Quantum reinforcement learning during human decision-making
Classical reinforcement learning (CRL) has been widely applied in neuroscience and psychology; however, quantum reinforcement learning (QRL), which shows superior performance in computer simulations, has never been empirically tested on human decision-making. Moreover, all current successful quantum...
Saved in:
Published in | Nature human behaviour Vol. 4; no. 3; pp. 294 - 307 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.03.2020
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Classical reinforcement learning (CRL) has been widely applied in neuroscience and psychology; however, quantum reinforcement learning (QRL), which shows superior performance in computer simulations, has never been empirically tested on human decision-making. Moreover, all current successful quantum models for human cognition lack connections to neuroscience. Here we studied whether QRL can properly explain value-based decision-making. We compared 2 QRL and 12 CRL models by using behavioural and functional magnetic resonance imaging data from healthy and cigarette-smoking subjects performing the Iowa Gambling Task. In all groups, the QRL models performed well when compared with the best CRL models and further revealed the representation of quantum-like internal-state-related variables in the medial frontal gyrus in both healthy subjects and smokers, suggesting that value-based decision-making can be illustrated by QRL at both the behavioural and neural levels.
Li et al. show that human value-based decision-making can be modelled using the quantum reinforcement learning framework. These new models reveal the importance of the medial frontal cortex in this quantum-like decision-making process. |
---|---|
AbstractList | Classical reinforcement learning (CRL) has been widely applied in neuroscience and psychology; however, quantum reinforcement learning (QRL), which shows superior performance in computer simulations, has never been empirically tested on human decision-making. Moreover, all current successful quantum models for human cognition lack connections to neuroscience. Here we studied whether QRL can properly explain value-based decision-making. We compared 2 QRL and 12 CRL models by using behavioural and functional magnetic resonance imaging data from healthy and cigarette-smoking subjects performing the Iowa Gambling Task. In all groups, the QRL models performed well when compared with the best CRL models and further revealed the representation of quantum-like internal-state-related variables in the medial frontal gyrus in both healthy subjects and smokers, suggesting that value-based decision-making can be illustrated by QRL at both the behavioural and neural levels.
Li et al. show that human value-based decision-making can be modelled using the quantum reinforcement learning framework. These new models reveal the importance of the medial frontal cortex in this quantum-like decision-making process. Classical reinforcement learning (CRL) has been widely applied in neuroscience and psychology; however, quantum reinforcement learning (QRL), which shows superior performance in computer simulations, has never been empirically tested on human decision-making. Moreover, all current successful quantum models for human cognition lack connections to neuroscience. Here we studied whether QRL can properly explain value-based decision-making. We compared 2 QRL and 12 CRL models by using behavioural and functional magnetic resonance imaging data from healthy and cigarette-smoking subjects performing the Iowa Gambling Task. In all groups, the QRL models performed well when compared with the best CRL models and further revealed the representation of quantum-like internal-state-related variables in the medial frontal gyrus in both healthy subjects and smokers, suggesting that value-based decision-making can be illustrated by QRL at both the behavioural and neural levels.Li et al. show that human value-based decision-making can be modelled using the quantum reinforcement learning framework. These new models reveal the importance of the medial frontal cortex in this quantum-like decision-making process. Classical reinforcement learning (CRL) has been widely applied in neuroscience and psychology; however, quantum reinforcement learning (QRL), which shows superior performance in computer simulations, has never been empirically tested on human decision-making. Moreover, all current successful quantum models for human cognition lack connections to neuroscience. Here we studied whether QRL can properly explain value-based decision-making. We compared 2 QRL and 12 CRL models by using behavioural and functional magnetic resonance imaging data from healthy and cigarette-smoking subjects performing the Iowa Gambling Task. In all groups, the QRL models performed well when compared with the best CRL models and further revealed the representation of quantum-like internal-state-related variables in the medial frontal gyrus in both healthy subjects and smokers, suggesting that value-based decision-making can be illustrated by QRL at both the behavioural and neural levels.Classical reinforcement learning (CRL) has been widely applied in neuroscience and psychology; however, quantum reinforcement learning (QRL), which shows superior performance in computer simulations, has never been empirically tested on human decision-making. Moreover, all current successful quantum models for human cognition lack connections to neuroscience. Here we studied whether QRL can properly explain value-based decision-making. We compared 2 QRL and 12 CRL models by using behavioural and functional magnetic resonance imaging data from healthy and cigarette-smoking subjects performing the Iowa Gambling Task. In all groups, the QRL models performed well when compared with the best CRL models and further revealed the representation of quantum-like internal-state-related variables in the medial frontal gyrus in both healthy subjects and smokers, suggesting that value-based decision-making can be illustrated by QRL at both the behavioural and neural levels. Classical reinforcement learning (CRL) has been widely applied in neuroscience and psychology; however, quantum reinforcement learning (QRL), which shows superior performance in computer simulations, has never been empirically tested on human decision-making. Moreover, all current successful quantum models for human cognition lack connections to neuroscience. Here we studied whether QRL can properly explain value-based decision-making. We compared 2 QRL and 12 CRL models by using behavioural and functional magnetic resonance imaging data from healthy and cigarette-smoking subjects performing the Iowa Gambling Task. In all groups, the QRL models performed well when compared with the best CRL models and further revealed the representation of quantum-like internal-state-related variables in the medial frontal gyrus in both healthy subjects and smokers, suggesting that value-based decision-making can be illustrated by QRL at both the behavioural and neural levels. |
Author | Liu, Ying Nori, Franco Li, Ji-An Pan, Yu Zhang, Xiaochu Dong, Daoyi Wei, Zhengde |
Author_xml | – sequence: 1 givenname: Ji-An orcidid: 0000-0003-2419-2281 surname: Li fullname: Li, Ji-An organization: Eye Center, Dept. of Ophthalmology, the First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Department of Statistics and Finance, School of Management, University of Science and Technology of China – sequence: 2 givenname: Daoyi orcidid: 0000-0002-7425-3559 surname: Dong fullname: Dong, Daoyi organization: School of Engineering and Information Technology, University of New South Wales – sequence: 3 givenname: Zhengde surname: Wei fullname: Wei, Zhengde organization: Eye Center, Dept. of Ophthalmology, the First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Centre, Shanghai Jiao Tong University School of Medicine – sequence: 4 givenname: Ying surname: Liu fullname: Liu, Ying organization: The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China – sequence: 5 givenname: Yu surname: Pan fullname: Pan, Yu organization: Key Laboratory of Applied Brain and Cognitive Sciences, School of Business and Management, Shanghai International Studies University – sequence: 6 givenname: Franco orcidid: 0000-0003-3682-7432 surname: Nori fullname: Nori, Franco organization: Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Department of Physics, The University of Michigan – sequence: 7 givenname: Xiaochu orcidid: 0000-0002-7541-0130 surname: Zhang fullname: Zhang, Xiaochu email: zxcustc@ustc.edu.cn organization: Eye Center, Dept. of Ophthalmology, the First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei Medical Research Centre on Alcohol Addiction, Anhui Mental Health Centre, Academy of Psychology and Behaviour, Tianjin Normal University, Centres for Biomedical Engineering, University of Science and Technology of China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31959921$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kMtKxDAUhoOMOOM4D-BGCm7cVHNr0-BKBm8wIIKuS5qeaMc2HZN24dub0vHCgK7O4fD9P4fvEE1sawGhY4LPCWbZheckSWmMiYxxhnlM99CMMilixgSf_NqnaOH9GuNAMi5FeoCmjMhESkpm6PKxV7brm8hBZU3rNDRgu6gG5WxlX6Kyd8N47RtloxJ05avWxo16C9cjtG9U7WGxnXP0fHP9tLyLVw-398urVayZoF1MSywzoQqsC2F0UVIKqoAs5YZpAhoKmWa6MFxqo43RlKYAmaEgSpoQSDSbo7Oxd-Pa9x58lzeV11DXykLb-5wyzjCnhMuAnu6g67Z3NnwXKCEkFynGgTrZUn3RQJlvXNUo95F_aQkAGQHtWu8dmG-E4Hywn4_28-A0H-yH9jkSOxlddaoLujqnqvrfJB2TfjPIBvfz9N-hT7rNmLU |
CitedBy_id | crossref_primary_10_1080_23746149_2023_2165452 crossref_primary_10_1007_s11768_021_00063_x crossref_primary_10_1016_j_arcontrol_2022_04_011 crossref_primary_10_1140_epjd_s10053_021_00210_8 crossref_primary_10_1016_j_automatica_2022_110659 crossref_primary_10_1109_TNNLS_2023_3281604 crossref_primary_10_1093_pnasnexus_pgae016 crossref_primary_10_59400_issc_v3i1_294 crossref_primary_10_3390_math12081230 crossref_primary_10_1109_TCYB_2022_3170485 crossref_primary_10_1088_1742_6596_2948_1_012015 crossref_primary_10_1103_PhysRevA_102_032412 crossref_primary_10_1007_s11517_020_02309_3 crossref_primary_10_1016_j_asoc_2023_110157 crossref_primary_10_1371_journal_pone_0284610 crossref_primary_10_1038_s41467_024_50505_8 crossref_primary_10_1016_j_jfranklin_2023_01_012 crossref_primary_10_31857_S000233882305013X crossref_primary_10_22331_q_2023_05_15_1007 crossref_primary_10_3390_s20154333 crossref_primary_10_1038_s41598_023_30990_5 crossref_primary_10_3280_IPN2021_001001 crossref_primary_10_1016_j_engappai_2022_105787 crossref_primary_10_1038_s41467_023_43891_y crossref_primary_10_1109_TCYB_2021_3131252 crossref_primary_10_21105_joss_05694 crossref_primary_10_1038_s41534_024_00872_3 crossref_primary_10_1109_TNNLS_2021_3055499 crossref_primary_10_1016_j_automatica_2021_109551 crossref_primary_10_1016_j_addbeh_2021_106816 crossref_primary_10_3390_designs7030060 crossref_primary_10_1103_PhysRevA_105_062443 crossref_primary_10_1134_S1064230723050131 crossref_primary_10_3390_technologies12050064 crossref_primary_10_1007_s13194_024_00584_7 crossref_primary_10_1109_TVT_2022_3225524 crossref_primary_10_1109_TWC_2022_3162749 crossref_primary_10_1038_s41598_022_22855_0 crossref_primary_10_1038_s41598_021_02910_y crossref_primary_10_1109_LWC_2021_3089876 crossref_primary_10_1109_TNNLS_2022_3230701 crossref_primary_10_1136_gpsych_2022_100985 crossref_primary_10_2144_fsoa_2020_0188 crossref_primary_10_1109_TCYB_2021_3053414 crossref_primary_10_1016_j_isci_2021_102081 crossref_primary_10_1007_s13042_022_01639_y crossref_primary_10_1109_ACCESS_2024_3439407 crossref_primary_10_1016_j_engappai_2021_104451 crossref_primary_10_1116_1_5135170 crossref_primary_10_1109_TCST_2024_3437142 crossref_primary_10_1016_j_neuroimage_2022_119019 crossref_primary_10_1109_TNNLS_2022_3160173 crossref_primary_10_1007_s10701_024_00806_1 crossref_primary_10_1556_2006_2022_00006 crossref_primary_10_1109_TKDE_2023_3279207 crossref_primary_10_1016_j_adhoc_2024_103632 crossref_primary_10_26787_nydha_2618_8783_2023_8_3_31_36 crossref_primary_10_1016_j_drudis_2020_12_003 |
Cites_doi | 10.1016/j.jmp.2008.12.005 10.1016/j.jmp.2009.03.005 10.1146/annurev.psych.55.090902.141429 10.1103/PhysRevA.84.032120 10.1016/j.neuron.2005.04.026 10.1109/TMECH.2010.2090896 10.1016/B978-0-12-800953-6.00004-9 10.1016/j.neuroimage.2009.12.097 10.1080/03640210802352992 10.1016/j.neuroimage.2006.02.047 10.1109/SMC.2017.8122616 10.1088/1367-2630/15/7/073022 10.1016/j.neuroimage.2014.09.003 10.1057/978-1-137-49276-0_10 10.1016/j.tics.2006.01.009 10.1093/cercor/bhq065 10.1037/1040-3590.14.3.253 10.1016/j.neuron.2010.03.033 10.1016/j.neuroimage.2017.11.048 10.1073/pnas.1500688112 10.1006/cbmr.1996.0014 10.1016/j.jmp.2006.11.002 10.1016/S0167-7152(96)00128-9 10.1093/cercor/bhn140 10.1037/dec0000017 10.3389/fpsyg.2013.00640 10.1038/nrn2478 10.1016/j.neuroimage.2017.05.041 10.1038/nature07200 10.1146/annurev-neuro-060909-153151 10.1214/aos/1176344136 10.1523/JNEUROSCI.1452-10.2011 10.1162/CPSY_a_00002 10.1109/TSMCB.2008.925743 10.1038/nn1954 10.1007/s00521-004-0446-8 10.3758/BF03193783 10.1016/j.jmp.2016.07.005 10.1126/science.aag2302 10.1016/j.pbiomolbio.2017.04.007 10.1146/annurev.neuro.29.051605.113038 10.1037/a0022542 10.1103/PhysRevLett.80.3408 10.1146/annurev-neuro-070815-014106 10.1146/annurev-neuro-062111-150512 10.1007/BF00236211 10.1016/j.biosystems.2009.05.012 10.1196/annals.1390.022 10.3758/s13415-015-0377-0 10.1038/s41598-018-28993-8 10.1111/adb.12239 10.1017/CBO9780511997716 10.1007/s10701-005-9013-0 10.3389/fnins.2011.00145 10.1080/21622965.2012.691065 10.1126/science.1142996 10.1016/j.concog.2017.04.011 10.1038/nrn2357 10.1038/nphys2474 10.1152/jn.1985.53.1.129 10.1016/j.neubiorev.2015.05.005 10.1037/a0020684 10.1016/bs.pbr.2015.07.032 10.1126/science.1115327 10.1145/237814.237866 10.1103/PhysRevA.64.014305 10.3389/fpsyg.2014.00849 10.1007/BF00122574 10.1016/0010-0277(94)90018-3 10.1038/nrn2497 10.1146/annurev-neuro-071013-014119 10.1146/annurev-neuro-071013-014017 10.3389/fnins.2014.00350 10.1038/nn2066 10.1523/JNEUROSCI.1342-12.2013 10.1016/B978-0-12-416008-8.00015-2 10.1038/nature23474 10.1109/TAC.1974.1100705 10.1142/S1793005713400073 10.1103/PhysRevLett.117.130501 10.1037/2325-9965.1.S.8 10.1016/j.pbiomolbio.2017.06.002 10.1098/rsta.2015.0100 10.1016/j.neuron.2010.09.031 10.1016/j.neuron.2013.04.037 10.1037/0033-295X.112.4.912 10.5334/jopd.ak 10.1016/j.mathsocsci.2015.02.004 10.1016/j.neuroimage.2009.03.025 10.1007/s10773-012-1381-6 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2020 2020© The Author(s), under exclusive licence to Springer Nature Limited 2020 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020 – notice: 2020© The Author(s), under exclusive licence to Springer Nature Limited 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 0-V 3V. 7XB 88G 88J 8BJ 8FI 8FJ 8FK ABUWG AFKRA ALSLI AZQEC BENPR CCPQU DWQXO FQK FYUFA GHDGH GNUQQ JBE M2M M2R PHGZM PHGZT PKEHL POGQB PQEST PQQKQ PQUKI PRINS PRQQA PSYQQ Q9U 7X8 |
DOI | 10.1038/s41562-019-0804-2 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Social Sciences Premium Collection【Remote access available】 ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Psychology Database (Alumni) Social Science Database (Alumni Edition) International Bibliography of the Social Sciences (IBSS) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Social Science Premium Collection ProQuest Central Essentials ProQuest Central Database Suite (ProQuest) ProQuest One ProQuest Central International Bibliography of the Social Sciences Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student International Bibliography of the Social Sciences Psychology Database Social Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest Sociology & Social Sciences Collection ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Social Sciences ProQuest One Psychology ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Sociology & Social Sciences Collection ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Social Science Journals (Alumni Edition) ProQuest Central (Alumni Edition) ProQuest One Community College Sociology & Social Sciences Collection ProQuest Central China ProQuest Central Health Research Premium Collection International Bibliography of the Social Sciences (IBSS) ProQuest Central Korea ProQuest Central (New) Social Science Premium Collection ProQuest One Social Sciences ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Social Science Journals ProQuest Psychology Journals ProQuest Social Sciences Premium Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest One Psychology MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Psychology |
EISSN | 2397-3374 |
EndPage | 307 |
ExternalDocumentID | 31959921 10_1038_s41562_019_0804_2 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: MURI Center for Dynamic Magneto-Optics via the Air Force Office of Scientific Research (AFOSR) (FA9550-14-10040), Asian Office of Aerospace Research and Development (AOARD) (Grant No. FA2386-18-1-4045), NTT Research, Japan Science and Technology Agency (JST) (via the Q-LEAP program, and the CREST Grant No. JPMJCR1676), RIKEN-AIST Challenge Research Fund, Sir John Templeton Foundation, FQXi, Silicon Valley NTT Research Laboratory – fundername: Silicon Valley Community Foundation (SVCF) funderid: https://doi.org/10.13039/100000923 – fundername: Australian Research Council's Discovery Projects funding scheme under Project DP190101566, US Office of Naval Research – fundername: National Key Basic Research Program (2016YFA0400900 and 2018YFC0831101), Fundamental Research Funds for the Central Universities of China – fundername: MEXT | Japan Society for the Promotion of Science (JSPS) grantid: JSPS-RFBR Grant No. 17-52-50023, and JSPS-FWO Grant No. VS.059.18N funderid: https://doi.org/10.13039/501100001691 – fundername: Alexander von Humboldt-Stiftung (Alexander von Humboldt Foundation) funderid: https://doi.org/10.13039/100005156 – fundername: United States Department of Defense | United States Army | U.S. Army Research, Development and Engineering Command | Army Research Office (ARO) grantid: W911NF-18-1-0358 funderid: https://doi.org/10.13039/100000183 – fundername: National Science Foundation of China | National Natural Science Foundation of China-Yunnan Joint Fund (NSFC-Yunnan Joint Fund) grantid: 31471071 funderid: https://doi.org/10.13039/501100011002 |
GroupedDBID | 0R~ 53G 8FI 8FJ AAEEF AARCD AAYZH ABJNI ABLJU ABUWG ACGFS ADBBV AFKRA AFSHS AFWHJ AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ARMCB AXYYD AZQEC BENPR BKKNO CCPQU DWQXO EBS EJD FSGXE FYUFA FZEXT GNUQQ M2M M2R NNMJJ O9- ODYON PQQKQ PSYQQ RNT SHXYY SIXXV SNYQT SOJ TAOOD TBHMF TDRGL TSG UKHRP AAYXX ACBWK AFANA ATHPR CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 0-V 3V. 7XB 8BJ 8FK FQK JBE PKEHL POGQB PQEST PQUKI PRINS PRQQA PUEGO Q9U 7X8 |
ID | FETCH-LOGICAL-c372t-2d0987ab0cb7fcbd22eabe864f3c1eceb968cbf49cfcffc226ee8f2e7d251e5c3 |
IEDL.DBID | BENPR |
ISSN | 2397-3374 |
IngestDate | Fri Jul 11 10:22:08 EDT 2025 Sat Aug 23 12:42:01 EDT 2025 Wed Feb 19 02:31:05 EST 2025 Tue Jul 01 03:09:48 EDT 2025 Thu Apr 24 23:09:25 EDT 2025 Fri Feb 21 02:39:26 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-2d0987ab0cb7fcbd22eabe864f3c1eceb968cbf49cfcffc226ee8f2e7d251e5c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7541-0130 0000-0002-7425-3559 0000-0003-2419-2281 0000-0003-3682-7432 |
PMID | 31959921 |
PQID | 2377947600 |
PQPubID | 4560800 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2343042149 proquest_journals_2377947600 pubmed_primary_31959921 crossref_primary_10_1038_s41562_019_0804_2 crossref_citationtrail_10_1038_s41562_019_0804_2 springer_journals_10_1038_s41562_019_0804_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-01 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature human behaviour |
PublicationTitleAbbrev | Nat Hum Behav |
PublicationTitleAlternate | Nat Hum Behav |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | CrawfordDLevitAGhadermarzyNOberoiJSRonaghPReinforcement learning using quantum Boltzmann machinesQuantum Info. Comput.2018185174 KoudaNMatsuiNNishimuraHPeperFQubit neural network and its learning efficiencyNeural Comput. Appl.20051411412110.1007/s00521-004-0446-8 YuAJDayanPUncertainty, neuromodulation, and attentionNeuron2005466816921:CAS:528:DC%2BD2MXkslykurg%3D1594413510.1016/j.neuron.2005.04.026 BecharaADamasioARDamasioHAndersonSWInsensitivity to future consequences following damage to human prefrontal cortexCognition1994507151:STN:280:DyaK2czhtlynsg%3D%3D803937510.1016/0010-0277(94)90018-3 HeQAltered dynamics between neural systems sub-serving decisions for unhealthy foodFront. Neurosci.2014835025414630422012010.3389/fnins.2014.00350 ChuangILGershenfeldNKubinecMExperimental implementation of fast quantum searchingPhys. Rev. Lett.19988034081:CAS:528:DyaK1cXislSnsL4%3D10.1103/PhysRevLett.80.3408 IvakhnenkoOVShevchenkoSNNoriFSimulating quantum dynamical phenomena using classical oscillators: Landau-Zener-Stückelberg-Majorana interferometry, latching modulation, and motional averagingSci. Rep.201881:STN:280:DC%2BB3c7osFWiug%3D%3D30111853609391210.1038/s41598-018-28993-8 SanfeyAGLoewensteinGMcClureSMCohenJDNeuroeconomics: cross-currents in research on decision-makingTrends Cogn. Sci.2006101081161646952410.1016/j.tics.2006.01.009 BusemeyerJRWangZShiffrinRMBayesian model comparison favors quantum over standard decision theory account of dynamic inconsistencyDecision2015211210.1037/dec0000017 KvamPDPleskacTJYuSBusemeyerJRInterference effects of choice on confidence: quantum characteristics of evidence accumulationProc. Natl Acad. Sci. USA201511210645106501:CAS:528:DC%2BC2MXhtlSit7vO2626132210.1073/pnas.15006881124553814 BreversDNoëlXHeQMelroseJABecharaAIncreased ventral-striatal activity during monetary decision making is a marker of problem poker gambling severityAddict. Biol.2016216886992578164110.1111/adb.12239 AcerbiLJiWPractical Bayesian optimization for model fitting with Bayesian adaptive direct searchAdv. Neural Inf. Proc. Syst.20173018361846 TanjiJKurataKContrasting neuronal activity in supplementary and precentral motor cortex of monkeys. I. Responses to instructions determining motor responses to forthcoming signals of different modalitiesJ. Neurophysiol.1985531291411:STN:280:DyaL2M7jtlOrug%3D%3D397365410.1152/jn.1985.53.1.129 CarleoGTroyerMSolving the quantum many-body problem with artificial neural networksScience20173556026061:CAS:528:DC%2BC2sXit1Okur0%3D2818397310.1126/science.aag2302 ByrneKANorrisDDWorthyDADopamine, depressive symptoms, and decision-making: the relationship between spontaneous eye blink rate and depressive symptoms predicts Iowa Gambling Task performanceCogn. Affect. Behav. Neurosci.201616233626383904504214410.3758/s13415-015-0377-0 BusemeyerJRFakhariPKvamPNeural implementation of operations used in quantum cognitionProg. Biophys. Mol. Biol.201713053602848721810.1016/j.pbiomolbio.2017.04.007 AhnW-YKrawitzAKimWBusemeyerJRBrownJWA model-based fMRI analysis with hierarchical Bayesian parameter estimationDecision2013182310.1037/2325-9965.1.S.8 Grover, L. K. A fast quantum mechanical algorithm for database search. In Proc. 28th Annual ACM Symposium on Theory of Computing 212–219 (ACM, 1996). BiamonteJQuantum machine learningNature20175491952021:CAS:528:DC%2BC2sXhsV2isLjI2890591710.1038/nature23474 AhnW-YHainesNZhangLRevealing neurocomputational mechanisms of reinforcement learning and decision-making with the hBayesDM packageComput. Psychiatr.20171245729601060586901310.1162/CPSY_a_00002 Wittek, P. Quantum Machine Learning: What Quantum Computing Means to Data Mining (Academic Press, 2014). KrainALWilsonAMArbuckleRCastellanosFXMilhamMPDistinct neural mechanisms of risk and ambiguity: a meta-analysis of decision-makingNeuroImage2006324774841663238310.1016/j.neuroimage.2006.02.047 Payzan-LeNestourEDunneSBossaertsPO’DohertyJPThe neural representation of unexpected uncertainty during value-based decision makingNeuron2013791912011:CAS:528:DC%2BC3sXhtVyqtLzJ23849203488574510.1016/j.neuron.2013.04.037 HuHReward and aversionAnnu. Rev. Neurosci.2016392973241:CAS:528:DC%2BC28XntlKgsLg%3D2714591510.1146/annurev-neuro-070815-014106 DunjkoVTaylorJMBriegelHJQuantum-enhanced machine learningPhys. Rev. Lett.20161171305012771509910.1103/PhysRevLett.117.1305011:CAS:528:DC%2BC28XhvFKksrnM YechiamEBusemeyerJRComparison of basic assumptions embedded in learning models for experience-based decision makingPsychon. Bull. Rev.2005123874021623562410.3758/BF03193783 O’NeillMSchultzWCoding of reward risk by orbitofrontal neurons is mostly distinct from coding of reward valueNeuron2010687898002109286610.1016/j.neuron.2010.09.0311:CAS:528:DC%2BC3cXhsVGntbrE SchackRBrunTACavesCMQuantum Bayes rulePhys. Rev. A20016401430510.1103/PhysRevA.64.0143051:CAS:528:DC%2BD3MXksFynsLY%3D KepecsAUchidaNZariwalaHAMainenZFNeural correlates, computation and behavioural impact of decision confidenceNature20084552272311:CAS:528:DC%2BD1cXhtV2qtLnO1869021010.1038/nature07200 KornmeierJFriedelEWittmannMAtmanspacherHEEG correlates of cognitive time scales in the Necker-Zeno model for bistable perceptionConscious. Cogn.2017531361501:STN:280:DC%2BC1cjjsVanuw%3D%3D2866618610.1016/j.concog.2017.04.011 HsuMBhattMAdolphsRTranelDCamererCFNeural systems responding to degrees of uncertainty in human decision-makingScience2005310168016831:CAS:528:DC%2BD2MXhtlSntb7J1633944510.1126/science.1115327 Busemeyer, J. R. & Bruza, P. D. Quantum Models of Cognition and Decision (Cambridge Univ. Press, 2012). OkanoKTanjiJNeuronal activities in the primate motor fields of the agranular frontal cortex preceding visually triggered and self-paced movementExp. Brain Res.1987661551661:STN:280:DyaL2s3hvVyqtQ%3D%3D358252910.1007/BF00236211 SulJHKimHHuhNLeeDJungMWDistinct roles of rodent orbitofrontal and medial prefrontal cortex in decision makingNeuron2010664494601:CAS:528:DC%2BC3cXms1art7g%3D20471357287262910.1016/j.neuron.2010.03.033 BuelowMTSuhrJARisky decision making in smoking and nonsmoking college students: examination of Iowa Gambling Task performance by deck type selectionsAppl. Neuropsychol. Child2014338442423694010.1080/21622965.2012.691065 BusemeyerJRPothosEMFrancoRTruebloodJSA quantum theoretical explanation for probability judgment errorsPsychol. Rev.20111181932182148073910.1037/a0022542 BachDRHulmeOPennyWDDolanRJThe known unknowns: neural representation of second-order uncertainty, and ambiguityJ. Neurosci.201131481148201:CAS:528:DC%2BC3MXkslSlt7Y%3D21451019316685110.1523/JNEUROSCI.1452-10.2011 BehrensTEJWoolrichMWWaltonMERushworthMFSLearning the value of information in an uncertain worldNat. Neurosci.200710121412211:CAS:528:DC%2BD2sXps1Sgurg%3D1767605710.1038/nn1954 FakhariPRajagopalKBalakrishnanSNBusemeyerJRQuantum inspired reinforcement learning in changing environmentNew Math. Nat. Comput.2013927329410.1142/S1793005713400073 YearsleyJMAdvanced tools and concepts for quantum cognition: a tutorialJ. Math. Psychol.201778243910.1016/j.jmp.2016.07.005 AkaikeHA new look at the statistical model identificationIEEE Trans. Automat. Contr.19741971672310.1109/TAC.1974.1100705 LambertNQuantum biologyNat. Phys.2013910181:CAS:528:DC%2BC38Xhsl2lu7nK10.1038/nphys2474 YechiamEErtEEvaluating the reliance on past choices in adaptive learning modelsJ. Math. Psychol.200751758410.1016/j.jmp.2006.11.002 CoxRWAFNI: software for analysis and visualization of functional magnetic resonance neuroimagesComput. Biomed. Res.1996291621731:STN:280:DyaK28vgvVChug%3D%3D881206810.1006/cbmr.1996.0014 RoskiesALHow does neuroscience affect our conception of volition?Annu. Rev. Neurosci.2010331091301:CAS:528:DC%2BC3cXhsFartrzE2057276910.1146/annurev-neuro-060909-153151 Sutton, R. S. & Barto, A. G. Reinforcement Learning: An Introduction, Vol. 1 (MIT Press, 1998). NivYReinforcement learning in the brainJ. Math. Psychol.20095313915410.1016/j.jmp.2008.12.005 ChenCTakahashiTNakagawaSInoueTKusumiIReinforcement learning in depression: a review of computational researchNeurosci. Biobehav. Rev.2015552472672597914010.1016/j.neubiorev.2015.05.005 Piotrowski, E. W. & Sladkowski, J. The next stage: quantum game theory. in Mathematical Physics Research at the Cutting Edge (ed. Benton, C. V.) 247–268 (Nova Science Publishers, 2004). de Barros, J. A. & Oas, G. in The Palgrave Handbook of Quantum Models in Social Science (eds Haven, E. & Khrennikov, A.) 195–228 (Springer, 2017). Wagner, A. R. & Rescorla, R. A. in Inhibition and Learning (eds Boakes, R. A. & Halliday, M. S.) 301–336 (1972). Dunjko, V., Taylor, J. M. & Briegel, H. J. Advances in quantum reinforcement learning. In Proc. 2017 IEEE International Conference on Systems, Man, and Cybernetics 282–287 (IEEE, 2017). SteingroeverHData from 617 healthy participants performing the Iowa gambling task: a “many labs” collaborationJ. Open Psychol. Data2015334035310.5334/jopd.ak NachevPKennardCHusainMFunctional role of the supplementary and pre-supplementary motor areasNat. Rev. Neurosci.200898568691:CAS:528:DC%2BD1cXht1GrtrbF1884327110.1038/nrn2478 RangelACamererCMontaguePRA framework for studying the neurobiology of value-based decision makingNat. Rev. Neurosci.200895455561:CAS:528:DC%2BD1cXnsFChu7g%3D18545266433270810.1038/nrn2357 DajkaJŁuczkaJHänggiPDistance between quantum states in the presence of initial qubit-environment correlations: a comparative studyPhys. Rev. A20118403212010.1103/PhysRevA.84.0321201:CAS:528:DC%2BC3MXht1GhsLrJ Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2010). AshtianiMAzgomiMAA survey of quantum-like approaches to decision making and cognitionMath. Soc. Sci.201575498010.1016/j.mathsocsci.2015.02.004 SchwarzGEstimating the dimension of a modelAnn. Stat.1978646146410.1214/aos/1176344136 MaWJJazayeriMNeural coding of uncertainty and probabilityAnnu. Rev. Neurosci.2014372052201:CAS:528:DC%2BC2cXhsVKgt7fF2503249510.1146/annurev-neuro-071013-014017 DongDChenCLiHTarnT-JQuantum reinforcement learningIEEE Trans. Syst. Man Cybern. Pt B200838 D Dong (804_CR5) 2012; 17 E Manousakis (804_CR9) 2009; 98 A Tversky (804_CR68) 1992; 5 G Xue (804_CR58) 2010; 50 Q He (804_CR87) 2014; 8 A Bechara (804_CR24) 1994; 50 EA Phelps (804_CR78) 2014; 37 AG Sanfey (804_CR18) 2006; 10 AL Krain (804_CR53) 2006; 32 I Erev (804_CR91) 2005; 112 Y Niv (804_CR2) 2009; 53 JI Gold (804_CR17) 2007; 30 V Singh (804_CR46) 2013; 4 H Hu (804_CR79) 2016; 39 H Akaike (804_CR97) 1974; 19 D Lee (804_CR21) 2012; 35 JR Busemeyer (804_CR77) 2017; 130 Y Wang (804_CR56) 2017; 157 D Brevers (804_CR88) 2016; 21 KE Stephan (804_CR38) 2009; 46 N Li (804_CR99) 2013; 33 TJ Vickery (804_CR57) 2008; 19 VI Yukalov (804_CR14) 2016; 374 KY Bliokh (804_CR75) 2013; 15 804_CR85 DA Worthy (804_CR31) 2013; 4 G Schwarz (804_CR37) 1978; 6 G Carleo (804_CR76) 2017; 355 804_CR1 K Okano (804_CR62) 1987; 66 D Dong (804_CR4) 2008; 38 I Erev (804_CR94) 1998; 88 PW Glimcher (804_CR19) 2005; 56 AJ Yu (804_CR45) 2005; 46 A Rangel (804_CR29) 2008; 9 RW Cox (804_CR98) 1996; 29 P Haggard (804_CR59) 2008; 9 C Chen (804_CR80) 2015; 55 JA De Barros (804_CR69) 2009; 53 W-Y Ahn (804_CR30) 2008; 32 JE Cavanaugh (804_CR36) 1997; 33 T Takahashi (804_CR16) 2017; 130 804_CR7 E Payzan-LeNestour (804_CR43) 2013; 79 AL Roskies (804_CR82) 2010; 33 M Ashtiani (804_CR13) 2015; 75 804_CR95 804_CR93 804_CR10 W-Y Ahn (804_CR34) 2013; 1 804_CR15 OV Ivakhnenko (804_CR74) 2018; 8 J Tanji (804_CR61) 1985; 53 P beim Graben (804_CR73) 2013; 52 V Dunjko (804_CR8) 2016; 117 AG Sanfey (804_CR81) 2007; 318 L Acerbi (804_CR96) 2017; 30 E Yechiam (804_CR89) 2005; 12 DR Bach (804_CR42) 2011; 31 PD Kvam (804_CR12) 2015; 112 MT Buelow (804_CR26) 2014; 3 804_CR22 E Yechiam (804_CR47) 2007; 51 804_CR20 804_CR25 MFS Rushworth (804_CR63) 2008; 11 DA Worthy (804_CR33) 2012; 5 A Litt (804_CR55) 2010; 21 J Biamonte (804_CR3) 2017; 549 J Dajka (804_CR39) 2011; 84 M O’Neill (804_CR66) 2010; 68 WY Ahn (804_CR32) 2014; 5 W-Y Ahn (804_CR86) 2011; 4 A Kepecs (804_CR65) 2008; 455 D Crawford (804_CR52) 2018; 18 JP O’Doherty (804_CR40) 2007; 1104 P Nachev (804_CR60) 2008; 9 TEJ Behrens (804_CR44) 2007; 10 N Kouda (804_CR84) 2005; 14 N Lambert (804_CR70) 2013; 9 IL Chuang (804_CR48) 1998; 80 JR Busemeyer (804_CR71) 2011; 118 H Steingroever (804_CR28) 2015; 3 WJ Ma (804_CR41) 2014; 37 KA Byrne (804_CR35) 2016; 16 J Kornmeier (804_CR23) 2017; 53 804_CR49 R Schack (804_CR83) 2001; 64 JH Sul (804_CR64) 2010; 66 B Studer (804_CR67) 2014; 103 JR Busemeyer (804_CR11) 2015; 2 Z Wei (804_CR27) 2018; 169 M Hsu (804_CR54) 2005; 310 JM Yearsley (804_CR51) 2017; 78 804_CR50 P beim Graben (804_CR72) 2006; 36 P Fakhari (804_CR6) 2013; 9 JR Busemeyer (804_CR90) 2002; 14 W-Y Ahn (804_CR92) 2017; 1 |
References_xml | – reference: CarleoGTroyerMSolving the quantum many-body problem with artificial neural networksScience20173556026061:CAS:528:DC%2BC2sXit1Okur0%3D2818397310.1126/science.aag2302 – reference: Piotrowski, E. W. & Sladkowski, J. The next stage: quantum game theory. in Mathematical Physics Research at the Cutting Edge (ed. Benton, C. V.) 247–268 (Nova Science Publishers, 2004). – reference: WorthyDAMaddoxWTAge-based differences in strategy use in choice tasksFront. Neurosci.2012514522232573325256210.3389/fnins.2011.00145 – reference: BusemeyerJRPothosEMFrancoRTruebloodJSA quantum theoretical explanation for probability judgment errorsPsychol. Rev.20111181932182148073910.1037/a0022542 – reference: IvakhnenkoOVShevchenkoSNNoriFSimulating quantum dynamical phenomena using classical oscillators: Landau-Zener-Stückelberg-Majorana interferometry, latching modulation, and motional averagingSci. Rep.201881:STN:280:DC%2BB3c7osFWiug%3D%3D30111853609391210.1038/s41598-018-28993-8 – reference: Dunjko, V., Taylor, J. M. & Briegel, H. J. Advances in quantum reinforcement learning. In Proc. 2017 IEEE International Conference on Systems, Man, and Cybernetics 282–287 (IEEE, 2017). – reference: Ahn, W. Y., Dai, J., Vassileva, J., Busemeyer, J. R. & Stout, J. C. in Progress in Brain Research Vol. 224 (eds Ekhtiari, H. & Paulus, M.) 53–65 (Elsevier, 2016). – reference: SteingroeverHData from 617 healthy participants performing the Iowa gambling task: a “many labs” collaborationJ. Open Psychol. Data2015334035310.5334/jopd.ak – reference: BusemeyerJRWangZShiffrinRMBayesian model comparison favors quantum over standard decision theory account of dynamic inconsistencyDecision2015211210.1037/dec0000017 – reference: AkaikeHA new look at the statistical model identificationIEEE Trans. Automat. Contr.19741971672310.1109/TAC.1974.1100705 – reference: Grover, L. K. A fast quantum mechanical algorithm for database search. In Proc. 28th Annual ACM Symposium on Theory of Computing 212–219 (ACM, 1996). – reference: Glimcher, P. W. & Fehr, E. Neuroeconomics: Decision Making and the Brain (Academic Press, 2013). – reference: AhnWYDecision-making in stimulant and opiate addicts in protracted abstinence: evidence from computational modeling with pure usersFront. Psychol.2014584925161631412937410.3389/fpsyg.2014.00849 – reference: CoxRWAFNI: software for analysis and visualization of functional magnetic resonance neuroimagesComput. Biomed. Res.1996291621731:STN:280:DyaK28vgvVChug%3D%3D881206810.1006/cbmr.1996.0014 – reference: AshtianiMAzgomiMAA survey of quantum-like approaches to decision making and cognitionMath. Soc. Sci.201575498010.1016/j.mathsocsci.2015.02.004 – reference: AhnW-YKrawitzAKimWBusemeyerJRBrownJWA model-based fMRI analysis with hierarchical Bayesian parameter estimationDecision2013182310.1037/2325-9965.1.S.8 – reference: BusemeyerJRStoutJCA contribution of cognitive decision models to clinical assessment: decomposing performance on the Bechara gambling taskPsychol. Assess.2002142532621221443210.1037/1040-3590.14.3.253 – reference: KornmeierJFriedelEWittmannMAtmanspacherHEEG correlates of cognitive time scales in the Necker-Zeno model for bistable perceptionConscious. Cogn.2017531361501:STN:280:DC%2BC1cjjsVanuw%3D%3D2866618610.1016/j.concog.2017.04.011 – reference: DongDChenCChuJTarnT-JRobust quantum-inspired reinforcement learning for robot navigationIEEE/ASME Trans. Mechatron.201217869710.1109/TMECH.2010.2090896 – reference: CavanaughJEUnifying the derivations for the Akaike and corrected Akaike information criteriaStat. Probab. Lett.19973320120810.1016/S0167-7152(96)00128-9 – reference: SulJHKimHHuhNLeeDJungMWDistinct roles of rodent orbitofrontal and medial prefrontal cortex in decision makingNeuron2010664494601:CAS:528:DC%2BC3cXms1art7g%3D20471357287262910.1016/j.neuron.2010.03.033 – reference: Busemeyer, J. R. & Bruza, P. D. Quantum Models of Cognition and Decision (Cambridge Univ. Press, 2012). – reference: SanfeyAGSocial decision-making: insights from game theory and neuroscienceScience20073185986021:CAS:528:DC%2BD2sXhtF2rtr7M1796255210.1126/science.1142996 – reference: Sutton, R. S. & Barto, A. G. Reinforcement Learning: An Introduction, Vol. 1 (MIT Press, 1998). – reference: NachevPKennardCHusainMFunctional role of the supplementary and pre-supplementary motor areasNat. Rev. Neurosci.200898568691:CAS:528:DC%2BD1cXht1GrtrbF1884327110.1038/nrn2478 – reference: TanjiJKurataKContrasting neuronal activity in supplementary and precentral motor cortex of monkeys. I. Responses to instructions determining motor responses to forthcoming signals of different modalitiesJ. Neurophysiol.1985531291411:STN:280:DyaL2M7jtlOrug%3D%3D397365410.1152/jn.1985.53.1.129 – reference: HuHReward and aversionAnnu. Rev. Neurosci.2016392973241:CAS:528:DC%2BC28XntlKgsLg%3D2714591510.1146/annurev-neuro-070815-014106 – reference: BachDRHulmeOPennyWDDolanRJThe known unknowns: neural representation of second-order uncertainty, and ambiguityJ. Neurosci.201131481148201:CAS:528:DC%2BC3MXkslSlt7Y%3D21451019316685110.1523/JNEUROSCI.1452-10.2011 – reference: SanfeyAGLoewensteinGMcClureSMCohenJDNeuroeconomics: cross-currents in research on decision-makingTrends Cogn. Sci.2006101081161646952410.1016/j.tics.2006.01.009 – reference: ManousakisEQuantum formalism to describe binocular rivalryBiosystems20099857661952014310.1016/j.biosystems.2009.05.012 – reference: NivYReinforcement learning in the brainJ. Math. Psychol.20095313915410.1016/j.jmp.2008.12.005 – reference: BusemeyerJRFakhariPKvamPNeural implementation of operations used in quantum cognitionProg. Biophys. Mol. Biol.201713053602848721810.1016/j.pbiomolbio.2017.04.007 – reference: TakahashiTCan quantum approaches benefit biology of decision making?Prog. Biophys. Mol. Biol.2017130991022860159510.1016/j.pbiomolbio.2017.06.002 – reference: HsuMBhattMAdolphsRTranelDCamererCFNeural systems responding to degrees of uncertainty in human decision-makingScience2005310168016831:CAS:528:DC%2BD2MXhtlSntb7J1633944510.1126/science.1115327 – reference: LeeDSeoHJungMWNeural basis of reinforcement learning and decision makingAnnu. Rev. Neurosci.2012352873081:CAS:528:DC%2BC38XhtFegsbvL22462543349062110.1146/annurev-neuro-062111-150512 – reference: FakhariPRajagopalKBalakrishnanSNBusemeyerJRQuantum inspired reinforcement learning in changing environmentNew Math. Nat. Comput.2013927329410.1142/S1793005713400073 – reference: O’DohertyJPHamptonAKimHModel-based fMRI and its application to reward learning and decision makingAnn. N. Y. Acad. Sci.2007110435531741692110.1196/annals.1390.022 – reference: KrainALWilsonAMArbuckleRCastellanosFXMilhamMPDistinct neural mechanisms of risk and ambiguity: a meta-analysis of decision-makingNeuroImage2006324774841663238310.1016/j.neuroimage.2006.02.047 – reference: Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2010). – reference: beim GrabenPFilkTAtmanspacherHEpistemic entanglement due to non-generating partitions of classical dynamical systemsInt. J. Theor. Phys.20135272373410.1007/s10773-012-1381-6 – reference: BliokhKYBekshaevAYKofmanAGNoriFPhoton trajectories, anomalous velocities and weak measurements: a classical interpretationNew J. Phys.20131507302210.1088/1367-2630/15/7/073022 – reference: Payzan-LeNestourEDunneSBossaertsPO’DohertyJPThe neural representation of unexpected uncertainty during value-based decision makingNeuron2013791912011:CAS:528:DC%2BC3sXhtVyqtLzJ23849203488574510.1016/j.neuron.2013.04.037 – reference: RoskiesALHow does neuroscience affect our conception of volition?Annu. Rev. Neurosci.2010331091301:CAS:528:DC%2BC3cXhsFartrzE2057276910.1146/annurev-neuro-060909-153151 – reference: BreversDNoëlXHeQMelroseJABecharaAIncreased ventral-striatal activity during monetary decision making is a marker of problem poker gambling severityAddict. Biol.2016216886992578164110.1111/adb.12239 – reference: DunjkoVTaylorJMBriegelHJQuantum-enhanced machine learningPhys. Rev. Lett.20161171305012771509910.1103/PhysRevLett.117.1305011:CAS:528:DC%2BC28XhvFKksrnM – reference: Wittek, P. Quantum Machine Learning: What Quantum Computing Means to Data Mining (Academic Press, 2014). – reference: AhnW-YHainesNZhangLRevealing neurocomputational mechanisms of reinforcement learning and decision-making with the hBayesDM packageComput. Psychiatr.20171245729601060586901310.1162/CPSY_a_00002 – reference: BehrensTEJWoolrichMWWaltonMERushworthMFSLearning the value of information in an uncertain worldNat. Neurosci.200710121412211:CAS:528:DC%2BD2sXps1Sgurg%3D1767605710.1038/nn1954 – reference: Daw, N. D. & Tobler, P. N. in Neuroeconomics 2nd edn (eds Glimcher, P. W. & Fehr, E.) 283–298 (Academic Press, 2014). – reference: YuAJDayanPUncertainty, neuromodulation, and attentionNeuron2005466816921:CAS:528:DC%2BD2MXkslykurg%3D1594413510.1016/j.neuron.2005.04.026 – reference: RushworthMFSBehrensTEJChoice, uncertainty and value in prefrontal and cingulate cortexNat. Neurosci.2008113893971:CAS:528:DC%2BD1cXjslSrtrY%3D1836804510.1038/nn2066 – reference: RangelACamererCMontaguePRA framework for studying the neurobiology of value-based decision makingNat. Rev. Neurosci.200895455561:CAS:528:DC%2BD1cXnsFChu7g%3D18545266433270810.1038/nrn2357 – reference: YearsleyJMAdvanced tools and concepts for quantum cognition: a tutorialJ. Math. Psychol.201778243910.1016/j.jmp.2016.07.005 – reference: AhnW-YKrawitzAKimWBusemeyerJRBrownJWA model-based fMRI analysis with hierarchical Bayesian parameter estimationJ. Neurosci. Psychol. Econ.201149511023795233368629910.1037/a0020684 – reference: YukalovVISornetteDQuantum probability and quantum decision-makingPhil. Trans. R. Soc. A2016374201501002662198910.1098/rsta.2015.01001:CAS:528:DC%2BC2sXptVChtQ%3D%3D – reference: VickeryTJJiangYVInferior parietal lobule supports decision making under uncertainty in humansCereb. Cortex2008199169251872819710.1093/cercor/bhn140 – reference: BecharaADamasioARDamasioHAndersonSWInsensitivity to future consequences following damage to human prefrontal cortexCognition1994507151:STN:280:DyaK2czhtlynsg%3D%3D803937510.1016/0010-0277(94)90018-3 – reference: PhelpsEALempertKMSokol-HessnerPEmotion and decision making: multiple modulatory neural circuitsAnnu. Rev. Neurosci.2014372632871:CAS:528:DC%2BC2cXhsVKgtL7O2490559710.1146/annurev-neuro-071013-014119 – reference: ByrneKANorrisDDWorthyDADopamine, depressive symptoms, and decision-making: the relationship between spontaneous eye blink rate and depressive symptoms predicts Iowa Gambling Task performanceCogn. Affect. Behav. Neurosci.201616233626383904504214410.3758/s13415-015-0377-0 – reference: WangYNeural substrates of updating the prediction through prediction error during decision makingNeuroImage20171571122853604610.1016/j.neuroimage.2017.05.041 – reference: WeiZChronic nicotine exposure impairs uncertainty modulation on reinforcement learning in anterior cingulate cortex and serotonin systemNeuroImage20181693233331:CAS:528:DC%2BC1cXjt1WmtQ%3D%3D2922175210.1016/j.neuroimage.2017.11.048 – reference: MaWJJazayeriMNeural coding of uncertainty and probabilityAnnu. Rev. Neurosci.2014372052201:CAS:528:DC%2BC2cXhsVKgt7fF2503249510.1146/annurev-neuro-071013-014017 – reference: O’NeillMSchultzWCoding of reward risk by orbitofrontal neurons is mostly distinct from coding of reward valueNeuron2010687898002109286610.1016/j.neuron.2010.09.0311:CAS:528:DC%2BC3cXhsVGntbrE – reference: SinghVA potential role of reward and punishment in the facilitation of the emotion-cognition dichotomy in the Iowa Gambling TaskFront. Psychol.20134944243815673865383 – reference: beim GrabenPAtmanspacherHComplementarity in classical dynamical systemsFound. Phys.20063629130610.1007/s10701-005-9013-0 – reference: de Barros, J. A. & Oas, G. in The Palgrave Handbook of Quantum Models in Social Science (eds Haven, E. & Khrennikov, A.) 195–228 (Springer, 2017). – reference: DongDChenCLiHTarnT-JQuantum reinforcement learningIEEE Trans. Syst. Man Cybern. Pt B2008381207122010.1109/TSMCB.2008.925743 – reference: WorthyDAPangBByrneKADecomposing the roles of perseveration and expected value representation in models of the Iowa gambling taskFront. Psychol.2013464024137137378623210.3389/fpsyg.2013.00640 – reference: Wagner, A. R. & Rescorla, R. A. in Inhibition and Learning (eds Boakes, R. A. & Halliday, M. S.) 301–336 (1972). – reference: HeQAltered dynamics between neural systems sub-serving decisions for unhealthy foodFront. Neurosci.2014835025414630422012010.3389/fnins.2014.00350 – reference: BiamonteJQuantum machine learningNature20175491952021:CAS:528:DC%2BC2sXhsV2isLjI2890591710.1038/nature23474 – reference: StephanKEPennyWDDaunizeauJMoranRJFristonKJBayesian model selection for group studiesNeuroImage200946100410171930693210.1016/j.neuroimage.2009.03.025 – reference: StuderBCenDWalshVThe angular gyrus and visuospatial attention in decision-making under riskNeuroImage201410375802521933310.1016/j.neuroimage.2014.09.003 – reference: XueGLuZLevinIPBecharaAThe impact of prior risk experiences on subsequent risky decision-making: the role of the insulaNeuroImage2010507097162004547010.1016/j.neuroimage.2009.12.097 – reference: AcerbiLJiWPractical Bayesian optimization for model fitting with Bayesian adaptive direct searchAdv. Neural Inf. Proc. Syst.20173018361846 – reference: HaggardPHuman volition: towards a neuroscience of willNat. Rev. Neurosci.200899349461:CAS:528:DC%2BD1cXhtl2gsLfE1902051210.1038/nrn2497 – reference: GoldJIShadlenMNThe neural basis of decision makingAnnu. Rev. Neurosci.2007305355741:CAS:528:DC%2BD2sXptFKnu7w%3D1760052510.1146/annurev.neuro.29.051605.113038 – reference: ErevIBarronGOn adaptation, maximization, and reinforcement learning among cognitive strategiesPsychol. Rev.20051129129311626247310.1037/0033-295X.112.4.912 – reference: KepecsAUchidaNZariwalaHAMainenZFNeural correlates, computation and behavioural impact of decision confidenceNature20084552272311:CAS:528:DC%2BD1cXhtV2qtLnO1869021010.1038/nature07200 – reference: LiNResting-state functional connectivity predicts impulsivity in economic decision-makingJ. Neurosci.201333488648951:CAS:528:DC%2BC3sXhtlOjs7vI23486959661899810.1523/JNEUROSCI.1342-12.2013 – reference: ChuangILGershenfeldNKubinecMExperimental implementation of fast quantum searchingPhys. Rev. Lett.19988034081:CAS:528:DyaK1cXislSnsL4%3D10.1103/PhysRevLett.80.3408 – reference: TverskyAKahnemanDAdvances in prospect theory: cumulative representation of uncertaintyJ. Risk Uncertain.1992529732310.1007/BF00122574 – reference: SchwarzGEstimating the dimension of a modelAnn. Stat.1978646146410.1214/aos/1176344136 – reference: YechiamEBusemeyerJRComparison of basic assumptions embedded in learning models for experience-based decision makingPsychon. Bull. Rev.2005123874021623562410.3758/BF03193783 – reference: ChenCTakahashiTNakagawaSInoueTKusumiIReinforcement learning in depression: a review of computational researchNeurosci. Biobehav. Rev.2015552472672597914010.1016/j.neubiorev.2015.05.005 – reference: SchackRBrunTACavesCMQuantum Bayes rulePhys. Rev. A20016401430510.1103/PhysRevA.64.0143051:CAS:528:DC%2BD3MXksFynsLY%3D – reference: KvamPDPleskacTJYuSBusemeyerJRInterference effects of choice on confidence: quantum characteristics of evidence accumulationProc. Natl Acad. Sci. USA201511210645106501:CAS:528:DC%2BC2MXhtlSit7vO2626132210.1073/pnas.15006881124553814 – reference: AhnW-YBusemeyerJRWagenmakersE-JStoutJCComparison of decision learning models using the generalization criterion methodCogn. Sci.200832137614022158545810.1080/03640210802352992 – reference: CrawfordDLevitAGhadermarzyNOberoiJSRonaghPReinforcement learning using quantum Boltzmann machinesQuantum Info. Comput.2018185174 – reference: OkanoKTanjiJNeuronal activities in the primate motor fields of the agranular frontal cortex preceding visually triggered and self-paced movementExp. Brain Res.1987661551661:STN:280:DyaL2s3hvVyqtQ%3D%3D358252910.1007/BF00236211 – reference: ErevIRothAEPredicting how people play games: reinforcement learning in experimental games with unique, mixed strategy equilibriaAm. Econ. Rev.199888848881 – reference: DajkaJŁuczkaJHänggiPDistance between quantum states in the presence of initial qubit-environment correlations: a comparative studyPhys. Rev. A20118403212010.1103/PhysRevA.84.0321201:CAS:528:DC%2BC3MXht1GhsLrJ – reference: De BarrosJASuppesPQuantum mechanics, interference, and the brainJ. Math. Psychol.20095330631310.1016/j.jmp.2009.03.005 – reference: GlimcherPWIndeterminacy in brain and behaviorAnnu. Rev. Psychol.20055625561570992810.1146/annurev.psych.55.090902.141429 – reference: YechiamEErtEEvaluating the reliance on past choices in adaptive learning modelsJ. Math. Psychol.200751758410.1016/j.jmp.2006.11.002 – reference: BuelowMTSuhrJARisky decision making in smoking and nonsmoking college students: examination of Iowa Gambling Task performance by deck type selectionsAppl. Neuropsychol. Child2014338442423694010.1080/21622965.2012.691065 – reference: KoudaNMatsuiNNishimuraHPeperFQubit neural network and its learning efficiencyNeural Comput. Appl.20051411412110.1007/s00521-004-0446-8 – reference: LambertNQuantum biologyNat. Phys.2013910181:CAS:528:DC%2BC38Xhsl2lu7nK10.1038/nphys2474 – reference: LittAPlassmannHShivBRangelADissociating valuation and saliency signals during decision-makingCereb. Cortex201021951022044484010.1093/cercor/bhq065 – volume: 53 start-page: 139 year: 2009 ident: 804_CR2 publication-title: J. Math. Psychol. doi: 10.1016/j.jmp.2008.12.005 – volume: 53 start-page: 306 year: 2009 ident: 804_CR69 publication-title: J. Math. Psychol. doi: 10.1016/j.jmp.2009.03.005 – volume: 56 start-page: 25 year: 2005 ident: 804_CR19 publication-title: Annu. Rev. Psychol. doi: 10.1146/annurev.psych.55.090902.141429 – volume: 84 start-page: 032120 year: 2011 ident: 804_CR39 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.84.032120 – volume: 46 start-page: 681 year: 2005 ident: 804_CR45 publication-title: Neuron doi: 10.1016/j.neuron.2005.04.026 – ident: 804_CR20 – volume: 17 start-page: 86 year: 2012 ident: 804_CR5 publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2010.2090896 – ident: 804_CR7 doi: 10.1016/B978-0-12-800953-6.00004-9 – ident: 804_CR1 – volume: 50 start-page: 709 year: 2010 ident: 804_CR58 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.12.097 – volume: 32 start-page: 1376 year: 2008 ident: 804_CR30 publication-title: Cogn. Sci. doi: 10.1080/03640210802352992 – volume: 32 start-page: 477 year: 2006 ident: 804_CR53 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.02.047 – ident: 804_CR49 doi: 10.1109/SMC.2017.8122616 – volume: 15 start-page: 073022 year: 2013 ident: 804_CR75 publication-title: New J. Phys. doi: 10.1088/1367-2630/15/7/073022 – volume: 103 start-page: 75 year: 2014 ident: 804_CR67 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.09.003 – ident: 804_CR15 doi: 10.1057/978-1-137-49276-0_10 – volume: 10 start-page: 108 year: 2006 ident: 804_CR18 publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2006.01.009 – volume: 21 start-page: 95 year: 2010 ident: 804_CR55 publication-title: Cereb. Cortex doi: 10.1093/cercor/bhq065 – volume: 14 start-page: 253 year: 2002 ident: 804_CR90 publication-title: Psychol. Assess. doi: 10.1037/1040-3590.14.3.253 – volume: 66 start-page: 449 year: 2010 ident: 804_CR64 publication-title: Neuron doi: 10.1016/j.neuron.2010.03.033 – volume: 169 start-page: 323 year: 2018 ident: 804_CR27 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.11.048 – volume: 112 start-page: 10645 year: 2015 ident: 804_CR12 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1500688112 – volume: 29 start-page: 162 year: 1996 ident: 804_CR98 publication-title: Comput. Biomed. Res. doi: 10.1006/cbmr.1996.0014 – volume: 51 start-page: 75 year: 2007 ident: 804_CR47 publication-title: J. Math. Psychol. doi: 10.1016/j.jmp.2006.11.002 – volume: 33 start-page: 201 year: 1997 ident: 804_CR36 publication-title: Stat. Probab. Lett. doi: 10.1016/S0167-7152(96)00128-9 – volume: 4 start-page: 944 year: 2013 ident: 804_CR46 publication-title: Front. Psychol. – volume: 19 start-page: 916 year: 2008 ident: 804_CR57 publication-title: Cereb. Cortex doi: 10.1093/cercor/bhn140 – volume: 18 start-page: 51 year: 2018 ident: 804_CR52 publication-title: Quantum Info. Comput. – volume: 2 start-page: 1 year: 2015 ident: 804_CR11 publication-title: Decision doi: 10.1037/dec0000017 – volume: 4 start-page: 640 year: 2013 ident: 804_CR31 publication-title: Front. Psychol. doi: 10.3389/fpsyg.2013.00640 – volume: 9 start-page: 856 year: 2008 ident: 804_CR60 publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn2478 – volume: 157 start-page: 1 year: 2017 ident: 804_CR56 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.05.041 – volume: 455 start-page: 227 year: 2008 ident: 804_CR65 publication-title: Nature doi: 10.1038/nature07200 – volume: 33 start-page: 109 year: 2010 ident: 804_CR82 publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev-neuro-060909-153151 – volume: 6 start-page: 461 year: 1978 ident: 804_CR37 publication-title: Ann. Stat. doi: 10.1214/aos/1176344136 – volume: 31 start-page: 4811 year: 2011 ident: 804_CR42 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1452-10.2011 – volume: 1 start-page: 24 year: 2017 ident: 804_CR92 publication-title: Comput. Psychiatr. doi: 10.1162/CPSY_a_00002 – volume: 38 start-page: 1207 year: 2008 ident: 804_CR4 publication-title: IEEE Trans. Syst. Man Cybern. Pt B doi: 10.1109/TSMCB.2008.925743 – volume: 10 start-page: 1214 year: 2007 ident: 804_CR44 publication-title: Nat. Neurosci. doi: 10.1038/nn1954 – volume: 14 start-page: 114 year: 2005 ident: 804_CR84 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-004-0446-8 – volume: 12 start-page: 387 year: 2005 ident: 804_CR89 publication-title: Psychon. Bull. Rev. doi: 10.3758/BF03193783 – volume: 78 start-page: 24 year: 2017 ident: 804_CR51 publication-title: J. Math. Psychol. doi: 10.1016/j.jmp.2016.07.005 – volume: 355 start-page: 602 year: 2017 ident: 804_CR76 publication-title: Science doi: 10.1126/science.aag2302 – volume: 130 start-page: 53 year: 2017 ident: 804_CR77 publication-title: Prog. Biophys. Mol. Biol. doi: 10.1016/j.pbiomolbio.2017.04.007 – volume: 30 start-page: 535 year: 2007 ident: 804_CR17 publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev.neuro.29.051605.113038 – volume: 118 start-page: 193 year: 2011 ident: 804_CR71 publication-title: Psychol. Rev. doi: 10.1037/a0022542 – volume: 80 start-page: 3408 year: 1998 ident: 804_CR48 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.80.3408 – volume: 88 start-page: 848 year: 1998 ident: 804_CR94 publication-title: Am. Econ. Rev. – volume: 39 start-page: 297 year: 2016 ident: 804_CR79 publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev-neuro-070815-014106 – volume: 35 start-page: 287 year: 2012 ident: 804_CR21 publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev-neuro-062111-150512 – volume: 66 start-page: 155 year: 1987 ident: 804_CR62 publication-title: Exp. Brain Res. doi: 10.1007/BF00236211 – volume: 98 start-page: 57 year: 2009 ident: 804_CR9 publication-title: Biosystems doi: 10.1016/j.biosystems.2009.05.012 – volume: 1104 start-page: 35 year: 2007 ident: 804_CR40 publication-title: Ann. N. Y. Acad. Sci. doi: 10.1196/annals.1390.022 – volume: 16 start-page: 23 year: 2016 ident: 804_CR35 publication-title: Cogn. Affect. Behav. Neurosci. doi: 10.3758/s13415-015-0377-0 – volume: 8 year: 2018 ident: 804_CR74 publication-title: Sci. Rep. doi: 10.1038/s41598-018-28993-8 – volume: 21 start-page: 688 year: 2016 ident: 804_CR88 publication-title: Addict. Biol. doi: 10.1111/adb.12239 – ident: 804_CR10 doi: 10.1017/CBO9780511997716 – volume: 36 start-page: 291 year: 2006 ident: 804_CR72 publication-title: Found. Phys. doi: 10.1007/s10701-005-9013-0 – volume: 5 start-page: 145 year: 2012 ident: 804_CR33 publication-title: Front. Neurosci. doi: 10.3389/fnins.2011.00145 – volume: 3 start-page: 38 year: 2014 ident: 804_CR26 publication-title: Appl. Neuropsychol. Child doi: 10.1080/21622965.2012.691065 – ident: 804_CR85 – volume: 318 start-page: 598 year: 2007 ident: 804_CR81 publication-title: Science doi: 10.1126/science.1142996 – volume: 53 start-page: 136 year: 2017 ident: 804_CR23 publication-title: Conscious. Cogn. doi: 10.1016/j.concog.2017.04.011 – volume: 9 start-page: 545 year: 2008 ident: 804_CR29 publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn2357 – ident: 804_CR50 – volume: 9 start-page: 10 year: 2013 ident: 804_CR70 publication-title: Nat. Phys. doi: 10.1038/nphys2474 – volume: 53 start-page: 129 year: 1985 ident: 804_CR61 publication-title: J. Neurophysiol. doi: 10.1152/jn.1985.53.1.129 – volume: 55 start-page: 247 year: 2015 ident: 804_CR80 publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2015.05.005 – volume: 4 start-page: 95 year: 2011 ident: 804_CR86 publication-title: J. Neurosci. Psychol. Econ. doi: 10.1037/a0020684 – ident: 804_CR25 doi: 10.1016/bs.pbr.2015.07.032 – volume: 310 start-page: 1680 year: 2005 ident: 804_CR54 publication-title: Science doi: 10.1126/science.1115327 – ident: 804_CR95 doi: 10.1145/237814.237866 – volume: 64 start-page: 014305 year: 2001 ident: 804_CR83 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.64.014305 – volume: 5 start-page: 849 year: 2014 ident: 804_CR32 publication-title: Front. Psychol. doi: 10.3389/fpsyg.2014.00849 – volume: 5 start-page: 297 year: 1992 ident: 804_CR68 publication-title: J. Risk Uncertain. doi: 10.1007/BF00122574 – volume: 50 start-page: 7 year: 1994 ident: 804_CR24 publication-title: Cognition doi: 10.1016/0010-0277(94)90018-3 – ident: 804_CR93 – volume: 9 start-page: 934 year: 2008 ident: 804_CR59 publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn2497 – volume: 37 start-page: 263 year: 2014 ident: 804_CR78 publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev-neuro-071013-014119 – volume: 37 start-page: 205 year: 2014 ident: 804_CR41 publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev-neuro-071013-014017 – volume: 8 start-page: 350 year: 2014 ident: 804_CR87 publication-title: Front. Neurosci. doi: 10.3389/fnins.2014.00350 – volume: 11 start-page: 389 year: 2008 ident: 804_CR63 publication-title: Nat. Neurosci. doi: 10.1038/nn2066 – volume: 33 start-page: 4886 year: 2013 ident: 804_CR99 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1342-12.2013 – volume: 30 start-page: 1836 year: 2017 ident: 804_CR96 publication-title: Adv. Neural Inf. Proc. Syst. – ident: 804_CR22 doi: 10.1016/B978-0-12-416008-8.00015-2 – volume: 549 start-page: 195 year: 2017 ident: 804_CR3 publication-title: Nature doi: 10.1038/nature23474 – volume: 19 start-page: 716 year: 1974 ident: 804_CR97 publication-title: IEEE Trans. Automat. Contr. doi: 10.1109/TAC.1974.1100705 – volume: 9 start-page: 273 year: 2013 ident: 804_CR6 publication-title: New Math. Nat. Comput. doi: 10.1142/S1793005713400073 – volume: 117 start-page: 130501 year: 2016 ident: 804_CR8 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.130501 – volume: 1 start-page: 8 year: 2013 ident: 804_CR34 publication-title: Decision doi: 10.1037/2325-9965.1.S.8 – volume: 130 start-page: 99 year: 2017 ident: 804_CR16 publication-title: Prog. Biophys. Mol. Biol. doi: 10.1016/j.pbiomolbio.2017.06.002 – volume: 374 start-page: 20150100 year: 2016 ident: 804_CR14 publication-title: Phil. Trans. R. Soc. A doi: 10.1098/rsta.2015.0100 – volume: 68 start-page: 789 year: 2010 ident: 804_CR66 publication-title: Neuron doi: 10.1016/j.neuron.2010.09.031 – volume: 79 start-page: 191 year: 2013 ident: 804_CR43 publication-title: Neuron doi: 10.1016/j.neuron.2013.04.037 – volume: 112 start-page: 912 year: 2005 ident: 804_CR91 publication-title: Psychol. Rev. doi: 10.1037/0033-295X.112.4.912 – volume: 3 start-page: 340 year: 2015 ident: 804_CR28 publication-title: J. Open Psychol. Data doi: 10.5334/jopd.ak – volume: 75 start-page: 49 year: 2015 ident: 804_CR13 publication-title: Math. Soc. Sci. doi: 10.1016/j.mathsocsci.2015.02.004 – volume: 46 start-page: 1004 year: 2009 ident: 804_CR38 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.03.025 – volume: 52 start-page: 723 year: 2013 ident: 804_CR73 publication-title: Int. J. Theor. Phys. doi: 10.1007/s10773-012-1381-6 |
SSID | ssj0001934976 |
Score | 2.393911 |
Snippet | Classical reinforcement learning (CRL) has been widely applied in neuroscience and psychology; however, quantum reinforcement learning (QRL), which shows... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 294 |
SubjectTerms | 59/36 631/378/2649/1409 639/766/483/640 Adult Applied psychology Behavioral Sciences Biomedical and Life Sciences Brain Mapping Cigarette Smoking - physiopathology Cognition Cortex Decision making Decision Making - physiology Executive Function - physiology Experimental Psychology Functional magnetic resonance imaging Gambling Humans Learning Life Sciences Magnetic Resonance Imaging Microeconomics Models, Theoretical Neurosciences Personality and Social Psychology Prefrontal Cortex - diagnostic imaging Prefrontal Cortex - physiology Prefrontal Cortex - physiopathology Quantum Theory Reinforcement Reinforcement, Psychology Smoking |
Title | Quantum reinforcement learning during human decision-making |
URI | https://link.springer.com/article/10.1038/s41562-019-0804-2 https://www.ncbi.nlm.nih.gov/pubmed/31959921 https://www.proquest.com/docview/2377947600 https://www.proquest.com/docview/2343042149 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFH_ovHgRv61OqeBJCVvTLE3wICobIigqCruVJnn14jZ168H_3iRNN0T03DQN772-77wfwAmzRkQUBkmPCySsyDKiZFoQY7RJ0BRC-vsVd_f85oXdDnvDkHCbhrbKRid6RW0m2uXIO9RNxmOujHTx_kEcapSrrgYIjWVYsSpY2OBr5ap___C0yLLIlFmD25QzU9GZuojFdSNIYp0lRuhPg_TLy_xVIfWGZ7AOa8FjjC9rFm_AEo43YXWuuL624PyxsvSpRvEn-jmo2qf84gAI8RrXVxFjD8cXmwCqQ0Yeh2obXgb95-sbEkARiE4zOiPUdKXICtXVKiu1MpRioVBwVqY6QY1KcqFVyaQudVlq610hipJiZqwngz2d7kBrPBnjHsQ9VVKV8QQTzhnHrjTIWVZY2dJUciMj6DaUyXWYGO6AK95yX7lORV4TM7fEzB0xcxrB6fyV93pcxn-L2w258_DnTPMFnyM4nj-2Mu8KGcUYJ5Vbw1wWxgZ3EezWbJp_LXXTciRNIjhr-LbY_M-j7P9_lANYpS7O9r1nbWjNPis8tM7ITB0FifsGdBXdkw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7BcoALKuUVCjSV4EJlsbG9TiyEELSg5bWiCCRuJrYnXGAX2F1V_Kn-Rmwn2RVC5cY5jm3NjD1PzwewwZ0SyXKLpCUyJDxPU6Ily4m1xiZo80yG9xXnHdG-5ic3rZsJ-Fe_hfFllfWdGC5q2zM-Rr5NfWc87tNIe49PxKNG-exqDaFRisUpvvx1Llt_9_i34-8mpUeHV7_apEIVIIaldECobTo_O9dNo9PCaEsp5hozwQtmEjSopciMLrg0hSkK48wTxKygmFpnCmDLMDfvJExx5lyZBkwdHHYuLsdRHcm4U_B1-pRl233vIfnqB0mcccYJfasA31m17zKyQdEdfYHZykKN90uRmoMJ7H6FmdFF-TIPO3-Gjh_Dh_gZQ99VE0KMcQVAcReXTx_jAP8X2wrEhzwE3KsFuP4Uci1Co9vr4jLELV1QnYoEEyG4wKa0KHiaO1k2VAorI2jWlFGm6lDugTLuVciUs0yVxFSOmMoTU9EItka_PJbtOT4avFqTW1Unta_GchXBj9Fnd8Z84iTvYm_ox3Af9XHOZARLJZtGqzHfnUfSJIKfNd_Gk_93Kysfb-U7TLevzs_U2XHn9BvMUO_jh7q3VWgMnoe45gyhgV6vpC-G288W-Fd2Fh53 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+reinforcement+learning+during+human+decision-making&rft.jtitle=Nature+human+behaviour&rft.au=Li%2C+Ji-An&rft.au=Dong%2C+Daoyi&rft.au=Wei%2C+Zhengde&rft.au=Liu%2C+Ying&rft.date=2020-03-01&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2397-3374&rft.volume=4&rft.issue=3&rft.spage=294&rft.epage=307&rft_id=info:doi/10.1038%2Fs41562-019-0804-2&rft.externalDocID=10_1038_s41562_019_0804_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2397-3374&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2397-3374&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2397-3374&client=summon |