Rising atmospheric CO2 levels result in an earlier cyanobacterial bloom-maintenance phase with higher algal biomass
•We study the pCO2 spatiotemporal variability in lake taihu from 2006 to 2016.•The pCO2-undersaturated areas in august absorb 0.53 t C/h of CO2 from atmosphere.•Algal biomass would increase with high pCO2 over a threshold (>13.56 µmol/L).•High CO2 condition can improve the nutrient-use efficiency...
Saved in:
Published in | Water research (Oxford) Vol. 185; p. 116267 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.10.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •We study the pCO2 spatiotemporal variability in lake taihu from 2006 to 2016.•The pCO2-undersaturated areas in august absorb 0.53 t C/h of CO2 from atmosphere.•Algal biomass would increase with high pCO2 over a threshold (>13.56 µmol/L).•High CO2 condition can improve the nutrient-use efficiency of cyanobacteria.•High CO2 lead to the earlier occurrence of cyanobacterial bloom-maintenance phase.
The effect of rising atmospheric CO2 on freshwater lakes is a subject of considerable debate. However, it is not clear how rising CO2 concentration affects cyanobacterial bloom development under potential nutrient limitation conditions and if CO2 should be taken into account in making nutrient reduction strategy. To fill the knowledge gaps, this study investigated the spatiotemporal variability in aquatic CO2 concentration (pCO2) from 2006 to 2016 in Lake Taihu, where cyanobacterial blooms often occurred from late spring to the early fall. Lake Taihu is an atmospheric CO2 source in May and November, with only 18% and 11% pCO2-undersaturated areas, respectively. During cyanobacterial bloom in August, 81% of the lake areas are pCO2-undersaturated, absorbing ~ 0.53 t C/h of atmospheric CO2. The results demonstrated that CO2 transfer across air-water interface was important in supporting cyanobacterial bloom development. Besides, Field investigation showed that the chlorophyll a level is significantly positively correlated with supersaturated pCO2 (>13.56 µmol/L) in May, but pCO2 decreases with high chlorophyll a levels in August, suggesting that cyanobacterial growth would be promoted by high pCO2 over a threshold. These observations suggested that the effect of rising atmospheric CO2 on freshwater lakes and cyanobacterial blooms should be paid attention to. Further, when the N- and P-levels are >0.3 mg/L and >0.02 mg/L, respectively, high-pCO2 conditions allow a more rapid growth rate of cyanobacteria via improved nutrient-use efficiency. Moreover, cyanobacteria afford maximum N- or P-use efficiency at lower N- or P-concentrations with high CO2 concentration. This improvement would result in an earlier bloom-maintenance phase and higher cyanobacterial biomass. In this case, nutrient reduction is more imperative under future high CO2 conditions.
[Display omitted] |
---|---|
AbstractList | •We study the pCO2 spatiotemporal variability in lake taihu from 2006 to 2016.•The pCO2-undersaturated areas in august absorb 0.53 t C/h of CO2 from atmosphere.•Algal biomass would increase with high pCO2 over a threshold (>13.56 µmol/L).•High CO2 condition can improve the nutrient-use efficiency of cyanobacteria.•High CO2 lead to the earlier occurrence of cyanobacterial bloom-maintenance phase.
The effect of rising atmospheric CO2 on freshwater lakes is a subject of considerable debate. However, it is not clear how rising CO2 concentration affects cyanobacterial bloom development under potential nutrient limitation conditions and if CO2 should be taken into account in making nutrient reduction strategy. To fill the knowledge gaps, this study investigated the spatiotemporal variability in aquatic CO2 concentration (pCO2) from 2006 to 2016 in Lake Taihu, where cyanobacterial blooms often occurred from late spring to the early fall. Lake Taihu is an atmospheric CO2 source in May and November, with only 18% and 11% pCO2-undersaturated areas, respectively. During cyanobacterial bloom in August, 81% of the lake areas are pCO2-undersaturated, absorbing ~ 0.53 t C/h of atmospheric CO2. The results demonstrated that CO2 transfer across air-water interface was important in supporting cyanobacterial bloom development. Besides, Field investigation showed that the chlorophyll a level is significantly positively correlated with supersaturated pCO2 (>13.56 µmol/L) in May, but pCO2 decreases with high chlorophyll a levels in August, suggesting that cyanobacterial growth would be promoted by high pCO2 over a threshold. These observations suggested that the effect of rising atmospheric CO2 on freshwater lakes and cyanobacterial blooms should be paid attention to. Further, when the N- and P-levels are >0.3 mg/L and >0.02 mg/L, respectively, high-pCO2 conditions allow a more rapid growth rate of cyanobacteria via improved nutrient-use efficiency. Moreover, cyanobacteria afford maximum N- or P-use efficiency at lower N- or P-concentrations with high CO2 concentration. This improvement would result in an earlier bloom-maintenance phase and higher cyanobacterial biomass. In this case, nutrient reduction is more imperative under future high CO2 conditions.
[Display omitted] The effect of rising atmospheric CO₂ on freshwater lakes is a subject of considerable debate. However, it is not clear how rising CO₂ concentration affects cyanobacterial bloom development under potential nutrient limitation conditions and if CO₂ should be taken into account in making nutrient reduction strategy. To fill the knowledge gaps, this study investigated the spatiotemporal variability in aquatic CO₂ concentration (pCO₂) from 2006 to 2016 in Lake Taihu, where cyanobacterial blooms often occurred from late spring to the early fall. Lake Taihu is an atmospheric CO₂ source in May and November, with only 18% and 11% pCO₂-undersaturated areas, respectively. During cyanobacterial bloom in August, 81% of the lake areas are pCO₂-undersaturated, absorbing ~ 0.53 t C/h of atmospheric CO₂. The results demonstrated that CO₂ transfer across air-water interface was important in supporting cyanobacterial bloom development. Besides, Field investigation showed that the chlorophyll a level is significantly positively correlated with supersaturated pCO₂ (>13.56 µmol/L) in May, but pCO₂ decreases with high chlorophyll a levels in August, suggesting that cyanobacterial growth would be promoted by high pCO₂ over a threshold. These observations suggested that the effect of rising atmospheric CO₂ on freshwater lakes and cyanobacterial blooms should be paid attention to. Further, when the N- and P-levels are >0.3 mg/L and >0.02 mg/L, respectively, high-pCO₂ conditions allow a more rapid growth rate of cyanobacteria via improved nutrient-use efficiency. Moreover, cyanobacteria afford maximum N- or P-use efficiency at lower N- or P-concentrations with high CO₂ concentration. This improvement would result in an earlier bloom-maintenance phase and higher cyanobacterial biomass. In this case, nutrient reduction is more imperative under future high CO₂ conditions. The effect of rising atmospheric CO2 on freshwater lakes is a subject of considerable debate. However, it is not clear how rising CO2 concentration affects cyanobacterial bloom development under potential nutrient limitation conditions and if CO2 should be taken into account in making nutrient reduction strategy. To fill the knowledge gaps, this study investigated the spatiotemporal variability in aquatic CO2 concentration (pCO2) from 2006 to 2016 in Lake Taihu, where cyanobacterial blooms often occurred from late spring to the early fall. Lake Taihu is an atmospheric CO2 source in May and November, with only 18% and 11% pCO2-undersaturated areas, respectively. During cyanobacterial bloom in August, 81% of the lake areas are pCO2-undersaturated, absorbing ~ 0.53 t C/h of atmospheric CO2. The results demonstrated that CO2 transfer across air-water interface was important in supporting cyanobacterial bloom development. Besides, Field investigation showed that the chlorophyll a level is significantly positively correlated with supersaturated pCO2 (>13.56 µmol/L) in May, but pCO2 decreases with high chlorophyll a levels in August, suggesting that cyanobacterial growth would be promoted by high pCO2 over a threshold. These observations suggested that the effect of rising atmospheric CO2 on freshwater lakes and cyanobacterial blooms should be paid attention to. Further, when the N- and P-levels are >0.3 mg/L and >0.02 mg/L, respectively, high-pCO2 conditions allow a more rapid growth rate of cyanobacteria via improved nutrient-use efficiency. Moreover, cyanobacteria afford maximum N- or P-use efficiency at lower N- or P-concentrations with high CO2 concentration. This improvement would result in an earlier bloom-maintenance phase and higher cyanobacterial biomass. In this case, nutrient reduction is more imperative under future high CO2 conditions.The effect of rising atmospheric CO2 on freshwater lakes is a subject of considerable debate. However, it is not clear how rising CO2 concentration affects cyanobacterial bloom development under potential nutrient limitation conditions and if CO2 should be taken into account in making nutrient reduction strategy. To fill the knowledge gaps, this study investigated the spatiotemporal variability in aquatic CO2 concentration (pCO2) from 2006 to 2016 in Lake Taihu, where cyanobacterial blooms often occurred from late spring to the early fall. Lake Taihu is an atmospheric CO2 source in May and November, with only 18% and 11% pCO2-undersaturated areas, respectively. During cyanobacterial bloom in August, 81% of the lake areas are pCO2-undersaturated, absorbing ~ 0.53 t C/h of atmospheric CO2. The results demonstrated that CO2 transfer across air-water interface was important in supporting cyanobacterial bloom development. Besides, Field investigation showed that the chlorophyll a level is significantly positively correlated with supersaturated pCO2 (>13.56 µmol/L) in May, but pCO2 decreases with high chlorophyll a levels in August, suggesting that cyanobacterial growth would be promoted by high pCO2 over a threshold. These observations suggested that the effect of rising atmospheric CO2 on freshwater lakes and cyanobacterial blooms should be paid attention to. Further, when the N- and P-levels are >0.3 mg/L and >0.02 mg/L, respectively, high-pCO2 conditions allow a more rapid growth rate of cyanobacteria via improved nutrient-use efficiency. Moreover, cyanobacteria afford maximum N- or P-use efficiency at lower N- or P-concentrations with high CO2 concentration. This improvement would result in an earlier bloom-maintenance phase and higher cyanobacterial biomass. In this case, nutrient reduction is more imperative under future high CO2 conditions. |
ArticleNumber | 116267 |
Author | Ma, Jingjie Tan, Qingqian Wang, Xun Wang, Peifang |
Author_xml | – sequence: 1 givenname: Peifang surname: Wang fullname: Wang, Peifang email: pfwang2005@hhu.edu.cn organization: Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, China, 210098 – sequence: 2 givenname: Jingjie surname: Ma fullname: Ma, Jingjie organization: Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, China, 210098 – sequence: 3 givenname: Xun surname: Wang fullname: Wang, Xun organization: Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, China, 210098 – sequence: 4 givenname: Qingqian surname: Tan fullname: Tan, Qingqian organization: Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, China, 210098 |
BookMark | eNqFkUuLFDEURoOMYE_rP3CRpZtq86yHC0EaXzAwILoOt1K3utOkkjZJzzD_3jTlyoWzCtyc7-Nyzy25CTEgIW8523HG2_en3SOUhHknmKgj3oq2e0E2vO-GRijV35ANY0o2XGr1itzmfGKMCSGHDck_XHbhQKEsMZ-PmJyl-3tBPT6gz7SWXnyhLlAIFCF5h4naJwhxBFsqDZ6OPsalWcCFggGCRXo-Qkb66MqRHt2hllLwhyvp4gI5vyYvZ_AZ3_x9t-TXl88_99-au_uv3_ef7horO1EaAZPu5cRVB1LrcRpkr4TkqAUIMc8t9CNHsG0HVrJWj3KE-iVH3eM8KJRyS96tvecUf18wF7O4bNF7CBgv2Yih11rIruufR5VUnRaiLrAlH1bUpphzwtlYV6C4GEoC5w1n5irFnMwqxVylmFVKDat_wufkFkhPz8U-rrHqBB-qA5Otw3rqySW0xUzR_b_gDxWNrBs |
CitedBy_id | crossref_primary_10_3390_w16020257 crossref_primary_10_1007_s10750_024_05644_w crossref_primary_10_1016_j_envres_2022_115175 crossref_primary_10_1016_j_jhazmat_2024_136182 crossref_primary_10_1016_j_watres_2024_122036 crossref_primary_10_1186_s12982_024_00302_x crossref_primary_10_1016_j_scitotenv_2024_174376 crossref_primary_10_1016_j_envres_2023_115488 crossref_primary_10_1016_j_horiz_2024_100124 crossref_primary_10_1007_s11356_021_16719_9 crossref_primary_10_3390_toxins15070411 crossref_primary_10_1016_j_chemosphere_2025_144285 crossref_primary_10_3389_fmicb_2024_1351796 crossref_primary_10_3390_agronomy13051353 crossref_primary_10_1016_j_chemosphere_2025_144210 crossref_primary_10_1016_j_envres_2023_117031 crossref_primary_10_1016_j_chemosphere_2022_134553 crossref_primary_10_3390_hydrobiology3010002 crossref_primary_10_3390_hydrobiology1040030 crossref_primary_10_1016_j_jhazmat_2024_136511 crossref_primary_10_1016_j_scitotenv_2021_151917 crossref_primary_10_1016_j_scitotenv_2022_158545 crossref_primary_10_3390_w15244258 |
Cites_doi | 10.1021/acs.est.5b05850 10.1111/nph.13334 10.1016/S0967-0645(02)00003-6 10.1038/ismej.2011.28 10.3354/meps11568 10.1371/journal.pone.0052212 10.1007/s10750-006-0511-7 10.1146/annurev-marine-120709-142720 10.1002/lno.10134 10.1111/j.1399-3054.2011.01452.x 10.3389/fmicb.2015.00401 10.1007/s00248-008-9425-4 10.1038/nclimate2682 10.1073/pnas.191258298 10.1021/es503744q 10.1073/pnas.0405211101 10.1016/j.watres.2019.01.012 10.1016/j.hal.2015.12.006 10.4319/lo.2006.51.3.1381 10.3354/meps10121 10.1126/science.265.5178.1568 10.4319/lo.2003.48.3.1010 10.3389/fmicb.2017.02547 10.1021/acs.est.8b01066 10.3389/fmicb.2015.00456 10.1016/j.watres.2019.01.017 10.1111/ele.12298 10.1007/BF00396306 10.1016/j.limno.2015.05.003 10.1371/journal.pone.0104325 10.1111/nph.13037 10.1093/jxb/err402 10.18307/2009.0212 10.4319/lo.2012.57.2.0607 10.1126/science.1167755 10.1016/j.scitotenv.2018.07.208 10.1093/jxb/erm112 10.1016/j.ecolmodel.2011.04.018 10.3390/life4040988 10.1111/ele.12549 10.1007/s11120-013-9809-2 10.1007/s11120-010-9608-y 10.1016/j.tree.2014.02.006 10.1038/nclimate2195 10.1007/s10750-016-2904-6 10.1073/pnas.96.23.13571 10.1002/lno.10798 10.1073/pnas.1018062108 10.1126/science.1097403 10.1093/plankt/25.4.445 10.1111/gcb.14337 10.5194/bg-10-567-2013 10.1007/s00442-014-3153-x 10.1016/j.scitotenv.2019.07.056 10.1038/nclimate1748 10.1002/lol2.10102 10.1111/ele.12835 10.1093/jxb/erq427 10.5194/bg-14-2865-2017 |
ContentType | Journal Article |
Copyright | 2020 Copyright © 2020. Published by Elsevier Ltd. |
Copyright_xml | – notice: 2020 – notice: Copyright © 2020. Published by Elsevier Ltd. |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.watres.2020.116267 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-2448 |
ExternalDocumentID | 10_1016_j_watres_2020_116267 S0043135420308046 |
GroupedDBID | --- --K --M -DZ -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABQEM ABQYD ACDAQ ACGFO ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE AEBSH AEFWE AEIPS AEKER AENEX AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ATOGT AXJTR BKOJK BLECG BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SCU SDF SDG SDP SES SPC SPCBC SSE SSH SSJ SSZ T5K TAE TN5 TWZ WH7 XPP ZCA ZMT ~02 ~G- ~KM .55 186 29R 6TJ AAQXK AAYWO AAYXX ABEFU ABWVN ABXDB ACKIV ACRPL ACVFH ADCNI ADMUD ADNMO AEGFY AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HMA HMC HVGLF HZ~ H~9 MVM OHT R2- RIG SEN SEP SEW WUQ X7M XOL YHZ YV5 ZXP ZY4 ~A~ 7X8 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c372t-2ad583d147a355bd9384231e52a22ff6a8b1eac67ac3065b3ba52a3b58ef94e33 |
IEDL.DBID | .~1 |
ISSN | 0043-1354 1879-2448 |
IngestDate | Tue Aug 05 11:35:25 EDT 2025 Fri Jul 11 10:56:23 EDT 2025 Tue Jul 01 01:21:03 EDT 2025 Thu Apr 24 23:09:51 EDT 2025 Sun Apr 06 06:52:56 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Freshwater lakes Cyanobacterial bloom Phosphorus Nitrogen CO2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-2ad583d147a355bd9384231e52a22ff6a8b1eac67ac3065b3ba52a3b58ef94e33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2434752242 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2985523778 proquest_miscellaneous_2434752242 crossref_citationtrail_10_1016_j_watres_2020_116267 crossref_primary_10_1016_j_watres_2020_116267 elsevier_sciencedirect_doi_10_1016_j_watres_2020_116267 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-15 |
PublicationDateYYYYMMDD | 2020-10-15 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Water research (Oxford) |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Cole, Caraco, Kling, Kratz (bib0006) 1994; 265 Low-Decarie, Fussmann, Bell (bib0028) 2014; 29 Vogt, St-Gelais, Bogard, Beisner, Del Giorgio (bib0059) 2017; 20 Oguchi, Terashima, Kou, Chow (bib0034) 2011; 142 Van de Waal, Verspagen, Finke, Vournazou, Immers, Kardinaal (bib0054) 2011; 5 Kangasjarvi, Neukermans, Li, Aro, Noctor (bib0024) 2012; 63 Liu, Zhang, Qin (bib0027) 2009; 21 Visser, Verspagen, Sandrini, Stal, Matthijs, Davis (bib0058) 2016; 54 Jansen, E., Overpeck, J., Briffa, K., Duplessy, J., Joos, F., Massondelmotte, V. et al. 2007. Climate Change 2007: the Physical Science Basis. Contribution of working group i to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge. Dean (bib0009) 1985 Ye, Wu, Liu, Yan, Kong (bib0064) 2015; 54 Hennon, Hernandez Limon, Haley, Juhl, Dyhrman (bib0017) 2017; 8 Gao (bib0015) 2018 Sommaruga, Chen, Liu (bib0049) 2009; 57 Verbeek, Gall, Hillebrand, Striebel (bib0055) 2018; 24 Rokitta, Rost (bib0043) 2012; 57 Tang, Krausfeldt, Shao, LeCleir, Stough, Gao (bib0051) 2018; 52 Xu, Paerl, Qin, Zhu, Hall, Wu (bib0062) 2015; 49 Wan, Chen, Zheng, Su, Li (bib0061) 2016; 50 Endres, Unger, Wannicke, Nausch, Voss, Engel (bib0013) 2013; 10 Crusius, Wanninkhof (bib0008) 2003; 48 Price, Woodger, Badger, Howitt, Tucker (bib0038) 2004; 101 Beversdorf, Miller, McMahon (bib0001) 2015; 6 Takahashi, Sutherland, Sweeney, Poisson, Nojiri (bib0050) 2002; 49 Reinfelder (bib0041) 2011; 3 Hipkin, Thomas, Syrett (bib0018) 1983; 77 Omata, Price, Badger, Okamura, Gohta, Ogawa (bib0036) 1999; 96 Paerl (bib0037) 2014; 4 Wood, Borges, Puddick, Biessy, Atalah, Hawes, Dietrich, Hamilton (bib0060) 2017; 785 Hasler, Butman, Jeffrey, Suski (bib0016) 2016; 19 Shibata, Ohkawa, Kaneko, Fukuzawa, Tabata, Kaplan (bib0048) 2001; 98 Yang, Xu, Liu, Xu (bib0063) 2019; 153 Conley, Paerl, Howarth, Boesch, Seitzinger, Havens (bib0007) 2009; 323 Eberlein, Van de Waal, Brandenburg, John, Voss, Achterberg (bib0012) 2016; 543 Hu, Jorgensen, Zhang, Chen, Hu, Yang (bib0021) 2011; 222 Li, Brown, Jeans, Donaher, Mccarthy, Campbell (bib0026) 2015; 2052 Rokitta, John, Rost (bib0042) 2012; 7 Hoppe, Holtz, Trimborn, Rost (bib0020) 2015; 207 Price, Badger, Woodger, Long (bib0040) 2008; 59 Dyhrman, Ruttenberg (bib0011) 2006; 51 Lewis, E. & Wallace, D., 1998. Program developed for CO2 system calculations, Report, Carbon Dioxide Information Analysis Center. Oak Ridge National Laboratory. Ma, Wang, Wang, Xu, Paerl (bib0030) 2019; 691 Sabine, Feely, Gruber, Key, Lee, Bullister (bib0044) 2004; 305 Huang, Zhang, Huang, Yang, Li, Zhang (bib0022) 2019; 153 Morales-Williams, Wanamaker, Downing (bib0032) 2017; 1411 Van Dam, Tobias, Holbach, Paerl, Zhu (bib0052) 2018; 63 Brennan, Collins (bib0003) 2015; 5 Shi, Zhang, Li, Yan, Gao (bib0047) 2019; 2912 Price (bib0039) 2011; 109 Campbell, Hossain, Cockshutt, Zhaxybayeva, Wu, Li (bib0004) 2013; 115 Chen, Qin, Teubner, Dokulil (bib0005) 2003; 25 Yu, Price, Badger (bib0065) 1994; 21 Sandrini, Cunsolo, Schuurmans, Matthijs, Huisman (bib0045) 2015; 6 Deng, Paerl, Qin, Zhang, Zhu, Jeppesen (bib0010) 2018; 645 Low-Decarie, Bell, Fussmann (bib0029) 2015; 177 Ohashi, Shi, Takatani, Aichi, Maeda, Watanabe (bib0035) 2011; 62 Hopkinson, Dupont, Allen, Morel (bib0019) 2011; 108 Van de Waal, Brandenburg, Keuskamp, Trimborn, Rokitta, Kranz (bib0053) 2019; 4 Gao, Qin, Sommaruga, Psenner (bib0014) 2007; 581 Shi, Li, Hopkinson, Hong, Li, Kao (bib0046) 2015; 60 Verspagen, Van de Waal, Finke, Visser, Donk, Huisman (bib0057) 2014; 9 Munday, Cheal, Dixson, Rummer, Fabricius (bib0033) 2014; 4 Verspagen, Van de Waal, Finke, Visser, Huisman (bib0056) 2014; 17 Boyd, Hutchins (bib0002) 2012; 470 Maberly, Barker, Stott, De Ville (bib0031) 2012; 3 Tang (10.1016/j.watres.2020.116267_bib0051) 2018; 52 Ohashi (10.1016/j.watres.2020.116267_bib0035) 2011; 62 Price (10.1016/j.watres.2020.116267_bib0040) 2008; 59 Li (10.1016/j.watres.2020.116267_bib0026) 2015; 2052 Hasler (10.1016/j.watres.2020.116267_bib0016) 2016; 19 Price (10.1016/j.watres.2020.116267_bib0039) 2011; 109 Shi (10.1016/j.watres.2020.116267_bib0046) 2015; 60 Low-Decarie (10.1016/j.watres.2020.116267_bib0029) 2015; 177 Maberly (10.1016/j.watres.2020.116267_bib0031) 2012; 3 Liu (10.1016/j.watres.2020.116267_bib0027) 2009; 21 Van de Waal (10.1016/j.watres.2020.116267_bib0053) 2019; 4 Rokitta (10.1016/j.watres.2020.116267_bib0043) 2012; 57 Vogt (10.1016/j.watres.2020.116267_bib0059) 2017; 20 Deng (10.1016/j.watres.2020.116267_bib0010) 2018; 645 Gao (10.1016/j.watres.2020.116267_bib0014) 2007; 581 Shibata (10.1016/j.watres.2020.116267_bib0048) 2001; 98 Van Dam (10.1016/j.watres.2020.116267_bib0052) 2018; 63 Xu (10.1016/j.watres.2020.116267_bib0062) 2015; 49 Wood (10.1016/j.watres.2020.116267_bib0060) 2017; 785 Huang (10.1016/j.watres.2020.116267_bib0022) 2019; 153 Reinfelder (10.1016/j.watres.2020.116267_bib0041) 2011; 3 Yu (10.1016/j.watres.2020.116267_bib0065) 1994; 21 Hopkinson (10.1016/j.watres.2020.116267_bib0019) 2011; 108 Wan (10.1016/j.watres.2020.116267_bib0061) 2016; 50 Verspagen (10.1016/j.watres.2020.116267_bib0056) 2014; 17 Ye (10.1016/j.watres.2020.116267_bib0064) 2015; 54 Price (10.1016/j.watres.2020.116267_bib0038) 2004; 101 Sabine (10.1016/j.watres.2020.116267_bib0044) 2004; 305 Yang (10.1016/j.watres.2020.116267_bib0063) 2019; 153 Van de Waal (10.1016/j.watres.2020.116267_bib0054) 2011; 5 Sommaruga (10.1016/j.watres.2020.116267_bib0049) 2009; 57 Paerl (10.1016/j.watres.2020.116267_bib0037) 2014; 4 Hu (10.1016/j.watres.2020.116267_bib0021) 2011; 222 Shi (10.1016/j.watres.2020.116267_bib0047) 2019; 2912 Low-Decarie (10.1016/j.watres.2020.116267_bib0028) 2014; 29 Conley (10.1016/j.watres.2020.116267_bib0007) 2009; 323 Hoppe (10.1016/j.watres.2020.116267_bib0020) 2015; 207 Kangasjarvi (10.1016/j.watres.2020.116267_bib0024) 2012; 63 Boyd (10.1016/j.watres.2020.116267_bib0002) 2012; 470 Eberlein (10.1016/j.watres.2020.116267_bib0012) 2016; 543 Crusius (10.1016/j.watres.2020.116267_bib0008) 2003; 48 Dean (10.1016/j.watres.2020.116267_bib0009) 1985 Omata (10.1016/j.watres.2020.116267_bib0036) 1999; 96 Sandrini (10.1016/j.watres.2020.116267_bib0045) 2015; 6 Brennan (10.1016/j.watres.2020.116267_bib0003) 2015; 5 Morales-Williams (10.1016/j.watres.2020.116267_bib0032) 2017; 1411 Verspagen (10.1016/j.watres.2020.116267_bib0057) 2014; 9 Takahashi (10.1016/j.watres.2020.116267_bib0050) 2002; 49 Campbell (10.1016/j.watres.2020.116267_bib0004) 2013; 115 Verbeek (10.1016/j.watres.2020.116267_bib0055) 2018; 24 Cole (10.1016/j.watres.2020.116267_bib0006) 1994; 265 Munday (10.1016/j.watres.2020.116267_bib0033) 2014; 4 Chen (10.1016/j.watres.2020.116267_bib0005) 2003; 25 Beversdorf (10.1016/j.watres.2020.116267_bib0001) 2015; 6 Hennon (10.1016/j.watres.2020.116267_bib0017) 2017; 8 Endres (10.1016/j.watres.2020.116267_bib0013) 2013; 10 Rokitta (10.1016/j.watres.2020.116267_bib0042) 2012; 7 10.1016/j.watres.2020.116267_bib0025 10.1016/j.watres.2020.116267_bib0023 Oguchi (10.1016/j.watres.2020.116267_bib0034) 2011; 142 Gao (10.1016/j.watres.2020.116267_bib0015) 2018 Hipkin (10.1016/j.watres.2020.116267_bib0018) 1983; 77 Ma (10.1016/j.watres.2020.116267_bib0030) 2019; 691 Dyhrman (10.1016/j.watres.2020.116267_bib0011) 2006; 51 Visser (10.1016/j.watres.2020.116267_bib0058) 2016; 54 |
References_xml | – volume: 29 start-page: 223 year: 2014 end-page: 232 ident: bib0028 article-title: ) Aquatic primary production in a high-CO publication-title: Trends Ecol. Evol. – year: 1985 ident: bib0009 article-title: Lange's Handbook of Chemistry – volume: 323 start-page: 1014 year: 2009 ident: bib0007 article-title: Controlling eutrophication: nitrogen and phosphorus publication-title: Science – volume: 1411 start-page: 2865 year: 2017 end-page: 2875 ident: bib0032 article-title: Cyanobacterial carbon concentrating mechanisms facilitate sustained CO publication-title: Biogeosciences – volume: 57 start-page: 667 year: 2009 end-page: 674 ident: bib0049 article-title: Multiple strategies of bloom-forming Microcystis to minimize damage by solar ultraviolet radiation in surface waters publication-title: Microb. Ecol. – volume: 51 start-page: 1381 year: 2006 end-page: 1390 ident: bib0011 article-title: Presence and regulation of alkaline phosphatase activity in eukaryotic phytoplankton from the coastal ocean: implications for dissolved organic phosphorus remineralization publication-title: Limnol. Oceanogr. – volume: 305 start-page: 367 year: 2004 end-page: 371 ident: bib0044 article-title: The oceanic sink for anthropogenic CO publication-title: Science – volume: 4 start-page: 487 year: 2014 end-page: 492 ident: bib0033 article-title: Behavioural impairment in reef fishes caused by ocean acidification at CO publication-title: Nat. Clim. Chang. – volume: 470 start-page: 125 year: 2012 end-page: 135 ident: bib0002 article-title: Understanding the responses of ocean biota to a complex matrix of cumulative anthropogenic change publication-title: Mar. Ecol.-Prog. Ser. – volume: 3 start-page: 291 year: 2011 ident: bib0041 article-title: Carbon concentrating mechanisms in eukaryotic marine phytoplankton publication-title: Ann. Rev. Mar. Sci. – reference: Lewis, E. & Wallace, D., 1998. Program developed for CO2 system calculations, Report, Carbon Dioxide Information Analysis Center. Oak Ridge National Laboratory. – volume: 10 start-page: 567 year: 2013 end-page: 582 ident: bib0013 article-title: Response of Nodularia spumigena to publication-title: Biogeosciences – volume: 57 start-page: 607 year: 2012 end-page: 618 ident: bib0043 article-title: Effects of CO publication-title: Limnol. Oceanogr. – year: 2018 ident: bib0015 article-title: Analysis of CO – volume: 24 start-page: 4532 year: 2018 end-page: 4543 ident: bib0055 article-title: Warming and oligotrophication cause shifts in freshwater phytoplankton communities publication-title: Glob. Change Biol. – volume: 21 start-page: 234 year: 2009 end-page: 241 ident: bib0027 article-title: Characterization of absorption and three-dimensional excitation-emission matrix spectra of chromophoric dissolved organic matter at the river inflow and the open area in Lake Taihu publication-title: J. Lake Sci. – volume: 153 start-page: 29 year: 2019 end-page: 38 ident: bib0063 article-title: Daily publication-title: Water Res – reference: Jansen, E., Overpeck, J., Briffa, K., Duplessy, J., Joos, F., Massondelmotte, V. et al. 2007. Climate Change 2007: the Physical Science Basis. Contribution of working group i to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge. – volume: 17 start-page: 951 year: 2014 end-page: 960 ident: bib0056 article-title: Contrasting effects of rising CO publication-title: Ecol. Lett. – volume: 77 start-page: 101 year: 1983 end-page: 105 ident: bib0018 article-title: Effects of nitrogen deficiency on nitrate reductase, nitrate assimilation and photosynthesis in unicellular marine algae publication-title: Mar. Biol. – volume: 115 start-page: 43 year: 2013 end-page: 54 ident: bib0004 article-title: Photosystem II protein clearance and FtsH function in the diatom publication-title: Photosynth. Res. – volume: 177 start-page: 875 year: 2015 end-page: 883 ident: bib0029 article-title: CO publication-title: Oecologia – volume: 48 start-page: 1010 year: 2003 end-page: 1017 ident: bib0008 article-title: Gas transfer velocities measured at low wind speed over a lake publication-title: Limnol. Oceanogr. – volume: 60 start-page: 1805 year: 2015 end-page: 1822 ident: bib0046 article-title: Interactive effects of light, nitrogen source, and carbon dioxide on energy metabolism in the diatom publication-title: Limnol. Oceanogr. – volume: 3 start-page: 391 year: 2012 end-page: 394 ident: bib0031 article-title: Catchment productivity controls CO publication-title: Nat. Clim. Chang. – volume: 20 start-page: 1395 year: 2017 end-page: 1404 ident: bib0059 article-title: Surface water CO publication-title: Ecol. Lett. – volume: 5 start-page: 892 year: 2015 end-page: 897 ident: bib0003 article-title: Growth responses of a green alga to multiple environmental drivers publication-title: Nat. Clim. Chang. – volume: 2912 start-page: 4239 year: 2019 end-page: 4297 ident: bib0047 article-title: Influence of elevated CO publication-title: Chinese Journal of Applied Ecology – volume: 265 start-page: 1568 year: 1994 end-page: 1570 ident: bib0006 article-title: Carbon dioxide supersaturation in the surface waters of lakes publication-title: Science – volume: 6 start-page: 401 year: 2015 ident: bib0045 article-title: Changes in gene expression, cell physiology and toxicity of the harmful cyanobacterium publication-title: Front. Microbiol. – volume: 96 start-page: 13571 year: 1999 end-page: 13576 ident: bib0036 article-title: Identification of an ATP-binding cassette transporter involved in bicarbonate uptake in the cyanobacterium publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 5 start-page: 1438 year: 2011 end-page: 1450 ident: bib0054 article-title: Reversal in competitive dominance of a toxic versus non-toxic cyanobacterium in response to rising CO publication-title: ISME J – volume: 222 start-page: 2973 year: 2011 end-page: 2991 ident: bib0021 article-title: A model on the carbon cycling in Lake Taihu, China publication-title: Ecol. Model. – volume: 6 start-page: 456 year: 2015 ident: bib0001 article-title: Long-term monitoring reveals carbon-nitrogen metabolism key to microcystin production in eutrophic lakes publication-title: Front. Microbiol. – volume: 785 start-page: 71 year: 2017 end-page: 89 ident: bib0060 article-title: Contrasting cyanobacterial communities and microcystin concentrations in summers with extreme weather events: insights into potential effects of climate change publication-title: Hydrobiologia – volume: 7 start-page: e52212 year: 2012 ident: bib0042 article-title: Ocean acidification affects redox-balance and ion-homeostasis in the life-cycle stages of publication-title: PLoS ONE – volume: 109 start-page: 47 year: 2011 end-page: 57 ident: bib0039 article-title: Inorganic carbon transporters of the cyanobacterial CO publication-title: Photosynth. Res. – volume: 581 start-page: 177 year: 2007 end-page: 188 ident: bib0014 article-title: The bacterioplankton of Lake Taihu, China: abundance, biomass, and production publication-title: Hydrobiologia – volume: 62 start-page: 1411 year: 2011 end-page: 1424 ident: bib0035 article-title: Regulation of nitrate assimilation in cyanobacteria publication-title: J. Exp. Bot. – volume: 63 start-page: 1643 year: 2018 end-page: 1659 ident: bib0052 article-title: CO publication-title: Limnol. Oceanogr. – volume: 98 start-page: 11789 year: 2001 end-page: 11794 ident: bib0048 article-title: Distinct constitutive and low-CO publication-title: Proc. Natl. Acad. Sci. U .S. A. – volume: 49 start-page: 1051 year: 2015 end-page: 1059 ident: bib0062 article-title: Determining critical nutrient thresholds needed to control harmful cyanobacterial blooms in eutrophic Lake Taihu, China publication-title: Environ. Sci. Technol. – volume: 153 start-page: 187 year: 2019 end-page: 199 ident: bib0022 article-title: Long-term variation of phytoplankton biomass and physiology in Taihu lake as observed via MODIS satellite publication-title: Water Res – volume: 691 start-page: 1144 year: 2019 end-page: 1154 ident: bib0030 article-title: Cyanobacteria in eutrophic waters benefit from rising atmospheric CO publication-title: Sci. Total Environ. – volume: 50 start-page: 9915 year: 2016 end-page: 9922 ident: bib0061 article-title: Effect of CO publication-title: Environ. Sci. Technol. – volume: 543 start-page: 127 year: 2016 end-page: 140 ident: bib0012 article-title: Interactive effects of ocean acidification and nitrogen limitation on two bloom-forming dinoflagellate species publication-title: Mar. Ecol.-Prog. Ser. – volume: 59 start-page: 1441 year: 2008 end-page: 1461 ident: bib0040 article-title: Advances in understanding the cyanobacterial CO publication-title: J Exp Bot – volume: 49 start-page: 1601 year: 2002 end-page: 1622 ident: bib0050 article-title: Global sea–air CO publication-title: Deep-Sea Res. Part II-Top. Stud. Oceanogr. – volume: 21 start-page: 185 year: 1994 end-page: 195 ident: bib0065 article-title: Characterisation of CO publication-title: Aust. J. Plant Physiol. – volume: 108 start-page: 3830 year: 2011 end-page: 3837 ident: bib0019 article-title: Efficiency of the CO publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 25 start-page: 445 year: 2003 end-page: 453 ident: bib0005 article-title: Long-term dynamics of phytoplankton assemblages: microcystis-domination in Lake Taihu, a large shallow lake in China publication-title: J. Plankton Res. – volume: 8 start-page: 2547 year: 2017 ident: bib0017 article-title: Diverse CO publication-title: Front. Microbiol. – volume: 63 start-page: 1619 year: 2012 end-page: 1636 ident: bib0024 article-title: Photosynthesis, photorespiration, and light signaling in defense responses publication-title: J. Exp. Bot. – volume: 142 start-page: 47 year: 2011 end-page: 55 ident: bib0034 article-title: Operation of dual mechanisms that both lead to photoinactivation of Photosystem II in leaves by visible light publication-title: Physiol. Plant. – volume: 4 start-page: 37 year: 2019 end-page: 43 ident: bib0053 article-title: Highest plasticity of carbon-concentrating mechanisms in earliest evolved phytoplankton publication-title: Limnology and Oceanography Letters – volume: 645 start-page: 1361 year: 2018 end-page: 1370 ident: bib0010 article-title: Climatically-modulated decline in wind speed may strongly affect eutrophication in shallow lakes publication-title: Sci. Total Environ. – volume: 207 start-page: 159 year: 2015 end-page: 171 ident: bib0020 article-title: Ocean acidification decreases the light‐use efficiency in an Antarctic diatom under dynamic but not constant light publication-title: New Phytol – volume: 9 year: 2014 ident: bib0057 article-title: Rising CO publication-title: PLoS ONE – volume: 52 start-page: 11049 year: 2018 end-page: 11059 ident: bib0051 article-title: Seasonal gene expression and the ecophysiological implications of toxic publication-title: Environ. Sci. Technol. – volume: 101 start-page: 18228 year: 2004 end-page: 18233 ident: bib0038 article-title: Identification of a SulP-type bicarbonate transporter in marine cyanobacteria publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 4 start-page: 988 year: 2014 end-page: 1012 ident: bib0037 article-title: Mitigating harmful cyanobacterial blooms in a human-and climatically-impacted world publication-title: Life – volume: 54 start-page: 145 year: 2016 end-page: 159 ident: bib0058 article-title: How rising CO publication-title: Harmful Algae – volume: 54 start-page: 5 year: 2015 end-page: 13 ident: bib0064 article-title: Dynamics and sources of dissolved organic carbon during phytoplankton bloom in hypereutrophic Lake Taihu (China publication-title: Limnologica – volume: 19 start-page: 98 year: 2016 end-page: 108 ident: bib0016 article-title: Freshwater biota and rising publication-title: Ecol. Lett. – volume: 2052 start-page: 533 year: 2015 end-page: 543 ident: bib0026 article-title: The nitrogen costs of photosynthesis in a diatom under current and future publication-title: New Phytol – volume: 50 start-page: 9915 year: 2016 ident: 10.1016/j.watres.2020.116267_bib0061 article-title: Effect of CO2 on microbial denitrification via inhibiting electron transport and consumption publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b05850 – volume: 207 start-page: 159 year: 2015 ident: 10.1016/j.watres.2020.116267_bib0020 article-title: Ocean acidification decreases the light‐use efficiency in an Antarctic diatom under dynamic but not constant light publication-title: New Phytol doi: 10.1111/nph.13334 – volume: 49 start-page: 1601 year: 2002 ident: 10.1016/j.watres.2020.116267_bib0050 article-title: Global sea–air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects publication-title: Deep-Sea Res. Part II-Top. Stud. Oceanogr. doi: 10.1016/S0967-0645(02)00003-6 – volume: 5 start-page: 1438 year: 2011 ident: 10.1016/j.watres.2020.116267_bib0054 article-title: Reversal in competitive dominance of a toxic versus non-toxic cyanobacterium in response to rising CO2 publication-title: ISME J doi: 10.1038/ismej.2011.28 – volume: 543 start-page: 127 year: 2016 ident: 10.1016/j.watres.2020.116267_bib0012 article-title: Interactive effects of ocean acidification and nitrogen limitation on two bloom-forming dinoflagellate species publication-title: Mar. Ecol.-Prog. Ser. doi: 10.3354/meps11568 – volume: 7 start-page: e52212 year: 2012 ident: 10.1016/j.watres.2020.116267_bib0042 article-title: Ocean acidification affects redox-balance and ion-homeostasis in the life-cycle stages of Emiliania huxleyi publication-title: PLoS ONE doi: 10.1371/journal.pone.0052212 – volume: 581 start-page: 177 year: 2007 ident: 10.1016/j.watres.2020.116267_bib0014 article-title: The bacterioplankton of Lake Taihu, China: abundance, biomass, and production publication-title: Hydrobiologia doi: 10.1007/s10750-006-0511-7 – volume: 3 start-page: 291 year: 2011 ident: 10.1016/j.watres.2020.116267_bib0041 article-title: Carbon concentrating mechanisms in eukaryotic marine phytoplankton publication-title: Ann. Rev. Mar. Sci. doi: 10.1146/annurev-marine-120709-142720 – volume: 60 start-page: 1805 year: 2015 ident: 10.1016/j.watres.2020.116267_bib0046 article-title: Interactive effects of light, nitrogen source, and carbon dioxide on energy metabolism in the diatom Thalassiosira pseudonana publication-title: Limnol. Oceanogr. doi: 10.1002/lno.10134 – volume: 142 start-page: 47 year: 2011 ident: 10.1016/j.watres.2020.116267_bib0034 article-title: Operation of dual mechanisms that both lead to photoinactivation of Photosystem II in leaves by visible light publication-title: Physiol. Plant. doi: 10.1111/j.1399-3054.2011.01452.x – volume: 6 start-page: 401 year: 2015 ident: 10.1016/j.watres.2020.116267_bib0045 article-title: Changes in gene expression, cell physiology and toxicity of the harmful cyanobacterium Microcystis aeruginosa at elevated CO2 publication-title: Front. Microbiol. doi: 10.3389/fmicb.2015.00401 – ident: 10.1016/j.watres.2020.116267_bib0023 – volume: 57 start-page: 667 year: 2009 ident: 10.1016/j.watres.2020.116267_bib0049 article-title: Multiple strategies of bloom-forming Microcystis to minimize damage by solar ultraviolet radiation in surface waters publication-title: Microb. Ecol. doi: 10.1007/s00248-008-9425-4 – volume: 5 start-page: 892 issue: 9 year: 2015 ident: 10.1016/j.watres.2020.116267_bib0003 article-title: Growth responses of a green alga to multiple environmental drivers publication-title: Nat. Clim. Chang. doi: 10.1038/nclimate2682 – volume: 98 start-page: 11789 year: 2001 ident: 10.1016/j.watres.2020.116267_bib0048 article-title: Distinct constitutive and low-CO2-induced CO2 uptake systems in cyanobacteria: genes involved and their phylogenetic relationship with homologous genes in other organisms publication-title: Proc. Natl. Acad. Sci. U .S. A. doi: 10.1073/pnas.191258298 – volume: 49 start-page: 1051 year: 2015 ident: 10.1016/j.watres.2020.116267_bib0062 article-title: Determining critical nutrient thresholds needed to control harmful cyanobacterial blooms in eutrophic Lake Taihu, China publication-title: Environ. Sci. Technol. doi: 10.1021/es503744q – volume: 101 start-page: 18228 year: 2004 ident: 10.1016/j.watres.2020.116267_bib0038 article-title: Identification of a SulP-type bicarbonate transporter in marine cyanobacteria publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0405211101 – volume: 153 start-page: 29 year: 2019 ident: 10.1016/j.watres.2020.116267_bib0063 article-title: Daily pCO2 and CO2 flux variations in a subtropical mesotrophic shallow lake publication-title: Water Res doi: 10.1016/j.watres.2019.01.012 – volume: 54 start-page: 145 year: 2016 ident: 10.1016/j.watres.2020.116267_bib0058 article-title: How rising CO2 and global warming may stimulate harmful cyanobacterial blooms publication-title: Harmful Algae doi: 10.1016/j.hal.2015.12.006 – volume: 51 start-page: 1381 year: 2006 ident: 10.1016/j.watres.2020.116267_bib0011 article-title: Presence and regulation of alkaline phosphatase activity in eukaryotic phytoplankton from the coastal ocean: implications for dissolved organic phosphorus remineralization publication-title: Limnol. Oceanogr. doi: 10.4319/lo.2006.51.3.1381 – volume: 470 start-page: 125 year: 2012 ident: 10.1016/j.watres.2020.116267_bib0002 article-title: Understanding the responses of ocean biota to a complex matrix of cumulative anthropogenic change publication-title: Mar. Ecol.-Prog. Ser. doi: 10.3354/meps10121 – volume: 265 start-page: 1568 year: 1994 ident: 10.1016/j.watres.2020.116267_bib0006 article-title: Carbon dioxide supersaturation in the surface waters of lakes publication-title: Science doi: 10.1126/science.265.5178.1568 – volume: 48 start-page: 1010 year: 2003 ident: 10.1016/j.watres.2020.116267_bib0008 article-title: Gas transfer velocities measured at low wind speed over a lake publication-title: Limnol. Oceanogr. doi: 10.4319/lo.2003.48.3.1010 – year: 1985 ident: 10.1016/j.watres.2020.116267_bib0009 – volume: 8 start-page: 2547 year: 2017 ident: 10.1016/j.watres.2020.116267_bib0017 article-title: Diverse CO2-induced responses in physiology and gene expression among eukaryotic phytoplankton publication-title: Front. Microbiol. doi: 10.3389/fmicb.2017.02547 – volume: 52 start-page: 11049 year: 2018 ident: 10.1016/j.watres.2020.116267_bib0051 article-title: Seasonal gene expression and the ecophysiological implications of toxic Microcystis aeruginosa blooms in Lake Taihu publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b01066 – volume: 6 start-page: 456 year: 2015 ident: 10.1016/j.watres.2020.116267_bib0001 article-title: Long-term monitoring reveals carbon-nitrogen metabolism key to microcystin production in eutrophic lakes publication-title: Front. Microbiol. doi: 10.3389/fmicb.2015.00456 – volume: 153 start-page: 187 issue: APR.15 year: 2019 ident: 10.1016/j.watres.2020.116267_bib0022 article-title: Long-term variation of phytoplankton biomass and physiology in Taihu lake as observed via MODIS satellite publication-title: Water Res doi: 10.1016/j.watres.2019.01.017 – volume: 17 start-page: 951 year: 2014 ident: 10.1016/j.watres.2020.116267_bib0056 article-title: Contrasting effects of rising CO2 on primary production and ecological stoichiometry at different nutrient levels publication-title: Ecol. Lett. doi: 10.1111/ele.12298 – volume: 77 start-page: 101 year: 1983 ident: 10.1016/j.watres.2020.116267_bib0018 article-title: Effects of nitrogen deficiency on nitrate reductase, nitrate assimilation and photosynthesis in unicellular marine algae publication-title: Mar. Biol. doi: 10.1007/BF00396306 – volume: 54 start-page: 5 year: 2015 ident: 10.1016/j.watres.2020.116267_bib0064 article-title: Dynamics and sources of dissolved organic carbon during phytoplankton bloom in hypereutrophic Lake Taihu (China publication-title: Limnologica doi: 10.1016/j.limno.2015.05.003 – volume: 9 year: 2014 ident: 10.1016/j.watres.2020.116267_bib0057 article-title: Rising CO2 levels will intensify phytoplankton blooms in eutrophic and hypertrophic lakes publication-title: PLoS ONE doi: 10.1371/journal.pone.0104325 – volume: 2052 start-page: 533 year: 2015 ident: 10.1016/j.watres.2020.116267_bib0026 article-title: The nitrogen costs of photosynthesis in a diatom under current and future pCO2 publication-title: New Phytol doi: 10.1111/nph.13037 – volume: 2912 start-page: 4239 year: 2019 ident: 10.1016/j.watres.2020.116267_bib0047 article-title: Influence of elevated CO2 on nitrification and denitrification in water bodies: a review publication-title: Chinese Journal of Applied Ecology – volume: 63 start-page: 1619 year: 2012 ident: 10.1016/j.watres.2020.116267_bib0024 article-title: Photosynthesis, photorespiration, and light signaling in defense responses publication-title: J. Exp. Bot. doi: 10.1093/jxb/err402 – year: 2018 ident: 10.1016/j.watres.2020.116267_bib0015 – volume: 21 start-page: 234 year: 2009 ident: 10.1016/j.watres.2020.116267_bib0027 article-title: Characterization of absorption and three-dimensional excitation-emission matrix spectra of chromophoric dissolved organic matter at the river inflow and the open area in Lake Taihu publication-title: J. Lake Sci. doi: 10.18307/2009.0212 – volume: 57 start-page: 607 year: 2012 ident: 10.1016/j.watres.2020.116267_bib0043 article-title: Effects of CO2 and their modulation by light in the life-cycle stages of the coccolithophore Emiliania huxleyi publication-title: Limnol. Oceanogr. doi: 10.4319/lo.2012.57.2.0607 – volume: 323 start-page: 1014 year: 2009 ident: 10.1016/j.watres.2020.116267_bib0007 article-title: Controlling eutrophication: nitrogen and phosphorus publication-title: Science doi: 10.1126/science.1167755 – volume: 645 start-page: 1361 year: 2018 ident: 10.1016/j.watres.2020.116267_bib0010 article-title: Climatically-modulated decline in wind speed may strongly affect eutrophication in shallow lakes publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.07.208 – volume: 59 start-page: 1441 year: 2008 ident: 10.1016/j.watres.2020.116267_bib0040 article-title: Advances in understanding the cyanobacterial CO2-concentrating-mechanism (CCM): functional components, Ci transporters, diversity, genetic regulation and prospects for engineering into plants publication-title: J Exp Bot doi: 10.1093/jxb/erm112 – volume: 222 start-page: 2973 year: 2011 ident: 10.1016/j.watres.2020.116267_bib0021 article-title: A model on the carbon cycling in Lake Taihu, China publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2011.04.018 – volume: 4 start-page: 988 issue: 4 year: 2014 ident: 10.1016/j.watres.2020.116267_bib0037 article-title: Mitigating harmful cyanobacterial blooms in a human-and climatically-impacted world publication-title: Life doi: 10.3390/life4040988 – ident: 10.1016/j.watres.2020.116267_bib0025 – volume: 19 start-page: 98 year: 2016 ident: 10.1016/j.watres.2020.116267_bib0016 article-title: Freshwater biota and rising pCO2? publication-title: Ecol. Lett. doi: 10.1111/ele.12549 – volume: 115 start-page: 43 year: 2013 ident: 10.1016/j.watres.2020.116267_bib0004 article-title: Photosystem II protein clearance and FtsH function in the diatom Thalassiosira pseudonana publication-title: Photosynth. Res. doi: 10.1007/s11120-013-9809-2 – volume: 109 start-page: 47 year: 2011 ident: 10.1016/j.watres.2020.116267_bib0039 article-title: Inorganic carbon transporters of the cyanobacterial CO2 concentrating mechanism publication-title: Photosynth. Res. doi: 10.1007/s11120-010-9608-y – volume: 29 start-page: 223 year: 2014 ident: 10.1016/j.watres.2020.116267_bib0028 article-title: ) Aquatic primary production in a high-CO2 world publication-title: Trends Ecol. Evol. doi: 10.1016/j.tree.2014.02.006 – volume: 4 start-page: 487 year: 2014 ident: 10.1016/j.watres.2020.116267_bib0033 article-title: Behavioural impairment in reef fishes caused by ocean acidification at CO2 seeps publication-title: Nat. Clim. Chang. doi: 10.1038/nclimate2195 – volume: 785 start-page: 71 year: 2017 ident: 10.1016/j.watres.2020.116267_bib0060 article-title: Contrasting cyanobacterial communities and microcystin concentrations in summers with extreme weather events: insights into potential effects of climate change publication-title: Hydrobiologia doi: 10.1007/s10750-016-2904-6 – volume: 96 start-page: 13571 year: 1999 ident: 10.1016/j.watres.2020.116267_bib0036 article-title: Identification of an ATP-binding cassette transporter involved in bicarbonate uptake in the cyanobacterium Synechococcus sp. strain PCC 7942 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.96.23.13571 – volume: 63 start-page: 1643 year: 2018 ident: 10.1016/j.watres.2020.116267_bib0052 article-title: CO2 limited conditions favor cyanobacteria in a hypereutrophic lake: an empirical and theoretical stable isotope study publication-title: Limnol. Oceanogr. doi: 10.1002/lno.10798 – volume: 108 start-page: 3830 year: 2011 ident: 10.1016/j.watres.2020.116267_bib0019 article-title: Efficiency of the CO2-concentrating mechanism of diatoms publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1018062108 – volume: 305 start-page: 367 year: 2004 ident: 10.1016/j.watres.2020.116267_bib0044 article-title: The oceanic sink for anthropogenic CO2 publication-title: Science doi: 10.1126/science.1097403 – volume: 25 start-page: 445 issue: 4 year: 2003 ident: 10.1016/j.watres.2020.116267_bib0005 article-title: Long-term dynamics of phytoplankton assemblages: microcystis-domination in Lake Taihu, a large shallow lake in China publication-title: J. Plankton Res. doi: 10.1093/plankt/25.4.445 – volume: 24 start-page: 4532 year: 2018 ident: 10.1016/j.watres.2020.116267_bib0055 article-title: Warming and oligotrophication cause shifts in freshwater phytoplankton communities publication-title: Glob. Change Biol. doi: 10.1111/gcb.14337 – volume: 10 start-page: 567 year: 2013 ident: 10.1016/j.watres.2020.116267_bib0013 article-title: Response of Nodularia spumigena to pCO2; Part 2: exudation and extracellular enzyme activities publication-title: Biogeosciences doi: 10.5194/bg-10-567-2013 – volume: 177 start-page: 875 year: 2015 ident: 10.1016/j.watres.2020.116267_bib0029 article-title: CO2 alters community composition and response to nutrient enrichment of freshwater phytoplankton publication-title: Oecologia doi: 10.1007/s00442-014-3153-x – volume: 691 start-page: 1144 year: 2019 ident: 10.1016/j.watres.2020.116267_bib0030 article-title: Cyanobacteria in eutrophic waters benefit from rising atmospheric CO2 concentrations publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.07.056 – volume: 3 start-page: 391 year: 2012 ident: 10.1016/j.watres.2020.116267_bib0031 article-title: Catchment productivity controls CO2 emissions from lakes publication-title: Nat. Clim. Chang. doi: 10.1038/nclimate1748 – volume: 4 start-page: 37 year: 2019 ident: 10.1016/j.watres.2020.116267_bib0053 article-title: Highest plasticity of carbon-concentrating mechanisms in earliest evolved phytoplankton publication-title: Limnology and Oceanography Letters doi: 10.1002/lol2.10102 – volume: 20 start-page: 1395 year: 2017 ident: 10.1016/j.watres.2020.116267_bib0059 article-title: Surface water CO2 concentration influences phytoplankton production but not community composition across boreal lakes publication-title: Ecol. Lett. doi: 10.1111/ele.12835 – volume: 62 start-page: 1411 year: 2011 ident: 10.1016/j.watres.2020.116267_bib0035 article-title: Regulation of nitrate assimilation in cyanobacteria publication-title: J. Exp. Bot. doi: 10.1093/jxb/erq427 – volume: 21 start-page: 185 year: 1994 ident: 10.1016/j.watres.2020.116267_bib0065 article-title: Characterisation of CO2 and HCO3− Uptake during Steady-state Photosynthesis in the Cyanobacterium Synechococcus PCC7942 publication-title: Aust. J. Plant Physiol. – volume: 1411 start-page: 2865 year: 2017 ident: 10.1016/j.watres.2020.116267_bib0032 article-title: Cyanobacterial carbon concentrating mechanisms facilitate sustained CO2 depletion in eutrophic lakes publication-title: Biogeosciences doi: 10.5194/bg-14-2865-2017 |
SSID | ssj0002239 |
Score | 2.4413066 |
Snippet | •We study the pCO2 spatiotemporal variability in lake taihu from 2006 to 2016.•The pCO2-undersaturated areas in august absorb 0.53 t C/h of CO2 from... The effect of rising atmospheric CO2 on freshwater lakes is a subject of considerable debate. However, it is not clear how rising CO2 concentration affects... The effect of rising atmospheric CO₂ on freshwater lakes is a subject of considerable debate. However, it is not clear how rising CO₂ concentration affects... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 116267 |
SubjectTerms | algae autumn biomass carbon dioxide chlorophyll CO2 Cyanobacteria Cyanobacterial bloom freshwater Freshwater lakes liquid-air interface Nitrogen nutrient use efficiency Phosphorus spring |
Title | Rising atmospheric CO2 levels result in an earlier cyanobacterial bloom-maintenance phase with higher algal biomass |
URI | https://dx.doi.org/10.1016/j.watres.2020.116267 https://www.proquest.com/docview/2434752242 https://www.proquest.com/docview/2985523778 |
Volume | 185 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5EL3oQn_gsK3iNuq9scixFqQoVxEJvYbPZYKRNS5MiXvztzuThC1Tw2HQ2LJPdmW-Sb74l5NRYpgXUyZ5OhfQA_zsvtMzCvroIU18x4ScVy3fg94fyZqRGS6TX9sIgrbKJ_XVMr6J1c-W88eb5LMuwxxeSn1CSo-QKlHnYwS41rvKz1w-aB6S_sP3KjNZt-1zF8Xo22JABVSLH2AHYXv-Unr4F6ir7XG2Q9QY20m49s02y5PItsvZJTHCbFPcZ1v3UlJNpgWIBmaW9O07HSAsqKMxgMS5pllOTU1jegD3n1L6YHDZ0JdgMt0cW-8SbGNSQQCEOR2ePkOUovqyljxUjhGLvB1hmyCsqdsjw6vKh1_eaIxU8KzQvPW4SFYiESW0AaMRJKALAU8wpbjhPU98EMYNQ7Gtj8Uj5WMQG_hKxClwaSifELlnOp7nbIxSGQtZj2qrYyYskAaQRs8RPJOrd8DTYJ6L1ZGQbvXE89mIctcSyp6j2f4T-j2r_7xPvfdSs1tv4w163Dyn6sm4iSAl_jDxpn2kEWwq_k5jcTRdgJIXUgEsl_8UmDBTU8FoHB_-ewSFZxV-YCZk6IsvlfOGOAeKUcadawx2y0r2-7Q_eAKcp-8I |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS-QwEB90fVAfjvML9bwzgq9FkzRN-yiLsp66gij4FtI0xcpud3G7iP-9M_0QFTzhXttMCZPJzG-amV8ADq3jWmKeHOhchgHifx8kjjvcV8dJHikuo6yu8h1Gg7vw7726X4B-1wtDZZWt7298eu2t2ydHrTaPpkVBPb4Y_KQKBVGuYJq3CEvETqV6sHRyfjEYvjlkjIBJd9BMAl0HXV3m9WypJwMTRUHuA-G9_ipCffLVdQA6-wk_WuTITprJrcGCL9dh9R2f4AbMbgpK_ZmtxpMZ8QUUjvWvBRtRZdCM4Qzmo4oVJbMlQwtH-PnE3IstcU_XnM34eSpkHwdjSzQSxMXh2fQBAx2j_7XsoS4KYdT-gSMLKi2abcLd2eltfxC0tyoETmpRBcJmKpYZD7VFrJFmiYwRUnGvhBUizyMbpxy9caSto1vlU5lafCVTFfs8Cb2UW9ArJ6XfBoaiGPi4dir14XGWIdhIeRZlIVHeiDzeAdlp0riWcpxuvhiZrrbs0TT6N6R_0-h_B4I3qWlDufHNeN0tkvlgOgajwjeSB92aGtxVdFRiSz-Z46BQoiUhvBH_GJPECtN4rePd_57BPiwPbq8uzeX58OIXrNAbCoxc7UGvepr734h4qvRPa9GvQO_-cw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rising+atmospheric+CO2+levels+result+in+an+earlier+cyanobacterial+bloom-maintenance+phase+with+higher+algal+biomass&rft.jtitle=Water+research+%28Oxford%29&rft.au=Wang%2C+Peifang&rft.au=Ma%2C+Jingjie&rft.au=Wang%2C+Xun&rft.au=Tan%2C+Qingqian&rft.date=2020-10-15&rft.issn=0043-1354&rft.volume=185&rft.spage=116267&rft_id=info:doi/10.1016%2Fj.watres.2020.116267&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_watres_2020_116267 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1354&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1354&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1354&client=summon |