Rising atmospheric CO2 levels result in an earlier cyanobacterial bloom-maintenance phase with higher algal biomass

•We study the pCO2 spatiotemporal variability in lake taihu from 2006 to 2016.•The pCO2-undersaturated areas in august absorb 0.53 t C/h of CO2 from atmosphere.•Algal biomass would increase with high pCO2 over a threshold (>13.56 µmol/L).•High CO2 condition can improve the nutrient-use efficiency...

Full description

Saved in:
Bibliographic Details
Published inWater research (Oxford) Vol. 185; p. 116267
Main Authors Wang, Peifang, Ma, Jingjie, Wang, Xun, Tan, Qingqian
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.10.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •We study the pCO2 spatiotemporal variability in lake taihu from 2006 to 2016.•The pCO2-undersaturated areas in august absorb 0.53 t C/h of CO2 from atmosphere.•Algal biomass would increase with high pCO2 over a threshold (>13.56 µmol/L).•High CO2 condition can improve the nutrient-use efficiency of cyanobacteria.•High CO2 lead to the earlier occurrence of cyanobacterial bloom-maintenance phase. The effect of rising atmospheric CO2 on freshwater lakes is a subject of considerable debate. However, it is not clear how rising CO2 concentration affects cyanobacterial bloom development under potential nutrient limitation conditions and if CO2 should be taken into account in making nutrient reduction strategy. To fill the knowledge gaps, this study investigated the spatiotemporal variability in aquatic CO2 concentration (pCO2) from 2006 to 2016 in Lake Taihu, where cyanobacterial blooms often occurred from late spring to the early fall. Lake Taihu is an atmospheric CO2 source in May and November, with only 18% and 11% pCO2-undersaturated areas, respectively. During cyanobacterial bloom in August, 81% of the lake areas are pCO2-undersaturated, absorbing ~ 0.53 t C/h of atmospheric CO2. The results demonstrated that CO2 transfer across air-water interface was important in supporting cyanobacterial bloom development. Besides, Field investigation showed that the chlorophyll a level is significantly positively correlated with supersaturated pCO2 (>13.56 µmol/L) in May, but pCO2 decreases with high chlorophyll a levels in August, suggesting that cyanobacterial growth would be promoted by high pCO2 over a threshold. These observations suggested that the effect of rising atmospheric CO2 on freshwater lakes and cyanobacterial blooms should be paid attention to. Further, when the N- and P-levels are >0.3 mg/L and >0.02 mg/L, respectively, high-pCO2 conditions allow a more rapid growth rate of cyanobacteria via improved nutrient-use efficiency. Moreover, cyanobacteria afford maximum N- or P-use efficiency at lower N- or P-concentrations with high CO2 concentration. This improvement would result in an earlier bloom-maintenance phase and higher cyanobacterial biomass. In this case, nutrient reduction is more imperative under future high CO2 conditions. [Display omitted]
AbstractList •We study the pCO2 spatiotemporal variability in lake taihu from 2006 to 2016.•The pCO2-undersaturated areas in august absorb 0.53 t C/h of CO2 from atmosphere.•Algal biomass would increase with high pCO2 over a threshold (>13.56 µmol/L).•High CO2 condition can improve the nutrient-use efficiency of cyanobacteria.•High CO2 lead to the earlier occurrence of cyanobacterial bloom-maintenance phase. The effect of rising atmospheric CO2 on freshwater lakes is a subject of considerable debate. However, it is not clear how rising CO2 concentration affects cyanobacterial bloom development under potential nutrient limitation conditions and if CO2 should be taken into account in making nutrient reduction strategy. To fill the knowledge gaps, this study investigated the spatiotemporal variability in aquatic CO2 concentration (pCO2) from 2006 to 2016 in Lake Taihu, where cyanobacterial blooms often occurred from late spring to the early fall. Lake Taihu is an atmospheric CO2 source in May and November, with only 18% and 11% pCO2-undersaturated areas, respectively. During cyanobacterial bloom in August, 81% of the lake areas are pCO2-undersaturated, absorbing ~ 0.53 t C/h of atmospheric CO2. The results demonstrated that CO2 transfer across air-water interface was important in supporting cyanobacterial bloom development. Besides, Field investigation showed that the chlorophyll a level is significantly positively correlated with supersaturated pCO2 (>13.56 µmol/L) in May, but pCO2 decreases with high chlorophyll a levels in August, suggesting that cyanobacterial growth would be promoted by high pCO2 over a threshold. These observations suggested that the effect of rising atmospheric CO2 on freshwater lakes and cyanobacterial blooms should be paid attention to. Further, when the N- and P-levels are >0.3 mg/L and >0.02 mg/L, respectively, high-pCO2 conditions allow a more rapid growth rate of cyanobacteria via improved nutrient-use efficiency. Moreover, cyanobacteria afford maximum N- or P-use efficiency at lower N- or P-concentrations with high CO2 concentration. This improvement would result in an earlier bloom-maintenance phase and higher cyanobacterial biomass. In this case, nutrient reduction is more imperative under future high CO2 conditions. [Display omitted]
The effect of rising atmospheric CO₂ on freshwater lakes is a subject of considerable debate. However, it is not clear how rising CO₂ concentration affects cyanobacterial bloom development under potential nutrient limitation conditions and if CO₂ should be taken into account in making nutrient reduction strategy. To fill the knowledge gaps, this study investigated the spatiotemporal variability in aquatic CO₂ concentration (pCO₂) from 2006 to 2016 in Lake Taihu, where cyanobacterial blooms often occurred from late spring to the early fall. Lake Taihu is an atmospheric CO₂ source in May and November, with only 18% and 11% pCO₂-undersaturated areas, respectively. During cyanobacterial bloom in August, 81% of the lake areas are pCO₂-undersaturated, absorbing ~ 0.53 t C/h of atmospheric CO₂. The results demonstrated that CO₂ transfer across air-water interface was important in supporting cyanobacterial bloom development. Besides, Field investigation showed that the chlorophyll a level is significantly positively correlated with supersaturated pCO₂ (>13.56 µmol/L) in May, but pCO₂ decreases with high chlorophyll a levels in August, suggesting that cyanobacterial growth would be promoted by high pCO₂ over a threshold. These observations suggested that the effect of rising atmospheric CO₂ on freshwater lakes and cyanobacterial blooms should be paid attention to. Further, when the N- and P-levels are >0.3 mg/L and >0.02 mg/L, respectively, high-pCO₂ conditions allow a more rapid growth rate of cyanobacteria via improved nutrient-use efficiency. Moreover, cyanobacteria afford maximum N- or P-use efficiency at lower N- or P-concentrations with high CO₂ concentration. This improvement would result in an earlier bloom-maintenance phase and higher cyanobacterial biomass. In this case, nutrient reduction is more imperative under future high CO₂ conditions.
The effect of rising atmospheric CO2 on freshwater lakes is a subject of considerable debate. However, it is not clear how rising CO2 concentration affects cyanobacterial bloom development under potential nutrient limitation conditions and if CO2 should be taken into account in making nutrient reduction strategy. To fill the knowledge gaps, this study investigated the spatiotemporal variability in aquatic CO2 concentration (pCO2) from 2006 to 2016 in Lake Taihu, where cyanobacterial blooms often occurred from late spring to the early fall. Lake Taihu is an atmospheric CO2 source in May and November, with only 18% and 11% pCO2-undersaturated areas, respectively. During cyanobacterial bloom in August, 81% of the lake areas are pCO2-undersaturated, absorbing ~ 0.53 t C/h of atmospheric CO2. The results demonstrated that CO2 transfer across air-water interface was important in supporting cyanobacterial bloom development. Besides, Field investigation showed that the chlorophyll a level is significantly positively correlated with supersaturated pCO2 (>13.56 µmol/L) in May, but pCO2 decreases with high chlorophyll a levels in August, suggesting that cyanobacterial growth would be promoted by high pCO2 over a threshold. These observations suggested that the effect of rising atmospheric CO2 on freshwater lakes and cyanobacterial blooms should be paid attention to. Further, when the N- and P-levels are >0.3 mg/L and >0.02 mg/L, respectively, high-pCO2 conditions allow a more rapid growth rate of cyanobacteria via improved nutrient-use efficiency. Moreover, cyanobacteria afford maximum N- or P-use efficiency at lower N- or P-concentrations with high CO2 concentration. This improvement would result in an earlier bloom-maintenance phase and higher cyanobacterial biomass. In this case, nutrient reduction is more imperative under future high CO2 conditions.The effect of rising atmospheric CO2 on freshwater lakes is a subject of considerable debate. However, it is not clear how rising CO2 concentration affects cyanobacterial bloom development under potential nutrient limitation conditions and if CO2 should be taken into account in making nutrient reduction strategy. To fill the knowledge gaps, this study investigated the spatiotemporal variability in aquatic CO2 concentration (pCO2) from 2006 to 2016 in Lake Taihu, where cyanobacterial blooms often occurred from late spring to the early fall. Lake Taihu is an atmospheric CO2 source in May and November, with only 18% and 11% pCO2-undersaturated areas, respectively. During cyanobacterial bloom in August, 81% of the lake areas are pCO2-undersaturated, absorbing ~ 0.53 t C/h of atmospheric CO2. The results demonstrated that CO2 transfer across air-water interface was important in supporting cyanobacterial bloom development. Besides, Field investigation showed that the chlorophyll a level is significantly positively correlated with supersaturated pCO2 (>13.56 µmol/L) in May, but pCO2 decreases with high chlorophyll a levels in August, suggesting that cyanobacterial growth would be promoted by high pCO2 over a threshold. These observations suggested that the effect of rising atmospheric CO2 on freshwater lakes and cyanobacterial blooms should be paid attention to. Further, when the N- and P-levels are >0.3 mg/L and >0.02 mg/L, respectively, high-pCO2 conditions allow a more rapid growth rate of cyanobacteria via improved nutrient-use efficiency. Moreover, cyanobacteria afford maximum N- or P-use efficiency at lower N- or P-concentrations with high CO2 concentration. This improvement would result in an earlier bloom-maintenance phase and higher cyanobacterial biomass. In this case, nutrient reduction is more imperative under future high CO2 conditions.
ArticleNumber 116267
Author Ma, Jingjie
Tan, Qingqian
Wang, Xun
Wang, Peifang
Author_xml – sequence: 1
  givenname: Peifang
  surname: Wang
  fullname: Wang, Peifang
  email: pfwang2005@hhu.edu.cn
  organization: Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, China, 210098
– sequence: 2
  givenname: Jingjie
  surname: Ma
  fullname: Ma, Jingjie
  organization: Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, China, 210098
– sequence: 3
  givenname: Xun
  surname: Wang
  fullname: Wang, Xun
  organization: Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, China, 210098
– sequence: 4
  givenname: Qingqian
  surname: Tan
  fullname: Tan, Qingqian
  organization: Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, China, 210098
BookMark eNqFkUuLFDEURoOMYE_rP3CRpZtq86yHC0EaXzAwILoOt1K3utOkkjZJzzD_3jTlyoWzCtyc7-Nyzy25CTEgIW8523HG2_en3SOUhHknmKgj3oq2e0E2vO-GRijV35ANY0o2XGr1itzmfGKMCSGHDck_XHbhQKEsMZ-PmJyl-3tBPT6gz7SWXnyhLlAIFCF5h4naJwhxBFsqDZ6OPsalWcCFggGCRXo-Qkb66MqRHt2hllLwhyvp4gI5vyYvZ_AZ3_x9t-TXl88_99-au_uv3_ef7horO1EaAZPu5cRVB1LrcRpkr4TkqAUIMc8t9CNHsG0HVrJWj3KE-iVH3eM8KJRyS96tvecUf18wF7O4bNF7CBgv2Yih11rIruufR5VUnRaiLrAlH1bUpphzwtlYV6C4GEoC5w1n5irFnMwqxVylmFVKDat_wufkFkhPz8U-rrHqBB-qA5Otw3rqySW0xUzR_b_gDxWNrBs
CitedBy_id crossref_primary_10_3390_w16020257
crossref_primary_10_1007_s10750_024_05644_w
crossref_primary_10_1016_j_envres_2022_115175
crossref_primary_10_1016_j_jhazmat_2024_136182
crossref_primary_10_1016_j_watres_2024_122036
crossref_primary_10_1186_s12982_024_00302_x
crossref_primary_10_1016_j_scitotenv_2024_174376
crossref_primary_10_1016_j_envres_2023_115488
crossref_primary_10_1016_j_horiz_2024_100124
crossref_primary_10_1007_s11356_021_16719_9
crossref_primary_10_3390_toxins15070411
crossref_primary_10_1016_j_chemosphere_2025_144285
crossref_primary_10_3389_fmicb_2024_1351796
crossref_primary_10_3390_agronomy13051353
crossref_primary_10_1016_j_chemosphere_2025_144210
crossref_primary_10_1016_j_envres_2023_117031
crossref_primary_10_1016_j_chemosphere_2022_134553
crossref_primary_10_3390_hydrobiology3010002
crossref_primary_10_3390_hydrobiology1040030
crossref_primary_10_1016_j_jhazmat_2024_136511
crossref_primary_10_1016_j_scitotenv_2021_151917
crossref_primary_10_1016_j_scitotenv_2022_158545
crossref_primary_10_3390_w15244258
Cites_doi 10.1021/acs.est.5b05850
10.1111/nph.13334
10.1016/S0967-0645(02)00003-6
10.1038/ismej.2011.28
10.3354/meps11568
10.1371/journal.pone.0052212
10.1007/s10750-006-0511-7
10.1146/annurev-marine-120709-142720
10.1002/lno.10134
10.1111/j.1399-3054.2011.01452.x
10.3389/fmicb.2015.00401
10.1007/s00248-008-9425-4
10.1038/nclimate2682
10.1073/pnas.191258298
10.1021/es503744q
10.1073/pnas.0405211101
10.1016/j.watres.2019.01.012
10.1016/j.hal.2015.12.006
10.4319/lo.2006.51.3.1381
10.3354/meps10121
10.1126/science.265.5178.1568
10.4319/lo.2003.48.3.1010
10.3389/fmicb.2017.02547
10.1021/acs.est.8b01066
10.3389/fmicb.2015.00456
10.1016/j.watres.2019.01.017
10.1111/ele.12298
10.1007/BF00396306
10.1016/j.limno.2015.05.003
10.1371/journal.pone.0104325
10.1111/nph.13037
10.1093/jxb/err402
10.18307/2009.0212
10.4319/lo.2012.57.2.0607
10.1126/science.1167755
10.1016/j.scitotenv.2018.07.208
10.1093/jxb/erm112
10.1016/j.ecolmodel.2011.04.018
10.3390/life4040988
10.1111/ele.12549
10.1007/s11120-013-9809-2
10.1007/s11120-010-9608-y
10.1016/j.tree.2014.02.006
10.1038/nclimate2195
10.1007/s10750-016-2904-6
10.1073/pnas.96.23.13571
10.1002/lno.10798
10.1073/pnas.1018062108
10.1126/science.1097403
10.1093/plankt/25.4.445
10.1111/gcb.14337
10.5194/bg-10-567-2013
10.1007/s00442-014-3153-x
10.1016/j.scitotenv.2019.07.056
10.1038/nclimate1748
10.1002/lol2.10102
10.1111/ele.12835
10.1093/jxb/erq427
10.5194/bg-14-2865-2017
ContentType Journal Article
Copyright 2020
Copyright © 2020. Published by Elsevier Ltd.
Copyright_xml – notice: 2020
– notice: Copyright © 2020. Published by Elsevier Ltd.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.watres.2020.116267
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2448
ExternalDocumentID 10_1016_j_watres_2020_116267
S0043135420308046
GroupedDBID ---
--K
--M
-DZ
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABQEM
ABQYD
ACDAQ
ACGFO
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPC
SPCBC
SSE
SSH
SSJ
SSZ
T5K
TAE
TN5
TWZ
WH7
XPP
ZCA
ZMT
~02
~G-
~KM
.55
186
29R
6TJ
AAQXK
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACKIV
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEGFY
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HMA
HMC
HVGLF
HZ~
H~9
MVM
OHT
R2-
RIG
SEN
SEP
SEW
WUQ
X7M
XOL
YHZ
YV5
ZXP
ZY4
~A~
7X8
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c372t-2ad583d147a355bd9384231e52a22ff6a8b1eac67ac3065b3ba52a3b58ef94e33
IEDL.DBID .~1
ISSN 0043-1354
1879-2448
IngestDate Tue Aug 05 11:35:25 EDT 2025
Fri Jul 11 10:56:23 EDT 2025
Tue Jul 01 01:21:03 EDT 2025
Thu Apr 24 23:09:51 EDT 2025
Sun Apr 06 06:52:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Freshwater lakes
Cyanobacterial bloom
Phosphorus
Nitrogen
CO2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-2ad583d147a355bd9384231e52a22ff6a8b1eac67ac3065b3ba52a3b58ef94e33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2434752242
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2985523778
proquest_miscellaneous_2434752242
crossref_citationtrail_10_1016_j_watres_2020_116267
crossref_primary_10_1016_j_watres_2020_116267
elsevier_sciencedirect_doi_10_1016_j_watres_2020_116267
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-15
PublicationDateYYYYMMDD 2020-10-15
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-15
  day: 15
PublicationDecade 2020
PublicationTitle Water research (Oxford)
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Cole, Caraco, Kling, Kratz (bib0006) 1994; 265
Low-Decarie, Fussmann, Bell (bib0028) 2014; 29
Vogt, St-Gelais, Bogard, Beisner, Del Giorgio (bib0059) 2017; 20
Oguchi, Terashima, Kou, Chow (bib0034) 2011; 142
Van de Waal, Verspagen, Finke, Vournazou, Immers, Kardinaal (bib0054) 2011; 5
Kangasjarvi, Neukermans, Li, Aro, Noctor (bib0024) 2012; 63
Liu, Zhang, Qin (bib0027) 2009; 21
Visser, Verspagen, Sandrini, Stal, Matthijs, Davis (bib0058) 2016; 54
Jansen, E., Overpeck, J., Briffa, K., Duplessy, J., Joos, F., Massondelmotte, V. et al. 2007. Climate Change 2007: the Physical Science Basis. Contribution of working group i to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge.
Dean (bib0009) 1985
Ye, Wu, Liu, Yan, Kong (bib0064) 2015; 54
Hennon, Hernandez Limon, Haley, Juhl, Dyhrman (bib0017) 2017; 8
Gao (bib0015) 2018
Sommaruga, Chen, Liu (bib0049) 2009; 57
Verbeek, Gall, Hillebrand, Striebel (bib0055) 2018; 24
Rokitta, Rost (bib0043) 2012; 57
Tang, Krausfeldt, Shao, LeCleir, Stough, Gao (bib0051) 2018; 52
Xu, Paerl, Qin, Zhu, Hall, Wu (bib0062) 2015; 49
Wan, Chen, Zheng, Su, Li (bib0061) 2016; 50
Endres, Unger, Wannicke, Nausch, Voss, Engel (bib0013) 2013; 10
Crusius, Wanninkhof (bib0008) 2003; 48
Price, Woodger, Badger, Howitt, Tucker (bib0038) 2004; 101
Beversdorf, Miller, McMahon (bib0001) 2015; 6
Takahashi, Sutherland, Sweeney, Poisson, Nojiri (bib0050) 2002; 49
Reinfelder (bib0041) 2011; 3
Hipkin, Thomas, Syrett (bib0018) 1983; 77
Omata, Price, Badger, Okamura, Gohta, Ogawa (bib0036) 1999; 96
Paerl (bib0037) 2014; 4
Wood, Borges, Puddick, Biessy, Atalah, Hawes, Dietrich, Hamilton (bib0060) 2017; 785
Hasler, Butman, Jeffrey, Suski (bib0016) 2016; 19
Shibata, Ohkawa, Kaneko, Fukuzawa, Tabata, Kaplan (bib0048) 2001; 98
Yang, Xu, Liu, Xu (bib0063) 2019; 153
Conley, Paerl, Howarth, Boesch, Seitzinger, Havens (bib0007) 2009; 323
Eberlein, Van de Waal, Brandenburg, John, Voss, Achterberg (bib0012) 2016; 543
Hu, Jorgensen, Zhang, Chen, Hu, Yang (bib0021) 2011; 222
Li, Brown, Jeans, Donaher, Mccarthy, Campbell (bib0026) 2015; 2052
Rokitta, John, Rost (bib0042) 2012; 7
Hoppe, Holtz, Trimborn, Rost (bib0020) 2015; 207
Price, Badger, Woodger, Long (bib0040) 2008; 59
Dyhrman, Ruttenberg (bib0011) 2006; 51
Lewis, E. & Wallace, D., 1998. Program developed for CO2 system calculations, Report, Carbon Dioxide Information Analysis Center. Oak Ridge National Laboratory.
Ma, Wang, Wang, Xu, Paerl (bib0030) 2019; 691
Sabine, Feely, Gruber, Key, Lee, Bullister (bib0044) 2004; 305
Huang, Zhang, Huang, Yang, Li, Zhang (bib0022) 2019; 153
Morales-Williams, Wanamaker, Downing (bib0032) 2017; 1411
Van Dam, Tobias, Holbach, Paerl, Zhu (bib0052) 2018; 63
Brennan, Collins (bib0003) 2015; 5
Shi, Zhang, Li, Yan, Gao (bib0047) 2019; 2912
Price (bib0039) 2011; 109
Campbell, Hossain, Cockshutt, Zhaxybayeva, Wu, Li (bib0004) 2013; 115
Chen, Qin, Teubner, Dokulil (bib0005) 2003; 25
Yu, Price, Badger (bib0065) 1994; 21
Sandrini, Cunsolo, Schuurmans, Matthijs, Huisman (bib0045) 2015; 6
Deng, Paerl, Qin, Zhang, Zhu, Jeppesen (bib0010) 2018; 645
Low-Decarie, Bell, Fussmann (bib0029) 2015; 177
Ohashi, Shi, Takatani, Aichi, Maeda, Watanabe (bib0035) 2011; 62
Hopkinson, Dupont, Allen, Morel (bib0019) 2011; 108
Van de Waal, Brandenburg, Keuskamp, Trimborn, Rokitta, Kranz (bib0053) 2019; 4
Gao, Qin, Sommaruga, Psenner (bib0014) 2007; 581
Shi, Li, Hopkinson, Hong, Li, Kao (bib0046) 2015; 60
Verspagen, Van de Waal, Finke, Visser, Donk, Huisman (bib0057) 2014; 9
Munday, Cheal, Dixson, Rummer, Fabricius (bib0033) 2014; 4
Verspagen, Van de Waal, Finke, Visser, Huisman (bib0056) 2014; 17
Boyd, Hutchins (bib0002) 2012; 470
Maberly, Barker, Stott, De Ville (bib0031) 2012; 3
Tang (10.1016/j.watres.2020.116267_bib0051) 2018; 52
Ohashi (10.1016/j.watres.2020.116267_bib0035) 2011; 62
Price (10.1016/j.watres.2020.116267_bib0040) 2008; 59
Li (10.1016/j.watres.2020.116267_bib0026) 2015; 2052
Hasler (10.1016/j.watres.2020.116267_bib0016) 2016; 19
Price (10.1016/j.watres.2020.116267_bib0039) 2011; 109
Shi (10.1016/j.watres.2020.116267_bib0046) 2015; 60
Low-Decarie (10.1016/j.watres.2020.116267_bib0029) 2015; 177
Maberly (10.1016/j.watres.2020.116267_bib0031) 2012; 3
Liu (10.1016/j.watres.2020.116267_bib0027) 2009; 21
Van de Waal (10.1016/j.watres.2020.116267_bib0053) 2019; 4
Rokitta (10.1016/j.watres.2020.116267_bib0043) 2012; 57
Vogt (10.1016/j.watres.2020.116267_bib0059) 2017; 20
Deng (10.1016/j.watres.2020.116267_bib0010) 2018; 645
Gao (10.1016/j.watres.2020.116267_bib0014) 2007; 581
Shibata (10.1016/j.watres.2020.116267_bib0048) 2001; 98
Van Dam (10.1016/j.watres.2020.116267_bib0052) 2018; 63
Xu (10.1016/j.watres.2020.116267_bib0062) 2015; 49
Wood (10.1016/j.watres.2020.116267_bib0060) 2017; 785
Huang (10.1016/j.watres.2020.116267_bib0022) 2019; 153
Reinfelder (10.1016/j.watres.2020.116267_bib0041) 2011; 3
Yu (10.1016/j.watres.2020.116267_bib0065) 1994; 21
Hopkinson (10.1016/j.watres.2020.116267_bib0019) 2011; 108
Wan (10.1016/j.watres.2020.116267_bib0061) 2016; 50
Verspagen (10.1016/j.watres.2020.116267_bib0056) 2014; 17
Ye (10.1016/j.watres.2020.116267_bib0064) 2015; 54
Price (10.1016/j.watres.2020.116267_bib0038) 2004; 101
Sabine (10.1016/j.watres.2020.116267_bib0044) 2004; 305
Yang (10.1016/j.watres.2020.116267_bib0063) 2019; 153
Van de Waal (10.1016/j.watres.2020.116267_bib0054) 2011; 5
Sommaruga (10.1016/j.watres.2020.116267_bib0049) 2009; 57
Paerl (10.1016/j.watres.2020.116267_bib0037) 2014; 4
Hu (10.1016/j.watres.2020.116267_bib0021) 2011; 222
Shi (10.1016/j.watres.2020.116267_bib0047) 2019; 2912
Low-Decarie (10.1016/j.watres.2020.116267_bib0028) 2014; 29
Conley (10.1016/j.watres.2020.116267_bib0007) 2009; 323
Hoppe (10.1016/j.watres.2020.116267_bib0020) 2015; 207
Kangasjarvi (10.1016/j.watres.2020.116267_bib0024) 2012; 63
Boyd (10.1016/j.watres.2020.116267_bib0002) 2012; 470
Eberlein (10.1016/j.watres.2020.116267_bib0012) 2016; 543
Crusius (10.1016/j.watres.2020.116267_bib0008) 2003; 48
Dean (10.1016/j.watres.2020.116267_bib0009) 1985
Omata (10.1016/j.watres.2020.116267_bib0036) 1999; 96
Sandrini (10.1016/j.watres.2020.116267_bib0045) 2015; 6
Brennan (10.1016/j.watres.2020.116267_bib0003) 2015; 5
Morales-Williams (10.1016/j.watres.2020.116267_bib0032) 2017; 1411
Verspagen (10.1016/j.watres.2020.116267_bib0057) 2014; 9
Takahashi (10.1016/j.watres.2020.116267_bib0050) 2002; 49
Campbell (10.1016/j.watres.2020.116267_bib0004) 2013; 115
Verbeek (10.1016/j.watres.2020.116267_bib0055) 2018; 24
Cole (10.1016/j.watres.2020.116267_bib0006) 1994; 265
Munday (10.1016/j.watres.2020.116267_bib0033) 2014; 4
Chen (10.1016/j.watres.2020.116267_bib0005) 2003; 25
Beversdorf (10.1016/j.watres.2020.116267_bib0001) 2015; 6
Hennon (10.1016/j.watres.2020.116267_bib0017) 2017; 8
Endres (10.1016/j.watres.2020.116267_bib0013) 2013; 10
Rokitta (10.1016/j.watres.2020.116267_bib0042) 2012; 7
10.1016/j.watres.2020.116267_bib0025
10.1016/j.watres.2020.116267_bib0023
Oguchi (10.1016/j.watres.2020.116267_bib0034) 2011; 142
Gao (10.1016/j.watres.2020.116267_bib0015) 2018
Hipkin (10.1016/j.watres.2020.116267_bib0018) 1983; 77
Ma (10.1016/j.watres.2020.116267_bib0030) 2019; 691
Dyhrman (10.1016/j.watres.2020.116267_bib0011) 2006; 51
Visser (10.1016/j.watres.2020.116267_bib0058) 2016; 54
References_xml – volume: 29
  start-page: 223
  year: 2014
  end-page: 232
  ident: bib0028
  article-title: ) Aquatic primary production in a high-CO
  publication-title: Trends Ecol. Evol.
– year: 1985
  ident: bib0009
  article-title: Lange's Handbook of Chemistry
– volume: 323
  start-page: 1014
  year: 2009
  ident: bib0007
  article-title: Controlling eutrophication: nitrogen and phosphorus
  publication-title: Science
– volume: 1411
  start-page: 2865
  year: 2017
  end-page: 2875
  ident: bib0032
  article-title: Cyanobacterial carbon concentrating mechanisms facilitate sustained CO
  publication-title: Biogeosciences
– volume: 57
  start-page: 667
  year: 2009
  end-page: 674
  ident: bib0049
  article-title: Multiple strategies of bloom-forming Microcystis to minimize damage by solar ultraviolet radiation in surface waters
  publication-title: Microb. Ecol.
– volume: 51
  start-page: 1381
  year: 2006
  end-page: 1390
  ident: bib0011
  article-title: Presence and regulation of alkaline phosphatase activity in eukaryotic phytoplankton from the coastal ocean: implications for dissolved organic phosphorus remineralization
  publication-title: Limnol. Oceanogr.
– volume: 305
  start-page: 367
  year: 2004
  end-page: 371
  ident: bib0044
  article-title: The oceanic sink for anthropogenic CO
  publication-title: Science
– volume: 4
  start-page: 487
  year: 2014
  end-page: 492
  ident: bib0033
  article-title: Behavioural impairment in reef fishes caused by ocean acidification at CO
  publication-title: Nat. Clim. Chang.
– volume: 470
  start-page: 125
  year: 2012
  end-page: 135
  ident: bib0002
  article-title: Understanding the responses of ocean biota to a complex matrix of cumulative anthropogenic change
  publication-title: Mar. Ecol.-Prog. Ser.
– volume: 3
  start-page: 291
  year: 2011
  ident: bib0041
  article-title: Carbon concentrating mechanisms in eukaryotic marine phytoplankton
  publication-title: Ann. Rev. Mar. Sci.
– reference: Lewis, E. & Wallace, D., 1998. Program developed for CO2 system calculations, Report, Carbon Dioxide Information Analysis Center. Oak Ridge National Laboratory.
– volume: 10
  start-page: 567
  year: 2013
  end-page: 582
  ident: bib0013
  article-title: Response of Nodularia spumigena to
  publication-title: Biogeosciences
– volume: 57
  start-page: 607
  year: 2012
  end-page: 618
  ident: bib0043
  article-title: Effects of CO
  publication-title: Limnol. Oceanogr.
– year: 2018
  ident: bib0015
  article-title: Analysis of CO
– volume: 24
  start-page: 4532
  year: 2018
  end-page: 4543
  ident: bib0055
  article-title: Warming and oligotrophication cause shifts in freshwater phytoplankton communities
  publication-title: Glob. Change Biol.
– volume: 21
  start-page: 234
  year: 2009
  end-page: 241
  ident: bib0027
  article-title: Characterization of absorption and three-dimensional excitation-emission matrix spectra of chromophoric dissolved organic matter at the river inflow and the open area in Lake Taihu
  publication-title: J. Lake Sci.
– volume: 153
  start-page: 29
  year: 2019
  end-page: 38
  ident: bib0063
  article-title: Daily
  publication-title: Water Res
– reference: Jansen, E., Overpeck, J., Briffa, K., Duplessy, J., Joos, F., Massondelmotte, V. et al. 2007. Climate Change 2007: the Physical Science Basis. Contribution of working group i to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge.
– volume: 17
  start-page: 951
  year: 2014
  end-page: 960
  ident: bib0056
  article-title: Contrasting effects of rising CO
  publication-title: Ecol. Lett.
– volume: 77
  start-page: 101
  year: 1983
  end-page: 105
  ident: bib0018
  article-title: Effects of nitrogen deficiency on nitrate reductase, nitrate assimilation and photosynthesis in unicellular marine algae
  publication-title: Mar. Biol.
– volume: 115
  start-page: 43
  year: 2013
  end-page: 54
  ident: bib0004
  article-title: Photosystem II protein clearance and FtsH function in the diatom
  publication-title: Photosynth. Res.
– volume: 177
  start-page: 875
  year: 2015
  end-page: 883
  ident: bib0029
  article-title: CO
  publication-title: Oecologia
– volume: 48
  start-page: 1010
  year: 2003
  end-page: 1017
  ident: bib0008
  article-title: Gas transfer velocities measured at low wind speed over a lake
  publication-title: Limnol. Oceanogr.
– volume: 60
  start-page: 1805
  year: 2015
  end-page: 1822
  ident: bib0046
  article-title: Interactive effects of light, nitrogen source, and carbon dioxide on energy metabolism in the diatom
  publication-title: Limnol. Oceanogr.
– volume: 3
  start-page: 391
  year: 2012
  end-page: 394
  ident: bib0031
  article-title: Catchment productivity controls CO
  publication-title: Nat. Clim. Chang.
– volume: 20
  start-page: 1395
  year: 2017
  end-page: 1404
  ident: bib0059
  article-title: Surface water CO
  publication-title: Ecol. Lett.
– volume: 5
  start-page: 892
  year: 2015
  end-page: 897
  ident: bib0003
  article-title: Growth responses of a green alga to multiple environmental drivers
  publication-title: Nat. Clim. Chang.
– volume: 2912
  start-page: 4239
  year: 2019
  end-page: 4297
  ident: bib0047
  article-title: Influence of elevated CO
  publication-title: Chinese Journal of Applied Ecology
– volume: 265
  start-page: 1568
  year: 1994
  end-page: 1570
  ident: bib0006
  article-title: Carbon dioxide supersaturation in the surface waters of lakes
  publication-title: Science
– volume: 6
  start-page: 401
  year: 2015
  ident: bib0045
  article-title: Changes in gene expression, cell physiology and toxicity of the harmful cyanobacterium
  publication-title: Front. Microbiol.
– volume: 96
  start-page: 13571
  year: 1999
  end-page: 13576
  ident: bib0036
  article-title: Identification of an ATP-binding cassette transporter involved in bicarbonate uptake in the cyanobacterium
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 5
  start-page: 1438
  year: 2011
  end-page: 1450
  ident: bib0054
  article-title: Reversal in competitive dominance of a toxic versus non-toxic cyanobacterium in response to rising CO
  publication-title: ISME J
– volume: 222
  start-page: 2973
  year: 2011
  end-page: 2991
  ident: bib0021
  article-title: A model on the carbon cycling in Lake Taihu, China
  publication-title: Ecol. Model.
– volume: 6
  start-page: 456
  year: 2015
  ident: bib0001
  article-title: Long-term monitoring reveals carbon-nitrogen metabolism key to microcystin production in eutrophic lakes
  publication-title: Front. Microbiol.
– volume: 785
  start-page: 71
  year: 2017
  end-page: 89
  ident: bib0060
  article-title: Contrasting cyanobacterial communities and microcystin concentrations in summers with extreme weather events: insights into potential effects of climate change
  publication-title: Hydrobiologia
– volume: 7
  start-page: e52212
  year: 2012
  ident: bib0042
  article-title: Ocean acidification affects redox-balance and ion-homeostasis in the life-cycle stages of
  publication-title: PLoS ONE
– volume: 109
  start-page: 47
  year: 2011
  end-page: 57
  ident: bib0039
  article-title: Inorganic carbon transporters of the cyanobacterial CO
  publication-title: Photosynth. Res.
– volume: 581
  start-page: 177
  year: 2007
  end-page: 188
  ident: bib0014
  article-title: The bacterioplankton of Lake Taihu, China: abundance, biomass, and production
  publication-title: Hydrobiologia
– volume: 62
  start-page: 1411
  year: 2011
  end-page: 1424
  ident: bib0035
  article-title: Regulation of nitrate assimilation in cyanobacteria
  publication-title: J. Exp. Bot.
– volume: 63
  start-page: 1643
  year: 2018
  end-page: 1659
  ident: bib0052
  article-title: CO
  publication-title: Limnol. Oceanogr.
– volume: 98
  start-page: 11789
  year: 2001
  end-page: 11794
  ident: bib0048
  article-title: Distinct constitutive and low-CO
  publication-title: Proc. Natl. Acad. Sci. U .S. A.
– volume: 49
  start-page: 1051
  year: 2015
  end-page: 1059
  ident: bib0062
  article-title: Determining critical nutrient thresholds needed to control harmful cyanobacterial blooms in eutrophic Lake Taihu, China
  publication-title: Environ. Sci. Technol.
– volume: 153
  start-page: 187
  year: 2019
  end-page: 199
  ident: bib0022
  article-title: Long-term variation of phytoplankton biomass and physiology in Taihu lake as observed via MODIS satellite
  publication-title: Water Res
– volume: 691
  start-page: 1144
  year: 2019
  end-page: 1154
  ident: bib0030
  article-title: Cyanobacteria in eutrophic waters benefit from rising atmospheric CO
  publication-title: Sci. Total Environ.
– volume: 50
  start-page: 9915
  year: 2016
  end-page: 9922
  ident: bib0061
  article-title: Effect of CO
  publication-title: Environ. Sci. Technol.
– volume: 543
  start-page: 127
  year: 2016
  end-page: 140
  ident: bib0012
  article-title: Interactive effects of ocean acidification and nitrogen limitation on two bloom-forming dinoflagellate species
  publication-title: Mar. Ecol.-Prog. Ser.
– volume: 59
  start-page: 1441
  year: 2008
  end-page: 1461
  ident: bib0040
  article-title: Advances in understanding the cyanobacterial CO
  publication-title: J Exp Bot
– volume: 49
  start-page: 1601
  year: 2002
  end-page: 1622
  ident: bib0050
  article-title: Global sea–air CO
  publication-title: Deep-Sea Res. Part II-Top. Stud. Oceanogr.
– volume: 21
  start-page: 185
  year: 1994
  end-page: 195
  ident: bib0065
  article-title: Characterisation of CO
  publication-title: Aust. J. Plant Physiol.
– volume: 108
  start-page: 3830
  year: 2011
  end-page: 3837
  ident: bib0019
  article-title: Efficiency of the CO
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 25
  start-page: 445
  year: 2003
  end-page: 453
  ident: bib0005
  article-title: Long-term dynamics of phytoplankton assemblages: microcystis-domination in Lake Taihu, a large shallow lake in China
  publication-title: J. Plankton Res.
– volume: 8
  start-page: 2547
  year: 2017
  ident: bib0017
  article-title: Diverse CO
  publication-title: Front. Microbiol.
– volume: 63
  start-page: 1619
  year: 2012
  end-page: 1636
  ident: bib0024
  article-title: Photosynthesis, photorespiration, and light signaling in defense responses
  publication-title: J. Exp. Bot.
– volume: 142
  start-page: 47
  year: 2011
  end-page: 55
  ident: bib0034
  article-title: Operation of dual mechanisms that both lead to photoinactivation of Photosystem II in leaves by visible light
  publication-title: Physiol. Plant.
– volume: 4
  start-page: 37
  year: 2019
  end-page: 43
  ident: bib0053
  article-title: Highest plasticity of carbon-concentrating mechanisms in earliest evolved phytoplankton
  publication-title: Limnology and Oceanography Letters
– volume: 645
  start-page: 1361
  year: 2018
  end-page: 1370
  ident: bib0010
  article-title: Climatically-modulated decline in wind speed may strongly affect eutrophication in shallow lakes
  publication-title: Sci. Total Environ.
– volume: 207
  start-page: 159
  year: 2015
  end-page: 171
  ident: bib0020
  article-title: Ocean acidification decreases the light‐use efficiency in an Antarctic diatom under dynamic but not constant light
  publication-title: New Phytol
– volume: 9
  year: 2014
  ident: bib0057
  article-title: Rising CO
  publication-title: PLoS ONE
– volume: 52
  start-page: 11049
  year: 2018
  end-page: 11059
  ident: bib0051
  article-title: Seasonal gene expression and the ecophysiological implications of toxic
  publication-title: Environ. Sci. Technol.
– volume: 101
  start-page: 18228
  year: 2004
  end-page: 18233
  ident: bib0038
  article-title: Identification of a SulP-type bicarbonate transporter in marine cyanobacteria
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 4
  start-page: 988
  year: 2014
  end-page: 1012
  ident: bib0037
  article-title: Mitigating harmful cyanobacterial blooms in a human-and climatically-impacted world
  publication-title: Life
– volume: 54
  start-page: 145
  year: 2016
  end-page: 159
  ident: bib0058
  article-title: How rising CO
  publication-title: Harmful Algae
– volume: 54
  start-page: 5
  year: 2015
  end-page: 13
  ident: bib0064
  article-title: Dynamics and sources of dissolved organic carbon during phytoplankton bloom in hypereutrophic Lake Taihu (China
  publication-title: Limnologica
– volume: 19
  start-page: 98
  year: 2016
  end-page: 108
  ident: bib0016
  article-title: Freshwater biota and rising
  publication-title: Ecol. Lett.
– volume: 2052
  start-page: 533
  year: 2015
  end-page: 543
  ident: bib0026
  article-title: The nitrogen costs of photosynthesis in a diatom under current and future
  publication-title: New Phytol
– volume: 50
  start-page: 9915
  year: 2016
  ident: 10.1016/j.watres.2020.116267_bib0061
  article-title: Effect of CO2 on microbial denitrification via inhibiting electron transport and consumption
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b05850
– volume: 207
  start-page: 159
  year: 2015
  ident: 10.1016/j.watres.2020.116267_bib0020
  article-title: Ocean acidification decreases the light‐use efficiency in an Antarctic diatom under dynamic but not constant light
  publication-title: New Phytol
  doi: 10.1111/nph.13334
– volume: 49
  start-page: 1601
  year: 2002
  ident: 10.1016/j.watres.2020.116267_bib0050
  article-title: Global sea–air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects
  publication-title: Deep-Sea Res. Part II-Top. Stud. Oceanogr.
  doi: 10.1016/S0967-0645(02)00003-6
– volume: 5
  start-page: 1438
  year: 2011
  ident: 10.1016/j.watres.2020.116267_bib0054
  article-title: Reversal in competitive dominance of a toxic versus non-toxic cyanobacterium in response to rising CO2
  publication-title: ISME J
  doi: 10.1038/ismej.2011.28
– volume: 543
  start-page: 127
  year: 2016
  ident: 10.1016/j.watres.2020.116267_bib0012
  article-title: Interactive effects of ocean acidification and nitrogen limitation on two bloom-forming dinoflagellate species
  publication-title: Mar. Ecol.-Prog. Ser.
  doi: 10.3354/meps11568
– volume: 7
  start-page: e52212
  year: 2012
  ident: 10.1016/j.watres.2020.116267_bib0042
  article-title: Ocean acidification affects redox-balance and ion-homeostasis in the life-cycle stages of Emiliania huxleyi
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0052212
– volume: 581
  start-page: 177
  year: 2007
  ident: 10.1016/j.watres.2020.116267_bib0014
  article-title: The bacterioplankton of Lake Taihu, China: abundance, biomass, and production
  publication-title: Hydrobiologia
  doi: 10.1007/s10750-006-0511-7
– volume: 3
  start-page: 291
  year: 2011
  ident: 10.1016/j.watres.2020.116267_bib0041
  article-title: Carbon concentrating mechanisms in eukaryotic marine phytoplankton
  publication-title: Ann. Rev. Mar. Sci.
  doi: 10.1146/annurev-marine-120709-142720
– volume: 60
  start-page: 1805
  year: 2015
  ident: 10.1016/j.watres.2020.116267_bib0046
  article-title: Interactive effects of light, nitrogen source, and carbon dioxide on energy metabolism in the diatom Thalassiosira pseudonana
  publication-title: Limnol. Oceanogr.
  doi: 10.1002/lno.10134
– volume: 142
  start-page: 47
  year: 2011
  ident: 10.1016/j.watres.2020.116267_bib0034
  article-title: Operation of dual mechanisms that both lead to photoinactivation of Photosystem II in leaves by visible light
  publication-title: Physiol. Plant.
  doi: 10.1111/j.1399-3054.2011.01452.x
– volume: 6
  start-page: 401
  year: 2015
  ident: 10.1016/j.watres.2020.116267_bib0045
  article-title: Changes in gene expression, cell physiology and toxicity of the harmful cyanobacterium Microcystis aeruginosa at elevated CO2
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2015.00401
– ident: 10.1016/j.watres.2020.116267_bib0023
– volume: 57
  start-page: 667
  year: 2009
  ident: 10.1016/j.watres.2020.116267_bib0049
  article-title: Multiple strategies of bloom-forming Microcystis to minimize damage by solar ultraviolet radiation in surface waters
  publication-title: Microb. Ecol.
  doi: 10.1007/s00248-008-9425-4
– volume: 5
  start-page: 892
  issue: 9
  year: 2015
  ident: 10.1016/j.watres.2020.116267_bib0003
  article-title: Growth responses of a green alga to multiple environmental drivers
  publication-title: Nat. Clim. Chang.
  doi: 10.1038/nclimate2682
– volume: 98
  start-page: 11789
  year: 2001
  ident: 10.1016/j.watres.2020.116267_bib0048
  article-title: Distinct constitutive and low-CO2-induced CO2 uptake systems in cyanobacteria: genes involved and their phylogenetic relationship with homologous genes in other organisms
  publication-title: Proc. Natl. Acad. Sci. U .S. A.
  doi: 10.1073/pnas.191258298
– volume: 49
  start-page: 1051
  year: 2015
  ident: 10.1016/j.watres.2020.116267_bib0062
  article-title: Determining critical nutrient thresholds needed to control harmful cyanobacterial blooms in eutrophic Lake Taihu, China
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es503744q
– volume: 101
  start-page: 18228
  year: 2004
  ident: 10.1016/j.watres.2020.116267_bib0038
  article-title: Identification of a SulP-type bicarbonate transporter in marine cyanobacteria
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0405211101
– volume: 153
  start-page: 29
  year: 2019
  ident: 10.1016/j.watres.2020.116267_bib0063
  article-title: Daily pCO2 and CO2 flux variations in a subtropical mesotrophic shallow lake
  publication-title: Water Res
  doi: 10.1016/j.watres.2019.01.012
– volume: 54
  start-page: 145
  year: 2016
  ident: 10.1016/j.watres.2020.116267_bib0058
  article-title: How rising CO2 and global warming may stimulate harmful cyanobacterial blooms
  publication-title: Harmful Algae
  doi: 10.1016/j.hal.2015.12.006
– volume: 51
  start-page: 1381
  year: 2006
  ident: 10.1016/j.watres.2020.116267_bib0011
  article-title: Presence and regulation of alkaline phosphatase activity in eukaryotic phytoplankton from the coastal ocean: implications for dissolved organic phosphorus remineralization
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.2006.51.3.1381
– volume: 470
  start-page: 125
  year: 2012
  ident: 10.1016/j.watres.2020.116267_bib0002
  article-title: Understanding the responses of ocean biota to a complex matrix of cumulative anthropogenic change
  publication-title: Mar. Ecol.-Prog. Ser.
  doi: 10.3354/meps10121
– volume: 265
  start-page: 1568
  year: 1994
  ident: 10.1016/j.watres.2020.116267_bib0006
  article-title: Carbon dioxide supersaturation in the surface waters of lakes
  publication-title: Science
  doi: 10.1126/science.265.5178.1568
– volume: 48
  start-page: 1010
  year: 2003
  ident: 10.1016/j.watres.2020.116267_bib0008
  article-title: Gas transfer velocities measured at low wind speed over a lake
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.2003.48.3.1010
– year: 1985
  ident: 10.1016/j.watres.2020.116267_bib0009
– volume: 8
  start-page: 2547
  year: 2017
  ident: 10.1016/j.watres.2020.116267_bib0017
  article-title: Diverse CO2-induced responses in physiology and gene expression among eukaryotic phytoplankton
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2017.02547
– volume: 52
  start-page: 11049
  year: 2018
  ident: 10.1016/j.watres.2020.116267_bib0051
  article-title: Seasonal gene expression and the ecophysiological implications of toxic Microcystis aeruginosa blooms in Lake Taihu
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b01066
– volume: 6
  start-page: 456
  year: 2015
  ident: 10.1016/j.watres.2020.116267_bib0001
  article-title: Long-term monitoring reveals carbon-nitrogen metabolism key to microcystin production in eutrophic lakes
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2015.00456
– volume: 153
  start-page: 187
  issue: APR.15
  year: 2019
  ident: 10.1016/j.watres.2020.116267_bib0022
  article-title: Long-term variation of phytoplankton biomass and physiology in Taihu lake as observed via MODIS satellite
  publication-title: Water Res
  doi: 10.1016/j.watres.2019.01.017
– volume: 17
  start-page: 951
  year: 2014
  ident: 10.1016/j.watres.2020.116267_bib0056
  article-title: Contrasting effects of rising CO2 on primary production and ecological stoichiometry at different nutrient levels
  publication-title: Ecol. Lett.
  doi: 10.1111/ele.12298
– volume: 77
  start-page: 101
  year: 1983
  ident: 10.1016/j.watres.2020.116267_bib0018
  article-title: Effects of nitrogen deficiency on nitrate reductase, nitrate assimilation and photosynthesis in unicellular marine algae
  publication-title: Mar. Biol.
  doi: 10.1007/BF00396306
– volume: 54
  start-page: 5
  year: 2015
  ident: 10.1016/j.watres.2020.116267_bib0064
  article-title: Dynamics and sources of dissolved organic carbon during phytoplankton bloom in hypereutrophic Lake Taihu (China
  publication-title: Limnologica
  doi: 10.1016/j.limno.2015.05.003
– volume: 9
  year: 2014
  ident: 10.1016/j.watres.2020.116267_bib0057
  article-title: Rising CO2 levels will intensify phytoplankton blooms in eutrophic and hypertrophic lakes
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0104325
– volume: 2052
  start-page: 533
  year: 2015
  ident: 10.1016/j.watres.2020.116267_bib0026
  article-title: The nitrogen costs of photosynthesis in a diatom under current and future pCO2
  publication-title: New Phytol
  doi: 10.1111/nph.13037
– volume: 2912
  start-page: 4239
  year: 2019
  ident: 10.1016/j.watres.2020.116267_bib0047
  article-title: Influence of elevated CO2 on nitrification and denitrification in water bodies: a review
  publication-title: Chinese Journal of Applied Ecology
– volume: 63
  start-page: 1619
  year: 2012
  ident: 10.1016/j.watres.2020.116267_bib0024
  article-title: Photosynthesis, photorespiration, and light signaling in defense responses
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/err402
– year: 2018
  ident: 10.1016/j.watres.2020.116267_bib0015
– volume: 21
  start-page: 234
  year: 2009
  ident: 10.1016/j.watres.2020.116267_bib0027
  article-title: Characterization of absorption and three-dimensional excitation-emission matrix spectra of chromophoric dissolved organic matter at the river inflow and the open area in Lake Taihu
  publication-title: J. Lake Sci.
  doi: 10.18307/2009.0212
– volume: 57
  start-page: 607
  year: 2012
  ident: 10.1016/j.watres.2020.116267_bib0043
  article-title: Effects of CO2 and their modulation by light in the life-cycle stages of the coccolithophore Emiliania huxleyi
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.2012.57.2.0607
– volume: 323
  start-page: 1014
  year: 2009
  ident: 10.1016/j.watres.2020.116267_bib0007
  article-title: Controlling eutrophication: nitrogen and phosphorus
  publication-title: Science
  doi: 10.1126/science.1167755
– volume: 645
  start-page: 1361
  year: 2018
  ident: 10.1016/j.watres.2020.116267_bib0010
  article-title: Climatically-modulated decline in wind speed may strongly affect eutrophication in shallow lakes
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.07.208
– volume: 59
  start-page: 1441
  year: 2008
  ident: 10.1016/j.watres.2020.116267_bib0040
  article-title: Advances in understanding the cyanobacterial CO2-concentrating-mechanism (CCM): functional components, Ci transporters, diversity, genetic regulation and prospects for engineering into plants
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erm112
– volume: 222
  start-page: 2973
  year: 2011
  ident: 10.1016/j.watres.2020.116267_bib0021
  article-title: A model on the carbon cycling in Lake Taihu, China
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2011.04.018
– volume: 4
  start-page: 988
  issue: 4
  year: 2014
  ident: 10.1016/j.watres.2020.116267_bib0037
  article-title: Mitigating harmful cyanobacterial blooms in a human-and climatically-impacted world
  publication-title: Life
  doi: 10.3390/life4040988
– ident: 10.1016/j.watres.2020.116267_bib0025
– volume: 19
  start-page: 98
  year: 2016
  ident: 10.1016/j.watres.2020.116267_bib0016
  article-title: Freshwater biota and rising pCO2?
  publication-title: Ecol. Lett.
  doi: 10.1111/ele.12549
– volume: 115
  start-page: 43
  year: 2013
  ident: 10.1016/j.watres.2020.116267_bib0004
  article-title: Photosystem II protein clearance and FtsH function in the diatom Thalassiosira pseudonana
  publication-title: Photosynth. Res.
  doi: 10.1007/s11120-013-9809-2
– volume: 109
  start-page: 47
  year: 2011
  ident: 10.1016/j.watres.2020.116267_bib0039
  article-title: Inorganic carbon transporters of the cyanobacterial CO2 concentrating mechanism
  publication-title: Photosynth. Res.
  doi: 10.1007/s11120-010-9608-y
– volume: 29
  start-page: 223
  year: 2014
  ident: 10.1016/j.watres.2020.116267_bib0028
  article-title: ) Aquatic primary production in a high-CO2 world
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/j.tree.2014.02.006
– volume: 4
  start-page: 487
  year: 2014
  ident: 10.1016/j.watres.2020.116267_bib0033
  article-title: Behavioural impairment in reef fishes caused by ocean acidification at CO2 seeps
  publication-title: Nat. Clim. Chang.
  doi: 10.1038/nclimate2195
– volume: 785
  start-page: 71
  year: 2017
  ident: 10.1016/j.watres.2020.116267_bib0060
  article-title: Contrasting cyanobacterial communities and microcystin concentrations in summers with extreme weather events: insights into potential effects of climate change
  publication-title: Hydrobiologia
  doi: 10.1007/s10750-016-2904-6
– volume: 96
  start-page: 13571
  year: 1999
  ident: 10.1016/j.watres.2020.116267_bib0036
  article-title: Identification of an ATP-binding cassette transporter involved in bicarbonate uptake in the cyanobacterium Synechococcus sp. strain PCC 7942
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.96.23.13571
– volume: 63
  start-page: 1643
  year: 2018
  ident: 10.1016/j.watres.2020.116267_bib0052
  article-title: CO2 limited conditions favor cyanobacteria in a hypereutrophic lake: an empirical and theoretical stable isotope study
  publication-title: Limnol. Oceanogr.
  doi: 10.1002/lno.10798
– volume: 108
  start-page: 3830
  year: 2011
  ident: 10.1016/j.watres.2020.116267_bib0019
  article-title: Efficiency of the CO2-concentrating mechanism of diatoms
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1018062108
– volume: 305
  start-page: 367
  year: 2004
  ident: 10.1016/j.watres.2020.116267_bib0044
  article-title: The oceanic sink for anthropogenic CO2
  publication-title: Science
  doi: 10.1126/science.1097403
– volume: 25
  start-page: 445
  issue: 4
  year: 2003
  ident: 10.1016/j.watres.2020.116267_bib0005
  article-title: Long-term dynamics of phytoplankton assemblages: microcystis-domination in Lake Taihu, a large shallow lake in China
  publication-title: J. Plankton Res.
  doi: 10.1093/plankt/25.4.445
– volume: 24
  start-page: 4532
  year: 2018
  ident: 10.1016/j.watres.2020.116267_bib0055
  article-title: Warming and oligotrophication cause shifts in freshwater phytoplankton communities
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.14337
– volume: 10
  start-page: 567
  year: 2013
  ident: 10.1016/j.watres.2020.116267_bib0013
  article-title: Response of Nodularia spumigena to pCO2; Part 2: exudation and extracellular enzyme activities
  publication-title: Biogeosciences
  doi: 10.5194/bg-10-567-2013
– volume: 177
  start-page: 875
  year: 2015
  ident: 10.1016/j.watres.2020.116267_bib0029
  article-title: CO2 alters community composition and response to nutrient enrichment of freshwater phytoplankton
  publication-title: Oecologia
  doi: 10.1007/s00442-014-3153-x
– volume: 691
  start-page: 1144
  year: 2019
  ident: 10.1016/j.watres.2020.116267_bib0030
  article-title: Cyanobacteria in eutrophic waters benefit from rising atmospheric CO2 concentrations
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.07.056
– volume: 3
  start-page: 391
  year: 2012
  ident: 10.1016/j.watres.2020.116267_bib0031
  article-title: Catchment productivity controls CO2 emissions from lakes
  publication-title: Nat. Clim. Chang.
  doi: 10.1038/nclimate1748
– volume: 4
  start-page: 37
  year: 2019
  ident: 10.1016/j.watres.2020.116267_bib0053
  article-title: Highest plasticity of carbon-concentrating mechanisms in earliest evolved phytoplankton
  publication-title: Limnology and Oceanography Letters
  doi: 10.1002/lol2.10102
– volume: 20
  start-page: 1395
  year: 2017
  ident: 10.1016/j.watres.2020.116267_bib0059
  article-title: Surface water CO2 concentration influences phytoplankton production but not community composition across boreal lakes
  publication-title: Ecol. Lett.
  doi: 10.1111/ele.12835
– volume: 62
  start-page: 1411
  year: 2011
  ident: 10.1016/j.watres.2020.116267_bib0035
  article-title: Regulation of nitrate assimilation in cyanobacteria
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erq427
– volume: 21
  start-page: 185
  year: 1994
  ident: 10.1016/j.watres.2020.116267_bib0065
  article-title: Characterisation of CO2 and HCO3− Uptake during Steady-state Photosynthesis in the Cyanobacterium Synechococcus PCC7942
  publication-title: Aust. J. Plant Physiol.
– volume: 1411
  start-page: 2865
  year: 2017
  ident: 10.1016/j.watres.2020.116267_bib0032
  article-title: Cyanobacterial carbon concentrating mechanisms facilitate sustained CO2 depletion in eutrophic lakes
  publication-title: Biogeosciences
  doi: 10.5194/bg-14-2865-2017
SSID ssj0002239
Score 2.4413066
Snippet •We study the pCO2 spatiotemporal variability in lake taihu from 2006 to 2016.•The pCO2-undersaturated areas in august absorb 0.53 t C/h of CO2 from...
The effect of rising atmospheric CO2 on freshwater lakes is a subject of considerable debate. However, it is not clear how rising CO2 concentration affects...
The effect of rising atmospheric CO₂ on freshwater lakes is a subject of considerable debate. However, it is not clear how rising CO₂ concentration affects...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 116267
SubjectTerms algae
autumn
biomass
carbon dioxide
chlorophyll
CO2
Cyanobacteria
Cyanobacterial bloom
freshwater
Freshwater lakes
liquid-air interface
Nitrogen
nutrient use efficiency
Phosphorus
spring
Title Rising atmospheric CO2 levels result in an earlier cyanobacterial bloom-maintenance phase with higher algal biomass
URI https://dx.doi.org/10.1016/j.watres.2020.116267
https://www.proquest.com/docview/2434752242
https://www.proquest.com/docview/2985523778
Volume 185
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5EL3oQn_gsK3iNuq9scixFqQoVxEJvYbPZYKRNS5MiXvztzuThC1Tw2HQ2LJPdmW-Sb74l5NRYpgXUyZ5OhfQA_zsvtMzCvroIU18x4ScVy3fg94fyZqRGS6TX9sIgrbKJ_XVMr6J1c-W88eb5LMuwxxeSn1CSo-QKlHnYwS41rvKz1w-aB6S_sP3KjNZt-1zF8Xo22JABVSLH2AHYXv-Unr4F6ir7XG2Q9QY20m49s02y5PItsvZJTHCbFPcZ1v3UlJNpgWIBmaW9O07HSAsqKMxgMS5pllOTU1jegD3n1L6YHDZ0JdgMt0cW-8SbGNSQQCEOR2ePkOUovqyljxUjhGLvB1hmyCsqdsjw6vKh1_eaIxU8KzQvPW4SFYiESW0AaMRJKALAU8wpbjhPU98EMYNQ7Gtj8Uj5WMQG_hKxClwaSifELlnOp7nbIxSGQtZj2qrYyYskAaQRs8RPJOrd8DTYJ6L1ZGQbvXE89mIctcSyp6j2f4T-j2r_7xPvfdSs1tv4w163Dyn6sm4iSAl_jDxpn2kEWwq_k5jcTRdgJIXUgEsl_8UmDBTU8FoHB_-ewSFZxV-YCZk6IsvlfOGOAeKUcadawx2y0r2-7Q_eAKcp-8I
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS-QwEB90fVAfjvML9bwzgq9FkzRN-yiLsp66gij4FtI0xcpud3G7iP-9M_0QFTzhXttMCZPJzG-amV8ADq3jWmKeHOhchgHifx8kjjvcV8dJHikuo6yu8h1Gg7vw7726X4B-1wtDZZWt7298eu2t2ydHrTaPpkVBPb4Y_KQKBVGuYJq3CEvETqV6sHRyfjEYvjlkjIBJd9BMAl0HXV3m9WypJwMTRUHuA-G9_ipCffLVdQA6-wk_WuTITprJrcGCL9dh9R2f4AbMbgpK_ZmtxpMZ8QUUjvWvBRtRZdCM4Qzmo4oVJbMlQwtH-PnE3IstcU_XnM34eSpkHwdjSzQSxMXh2fQBAx2j_7XsoS4KYdT-gSMLKi2abcLd2eltfxC0tyoETmpRBcJmKpYZD7VFrJFmiYwRUnGvhBUizyMbpxy9caSto1vlU5lafCVTFfs8Cb2UW9ArJ6XfBoaiGPi4dir14XGWIdhIeRZlIVHeiDzeAdlp0riWcpxuvhiZrrbs0TT6N6R_0-h_B4I3qWlDufHNeN0tkvlgOgajwjeSB92aGtxVdFRiSz-Z46BQoiUhvBH_GJPECtN4rePd_57BPiwPbq8uzeX58OIXrNAbCoxc7UGvepr734h4qvRPa9GvQO_-cw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rising+atmospheric+CO2+levels+result+in+an+earlier+cyanobacterial+bloom-maintenance+phase+with+higher+algal+biomass&rft.jtitle=Water+research+%28Oxford%29&rft.au=Wang%2C+Peifang&rft.au=Ma%2C+Jingjie&rft.au=Wang%2C+Xun&rft.au=Tan%2C+Qingqian&rft.date=2020-10-15&rft.issn=0043-1354&rft.volume=185&rft.spage=116267&rft_id=info:doi/10.1016%2Fj.watres.2020.116267&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_watres_2020_116267
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1354&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1354&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1354&client=summon