRA framework for studying the neurobiology of value-based decision makingNat. Rev. Neurosci.200895455561:CAS:528:DC%2BD1cXnsFChu7g%3D18545266433270810.1038/nrn2357
DajkaJŁuczkaJHänggiPDistance between quantum states in the presence of initial qubit-environment correlations: a comparative studyPhys. Rev. A20118403212010.1103/PhysRevA.84.0321201:CAS:528:DC%2BC3MXht1GhsLrJ
Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2010).
AshtianiMAzgomiMAA survey of quantum-like approaches to decision making and cognitionMath. Soc. Sci.201575498010.1016/j.mathsocsci.2015.02.004
SchwarzGEstimating the dimension of a modelAnn. Stat.1978646146410.1214/aos/1176344136
MaWJJazayeriMNeural coding of uncertainty and probabilityAnnu. Rev. Neurosci.2014372052201:CAS:528:DC%2BC2cXhsVKgt7fF2503249510.1146/annurev-neuro-071013-014017
DongDChenCLiHTarnT-JQuantum reinforcement learningIEEE Trans. Syst. Man Cybern. Pt B200838
D Dong (804_CR5) 2012; 17
E Manousakis (804_CR9) 2009; 98
A Tversky (804_CR68) 1992; 5
G Xue (804_CR58) 2010; 50
Q He (804_CR87) 2014; 8
A Bechara (804_CR24) 1994; 50
EA Phelps (804_CR78) 2014; 37
AG Sanfey (804_CR18) 2006; 10
AL Krain (804_CR53) 2006; 32
I Erev (804_CR91) 2005; 112
Y Niv (804_CR2) 2009; 53
JI Gold (804_CR17) 2007; 30
V Singh (804_CR46) 2013; 4
H Hu (804_CR79) 2016; 39
H Akaike (804_CR97) 1974; 19
D Lee (804_CR21) 2012; 35
JR Busemeyer (804_CR77) 2017; 130
Y Wang (804_CR56) 2017; 157
D Brevers (804_CR88) 2016; 21
KE Stephan (804_CR38) 2009; 46
N Li (804_CR99) 2013; 33
TJ Vickery (804_CR57) 2008; 19
VI Yukalov (804_CR14) 2016; 374
KY Bliokh (804_CR75) 2013; 15
804_CR85
DA Worthy (804_CR31) 2013; 4
G Schwarz (804_CR37) 1978; 6
G Carleo (804_CR76) 2017; 355
804_CR1
K Okano (804_CR62) 1987; 66
D Dong (804_CR4) 2008; 38
I Erev (804_CR94) 1998; 88
PW Glimcher (804_CR19) 2005; 56
AJ Yu (804_CR45) 2005; 46
A Rangel (804_CR29) 2008; 9
RW Cox (804_CR98) 1996; 29
P Haggard (804_CR59) 2008; 9
C Chen (804_CR80) 2015; 55
JA De Barros (804_CR69) 2009; 53
W-Y Ahn (804_CR30) 2008; 32
JE Cavanaugh (804_CR36) 1997; 33
T Takahashi (804_CR16) 2017; 130
804_CR7
E Payzan-LeNestour (804_CR43) 2013; 79
AL Roskies (804_CR82) 2010; 33
M Ashtiani (804_CR13) 2015; 75
804_CR95
804_CR93
804_CR10
W-Y Ahn (804_CR34) 2013; 1
804_CR15
OV Ivakhnenko (804_CR74) 2018; 8
J Tanji (804_CR61) 1985; 53
P beim Graben (804_CR73) 2013; 52
V Dunjko (804_CR8) 2016; 117
AG Sanfey (804_CR81) 2007; 318
L Acerbi (804_CR96) 2017; 30
E Yechiam (804_CR89) 2005; 12
DR Bach (804_CR42) 2011; 31
PD Kvam (804_CR12) 2015; 112
MT Buelow (804_CR26) 2014; 3
804_CR22
E Yechiam (804_CR47) 2007; 51
804_CR20
804_CR25
MFS Rushworth (804_CR63) 2008; 11
DA Worthy (804_CR33) 2012; 5
A Litt (804_CR55) 2010; 21
J Biamonte (804_CR3) 2017; 549
J Dajka (804_CR39) 2011; 84
M O’Neill (804_CR66) 2010; 68
WY Ahn (804_CR32) 2014; 5
W-Y Ahn (804_CR86) 2011; 4
A Kepecs (804_CR65) 2008; 455
D Crawford (804_CR52) 2018; 18
JP O’Doherty (804_CR40) 2007; 1104
P Nachev (804_CR60) 2008; 9
TEJ Behrens (804_CR44) 2007; 10
N Kouda (804_CR84) 2005; 14
N Lambert (804_CR70) 2013; 9
IL Chuang (804_CR48) 1998; 80
JR Busemeyer (804_CR71) 2011; 118
H Steingroever (804_CR28) 2015; 3
WJ Ma (804_CR41) 2014; 37
KA Byrne (804_CR35) 2016; 16
J Kornmeier (804_CR23) 2017; 53
804_CR49
R Schack (804_CR83) 2001; 64
JH Sul (804_CR64) 2010; 66
B Studer (804_CR67) 2014; 103
JR Busemeyer (804_CR11) 2015; 2
Z Wei (804_CR27) 2018; 169
M Hsu (804_CR54) 2005; 310
JM Yearsley (804_CR51) 2017; 78
804_CR50
P beim Graben (804_CR72) 2006; 36
P Fakhari (804_CR6) 2013; 9
JR Busemeyer (804_CR90) 2002; 14
W-Y Ahn (804_CR92) 2017; 1
References_xml – reference: CarleoGTroyerMSolving the quantum many-body problem with artificial neural networksScience20173556026061:CAS:528:DC%2BC2sXit1Okur0%3D2818397310.1126/science.aag2302
– reference: Piotrowski, E. W. & Sladkowski, J. The next stage: quantum game theory. in Mathematical Physics Research at the Cutting Edge (ed. Benton, C. V.) 247–268 (Nova Science Publishers, 2004).
– reference: WorthyDAMaddoxWTAge-based differences in strategy use in choice tasksFront. Neurosci.2012514522232573325256210.3389/fnins.2011.00145
– reference: BusemeyerJRPothosEMFrancoRTruebloodJSA quantum theoretical explanation for probability judgment errorsPsychol. Rev.20111181932182148073910.1037/a0022542
– reference: IvakhnenkoOVShevchenkoSNNoriFSimulating quantum dynamical phenomena using classical oscillators: Landau-Zener-Stückelberg-Majorana interferometry, latching modulation, and motional averagingSci. Rep.201881:STN:280:DC%2BB3c7osFWiug%3D%3D30111853609391210.1038/s41598-018-28993-8
– reference: Dunjko, V., Taylor, J. M. & Briegel, H. J. Advances in quantum reinforcement learning. In Proc. 2017 IEEE International Conference on Systems, Man, and Cybernetics 282–287 (IEEE, 2017).
– reference: Ahn, W. Y., Dai, J., Vassileva, J., Busemeyer, J. R. & Stout, J. C. in Progress in Brain Research Vol. 224 (eds Ekhtiari, H. & Paulus, M.) 53–65 (Elsevier, 2016).
– reference: SteingroeverHData from 617 healthy participants performing the Iowa gambling task: a “many labs” collaborationJ. Open Psychol. Data2015334035310.5334/jopd.ak
– reference: BusemeyerJRWangZShiffrinRMBayesian model comparison favors quantum over standard decision theory account of dynamic inconsistencyDecision2015211210.1037/dec0000017
– reference: AkaikeHA new look at the statistical model identificationIEEE Trans. Automat. Contr.19741971672310.1109/TAC.1974.1100705
– reference: Grover, L. K. A fast quantum mechanical algorithm for database search. In Proc. 28th Annual ACM Symposium on Theory of Computing 212–219 (ACM, 1996).
– reference: Glimcher, P. W. & Fehr, E. Neuroeconomics: Decision Making and the Brain (Academic Press, 2013).
– reference: AhnWYDecision-making in stimulant and opiate addicts in protracted abstinence: evidence from computational modeling with pure usersFront. Psychol.2014584925161631412937410.3389/fpsyg.2014.00849
– reference: CoxRWAFNI: software for analysis and visualization of functional magnetic resonance neuroimagesComput. Biomed. Res.1996291621731:STN:280:DyaK28vgvVChug%3D%3D881206810.1006/cbmr.1996.0014
– reference: AshtianiMAzgomiMAA survey of quantum-like approaches to decision making and cognitionMath. Soc. Sci.201575498010.1016/j.mathsocsci.2015.02.004
– reference: AhnW-YKrawitzAKimWBusemeyerJRBrownJWA model-based fMRI analysis with hierarchical Bayesian parameter estimationDecision2013182310.1037/2325-9965.1.S.8
– reference: BusemeyerJRStoutJCA contribution of cognitive decision models to clinical assessment: decomposing performance on the Bechara gambling taskPsychol. Assess.2002142532621221443210.1037/1040-3590.14.3.253
– reference: KornmeierJFriedelEWittmannMAtmanspacherHEEG correlates of cognitive time scales in the Necker-Zeno model for bistable perceptionConscious. Cogn.2017531361501:STN:280:DC%2BC1cjjsVanuw%3D%3D2866618610.1016/j.concog.2017.04.011
– reference: DongDChenCChuJTarnT-JRobust quantum-inspired reinforcement learning for robot navigationIEEE/ASME Trans. Mechatron.201217869710.1109/TMECH.2010.2090896
– reference: CavanaughJEUnifying the derivations for the Akaike and corrected Akaike information criteriaStat. Probab. Lett.19973320120810.1016/S0167-7152(96)00128-9
– reference: SulJHKimHHuhNLeeDJungMWDistinct roles of rodent orbitofrontal and medial prefrontal cortex in decision makingNeuron2010664494601:CAS:528:DC%2BC3cXms1art7g%3D20471357287262910.1016/j.neuron.2010.03.033
– reference: Busemeyer, J. R. & Bruza, P. D. Quantum Models of Cognition and Decision (Cambridge Univ. Press, 2012).
– reference: SanfeyAGSocial decision-making: insights from game theory and neuroscienceScience20073185986021:CAS:528:DC%2BD2sXhtF2rtr7M1796255210.1126/science.1142996
– reference: Sutton, R. S. & Barto, A. G. Reinforcement Learning: An Introduction, Vol. 1 (MIT Press, 1998).
– reference: NachevPKennardCHusainMFunctional role of the supplementary and pre-supplementary motor areasNat. Rev. Neurosci.200898568691:CAS:528:DC%2BD1cXht1GrtrbF1884327110.1038/nrn2478
– reference: TanjiJKurataKContrasting neuronal activity in supplementary and precentral motor cortex of monkeys. I. Responses to instructions determining motor responses to forthcoming signals of different modalitiesJ. Neurophysiol.1985531291411:STN:280:DyaL2M7jtlOrug%3D%3D397365410.1152/jn.1985.53.1.129
– reference: HuHReward and aversionAnnu. Rev. Neurosci.2016392973241:CAS:528:DC%2BC28XntlKgsLg%3D2714591510.1146/annurev-neuro-070815-014106
– reference: BachDRHulmeOPennyWDDolanRJThe known unknowns: neural representation of second-order uncertainty, and ambiguityJ. Neurosci.201131481148201:CAS:528:DC%2BC3MXkslSlt7Y%3D21451019316685110.1523/JNEUROSCI.1452-10.2011
– reference: SanfeyAGLoewensteinGMcClureSMCohenJDNeuroeconomics: cross-currents in research on decision-makingTrends Cogn. Sci.2006101081161646952410.1016/j.tics.2006.01.009
– reference: ManousakisEQuantum formalism to describe binocular rivalryBiosystems20099857661952014310.1016/j.biosystems.2009.05.012
– reference: NivYReinforcement learning in the brainJ. Math. Psychol.20095313915410.1016/j.jmp.2008.12.005
– reference: BusemeyerJRFakhariPKvamPNeural implementation of operations used in quantum cognitionProg. Biophys. Mol. Biol.201713053602848721810.1016/j.pbiomolbio.2017.04.007
– reference: TakahashiTCan quantum approaches benefit biology of decision making?Prog. Biophys. Mol. Biol.2017130991022860159510.1016/j.pbiomolbio.2017.06.002
– reference: HsuMBhattMAdolphsRTranelDCamererCFNeural systems responding to degrees of uncertainty in human decision-makingScience2005310168016831:CAS:528:DC%2BD2MXhtlSntb7J1633944510.1126/science.1115327
– reference: LeeDSeoHJungMWNeural basis of reinforcement learning and decision makingAnnu. Rev. Neurosci.2012352873081:CAS:528:DC%2BC38XhtFegsbvL22462543349062110.1146/annurev-neuro-062111-150512
– reference: FakhariPRajagopalKBalakrishnanSNBusemeyerJRQuantum inspired reinforcement learning in changing environmentNew Math. Nat. Comput.2013927329410.1142/S1793005713400073
– reference: O’DohertyJPHamptonAKimHModel-based fMRI and its application to reward learning and decision makingAnn. N. Y. Acad. Sci.2007110435531741692110.1196/annals.1390.022
– reference: KrainALWilsonAMArbuckleRCastellanosFXMilhamMPDistinct neural mechanisms of risk and ambiguity: a meta-analysis of decision-makingNeuroImage2006324774841663238310.1016/j.neuroimage.2006.02.047
– reference: Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2010).
– reference: beim GrabenPFilkTAtmanspacherHEpistemic entanglement due to non-generating partitions of classical dynamical systemsInt. J. Theor. Phys.20135272373410.1007/s10773-012-1381-6
– reference: BliokhKYBekshaevAYKofmanAGNoriFPhoton trajectories, anomalous velocities and weak measurements: a classical interpretationNew J. Phys.20131507302210.1088/1367-2630/15/7/073022
– reference: Payzan-LeNestourEDunneSBossaertsPO’DohertyJPThe neural representation of unexpected uncertainty during value-based decision makingNeuron2013791912011:CAS:528:DC%2BC3sXhtVyqtLzJ23849203488574510.1016/j.neuron.2013.04.037
– reference: RoskiesALHow does neuroscience affect our conception of volition?Annu. Rev. Neurosci.2010331091301:CAS:528:DC%2BC3cXhsFartrzE2057276910.1146/annurev-neuro-060909-153151
– reference: BreversDNoëlXHeQMelroseJABecharaAIncreased ventral-striatal activity during monetary decision making is a marker of problem poker gambling severityAddict. Biol.2016216886992578164110.1111/adb.12239
– reference: DunjkoVTaylorJMBriegelHJQuantum-enhanced machine learningPhys. Rev. Lett.20161171305012771509910.1103/PhysRevLett.117.1305011:CAS:528:DC%2BC28XhvFKksrnM
– reference: Wittek, P. Quantum Machine Learning: What Quantum Computing Means to Data Mining (Academic Press, 2014).
– reference: AhnW-YHainesNZhangLRevealing neurocomputational mechanisms of reinforcement learning and decision-making with the hBayesDM packageComput. Psychiatr.20171245729601060586901310.1162/CPSY_a_00002
– reference: BehrensTEJWoolrichMWWaltonMERushworthMFSLearning the value of information in an uncertain worldNat. Neurosci.200710121412211:CAS:528:DC%2BD2sXps1Sgurg%3D1767605710.1038/nn1954
– reference: Daw, N. D. & Tobler, P. N. in Neuroeconomics 2nd edn (eds Glimcher, P. W. & Fehr, E.) 283–298 (Academic Press, 2014).
– reference: YuAJDayanPUncertainty, neuromodulation, and attentionNeuron2005466816921:CAS:528:DC%2BD2MXkslykurg%3D1594413510.1016/j.neuron.2005.04.026
– reference: RushworthMFSBehrensTEJChoice, uncertainty and value in prefrontal and cingulate cortexNat. Neurosci.2008113893971:CAS:528:DC%2BD1cXjslSrtrY%3D1836804510.1038/nn2066
– reference: RangelACamererCMontaguePRA framework for studying the neurobiology of value-based decision makingNat. Rev. Neurosci.200895455561:CAS:528:DC%2BD1cXnsFChu7g%3D18545266433270810.1038/nrn2357
– reference: YearsleyJMAdvanced tools and concepts for quantum cognition: a tutorialJ. Math. Psychol.201778243910.1016/j.jmp.2016.07.005
– reference: AhnW-YKrawitzAKimWBusemeyerJRBrownJWA model-based fMRI analysis with hierarchical Bayesian parameter estimationJ. Neurosci. Psychol. Econ.201149511023795233368629910.1037/a0020684
– reference: YukalovVISornetteDQuantum probability and quantum decision-makingPhil. Trans. R. Soc. A2016374201501002662198910.1098/rsta.2015.01001:CAS:528:DC%2BC2sXptVChtQ%3D%3D
– reference: VickeryTJJiangYVInferior parietal lobule supports decision making under uncertainty in humansCereb. Cortex2008199169251872819710.1093/cercor/bhn140
– reference: BecharaADamasioARDamasioHAndersonSWInsensitivity to future consequences following damage to human prefrontal cortexCognition1994507151:STN:280:DyaK2czhtlynsg%3D%3D803937510.1016/0010-0277(94)90018-3
– reference: PhelpsEALempertKMSokol-HessnerPEmotion and decision making: multiple modulatory neural circuitsAnnu. Rev. Neurosci.2014372632871:CAS:528:DC%2BC2cXhsVKgtL7O2490559710.1146/annurev-neuro-071013-014119
– reference: ByrneKANorrisDDWorthyDADopamine, depressive symptoms, and decision-making: the relationship between spontaneous eye blink rate and depressive symptoms predicts Iowa Gambling Task performanceCogn. Affect. Behav. Neurosci.201616233626383904504214410.3758/s13415-015-0377-0
– reference: WangYNeural substrates of updating the prediction through prediction error during decision makingNeuroImage20171571122853604610.1016/j.neuroimage.2017.05.041
– reference: WeiZChronic nicotine exposure impairs uncertainty modulation on reinforcement learning in anterior cingulate cortex and serotonin systemNeuroImage20181693233331:CAS:528:DC%2BC1cXjt1WmtQ%3D%3D2922175210.1016/j.neuroimage.2017.11.048
– reference: MaWJJazayeriMNeural coding of uncertainty and probabilityAnnu. Rev. Neurosci.2014372052201:CAS:528:DC%2BC2cXhsVKgt7fF2503249510.1146/annurev-neuro-071013-014017
– reference: O’NeillMSchultzWCoding of reward risk by orbitofrontal neurons is mostly distinct from coding of reward valueNeuron2010687898002109286610.1016/j.neuron.2010.09.0311:CAS:528:DC%2BC3cXhsVGntbrE
– reference: SinghVA potential role of reward and punishment in the facilitation of the emotion-cognition dichotomy in the Iowa Gambling TaskFront. Psychol.20134944243815673865383
– reference: beim GrabenPAtmanspacherHComplementarity in classical dynamical systemsFound. Phys.20063629130610.1007/s10701-005-9013-0
– reference: de Barros, J. A. & Oas, G. in The Palgrave Handbook of Quantum Models in Social Science (eds Haven, E. & Khrennikov, A.) 195–228 (Springer, 2017).
– reference: DongDChenCLiHTarnT-JQuantum reinforcement learningIEEE Trans. Syst. Man Cybern. Pt B2008381207122010.1109/TSMCB.2008.925743
– reference: WorthyDAPangBByrneKADecomposing the roles of perseveration and expected value representation in models of the Iowa gambling taskFront. Psychol.2013464024137137378623210.3389/fpsyg.2013.00640
– reference: Wagner, A. R. & Rescorla, R. A. in Inhibition and Learning (eds Boakes, R. A. & Halliday, M. S.) 301–336 (1972).
– reference: HeQAltered dynamics between neural systems sub-serving decisions for unhealthy foodFront. Neurosci.2014835025414630422012010.3389/fnins.2014.00350
– reference: BiamonteJQuantum machine learningNature20175491952021:CAS:528:DC%2BC2sXhsV2isLjI2890591710.1038/nature23474
– reference: StephanKEPennyWDDaunizeauJMoranRJFristonKJBayesian model selection for group studiesNeuroImage200946100410171930693210.1016/j.neuroimage.2009.03.025
– reference: StuderBCenDWalshVThe angular gyrus and visuospatial attention in decision-making under riskNeuroImage201410375802521933310.1016/j.neuroimage.2014.09.003
– reference: XueGLuZLevinIPBecharaAThe impact of prior risk experiences on subsequent risky decision-making: the role of the insulaNeuroImage2010507097162004547010.1016/j.neuroimage.2009.12.097
– reference: AcerbiLJiWPractical Bayesian optimization for model fitting with Bayesian adaptive direct searchAdv. Neural Inf. Proc. Syst.20173018361846
– reference: HaggardPHuman volition: towards a neuroscience of willNat. Rev. Neurosci.200899349461:CAS:528:DC%2BD1cXhtl2gsLfE1902051210.1038/nrn2497
– reference: GoldJIShadlenMNThe neural basis of decision makingAnnu. Rev. Neurosci.2007305355741:CAS:528:DC%2BD2sXptFKnu7w%3D1760052510.1146/annurev.neuro.29.051605.113038
– reference: ErevIBarronGOn adaptation, maximization, and reinforcement learning among cognitive strategiesPsychol. Rev.20051129129311626247310.1037/0033-295X.112.4.912
– reference: KepecsAUchidaNZariwalaHAMainenZFNeural correlates, computation and behavioural impact of decision confidenceNature20084552272311:CAS:528:DC%2BD1cXhtV2qtLnO1869021010.1038/nature07200
– reference: LiNResting-state functional connectivity predicts impulsivity in economic decision-makingJ. Neurosci.201333488648951:CAS:528:DC%2BC3sXhtlOjs7vI23486959661899810.1523/JNEUROSCI.1342-12.2013
– reference: ChuangILGershenfeldNKubinecMExperimental implementation of fast quantum searchingPhys. Rev. Lett.19988034081:CAS:528:DyaK1cXislSnsL4%3D10.1103/PhysRevLett.80.3408
– reference: TverskyAKahnemanDAdvances in prospect theory: cumulative representation of uncertaintyJ. Risk Uncertain.1992529732310.1007/BF00122574
– reference: SchwarzGEstimating the dimension of a modelAnn. Stat.1978646146410.1214/aos/1176344136
– reference: YechiamEBusemeyerJRComparison of basic assumptions embedded in learning models for experience-based decision makingPsychon. Bull. Rev.2005123874021623562410.3758/BF03193783
– reference: ChenCTakahashiTNakagawaSInoueTKusumiIReinforcement learning in depression: a review of computational researchNeurosci. Biobehav. Rev.2015552472672597914010.1016/j.neubiorev.2015.05.005
– reference: SchackRBrunTACavesCMQuantum Bayes rulePhys. Rev. A20016401430510.1103/PhysRevA.64.0143051:CAS:528:DC%2BD3MXksFynsLY%3D
– reference: KvamPDPleskacTJYuSBusemeyerJRInterference effects of choice on confidence: quantum characteristics of evidence accumulationProc. Natl Acad. Sci. USA201511210645106501:CAS:528:DC%2BC2MXhtlSit7vO2626132210.1073/pnas.15006881124553814
– reference: AhnW-YBusemeyerJRWagenmakersE-JStoutJCComparison of decision learning models using the generalization criterion methodCogn. Sci.200832137614022158545810.1080/03640210802352992
– reference: CrawfordDLevitAGhadermarzyNOberoiJSRonaghPReinforcement learning using quantum Boltzmann machinesQuantum Info. Comput.2018185174
– reference: OkanoKTanjiJNeuronal activities in the primate motor fields of the agranular frontal cortex preceding visually triggered and self-paced movementExp. Brain Res.1987661551661:STN:280:DyaL2s3hvVyqtQ%3D%3D358252910.1007/BF00236211
– reference: ErevIRothAEPredicting how people play games: reinforcement learning in experimental games with unique, mixed strategy equilibriaAm. Econ. Rev.199888848881
– reference: DajkaJŁuczkaJHänggiPDistance between quantum states in the presence of initial qubit-environment correlations: a comparative studyPhys. Rev. A20118403212010.1103/PhysRevA.84.0321201:CAS:528:DC%2BC3MXht1GhsLrJ
– reference: De BarrosJASuppesPQuantum mechanics, interference, and the brainJ. Math. Psychol.20095330631310.1016/j.jmp.2009.03.005
– reference: GlimcherPWIndeterminacy in brain and behaviorAnnu. Rev. Psychol.20055625561570992810.1146/annurev.psych.55.090902.141429
– reference: YechiamEErtEEvaluating the reliance on past choices in adaptive learning modelsJ. Math. Psychol.200751758410.1016/j.jmp.2006.11.002
– reference: BuelowMTSuhrJARisky decision making in smoking and nonsmoking college students: examination of Iowa Gambling Task performance by deck type selectionsAppl. Neuropsychol. Child2014338442423694010.1080/21622965.2012.691065
– reference: KoudaNMatsuiNNishimuraHPeperFQubit neural network and its learning efficiencyNeural Comput. Appl.20051411412110.1007/s00521-004-0446-8
– reference: LambertNQuantum biologyNat. Phys.2013910181:CAS:528:DC%2BC38Xhsl2lu7nK10.1038/nphys2474
– reference: LittAPlassmannHShivBRangelADissociating valuation and saliency signals during decision-makingCereb. Cortex201021951022044484010.1093/cercor/bhq065
– volume: 53
  start-page: 139
  year: 2009
  ident: 804_CR2
  publication-title: J. Math. Psychol.
  doi: 10.1016/j.jmp.2008.12.005
– volume: 53
  start-page: 306
  year: 2009
  ident: 804_CR69
  publication-title: J. Math. Psychol.
  doi: 10.1016/j.jmp.2009.03.005
– volume: 56
  start-page: 25
  year: 2005
  ident: 804_CR19
  publication-title: Annu. Rev. Psychol.
  doi: 10.1146/annurev.psych.55.090902.141429
– volume: 84
  start-page: 032120
  year: 2011
  ident: 804_CR39
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.84.032120
– volume: 46
  start-page: 681
  year: 2005
  ident: 804_CR45
  publication-title: Neuron
  doi: 10.1016/j.neuron.2005.04.026
– ident: 804_CR20
– volume: 17
  start-page: 86
  year: 2012
  ident: 804_CR5
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2010.2090896
– ident: 804_CR7
  doi: 10.1016/B978-0-12-800953-6.00004-9
– ident: 804_CR1
– volume: 50
  start-page: 709
  year: 2010
  ident: 804_CR58
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.12.097
– volume: 32
  start-page: 1376
  year: 2008
  ident: 804_CR30
  publication-title: Cogn. Sci.
  doi: 10.1080/03640210802352992
– volume: 32
  start-page: 477
  year: 2006
  ident: 804_CR53
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.02.047
– ident: 804_CR49
  doi: 10.1109/SMC.2017.8122616
– volume: 15
  start-page: 073022
  year: 2013
  ident: 804_CR75
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/15/7/073022
– volume: 103
  start-page: 75
  year: 2014
  ident: 804_CR67
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.09.003
– ident: 804_CR15
  doi: 10.1057/978-1-137-49276-0_10
– volume: 10
  start-page: 108
  year: 2006
  ident: 804_CR18
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2006.01.009
– volume: 21
  start-page: 95
  year: 2010
  ident: 804_CR55
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhq065
– volume: 14
  start-page: 253
  year: 2002
  ident: 804_CR90
  publication-title: Psychol. Assess.
  doi: 10.1037/1040-3590.14.3.253
– volume: 66
  start-page: 449
  year: 2010
  ident: 804_CR64
  publication-title: Neuron
  doi: 10.1016/j.neuron.2010.03.033
– volume: 169
  start-page: 323
  year: 2018
  ident: 804_CR27
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.11.048
– volume: 112
  start-page: 10645
  year: 2015
  ident: 804_CR12
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1500688112
– volume: 29
  start-page: 162
  year: 1996
  ident: 804_CR98
  publication-title: Comput. Biomed. Res.
  doi: 10.1006/cbmr.1996.0014
– volume: 51
  start-page: 75
  year: 2007
  ident: 804_CR47
  publication-title: J. Math. Psychol.
  doi: 10.1016/j.jmp.2006.11.002
– volume: 33
  start-page: 201
  year: 1997
  ident: 804_CR36
  publication-title: Stat. Probab. Lett.
  doi: 10.1016/S0167-7152(96)00128-9
– volume: 4
  start-page: 944
  year: 2013
  ident: 804_CR46
  publication-title: Front. Psychol.
– volume: 19
  start-page: 916
  year: 2008
  ident: 804_CR57
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhn140
– volume: 18
  start-page: 51
  year: 2018
  ident: 804_CR52
  publication-title: Quantum Info. Comput.
– volume: 2
  start-page: 1
  year: 2015
  ident: 804_CR11
  publication-title: Decision
  doi: 10.1037/dec0000017
– volume: 4
  start-page: 640
  year: 2013
  ident: 804_CR31
  publication-title: Front. Psychol.
  doi: 10.3389/fpsyg.2013.00640
– volume: 9
  start-page: 856
  year: 2008
  ident: 804_CR60
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn2478
– volume: 157
  start-page: 1
  year: 2017
  ident: 804_CR56
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.05.041
– volume: 455
  start-page: 227
  year: 2008
  ident: 804_CR65
  publication-title: Nature
  doi: 10.1038/nature07200
– volume: 33
  start-page: 109
  year: 2010
  ident: 804_CR82
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev-neuro-060909-153151
– volume: 6
  start-page: 461
  year: 1978
  ident: 804_CR37
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176344136
– volume: 31
  start-page: 4811
  year: 2011
  ident: 804_CR42
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1452-10.2011
– volume: 1
  start-page: 24
  year: 2017
  ident: 804_CR92
  publication-title: Comput. Psychiatr.
  doi: 10.1162/CPSY_a_00002
– volume: 38
  start-page: 1207
  year: 2008
  ident: 804_CR4
  publication-title: IEEE Trans. Syst. Man Cybern. Pt B
  doi: 10.1109/TSMCB.2008.925743
– volume: 10
  start-page: 1214
  year: 2007
  ident: 804_CR44
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1954
– volume: 14
  start-page: 114
  year: 2005
  ident: 804_CR84
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-004-0446-8
– volume: 12
  start-page: 387
  year: 2005
  ident: 804_CR89
  publication-title: Psychon. Bull. Rev.
  doi: 10.3758/BF03193783
– volume: 78
  start-page: 24
  year: 2017
  ident: 804_CR51
  publication-title: J. Math. Psychol.
  doi: 10.1016/j.jmp.2016.07.005
– volume: 355
  start-page: 602
  year: 2017
  ident: 804_CR76
  publication-title: Science
  doi: 10.1126/science.aag2302
– volume: 130
  start-page: 53
  year: 2017
  ident: 804_CR77
  publication-title: Prog. Biophys. Mol. Biol.
  doi: 10.1016/j.pbiomolbio.2017.04.007
– volume: 30
  start-page: 535
  year: 2007
  ident: 804_CR17
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev.neuro.29.051605.113038
– volume: 118
  start-page: 193
  year: 2011
  ident: 804_CR71
  publication-title: Psychol. Rev.
  doi: 10.1037/a0022542
– volume: 80
  start-page: 3408
  year: 1998
  ident: 804_CR48
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.80.3408
– volume: 88
  start-page: 848
  year: 1998
  ident: 804_CR94
  publication-title: Am. Econ. Rev.
– volume: 39
  start-page: 297
  year: 2016
  ident: 804_CR79
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev-neuro-070815-014106
– volume: 35
  start-page: 287
  year: 2012
  ident: 804_CR21
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev-neuro-062111-150512
– volume: 66
  start-page: 155
  year: 1987
  ident: 804_CR62
  publication-title: Exp. Brain Res.
  doi: 10.1007/BF00236211
– volume: 98
  start-page: 57
  year: 2009
  ident: 804_CR9
  publication-title: Biosystems
  doi: 10.1016/j.biosystems.2009.05.012
– volume: 1104
  start-page: 35
  year: 2007
  ident: 804_CR40
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1196/annals.1390.022
– volume: 16
  start-page: 23
  year: 2016
  ident: 804_CR35
  publication-title: Cogn. Affect. Behav. Neurosci.
  doi: 10.3758/s13415-015-0377-0
– volume: 8
  year: 2018
  ident: 804_CR74
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-28993-8
– volume: 21
  start-page: 688
  year: 2016
  ident: 804_CR88
  publication-title: Addict. Biol.
  doi: 10.1111/adb.12239
– ident: 804_CR10
  doi: 10.1017/CBO9780511997716
– volume: 36
  start-page: 291
  year: 2006
  ident: 804_CR72
  publication-title: Found. Phys.
  doi: 10.1007/s10701-005-9013-0
– volume: 5
  start-page: 145
  year: 2012
  ident: 804_CR33
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2011.00145
– volume: 3
  start-page: 38
  year: 2014
  ident: 804_CR26
  publication-title: Appl. Neuropsychol. Child
  doi: 10.1080/21622965.2012.691065
– ident: 804_CR85
– volume: 318
  start-page: 598
  year: 2007
  ident: 804_CR81
  publication-title: Science
  doi: 10.1126/science.1142996
– volume: 53
  start-page: 136
  year: 2017
  ident: 804_CR23
  publication-title: Conscious. Cogn.
  doi: 10.1016/j.concog.2017.04.011
– volume: 9
  start-page: 545
  year: 2008
  ident: 804_CR29
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn2357
– ident: 804_CR50
– volume: 9
  start-page: 10
  year: 2013
  ident: 804_CR70
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2474
– volume: 53
  start-page: 129
  year: 1985
  ident: 804_CR61
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1985.53.1.129
– volume: 55
  start-page: 247
  year: 2015
  ident: 804_CR80
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2015.05.005
– volume: 4
  start-page: 95
  year: 2011
  ident: 804_CR86
  publication-title: J. Neurosci. Psychol. Econ.
  doi: 10.1037/a0020684
– ident: 804_CR25
  doi: 10.1016/bs.pbr.2015.07.032
– volume: 310
  start-page: 1680
  year: 2005
  ident: 804_CR54
  publication-title: Science
  doi: 10.1126/science.1115327
– ident: 804_CR95
  doi: 10.1145/237814.237866
– volume: 64
  start-page: 014305
  year: 2001
  ident: 804_CR83
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.64.014305
– volume: 5
  start-page: 849
  year: 2014
  ident: 804_CR32
  publication-title: Front. Psychol.
  doi: 10.3389/fpsyg.2014.00849
– volume: 5
  start-page: 297
  year: 1992
  ident: 804_CR68
  publication-title: J. Risk Uncertain.
  doi: 10.1007/BF00122574
– volume: 50
  start-page: 7
  year: 1994
  ident: 804_CR24
  publication-title: Cognition
  doi: 10.1016/0010-0277(94)90018-3
– ident: 804_CR93
– volume: 9
  start-page: 934
  year: 2008
  ident: 804_CR59
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn2497
– volume: 37
  start-page: 263
  year: 2014
  ident: 804_CR78
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev-neuro-071013-014119
– volume: 37
  start-page: 205
  year: 2014
  ident: 804_CR41
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev-neuro-071013-014017
– volume: 8
  start-page: 350
  year: 2014
  ident: 804_CR87
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2014.00350
– volume: 11
  start-page: 389
  year: 2008
  ident: 804_CR63
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn2066
– volume: 33
  start-page: 4886
  year: 2013
  ident: 804_CR99
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1342-12.2013
– volume: 30
  start-page: 1836
  year: 2017
  ident: 804_CR96
  publication-title: Adv. Neural Inf. Proc. Syst.
– ident: 804_CR22
  doi: 10.1016/B978-0-12-416008-8.00015-2
– volume: 549
  start-page: 195
  year: 2017
  ident: 804_CR3
  publication-title: Nature
  doi: 10.1038/nature23474
– volume: 19
  start-page: 716
  year: 1974
  ident: 804_CR97
  publication-title: IEEE Trans. Automat. Contr.
  doi: 10.1109/TAC.1974.1100705
– volume: 9
  start-page: 273
  year: 2013
  ident: 804_CR6
  publication-title: New Math. Nat. Comput.
  doi: 10.1142/S1793005713400073
– volume: 117
  start-page: 130501
  year: 2016
  ident: 804_CR8
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.130501
– volume: 1
  start-page: 8
  year: 2013
  ident: 804_CR34
  publication-title: Decision
  doi: 10.1037/2325-9965.1.S.8
– volume: 130
  start-page: 99
  year: 2017
  ident: 804_CR16
  publication-title: Prog. Biophys. Mol. Biol.
  doi: 10.1016/j.pbiomolbio.2017.06.002
– volume: 374
  start-page: 20150100
  year: 2016
  ident: 804_CR14
  publication-title: Phil. Trans. R. Soc. A
  doi: 10.1098/rsta.2015.0100
– volume: 68
  start-page: 789
  year: 2010
  ident: 804_CR66
  publication-title: Neuron
  doi: 10.1016/j.neuron.2010.09.031
– volume: 79
  start-page: 191
  year: 2013
  ident: 804_CR43
  publication-title: Neuron
  doi: 10.1016/j.neuron.2013.04.037
– volume: 112
  start-page: 912
  year: 2005
  ident: 804_CR91
  publication-title: Psychol. Rev.
  doi: 10.1037/0033-295X.112.4.912
– volume: 3
  start-page: 340
  year: 2015
  ident: 804_CR28
  publication-title: J. Open Psychol. Data
  doi: 10.5334/jopd.ak
– volume: 75
  start-page: 49
  year: 2015
  ident: 804_CR13
  publication-title: Math. Soc. Sci.
  doi: 10.1016/j.mathsocsci.2015.02.004
– volume: 46
  start-page: 1004
  year: 2009
  ident: 804_CR38
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.03.025
– volume: 52
  start-page: 723
  year: 2013
  ident: 804_CR73
  publication-title: Int. J. Theor. Phys.
  doi: 10.1007/s10773-012-1381-6
SSID ssj0001934976
Score 2.393911
Snippet Classical reinforcement learning (CRL) has been widely applied in neuroscience and psychology; however, quantum reinforcement learning (QRL), which shows...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 294
SubjectTerms 59/36
631/378/2649/1409
639/766/483/640
Adult
Applied psychology
Behavioral Sciences
Biomedical and Life Sciences
Brain Mapping
Cigarette Smoking - physiopathology
Cognition
Cortex
Decision making
Decision Making - physiology
Executive Function - physiology
Experimental Psychology
Functional magnetic resonance imaging
Gambling
Humans
Learning
Life Sciences
Magnetic Resonance Imaging
Microeconomics
Models, Theoretical
Neurosciences
Personality and Social Psychology
Prefrontal Cortex - diagnostic imaging
Prefrontal Cortex - physiology
Prefrontal Cortex - physiopathology
Quantum Theory
Reinforcement
Reinforcement, Psychology
Smoking
Title Quantum reinforcement learning during human decision-making
URI https://link.springer.com/article/10.1038/s41562-019-0804-2
https://www.ncbi.nlm.nih.gov/pubmed/31959921
https://www.proquest.com/docview/2377947600
https://www.proquest.com/docview/2343042149
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFH_ovHgRv61OqeBJCVvTLE3wICobIigqCruVJnn14jZ168H_3iRNN0T03DQN772-77wfwAmzRkQUBkmPCySsyDKiZFoQY7RJ0BRC-vsVd_f85oXdDnvDkHCbhrbKRid6RW0m2uXIO9RNxmOujHTx_kEcapSrrgYIjWVYsSpY2OBr5ap___C0yLLIlFmD25QzU9GZuojFdSNIYp0lRuhPg_TLy_xVIfWGZ7AOa8FjjC9rFm_AEo43YXWuuL624PyxsvSpRvEn-jmo2qf84gAI8RrXVxFjD8cXmwCqQ0Yeh2obXgb95-sbEkARiE4zOiPUdKXICtXVKiu1MpRioVBwVqY6QY1KcqFVyaQudVlq610hipJiZqwngz2d7kBrPBnjHsQ9VVKV8QQTzhnHrjTIWVZY2dJUciMj6DaUyXWYGO6AK95yX7lORV4TM7fEzB0xcxrB6fyV93pcxn-L2w258_DnTPMFnyM4nj-2Mu8KGcUYJ5Vbw1wWxgZ3EezWbJp_LXXTciRNIjhr-LbY_M-j7P9_lANYpS7O9r1nbWjNPis8tM7ITB0FifsGdBXdkw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7BcoALKuUVCjSV4EJlsbG9TiyEELSg5bWiCCRuJrYnXGAX2F1V_Kn-Rmwn2RVC5cY5jm3NjD1PzwewwZ0SyXKLpCUyJDxPU6Ily4m1xiZo80yG9xXnHdG-5ic3rZsJ-Fe_hfFllfWdGC5q2zM-Rr5NfWc87tNIe49PxKNG-exqDaFRisUpvvx1Llt_9_i34-8mpUeHV7_apEIVIIaldECobTo_O9dNo9PCaEsp5hozwQtmEjSopciMLrg0hSkK48wTxKygmFpnCmDLMDfvJExx5lyZBkwdHHYuLsdRHcm4U_B1-pRl233vIfnqB0mcccYJfasA31m17zKyQdEdfYHZykKN90uRmoMJ7H6FmdFF-TIPO3-Gjh_Dh_gZQ99VE0KMcQVAcReXTx_jAP8X2wrEhzwE3KsFuP4Uci1Co9vr4jLELV1QnYoEEyG4wKa0KHiaO1k2VAorI2jWlFGm6lDugTLuVciUs0yVxFSOmMoTU9EItka_PJbtOT4avFqTW1Unta_GchXBj9Fnd8Z84iTvYm_ox3Af9XHOZARLJZtGqzHfnUfSJIKfNd_Gk_93Kysfb-U7TLevzs_U2XHn9BvMUO_jh7q3VWgMnoe45gyhgV6vpC-G288W-Fd2Fh53
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+reinforcement+learning+during+human+decision-making&rft.jtitle=Nature+human+behaviour&rft.au=Li%2C+Ji-An&rft.au=Dong%2C+Daoyi&rft.au=Wei%2C+Zhengde&rft.au=Liu%2C+Ying&rft.date=2020-03-01&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2397-3374&rft.volume=4&rft.issue=3&rft.spage=294&rft.epage=307&rft_id=info:doi/10.1038%2Fs41562-019-0804-2&rft.externalDocID=10_1038_s41562_019_0804_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2397-3374&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2397-3374&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2397-3374&client=summon