Syndromes of production in intercropping impact yield gains

Intercropping, the simultaneous production of multiple crops on the same field, provides opportunities for the sustainable intensification of agriculture if it can provide a greater yield per unit land and fertilizer than sole crops. The worldwide absolute yield gain of intercropping as compared wit...

Full description

Saved in:
Bibliographic Details
Published inNature plants Vol. 6; no. 6; pp. 653 - 660
Main Authors Li, Chunjie, Hoffland, Ellis, Kuyper, Thomas W., Yu, Yang, Zhang, Chaochun, Li, Haigang, Zhang, Fusuo, van der Werf, Wopke
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.06.2020
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Intercropping, the simultaneous production of multiple crops on the same field, provides opportunities for the sustainable intensification of agriculture if it can provide a greater yield per unit land and fertilizer than sole crops. The worldwide absolute yield gain of intercropping as compared with sole crops has not been analysed. We therefore performed a global meta-analysis to quantify the effect of intercropping on the yield gain, exploring the effects of crop species combinations, temporal and spatial arrangements, and fertilizer input. We found that the absolute yield gains, compared with monocultures, were the greatest for mixtures of maize with short-grain cereals or legumes that had substantial temporal niche differentiation from maize, when grown with high nutrient inputs, and using multirow strips of each species. This approach, commonly practised in China, provided yield gains that were (in an absolute sense) about four times as large as those in another, low-input intercropping strategy, commonly practised outside China. The alternative intercropping strategy consisted of growing mixtures of short-stature crop species, often as full mixtures, with the same growing period and with low to moderate nutrient inputs. Both the low- and high-yield intercropping strategies saved 16–29% of the land and 19–36% of the fertilizer compared with monocultures grown under the same management as the intercrop. The two syndromes of production in intercropping uncovered by this meta-analysis show that intercropping offers opportunities for the sustainable intensification of both high- and low-input agriculture. Intercropping can provide for agricultural intensification within a sustainable footprint. This study of Chinese methods finds yields four times greater than intercropping outside China with less land and fertilizer use.
AbstractList Intercropping, the simultaneous production of multiple crops on the same field, provides opportunities for the sustainable intensification of agriculture if it can provide a greater yield per unit land and fertilizer than sole crops. The worldwide absolute yield gain of intercropping as compared with sole crops has not been analysed. We therefore performed a global meta-analysis to quantify the effect of intercropping on the yield gain, exploring the effects of crop species combinations, temporal and spatial arrangements, and fertilizer input. We found that the absolute yield gains, compared with monocultures, were the greatest for mixtures of maize with short-grain cereals or legumes that had substantial temporal niche differentiation from maize, when grown with high nutrient inputs, and using multirow strips of each species. This approach, commonly practised in China, provided yield gains that were (in an absolute sense) about four times as large as those in another, low-input intercropping strategy, commonly practised outside China. The alternative intercropping strategy consisted of growing mixtures of short-stature crop species, often as full mixtures, with the same growing period and with low to moderate nutrient inputs. Both the low- and high-yield intercropping strategies saved 16–29% of the land and 19–36% of the fertilizer compared with monocultures grown under the same management as the intercrop. The two syndromes of production in intercropping uncovered by this meta-analysis show that intercropping offers opportunities for the sustainable intensification of both high- and low-input agriculture. Intercropping can provide for agricultural intensification within a sustainable footprint. This study of Chinese methods finds yields four times greater than intercropping outside China with less land and fertilizer use.
Intercropping, the simultaneous production of multiple crops on the same field, provides opportunities for the sustainable intensification of agriculture if it can provide a greater yield per unit land and fertilizer than sole crops. The worldwide absolute yield gain of intercropping as compared with sole crops has not been analysed. We therefore performed a global meta-analysis to quantify the effect of intercropping on the yield gain, exploring the effects of crop species combinations, temporal and spatial arrangements, and fertilizer input. We found that the absolute yield gains, compared with monocultures, were the greatest for mixtures of maize with short-grain cereals or legumes that had substantial temporal niche differentiation from maize, when grown with high nutrient inputs, and using multirow strips of each species. This approach, commonly practised in China, provided yield gains that were (in an absolute sense) about four times as large as those in another, low-input intercropping strategy, commonly practised outside China. The alternative intercropping strategy consisted of growing mixtures of short-stature crop species, often as full mixtures, with the same growing period and with low to moderate nutrient inputs. Both the low- and high-yield intercropping strategies saved 16-29% of the land and 19-36% of the fertilizer compared with monocultures grown under the same management as the intercrop. The two syndromes of production in intercropping uncovered by this meta-analysis show that intercropping offers opportunities for the sustainable intensification of both high- and low-input agriculture.
Intercropping, the simultaneous production of multiple crops on the same field, provides opportunities for the sustainable intensification of agriculture if it can provide a greater yield per unit land and fertilizer than sole crops. The worldwide absolute yield gain of intercropping as compared with sole crops has not been analysed. We therefore performed a global meta-analysis to quantify the effect of intercropping on the yield gain, exploring the effects of crop species combinations, temporal and spatial arrangements, and fertilizer input. We found that the absolute yield gains, compared with monocultures, were the greatest for mixtures of maize with short-grain cereals or legumes that had substantial temporal niche differentiation from maize, when grown with high nutrient inputs, and using multirow strips of each species. This approach, commonly practised in China, provided yield gains that were (in an absolute sense) about four times as large as those in another, low-input intercropping strategy, commonly practised outside China. The alternative intercropping strategy consisted of growing mixtures of short-stature crop species, often as full mixtures, with the same growing period and with low to moderate nutrient inputs. Both the low- and high-yield intercropping strategies saved 16-29% of the land and 19-36% of the fertilizer compared with monocultures grown under the same management as the intercrop. The two syndromes of production in intercropping uncovered by this meta-analysis show that intercropping offers opportunities for the sustainable intensification of both high- and low-input agriculture.Intercropping, the simultaneous production of multiple crops on the same field, provides opportunities for the sustainable intensification of agriculture if it can provide a greater yield per unit land and fertilizer than sole crops. The worldwide absolute yield gain of intercropping as compared with sole crops has not been analysed. We therefore performed a global meta-analysis to quantify the effect of intercropping on the yield gain, exploring the effects of crop species combinations, temporal and spatial arrangements, and fertilizer input. We found that the absolute yield gains, compared with monocultures, were the greatest for mixtures of maize with short-grain cereals or legumes that had substantial temporal niche differentiation from maize, when grown with high nutrient inputs, and using multirow strips of each species. This approach, commonly practised in China, provided yield gains that were (in an absolute sense) about four times as large as those in another, low-input intercropping strategy, commonly practised outside China. The alternative intercropping strategy consisted of growing mixtures of short-stature crop species, often as full mixtures, with the same growing period and with low to moderate nutrient inputs. Both the low- and high-yield intercropping strategies saved 16-29% of the land and 19-36% of the fertilizer compared with monocultures grown under the same management as the intercrop. The two syndromes of production in intercropping uncovered by this meta-analysis show that intercropping offers opportunities for the sustainable intensification of both high- and low-input agriculture.
Intercropping, the simultaneous production of multiple crops on the same field, provides opportunities for the sustainable intensification of agriculture if it can provide a greater yield per unit land and fertilizer than sole crops. The worldwide absolute yield gain of intercropping as compared with sole crops has not been analysed. We therefore performed a global meta-analysis to quantify the effect of intercropping on the yield gain, exploring the effects of crop species combinations, temporal and spatial arrangements, and fertilizer input. We found that the absolute yield gains, compared with monocultures, were the greatest for mixtures of maize with short-grain cereals or legumes that had substantial temporal niche differentiation from maize, when grown with high nutrient inputs, and using multirow strips of each species. This approach, commonly practised in China, provided yield gains that were (in an absolute sense) about four times as large as those in another, low-input intercropping strategy, commonly practised outside China. The alternative intercropping strategy consisted of growing mixtures of short-stature crop species, often as full mixtures, with the same growing period and with low to moderate nutrient inputs. Both the low- and high-yield intercropping strategies saved 16–29% of the land and 19–36% of the fertilizer compared with monocultures grown under the same management as the intercrop. The two syndromes of production in intercropping uncovered by this meta-analysis show that intercropping offers opportunities for the sustainable intensification of both high- and low-input agriculture.Intercropping can provide for agricultural intensification within a sustainable footprint. This study of Chinese methods finds yields four times greater than intercropping outside China with less land and fertilizer use.
Author Zhang, Chaochun
Zhang, Fusuo
Yu, Yang
Kuyper, Thomas W.
Li, Haigang
van der Werf, Wopke
Li, Chunjie
Hoffland, Ellis
Author_xml – sequence: 1
  givenname: Chunjie
  orcidid: 0000-0002-2761-1085
  surname: Li
  fullname: Li, Chunjie
  organization: College of Resources and Environmental Science, National Academy of Agriculture Green Development, China Agricultural University, Soil Biology Group, Wageningen University, Centre for Crop Systems Analysis, Wageningen University
– sequence: 2
  givenname: Ellis
  orcidid: 0000-0002-6995-1109
  surname: Hoffland
  fullname: Hoffland, Ellis
  organization: Soil Biology Group, Wageningen University
– sequence: 3
  givenname: Thomas W.
  orcidid: 0000-0002-3896-4943
  surname: Kuyper
  fullname: Kuyper, Thomas W.
  organization: Soil Biology Group, Wageningen University
– sequence: 4
  givenname: Yang
  surname: Yu
  fullname: Yu, Yang
  organization: Centre for Crop Systems Analysis, Wageningen University
– sequence: 5
  givenname: Chaochun
  orcidid: 0000-0002-1278-8400
  surname: Zhang
  fullname: Zhang, Chaochun
  organization: College of Resources and Environmental Science, National Academy of Agriculture Green Development, China Agricultural University
– sequence: 6
  givenname: Haigang
  orcidid: 0000-0003-3889-919X
  surname: Li
  fullname: Li, Haigang
  organization: College of Resources and Environmental Science, National Academy of Agriculture Green Development, China Agricultural University, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University
– sequence: 7
  givenname: Fusuo
  orcidid: 0000-0001-8971-0129
  surname: Zhang
  fullname: Zhang, Fusuo
  email: zhangfs@cau.edu.cn
  organization: College of Resources and Environmental Science, National Academy of Agriculture Green Development, China Agricultural University
– sequence: 8
  givenname: Wopke
  orcidid: 0000-0002-5506-4699
  surname: van der Werf
  fullname: van der Werf, Wopke
  email: wopke.vanderwerf@wur.nl
  organization: Centre for Crop Systems Analysis, Wageningen University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32483328$$D View this record in MEDLINE/PubMed
BookMark eNp9kM1LwzAchoNM3Jz7A7xIwYuX6i-_pE2LJxl-wcCDeg5Zm42MNq1Je9h_b8rmBwMNgYTwvMmb55SMbGM1IecUrimw7MZzyoWIASGGNIM4PyIThCQJJyIb_dqPycz7DQBQkSQshRMyZsgzxjCbkNvXrS1dU2sfNauodU3ZF51pbGSG2WlXuKZtjV1Hpm5V0UVbo6syWitj_Rk5XqnK69l-nZL3h_u3-VO8eHl8nt8t4oIJ7GIUJQpdAC9FRnOlEKBgS5ogExpVkjLMeQ7LpchFinwYQnPQSZKmJWMlZVNytbs31Pvote9kbXyhq0pZ3fReIocs45SlIqCXB-im6Z0N7QJFGTKKgIG62FP9stalbJ2pldvKLy0BoDsg_N57p1ffCAU52Jc7-zLYl4N9mYeMOMgUplODy84pU_2bxF3Sh1fsWruf0n-HPgHr95TV
CitedBy_id crossref_primary_10_1016_j_eja_2025_127508
crossref_primary_10_17221_665_2020_PSE
crossref_primary_10_3389_fpls_2022_848893
crossref_primary_10_1007_s11104_024_06705_8
crossref_primary_10_15302_J_FASE_2021418
crossref_primary_10_3389_fsufs_2022_744700
crossref_primary_10_3389_fpls_2024_1368509
crossref_primary_10_1016_j_agee_2024_109196
crossref_primary_10_1016_j_plaphy_2023_02_043
crossref_primary_10_1007_s42729_025_02327_w
crossref_primary_10_1038_s41597_023_02831_7
crossref_primary_10_1016_j_tplants_2022_11_008
crossref_primary_10_1016_j_chemosphere_2023_140328
crossref_primary_10_1016_j_biocontrol_2024_105571
crossref_primary_10_1016_j_fcr_2024_109363
crossref_primary_10_3389_fpls_2022_846237
crossref_primary_10_3390_agriculture12050697
crossref_primary_10_1002_jsfa_13268
crossref_primary_10_1038_s41467_024_45207_0
crossref_primary_10_3389_fpls_2022_1006720
crossref_primary_10_1002_jsfa_12973
crossref_primary_10_1093_jxb_erab077
crossref_primary_10_3390_agriculture12070996
crossref_primary_10_1016_j_eja_2021_126303
crossref_primary_10_1016_j_oneear_2024_11_018
crossref_primary_10_3390_agronomy14030586
crossref_primary_10_1007_s11104_023_06423_7
crossref_primary_10_1016_j_agwat_2024_108876
crossref_primary_10_1016_j_agee_2024_109180
crossref_primary_10_1002_pld3_365
crossref_primary_10_1016_j_eja_2024_127222
crossref_primary_10_1038_s41893_021_00768_6
crossref_primary_10_3389_fpls_2020_620400
crossref_primary_10_4236_ajps_2023_143019
crossref_primary_10_1007_s11104_023_06037_z
crossref_primary_10_1007_s11104_023_06363_2
crossref_primary_10_1007_s11104_024_07129_0
crossref_primary_10_3389_fpls_2021_663730
crossref_primary_10_1038_s41598_023_43288_3
crossref_primary_10_1016_j_agee_2024_109173
crossref_primary_10_1016_j_fcr_2022_108803
crossref_primary_10_1007_s11104_022_05558_3
crossref_primary_10_1016_j_fcr_2020_108052
crossref_primary_10_3390_agronomy13020413
crossref_primary_10_1016_j_jece_2023_111619
crossref_primary_10_3390_agriculture14081249
crossref_primary_10_1002_sae2_12026
crossref_primary_10_1016_j_fcr_2024_109262
crossref_primary_10_1016_j_jclepro_2023_139701
crossref_primary_10_3390_agronomy14102245
crossref_primary_10_3390_agronomy15010158
crossref_primary_10_1007_s11104_024_06987_y
crossref_primary_10_1111_gcb_15747
crossref_primary_10_1186_s13717_024_00562_0
crossref_primary_10_3389_fpls_2022_958852
crossref_primary_10_1016_j_agee_2024_108992
crossref_primary_10_3390_agronomy13082017
crossref_primary_10_1093_jpe_rtad018
crossref_primary_10_1093_jpe_rtad017
crossref_primary_10_3390_agronomy14102381
crossref_primary_10_1093_jpe_rtad016
crossref_primary_10_1002_fes3_282
crossref_primary_10_1016_j_fcr_2023_109093
crossref_primary_10_1093_jpe_rtad015
crossref_primary_10_1007_s11104_024_07018_6
crossref_primary_10_1016_j_eja_2024_127237
crossref_primary_10_1016_j_eja_2024_127119
crossref_primary_10_1111_pce_14784
crossref_primary_10_1016_j_cj_2023_05_011
crossref_primary_10_3390_su14020799
crossref_primary_10_1007_s11104_022_05487_1
crossref_primary_10_1007_s11427_024_2683_y
crossref_primary_10_1111_1365_2745_13592
crossref_primary_10_1016_j_eja_2022_126470
crossref_primary_10_1016_j_fcr_2025_109850
crossref_primary_10_1016_j_gloenvcha_2021_102313
crossref_primary_10_3390_agronomy12092187
crossref_primary_10_1088_1748_9326_ad9d61
crossref_primary_10_1016_j_catena_2023_107247
crossref_primary_10_1016_j_jenvman_2024_120886
crossref_primary_10_1080_13504509_2022_2124552
crossref_primary_10_1007_s13593_022_00787_3
crossref_primary_10_3389_fpls_2023_1273675
crossref_primary_10_7717_peerj_13777
crossref_primary_10_1007_s11104_024_06478_0
crossref_primary_10_1016_j_agee_2024_109030
crossref_primary_10_3390_agronomy12102326
crossref_primary_10_1016_j_baae_2022_03_009
crossref_primary_10_1007_s11104_021_05232_0
crossref_primary_10_34133_plantphenomics_0095
crossref_primary_10_1038_s41477_020_0677_4
crossref_primary_10_3390_su142315651
crossref_primary_10_1016_j_jenvman_2025_124731
crossref_primary_10_1016_j_fcr_2024_109560
crossref_primary_10_1007_s11104_024_06963_6
crossref_primary_10_1016_j_tplants_2022_02_003
crossref_primary_10_1007_s11104_022_05436_y
crossref_primary_10_1016_j_jia_2022_08_054
crossref_primary_10_1038_s43016_021_00402_w
crossref_primary_10_1016_j_agee_2023_108510
crossref_primary_10_1016_j_jia_2024_12_018
crossref_primary_10_1016_j_cub_2021_06_082
crossref_primary_10_3390_microorganisms11122978
crossref_primary_10_1016_j_agee_2024_109141
crossref_primary_10_1016_j_eja_2024_127136
crossref_primary_10_1016_j_apsoil_2024_105613
crossref_primary_10_1073_pnas_2305517121
crossref_primary_10_3390_plants13233289
crossref_primary_10_1016_j_agee_2021_107540
crossref_primary_10_1016_j_scitotenv_2024_177350
crossref_primary_10_1007_s11032_023_01375_3
crossref_primary_10_1016_j_still_2025_106553
crossref_primary_10_3389_fmicb_2022_868312
crossref_primary_10_1016_j_still_2023_105867
crossref_primary_10_3390_biology11050630
crossref_primary_10_1111_pce_15299
crossref_primary_10_1016_j_eja_2025_127563
crossref_primary_10_3390_agronomy11040737
crossref_primary_10_1016_j_jafr_2024_100964
crossref_primary_10_3389_fpls_2022_846720
crossref_primary_10_1016_j_fcr_2024_109335
crossref_primary_10_3389_fpls_2023_1280382
crossref_primary_10_1007_s11104_024_06744_1
crossref_primary_10_36253_jaeid_14672
crossref_primary_10_1016_j_fcr_2024_109695
crossref_primary_10_1016_j_agwat_2024_109160
crossref_primary_10_3390_agronomy12122994
crossref_primary_10_1007_s11104_022_05508_z
crossref_primary_10_1007_s11104_021_04876_2
crossref_primary_10_1016_j_agee_2023_108767
crossref_primary_10_3389_fpls_2021_605172
crossref_primary_10_3390_ruminants4040041
crossref_primary_10_1016_j_jia_2024_11_002
crossref_primary_10_1016_j_agee_2024_109254
crossref_primary_10_1016_j_agee_2023_108880
crossref_primary_10_1111_pce_13886
crossref_primary_10_1016_j_indcrop_2022_115259
crossref_primary_10_3390_agronomy13092268
crossref_primary_10_3390_su13116419
crossref_primary_10_1016_j_agee_2022_108239
crossref_primary_10_3390_agriculture12091428
crossref_primary_10_1016_j_fcr_2024_109467
crossref_primary_10_15302_J_FASE_2020352
crossref_primary_10_1007_s13593_024_00964_6
crossref_primary_10_1016_j_fcr_2023_109188
crossref_primary_10_1016_j_apsoil_2024_105274
crossref_primary_10_1007_s13593_022_00754_y
crossref_primary_10_1016_j_jia_2022_08_078
crossref_primary_10_3390_agriculture12020151
crossref_primary_10_1007_s10340_024_01801_1
crossref_primary_10_1016_j_agee_2024_109360
crossref_primary_10_1016_j_eja_2021_126408
crossref_primary_10_3389_fsufs_2024_1328800
crossref_primary_10_1007_s11104_023_06460_2
crossref_primary_10_3390_w12092646
crossref_primary_10_1002_fes3_364
crossref_primary_10_1016_j_agee_2024_109243
crossref_primary_10_1016_j_soilbio_2024_109318
crossref_primary_10_1038_s41598_024_72493_x
crossref_primary_10_3390_ijms26010109
crossref_primary_10_3390_agronomy15010084
crossref_primary_10_1007_s10705_022_10234_0
crossref_primary_10_1016_j_fcr_2021_108281
crossref_primary_10_1016_j_jclepro_2022_131557
crossref_primary_10_1038_s41893_021_00767_7
crossref_primary_10_1016_j_fcr_2024_109595
crossref_primary_10_1016_j_fcr_2023_109174
crossref_primary_10_1079_PAVSNNR202116005
crossref_primary_10_3389_fmicb_2024_1403338
crossref_primary_10_1071_AN24246
crossref_primary_10_1073_pnas_2111321118
crossref_primary_10_1016_j_plaphy_2025_109686
crossref_primary_10_1177_00307270231194086
crossref_primary_10_1016_j_scitotenv_2024_170632
crossref_primary_10_1016_j_agsy_2023_103619
crossref_primary_10_3390_agronomy14112472
crossref_primary_10_1007_s11104_020_04768_x
crossref_primary_10_1007_s42729_022_00936_3
crossref_primary_10_1016_j_still_2021_105154
crossref_primary_10_3390_agriculture15050456
crossref_primary_10_1016_j_eja_2024_127504
crossref_primary_10_1016_j_fcr_2024_109647
crossref_primary_10_1016_j_agsy_2023_103850
crossref_primary_10_3390_agronomy12081900
crossref_primary_10_1007_s11104_023_05955_2
crossref_primary_10_1016_j_fcr_2023_109241
crossref_primary_10_1007_s11104_021_05076_8
crossref_primary_10_3389_fmicb_2024_1364355
crossref_primary_10_1016_j_envpol_2021_117844
crossref_primary_10_1016_j_fcr_2023_109246
crossref_primary_10_1002_ppp3_10481
crossref_primary_10_1016_j_eja_2023_126943
crossref_primary_10_1016_j_jes_2021_08_005
crossref_primary_10_1038_s43016_024_00992_1
crossref_primary_10_1007_s11104_023_06251_9
crossref_primary_10_1016_j_agee_2023_108795
crossref_primary_10_1038_s41477_021_00948_4
crossref_primary_10_3390_plants11212936
crossref_primary_10_1007_s11356_023_31318_6
crossref_primary_10_3390_land11040581
crossref_primary_10_1016_j_ppees_2021_125612
crossref_primary_10_1016_j_fcr_2023_108820
crossref_primary_10_1038_s41598_024_64138_w
crossref_primary_10_1016_j_fcr_2023_109116
crossref_primary_10_1016_j_jenvman_2022_114568
crossref_primary_10_2478_agri_2022_0015
crossref_primary_10_1016_j_agsy_2022_103584
crossref_primary_10_1016_j_chemosphere_2023_139975
crossref_primary_10_3389_fmicb_2022_972587
crossref_primary_10_3390_agronomy14061222
crossref_primary_10_1016_j_fcr_2022_108561
crossref_primary_10_1016_j_agrformet_2022_109091
crossref_primary_10_1038_s41477_022_01210_1
crossref_primary_10_1038_s41598_024_69903_5
crossref_primary_10_1371_journal_pone_0300573
crossref_primary_10_1016_j_agee_2023_108444
crossref_primary_10_1016_j_pld_2021_06_005
crossref_primary_10_1016_j_agee_2023_108564
crossref_primary_10_1007_s10668_024_04617_2
crossref_primary_10_1007_s11104_020_04668_0
crossref_primary_10_1073_pnas_2201886120
crossref_primary_10_3390_agriculture11111100
crossref_primary_10_1016_j_agee_2023_108680
crossref_primary_10_1016_j_cosust_2023_101336
crossref_primary_10_1007_s11104_024_07041_7
crossref_primary_10_1016_j_agee_2024_109450
crossref_primary_10_1111_1365_2745_13765
crossref_primary_10_1016_j_fcr_2023_108974
crossref_primary_10_1007_s11104_022_05554_7
crossref_primary_10_1016_j_fcr_2023_108854
crossref_primary_10_1093_jee_toac045
crossref_primary_10_1016_j_fcr_2022_108656
crossref_primary_10_3390_agronomy12123095
crossref_primary_10_1007_s11104_024_06542_9
crossref_primary_10_1016_j_jhazmat_2024_136224
crossref_primary_10_1016_j_fcr_2022_108779
crossref_primary_10_1016_j_still_2023_105857
crossref_primary_10_1007_s11427_020_1776_y
crossref_primary_10_1016_j_isci_2022_105551
crossref_primary_10_3389_fpls_2024_1454130
crossref_primary_10_1007_s11367_024_02360_4
crossref_primary_10_1016_j_jhazmat_2022_129442
crossref_primary_10_1111_nph_19906
crossref_primary_10_1016_j_fcr_2022_108771
crossref_primary_10_1016_j_fcr_2024_109663
crossref_primary_10_1007_s42729_024_01708_x
crossref_primary_10_1016_j_agee_2024_109324
crossref_primary_10_7554_eLife_77577
crossref_primary_10_1007_s11104_024_06861_x
crossref_primary_10_1007_s13593_022_00839_8
crossref_primary_10_1016_j_jia_2024_04_013
crossref_primary_10_1016_j_ecolind_2022_108901
crossref_primary_10_1016_j_fcr_2021_108122
crossref_primary_10_1016_j_fcr_2023_108964
crossref_primary_10_1016_j_scitotenv_2023_162700
crossref_primary_10_1016_j_apsoil_2023_104809
crossref_primary_10_1007_s10340_023_01629_1
crossref_primary_10_1016_j_indcrop_2024_119868
crossref_primary_10_1007_s13593_022_00761_z
crossref_primary_10_1016_j_resconrec_2024_107898
crossref_primary_10_1016_j_eja_2023_127024
crossref_primary_10_3390_app14146059
crossref_primary_10_1016_j_jia_2023_06_035
crossref_primary_10_1016_j_eti_2022_102964
crossref_primary_10_1111_pce_15206
crossref_primary_10_1016_j_chemosphere_2021_132470
crossref_primary_10_1111_eea_13508
crossref_primary_10_1016_j_fcr_2024_109600
crossref_primary_10_1016_j_tplants_2024_04_010
crossref_primary_10_1016_j_fcr_2024_109607
crossref_primary_10_1016_j_fcr_2022_108757
crossref_primary_10_1016_j_isci_2022_104168
crossref_primary_10_1016_j_still_2023_105913
crossref_primary_10_1093_hr_uhae018
crossref_primary_10_1007_s13593_022_00816_1
crossref_primary_10_1016_j_eja_2023_127032
crossref_primary_10_3389_fagro_2021_734923
crossref_primary_10_1007_s11104_022_05701_0
crossref_primary_10_1016_j_agsy_2024_104109
crossref_primary_10_3389_fpls_2024_1354672
crossref_primary_10_1016_j_scitotenv_2024_174009
crossref_primary_10_1021_acs_jafc_1c02821
crossref_primary_10_1007_s11104_023_06464_y
crossref_primary_10_3390_ijgi12050195
crossref_primary_10_1007_s11104_024_06775_8
crossref_primary_10_3390_plants13070991
crossref_primary_10_1007_s11104_023_06425_5
crossref_primary_10_1007_s11104_021_05165_8
crossref_primary_10_3389_fpls_2023_1266969
crossref_primary_10_1111_pce_14128
crossref_primary_10_1016_j_fcr_2024_109612
crossref_primary_10_1016_j_compag_2024_109162
crossref_primary_10_1016_j_fcr_2022_108523
crossref_primary_10_1088_1748_9326_abf529
crossref_primary_10_1111_pce_14487
crossref_primary_10_1186_s12870_022_03706_6
crossref_primary_10_1007_s00374_024_01804_1
crossref_primary_10_1007_s42729_024_01684_2
crossref_primary_10_1016_j_agsy_2022_103540
crossref_primary_10_1038_s41598_021_98179_2
crossref_primary_10_1016_j_envpol_2021_118724
crossref_primary_10_3390_agronomy12020418
crossref_primary_10_1016_j_ecolind_2024_111897
crossref_primary_10_1016_j_indcrop_2023_117203
crossref_primary_10_4236_nr_2024_158013
crossref_primary_10_1016_j_apsoil_2023_105264
crossref_primary_10_1016_j_eja_2022_126676
crossref_primary_10_1016_j_rser_2024_115235
crossref_primary_10_1016_j_still_2024_106063
crossref_primary_10_3390_agronomy14030635
crossref_primary_10_1016_j_molp_2023_09_003
crossref_primary_10_1016_j_fcr_2021_108208
crossref_primary_10_1016_j_fcr_2023_108926
crossref_primary_10_1186_s40168_022_01287_y
crossref_primary_10_1016_j_eja_2022_126679
crossref_primary_10_3389_fpls_2021_731949
crossref_primary_10_1016_j_biocontrol_2024_105677
crossref_primary_10_5897_AJAR2023_16598
crossref_primary_10_3390_land11020255
crossref_primary_10_1016_j_agwat_2022_107690
crossref_primary_10_1177_00307270221077442
crossref_primary_10_1007_s13593_024_00968_2
crossref_primary_10_1007_s11104_024_07111_w
crossref_primary_10_3389_fpls_2022_843065
crossref_primary_10_1016_j_eja_2023_126960
crossref_primary_10_1016_j_geoderma_2024_116786
crossref_primary_10_1016_j_baae_2022_05_004
crossref_primary_10_1111_plb_13582
crossref_primary_10_3390_plants12010139
crossref_primary_10_3389_fpls_2023_1266704
crossref_primary_10_1126_science_abo7429
crossref_primary_10_1007_s11104_023_06136_x
crossref_primary_10_1016_j_fcr_2024_109513
crossref_primary_10_1016_j_fcr_2025_109817
crossref_primary_10_1016_j_tree_2020_06_012
crossref_primary_10_3390_su142316137
crossref_primary_10_1007_s11104_024_07168_7
crossref_primary_10_1007_s11104_024_06950_x
crossref_primary_10_1016_j_scitotenv_2024_172714
Cites_doi 10.1016/j.fcr.2016.08.022
10.1016/j.fcr.2007.12.014
10.1016/0167-8809(89)90105-9
10.1016/j.eja.2007.02.004
10.1016/j.fcr.2012.07.014
10.1016/j.fcr.2018.05.010
10.1016/S2095-3119(17)61789-1
10.2307/1941795
10.1038/s41598-017-14271-6
10.1007/s11104-016-3063-2
10.1016/j.fcr.2012.09.019
10.1006/jema.1997.0128
10.1073/pnas.1116437108
10.1126/science.1066860
10.1007/s13593-013-0180-7
10.1038/35021046
10.1046/j.1365-2745.1999.00365.x
10.1016/j.fcr.2006.03.008
10.1371/journal.pone.0008049
10.1007/s13593-013-0189-y
10.1016/j.agee.2017.04.019
10.1007/s13593-019-0562-6
10.1016/j.fcr.2011.12.014
10.1007/s13593-013-0161-x
10.1016/j.fcr.2011.07.013
10.1016/S0378-4290(01)00176-9
10.1016/0378-3774(90)90069-B
10.1007/BF00010992
10.1016/j.scitotenv.2017.10.024
10.1080/1343943X.2018.1541137
10.1073/pnas.0813417106
10.1126/science.277.5325.504
10.1017/S0014479700010978
10.1016/S0378-4290(01)00156-3
10.1038/35083573
10.1073/pnas.0704591104
10.1016/j.eja.2019.125987
10.1007/BF00011315
10.1073/pnas.96.11.5952
10.1016/j.agsy.2016.11.009
10.1016/j.fcr.2009.04.009
10.1016/j.eja.2017.09.009
10.1038/17709
10.1007/s13593-018-0531-5
10.1016/j.fcr.2019.107613
10.1038/nature01014
10.1016/j.fcr.2015.09.010
10.1890/0012-9658(2003)084[0955:SSLPAD]2.0.CO;2
10.1890/130162
10.1016/j.agsy.2019.03.007
10.1007/s13593-014-0277-7
10.1071/CP16211
10.1007/s11104-010-0686-6
10.1016/0378-4290(93)90123-5
10.1111/gcb.12738
10.1016/j.fcr.2019.107661
10.1016/j.eja.2012.01.010
10.1111/nph.13132
10.1007/978-0-387-87458-6
10.1016/B978-0-12-384719-5.00363-4
10.1007/978-90-481-2716-0_3
10.1007/978-94-007-7927-3_3
10.1017/CBO9780511623523
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2020
The Author(s), under exclusive licence to Springer Nature Limited 2020.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020
– notice: The Author(s), under exclusive licence to Springer Nature Limited 2020.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
AEUYN
AFKRA
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
HCIFZ
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQQKQ
PQUKI
7X8
DOI 10.1038/s41477-020-0680-9
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ecology Abstracts
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
SciTech Premium Collection
ProQuest One Community College
Ecology Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Sustainability
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
ProQuest One Academic
ProQuest Central (New)
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
ProQuest One Academic Middle East (New)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
Agriculture
EISSN 2055-0278
EndPage 660
ExternalDocumentID 32483328
10_1038_s41477_020_0680_9
Genre Meta-Analysis
Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: Wageningen UR | Wageningen University
  funderid: https://doi.org/10.13039/501100004890
– fundername: National Key R&D Program of China (grant number: 2017YFD0200200/2017YFD0200207).
– fundername: Chinese National Basic Research Program (2015CB150400)
– fundername: European Union’s Horizon 2020 Programme for Research & Innovation under grant agreement n°727217 (www.remix-intercrops.eu)”
GroupedDBID 0R~
4.4
5BI
8FE
8FH
AAEEF
AAHBH
AARCD
AAYZH
AAZLF
ABJNI
ABLJU
ACBWK
ACGFS
ADBBV
AENEX
AEUYN
AFKRA
AFSHS
AFWHJ
AGAYW
AHSBF
AIBTJ
ALFFA
ALMA_UNASSIGNED_HOLDINGS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
BENPR
BHPHI
BKKNO
BKSAR
CCPQU
EBS
EJD
FSGXE
FZEXT
HCIFZ
HZ~
LK5
M7R
NNMJJ
O9-
ODYON
PCBAR
RNT
SHXYY
SIXXV
SNYQT
SOJ
TAOOD
TBHMF
TDRGL
TSG
AAYXX
ABFSG
ACSTC
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ATHPR
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NFIDA
NPM
7SN
C1K
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
7X8
ID FETCH-LOGICAL-c372t-27d27ec04d7819aa200c3b15237e2a56329490bb79762444447e40e5566d33d13
IEDL.DBID BENPR
ISSN 2055-0278
IngestDate Fri Jul 11 16:26:43 EDT 2025
Sat Aug 23 13:10:13 EDT 2025
Thu Apr 03 06:55:31 EDT 2025
Thu Apr 24 23:10:31 EDT 2025
Tue Jul 01 03:33:58 EDT 2025
Fri Feb 21 02:39:19 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-27d27ec04d7819aa200c3b15237e2a56329490bb79762444447e40e5566d33d13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3896-4943
0000-0001-8971-0129
0000-0002-5506-4699
0000-0002-1278-8400
0000-0002-6995-1109
0000-0002-2761-1085
0000-0003-3889-919X
PMID 32483328
PQID 2413231202
PQPubID 2069614
PageCount 8
ParticipantIDs proquest_miscellaneous_2408841367
proquest_journals_2413231202
pubmed_primary_32483328
crossref_primary_10_1038_s41477_020_0680_9
crossref_citationtrail_10_1038_s41477_020_0680_9
springer_journals_10_1038_s41477_020_0680_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200600
2020-06-01
2020-06-00
20200601
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 6
  year: 2020
  text: 20200600
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature plants
PublicationTitleAbbrev Nat. Plants
PublicationTitleAlternate Nat Plants
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Andow, Hidaka (CR37) 1989; 27
Hong, Heerink, Zhao, van der Werf (CR39) 2019; 173
Ren (CR7) 2014; 12
Whitmore, Schröder (CR48) 2007; 27
Lithourgidis, Vasilakoglou, Dhima, Dordas, Yiakoulaki (CR33) 2006; 99
Li (CR49) 2011; 342
Loreau, Hector (CR24) 2001; 412
Cong (CR18) 2015; 21
CR34
Xu (CR29) 2020; 246
Mead, Willey (CR22) 1980; 16
Li (CR35) 2020; 113
Vandermeer (CR38) 1997; 51
Yang, Huang, Chai, Luo (CR14) 2011; 124
Zhang (CR12) 2008; 107
CR6
Jensen (CR17) 1996; 182
Willey (CR5) 1990; 17
Peñuelas, Filella (CR52) 2001; 294
Anten, Hirose (CR43) 1999; 87
CR45
Trenbath (CR10) 1993; 34
Rusinamhodzi, Corbeels, Nyamangara, Giller (CR50) 2012; 136
Ju (CR47) 2009; 106
Li (CR19) 2007; 104
Yu, Stomph, Makowski, van der Werf (CR23) 2015; 184
Martin-Guay, Paquette, Dupras, Rivest (CR8) 2018; 615
Zhu (CR11) 2000; 406
Menzel, Fabian (CR53) 1999; 397
Tilman, Cassman, Matson, Naylor, Polasky (CR2) 2002; 418
Tan (CR15) 2020; 246
Hu (CR55) 2016; 198
Lithourgidis, Dordas, Damalas, Vlachostergios (CR26) 2011; 5
Wezel (CR61) 2014; 34
Du (CR46) 2018; 17
Pelzer (CR56) 2012; 40
Anten, Hirose (CR42) 2003; 84
Hauggaard-Nielsen, Jensen (CR36) 2001; 72
Chai, Qin, Gan, Yu (CR62) 2014; 34
Barbieri, Pellerin, Nesme (CR32) 2017; 7
Hu (CR54) 2017; 412
Gou (CR28) 2017; 151
Fletcher (CR60) 2017; 67
Viguier, Bedoussac, Journet, Justes (CR58) 2018; 38
Matson, Parton, Power, Swift (CR3) 1997; 277
Voisin (CR31) 2014; 34
Raseduzzaman, Jensen (CR51) 2017; 91
Brooker (CR30) 2015; 206
Li (CR40) 2001; 71
Cassman (CR4) 1999; 96
Iqbal (CR59) 2019; 22
Ngwira, Aune, Mkwinda (CR57) 2012; 132
Hauggaard-Nielsen (CR16) 2009; 113
Li (CR20) 2009; 4
Mao (CR13) 2012; 138
CR25
Liu (CR41) 2018; 224
Fujita, Ofosubudu, Ogata (CR44) 1992; 141
Hong (CR27) 2017; 244
CR67
CR66
CR65
CR64
CR63
Tilman, Balzer, Hill, Befort (CR1) 2011; 108
Liebman, Dyck (CR9) 1993; 3
Gaudio (CR68) 2019; 39
Bedoussac (CR21) 2015; 35
N Anten (680_CR43) 1999; 87
AR Ngwira (680_CR57) 2012; 132
N Anten (680_CR42) 2003; 84
M Loreau (680_CR24) 2001; 412
Y Hong (680_CR39) 2019; 173
H Hauggaard-Nielsen (680_CR36) 2001; 72
PA Matson (680_CR3) 1997; 277
L Bedoussac (680_CR21) 2015; 35
D Tilman (680_CR1) 2011; 108
Q Chai (680_CR62) 2014; 34
AS Lithourgidis (680_CR33) 2006; 99
AP Whitmore (680_CR48) 2007; 27
L Li (680_CR40) 2001; 71
N Iqbal (680_CR59) 2019; 22
K Fujita (680_CR44) 1992; 141
Y Yu (680_CR23) 2015; 184
680_CR34
L Zhang (680_CR12) 2008; 107
RW Willey (680_CR5) 1990; 17
DA Andow (680_CR37) 1989; 27
KG Cassman (680_CR4) 1999; 96
M Tan (680_CR15) 2020; 246
L Rusinamhodzi (680_CR50) 2012; 136
E Pelzer (680_CR56) 2012; 40
ES Jensen (680_CR17) 1996; 182
Y Hong (680_CR27) 2017; 244
R Mead (680_CR22) 1980; 16
RW Brooker (680_CR30) 2015; 206
L Li (680_CR19) 2007; 104
H Hauggaard-Nielsen (680_CR16) 2009; 113
B Trenbath (680_CR10) 1993; 34
CJ Li (680_CR35) 2020; 113
680_CR45
680_CR65
Y Zhu (680_CR11) 2000; 406
680_CR64
JB Du (680_CR46) 2018; 17
680_CR63
AL Fletcher (680_CR60) 2017; 67
A Wezel (680_CR61) 2014; 34
M Liebman (680_CR9) 1993; 3
Z Xu (680_CR29) 2020; 246
X Liu (680_CR41) 2018; 224
J Peñuelas (680_CR52) 2001; 294
FL Hu (680_CR55) 2016; 198
AS Voisin (680_CR31) 2014; 34
C Yang (680_CR14) 2011; 124
LL Mao (680_CR13) 2012; 138
FL Hu (680_CR54) 2017; 412
N Gaudio (680_CR68) 2019; 39
WF Cong (680_CR18) 2015; 21
F Gou (680_CR28) 2017; 151
A Menzel (680_CR53) 1999; 397
M Raseduzzaman (680_CR51) 2017; 91
680_CR6
WZ Ren (680_CR7) 2014; 12
XT Ju (680_CR47) 2009; 106
CJ Li (680_CR49) 2011; 342
L Viguier (680_CR58) 2018; 38
P Barbieri (680_CR32) 2017; 7
C Li (680_CR20) 2009; 4
J Vandermeer (680_CR38) 1997; 51
MO Martin-Guay (680_CR8) 2018; 615
D Tilman (680_CR2) 2002; 418
680_CR25
A Lithourgidis (680_CR26) 2011; 5
680_CR67
680_CR66
32483327 - Nat Plants. 2020 Jun;6(6):604-605
References_xml – ident: CR45
– volume: 198
  start-page: 50
  year: 2016
  end-page: 60
  ident: CR55
  article-title: Boosting system productivity through the improved coordination of interspecific competition in maize/pea strip intercropping
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2016.08.022
– volume: 107
  start-page: 29
  year: 2008
  end-page: 42
  ident: CR12
  article-title: Light interception and utilization in relay intercrops of wheat and cotton
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2007.12.014
– volume: 27
  start-page: 447
  year: 1989
  end-page: 462
  ident: CR37
  article-title: Experimental natural history of sustainable agriculture: syndromes of production
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/0167-8809(89)90105-9
– volume: 27
  start-page: 81
  year: 2007
  end-page: 88
  ident: CR48
  article-title: Intercropping reduces nitrate leaching from under field crops without loss of yield: a modelling study
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2007.02.004
– volume: 136
  start-page: 12
  year: 2012
  end-page: 22
  ident: CR50
  article-title: Maize–grain legume intercropping is an attractive option for ecological intensification that reduces climatic risk for smallholder farmers in central Mozambique
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2012.07.014
– volume: 224
  start-page: 91
  year: 2018
  end-page: 101
  ident: CR41
  article-title: Relationships among light distribution, radiation use efficiency and land equivalent ratio in maize–soybean strip intercropping
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2018.05.010
– volume: 17
  start-page: 747
  year: 2018
  end-page: 754
  ident: CR46
  article-title: Maize–soybean strip intercropping: achieved a balance between high productivity and sustainability
  publication-title: J. Integr. Agric.
  doi: 10.1016/S2095-3119(17)61789-1
– volume: 5
  start-page: 396
  year: 2011
  end-page: 410
  ident: CR26
  article-title: Annual intercrops: an alternative pathway for sustainable agriculture
  publication-title: Aust. J. Crop Sci.
– volume: 3
  start-page: 92
  year: 1993
  end-page: 122
  ident: CR9
  article-title: Crop rotation and intercropping strategies for weed management
  publication-title: Ecol. Appl.
  doi: 10.2307/1941795
– volume: 7
  year: 2017
  ident: CR32
  article-title: Comparing crop rotations between organic and conventional farming
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-14271-6
– volume: 412
  start-page: 235
  year: 2017
  end-page: 251
  ident: CR54
  article-title: Improving N management through intercropping alleviates the inhibitory effect of mineral N on nodulation in pea
  publication-title: Plant Soil
  doi: 10.1007/s11104-016-3063-2
– volume: 138
  start-page: 11
  year: 2012
  end-page: 20
  ident: CR13
  article-title: Yield advantage and water saving in maize/pea intercrop
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2012.09.019
– volume: 51
  start-page: 59
  year: 1997
  end-page: 72
  ident: CR38
  article-title: Syndromes of production: an emergent property of simple agroecosystem dynamics
  publication-title: J. Environ. Manage.
  doi: 10.1006/jema.1997.0128
– volume: 108
  start-page: 20260
  year: 2011
  end-page: 20264
  ident: CR1
  article-title: Global food demand and the sustainable intensification of agriculture
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1116437108
– volume: 294
  start-page: 793
  year: 2001
  end-page: 795
  ident: CR52
  article-title: Responses to a warming world
  publication-title: Science
  doi: 10.1126/science.1066860
– volume: 34
  start-page: 1
  year: 2014
  end-page: 20
  ident: CR61
  article-title: Agroecological practices for sustainable agriculture: a review
  publication-title: Agron. Sustain. Dev.
  doi: 10.1007/s13593-013-0180-7
– volume: 406
  start-page: 718
  year: 2000
  end-page: 722
  ident: CR11
  article-title: Genetic diversity and disease control in rice
  publication-title: Nature
  doi: 10.1038/35021046
– ident: CR25
– volume: 87
  start-page: 583
  year: 1999
  end-page: 597
  ident: CR43
  article-title: Interspecific differences in above-ground growth patterns result in spatial and temporal partitioning of light among species in a tall-grass meadow
  publication-title: J. Ecol.
  doi: 10.1046/j.1365-2745.1999.00365.x
– volume: 99
  start-page: 106
  year: 2006
  end-page: 113
  ident: CR33
  article-title: Forage yield and quality of common vetch mixtures with oat and triticale in two seeding ratios
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2006.03.008
– volume: 4
  start-page: e8049
  year: 2009
  ident: CR20
  article-title: Crop diversity for yield increase
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0008049
– ident: CR67
– volume: 34
  start-page: 361
  year: 2014
  end-page: 380
  ident: CR31
  article-title: Legumes for feed, food, biomaterials and bioenergy in Europe: a review
  publication-title: Agron. Sustain. Dev.
  doi: 10.1007/s13593-013-0189-y
– volume: 244
  start-page: 52
  year: 2017
  end-page: 61
  ident: CR27
  article-title: Intercropping and agroforestry in China—current state and trends
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2017.04.019
– volume: 39
  year: 2019
  ident: CR68
  article-title: Current knowledge and future research opportunities for modeling annual crop mixtures: a review
  publication-title: Agron. Sustain. Dev.
  doi: 10.1007/s13593-019-0562-6
– volume: 132
  start-page: 149
  year: 2012
  end-page: 157
  ident: CR57
  article-title: On-farm evaluation of yield and economic benefit of short term maize legume intercropping systems under conservation agriculture in Malawi
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2011.12.014
– volume: 34
  start-page: 535
  year: 2014
  end-page: 543
  ident: CR62
  article-title: Higher yield and lower carbon emission by intercropping maize with rape, pea, and wheat in arid irrigation areas
  publication-title: Agron. Sustain. Dev.
  doi: 10.1007/s13593-013-0161-x
– volume: 124
  start-page: 426
  year: 2011
  end-page: 432
  ident: CR14
  article-title: Water use and yield of wheat/maize intercropping under alternate irrigation in the oasis field of northwest China
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2011.07.013
– ident: CR64
– volume: 72
  start-page: 185
  year: 2001
  end-page: 196
  ident: CR36
  article-title: Evaluating pea and barley cultivars for complementarity in intercropping at different levels of soil N availability
  publication-title: Field Crops Res.
  doi: 10.1016/S0378-4290(01)00176-9
– volume: 17
  start-page: 215
  year: 1990
  end-page: 231
  ident: CR5
  article-title: Resource use in intercropping systems
  publication-title: Agric. Water Manage.
  doi: 10.1016/0378-3774(90)90069-B
– volume: 182
  start-page: 25
  year: 1996
  end-page: 38
  ident: CR17
  article-title: Grain yield, symbiotic N fixation and interspecific competition for inorganic N in pea–barley intercrops
  publication-title: Plant Soil
  doi: 10.1007/BF00010992
– volume: 615
  start-page: 767
  year: 2018
  end-page: 772
  ident: CR8
  article-title: The new green revolution: sustainable intensification of agriculture by intercropping
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.10.024
– volume: 22
  start-page: 131
  year: 2019
  end-page: 142
  ident: CR59
  article-title: Comparative analysis of maize–soybean strip intercropping systems: a review
  publication-title: Plant Prod. Sci.
  doi: 10.1080/1343943X.2018.1541137
– ident: CR66
– volume: 106
  start-page: 3041
  year: 2009
  end-page: 3046
  ident: CR47
  article-title: Reducing environmental risk by improving N management in intensive Chinese agricultural systems
  publication-title: . Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0813417106
– volume: 277
  start-page: 504
  year: 1997
  end-page: 509
  ident: CR3
  article-title: Agricultural intensification and ecosystem properties
  publication-title: Science
  doi: 10.1126/science.277.5325.504
– volume: 16
  start-page: 217
  year: 1980
  end-page: 228
  ident: CR22
  article-title: The concept of a ‘land equivalent ratio’ and advantages in yields from intercropping
  publication-title: Exp. Agric.
  doi: 10.1017/S0014479700010978
– volume: 71
  start-page: 123
  year: 2001
  end-page: 137
  ident: CR40
  article-title: Wheat/maize or wheat/soybean strip intercropping I. Yield advantage and interspecific interactions on nutrients
  publication-title: Field Crops Res.
  doi: 10.1016/S0378-4290(01)00156-3
– volume: 412
  start-page: 72
  year: 2001
  end-page: 76
  ident: CR24
  article-title: Partitioning selection and complementarity in biodiversity experiments
  publication-title: Nature
  doi: 10.1038/35083573
– volume: 104
  start-page: 11192
  year: 2007
  end-page: 11196
  ident: CR19
  article-title: Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0704591104
– volume: 113
  start-page: 125987
  year: 2020
  ident: CR35
  article-title: Yield gain, complementarity and competitive dominance in intercropping in China: a meta-analysis of drivers of yield gain using additive partitioning
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2019.125987
– ident: CR6
– volume: 141
  start-page: 155
  year: 1992
  end-page: 175
  ident: CR44
  article-title: Biological nitrogen-fixation in mixed legume–cereal cropping systems
  publication-title: Plant Soil
  doi: 10.1007/BF00011315
– volume: 96
  start-page: 5952
  year: 1999
  end-page: 5959
  ident: CR4
  article-title: Ecological intensification of cereal production systems: yield potential, soil quality, and precision agriculture
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.96.11.5952
– ident: CR63
– volume: 151
  start-page: 96
  year: 2017
  end-page: 105
  ident: CR28
  article-title: On yield gaps and yield gains in intercropping: opportunities for increasing grain production in northwest China
  publication-title: Agric. Syst.
  doi: 10.1016/j.agsy.2016.11.009
– volume: 113
  start-page: 64
  year: 2009
  end-page: 71
  ident: CR16
  article-title: Pea–barley intercropping for efficient symbiotic N -fixation, soil N acquisition and use of other nutrients in European organic cropping systems
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2009.04.009
– volume: 91
  start-page: 25
  year: 2017
  end-page: 33
  ident: CR51
  article-title: Does intercropping enhance yield stability in arable crop production? A meta-analysis
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2017.09.009
– volume: 397
  start-page: 659
  year: 1999
  ident: CR53
  article-title: Growing season extended in Europe
  publication-title: Nature
  doi: 10.1038/17709
– volume: 38
  year: 2018
  ident: CR58
  article-title: Yield gap analysis extended to marketable grain reveals the profitability of organic lentil–spring wheat intercrops
  publication-title: Agron. Sustain. Dev.
  doi: 10.1007/s13593-018-0531-5
– volume: 246
  start-page: 107613
  year: 2020
  ident: CR15
  article-title: Dynamic process-based modelling of crop growth and competitive water extraction in relay strip intercropping: model development and application to wheat–maize intercropping
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2019.107613
– volume: 418
  start-page: 671
  year: 2002
  end-page: 677
  ident: CR2
  article-title: Agricultural sustainability and intensive production practices
  publication-title: Nature
  doi: 10.1038/nature01014
– volume: 184
  start-page: 133
  year: 2015
  end-page: 144
  ident: CR23
  article-title: Temporal niche differentiation increases the land equivalent ratio of annual intercrops: a meta-analysis
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2015.09.010
– volume: 84
  start-page: 955
  year: 2003
  end-page: 968
  ident: CR42
  article-title: Shoot structure, leaf physiology, and daily carbon gain of plant species in a tallgrass meadow
  publication-title: Ecology
  doi: 10.1890/0012-9658(2003)084[0955:SSLPAD]2.0.CO;2
– volume: 12
  start-page: 507
  year: 2014
  end-page: 514
  ident: CR7
  article-title: Can positive interactions between cultivated species help to sustain modern agriculture?
  publication-title: Front. Ecol. Environ.
  doi: 10.1890/130162
– volume: 173
  start-page: 317
  year: 2019
  end-page: 324
  ident: CR39
  article-title: Intercropping contributes to a higher technical efficiency in smallholder farming: evidence from a case study in Gaotai County, China
  publication-title: Agric. Syst.
  doi: 10.1016/j.agsy.2019.03.007
– ident: CR65
– volume: 35
  start-page: 911
  year: 2015
  end-page: 935
  ident: CR21
  article-title: Ecological principles underlying the increase of productivity achieved by cereal-grain legume intercrops in organic farming: a review
  publication-title: Agron. Sustain. Dev.
  doi: 10.1007/s13593-014-0277-7
– volume: 67
  start-page: 1252
  year: 2017
  end-page: 1267
  ident: CR60
  article-title: Prospects to utilise intercrops and crop variety mixtures in mechanised, rain-fed, temperate cropping systems
  publication-title: Crop Pasture Sci.
  doi: 10.1071/CP16211
– volume: 342
  start-page: 221
  year: 2011
  end-page: 231
  ident: CR49
  article-title: Crop nitrogen use and soil mineral nitrogen accumulation under different crop combinations and patterns of strip intercropping in northwest China
  publication-title: Plant Soil
  doi: 10.1007/s11104-010-0686-6
– volume: 34
  start-page: 381
  year: 1993
  end-page: 405
  ident: CR10
  article-title: Intercropping for the management of pests and diseases
  publication-title: Field Crops Res.
  doi: 10.1016/0378-4290(93)90123-5
– volume: 21
  start-page: 1715
  year: 2015
  end-page: 1726
  ident: CR18
  article-title: Intercropping enhances soil carbon and nitrogen
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.12738
– ident: CR34
– volume: 246
  start-page: 107661
  year: 2020
  ident: CR29
  article-title: Intercropping maize and soybean increases efficiency of land and fertilizer nitrogen use: a meta-analysis
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2019.107661
– volume: 40
  start-page: 39
  year: 2012
  end-page: 53
  ident: CR56
  article-title: Pea–wheat intercrops in low-input conditions combine high economic performances and low environmental impacts
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2012.01.010
– volume: 206
  start-page: 106
  year: 2015
  end-page: 117
  ident: CR30
  article-title: Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology
  publication-title: New Phytol.
  doi: 10.1111/nph.13132
– volume: 106
  start-page: 3041
  year: 2009
  ident: 680_CR47
  publication-title: . Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0813417106
– volume: 12
  start-page: 507
  year: 2014
  ident: 680_CR7
  publication-title: Front. Ecol. Environ.
  doi: 10.1890/130162
– volume: 27
  start-page: 81
  year: 2007
  ident: 680_CR48
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2007.02.004
– volume: 91
  start-page: 25
  year: 2017
  ident: 680_CR51
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2017.09.009
– volume: 87
  start-page: 583
  year: 1999
  ident: 680_CR43
  publication-title: J. Ecol.
  doi: 10.1046/j.1365-2745.1999.00365.x
– volume: 34
  start-page: 1
  year: 2014
  ident: 680_CR61
  publication-title: Agron. Sustain. Dev.
  doi: 10.1007/s13593-013-0180-7
– ident: 680_CR63
– volume: 412
  start-page: 72
  year: 2001
  ident: 680_CR24
  publication-title: Nature
  doi: 10.1038/35083573
– volume: 113
  start-page: 125987
  year: 2020
  ident: 680_CR35
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2019.125987
– volume: 224
  start-page: 91
  year: 2018
  ident: 680_CR41
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2018.05.010
– volume: 21
  start-page: 1715
  year: 2015
  ident: 680_CR18
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.12738
– volume: 72
  start-page: 185
  year: 2001
  ident: 680_CR36
  publication-title: Field Crops Res.
  doi: 10.1016/S0378-4290(01)00176-9
– volume: 71
  start-page: 123
  year: 2001
  ident: 680_CR40
  publication-title: Field Crops Res.
  doi: 10.1016/S0378-4290(01)00156-3
– ident: 680_CR67
– volume: 17
  start-page: 747
  year: 2018
  ident: 680_CR46
  publication-title: J. Integr. Agric.
  doi: 10.1016/S2095-3119(17)61789-1
– volume: 27
  start-page: 447
  year: 1989
  ident: 680_CR37
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/0167-8809(89)90105-9
– volume: 39
  year: 2019
  ident: 680_CR68
  publication-title: Agron. Sustain. Dev.
  doi: 10.1007/s13593-019-0562-6
– volume: 294
  start-page: 793
  year: 2001
  ident: 680_CR52
  publication-title: Science
  doi: 10.1126/science.1066860
– volume: 34
  start-page: 535
  year: 2014
  ident: 680_CR62
  publication-title: Agron. Sustain. Dev.
  doi: 10.1007/s13593-013-0161-x
– ident: 680_CR66
  doi: 10.1007/978-0-387-87458-6
– volume: 124
  start-page: 426
  year: 2011
  ident: 680_CR14
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2011.07.013
– volume: 84
  start-page: 955
  year: 2003
  ident: 680_CR42
  publication-title: Ecology
  doi: 10.1890/0012-9658(2003)084[0955:SSLPAD]2.0.CO;2
– volume: 418
  start-page: 671
  year: 2002
  ident: 680_CR2
  publication-title: Nature
  doi: 10.1038/nature01014
– volume: 206
  start-page: 106
  year: 2015
  ident: 680_CR30
  publication-title: New Phytol.
  doi: 10.1111/nph.13132
– volume: 182
  start-page: 25
  year: 1996
  ident: 680_CR17
  publication-title: Plant Soil
  doi: 10.1007/BF00010992
– volume: 246
  start-page: 107613
  year: 2020
  ident: 680_CR15
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2019.107613
– volume: 40
  start-page: 39
  year: 2012
  ident: 680_CR56
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2012.01.010
– volume: 17
  start-page: 215
  year: 1990
  ident: 680_CR5
  publication-title: Agric. Water Manage.
  doi: 10.1016/0378-3774(90)90069-B
– volume: 104
  start-page: 11192
  year: 2007
  ident: 680_CR19
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0704591104
– ident: 680_CR25
  doi: 10.1016/B978-0-12-384719-5.00363-4
– ident: 680_CR64
– volume: 412
  start-page: 235
  year: 2017
  ident: 680_CR54
  publication-title: Plant Soil
  doi: 10.1007/s11104-016-3063-2
– volume: 51
  start-page: 59
  year: 1997
  ident: 680_CR38
  publication-title: J. Environ. Manage.
  doi: 10.1006/jema.1997.0128
– volume: 184
  start-page: 133
  year: 2015
  ident: 680_CR23
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2015.09.010
– volume: 5
  start-page: 396
  year: 2011
  ident: 680_CR26
  publication-title: Aust. J. Crop Sci.
– volume: 38
  year: 2018
  ident: 680_CR58
  publication-title: Agron. Sustain. Dev.
  doi: 10.1007/s13593-018-0531-5
– ident: 680_CR45
  doi: 10.1007/978-90-481-2716-0_3
– volume: 67
  start-page: 1252
  year: 2017
  ident: 680_CR60
  publication-title: Crop Pasture Sci.
  doi: 10.1071/CP16211
– volume: 277
  start-page: 504
  year: 1997
  ident: 680_CR3
  publication-title: Science
  doi: 10.1126/science.277.5325.504
– volume: 198
  start-page: 50
  year: 2016
  ident: 680_CR55
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2016.08.022
– volume: 99
  start-page: 106
  year: 2006
  ident: 680_CR33
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2006.03.008
– volume: 107
  start-page: 29
  year: 2008
  ident: 680_CR12
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2007.12.014
– volume: 141
  start-page: 155
  year: 1992
  ident: 680_CR44
  publication-title: Plant Soil
  doi: 10.1007/BF00011315
– volume: 3
  start-page: 92
  year: 1993
  ident: 680_CR9
  publication-title: Ecol. Appl.
  doi: 10.2307/1941795
– volume: 342
  start-page: 221
  year: 2011
  ident: 680_CR49
  publication-title: Plant Soil
  doi: 10.1007/s11104-010-0686-6
– volume: 615
  start-page: 767
  year: 2018
  ident: 680_CR8
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.10.024
– volume: 246
  start-page: 107661
  year: 2020
  ident: 680_CR29
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2019.107661
– volume: 4
  start-page: e8049
  year: 2009
  ident: 680_CR20
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0008049
– volume: 22
  start-page: 131
  year: 2019
  ident: 680_CR59
  publication-title: Plant Prod. Sci.
  doi: 10.1080/1343943X.2018.1541137
– volume: 108
  start-page: 20260
  year: 2011
  ident: 680_CR1
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1116437108
– volume: 136
  start-page: 12
  year: 2012
  ident: 680_CR50
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2012.07.014
– ident: 680_CR65
– volume: 132
  start-page: 149
  year: 2012
  ident: 680_CR57
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2011.12.014
– volume: 16
  start-page: 217
  year: 1980
  ident: 680_CR22
  publication-title: Exp. Agric.
  doi: 10.1017/S0014479700010978
– ident: 680_CR34
  doi: 10.1007/978-94-007-7927-3_3
– volume: 138
  start-page: 11
  year: 2012
  ident: 680_CR13
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2012.09.019
– volume: 96
  start-page: 5952
  year: 1999
  ident: 680_CR4
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.96.11.5952
– volume: 35
  start-page: 911
  year: 2015
  ident: 680_CR21
  publication-title: Agron. Sustain. Dev.
  doi: 10.1007/s13593-014-0277-7
– volume: 244
  start-page: 52
  year: 2017
  ident: 680_CR27
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2017.04.019
– volume: 7
  year: 2017
  ident: 680_CR32
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-14271-6
– volume: 406
  start-page: 718
  year: 2000
  ident: 680_CR11
  publication-title: Nature
  doi: 10.1038/35021046
– ident: 680_CR6
  doi: 10.1017/CBO9780511623523
– volume: 151
  start-page: 96
  year: 2017
  ident: 680_CR28
  publication-title: Agric. Syst.
  doi: 10.1016/j.agsy.2016.11.009
– volume: 34
  start-page: 381
  year: 1993
  ident: 680_CR10
  publication-title: Field Crops Res.
  doi: 10.1016/0378-4290(93)90123-5
– volume: 34
  start-page: 361
  year: 2014
  ident: 680_CR31
  publication-title: Agron. Sustain. Dev.
  doi: 10.1007/s13593-013-0189-y
– volume: 113
  start-page: 64
  year: 2009
  ident: 680_CR16
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2009.04.009
– volume: 397
  start-page: 659
  year: 1999
  ident: 680_CR53
  publication-title: Nature
  doi: 10.1038/17709
– volume: 173
  start-page: 317
  year: 2019
  ident: 680_CR39
  publication-title: Agric. Syst.
  doi: 10.1016/j.agsy.2019.03.007
– reference: 32483327 - Nat Plants. 2020 Jun;6(6):604-605
SSID ssj0001755360
Score 2.6294389
SecondaryResourceType review_article
Snippet Intercropping, the simultaneous production of multiple crops on the same field, provides opportunities for the sustainable intensification of agriculture if it...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 653
SubjectTerms 631/449
706/1143
Agricultural practices
Agricultural production
Agriculture
Biomedical and Life Sciences
China
Corn
Crop Production - methods
Crops
Crops, Agricultural - growth & development
Edible Grain - growth & development
Fabaceae - growth & development
Fertilizers
Intensive farming
Intercropping
Life Sciences
Monoculture
Nutrients
Plant Breeding
Plant Sciences
Sole cropping
Sustainability
Zea mays - growth & development
Title Syndromes of production in intercropping impact yield gains
URI https://link.springer.com/article/10.1038/s41477-020-0680-9
https://www.ncbi.nlm.nih.gov/pubmed/32483328
https://www.proquest.com/docview/2413231202
https://www.proquest.com/docview/2408841367
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED9080EfxG-rUyr4pAS7JG1afBAVZQiK-AG-lSTNhiDttPPB_967NdsQ0dK3Jm24u979Lpe7AzhM-wgqEHoz0dfooGSJYcbphKVOoHw5kVhL-c63d0nvWd68xC9-w632xyonOnGsqIvK0h75CcV_EIugr342fGfUNYqiq76Fxjy0UQWn6Hy1L67u7h9muywqjkUyDWeK9KSWXakUI6-J2k6w7KdB-oUyf0VIx4bnegWWPWIMzxsWr8KcK9dg6Xzw4atmuDVYuKgQ432tw-mjL0BQh1U_HDbVXJHy4SvdSEJq2EUZUmGTHRl-0QG2cKBfy3oDnq-vni57zLdHYFYoPmJcFVw5G8lCoVnXGuXdCoP2WCjHdZwInsksMkYh4kAjjpdyMnIxArhCiKIrNqFVVqXbhtBoZ7JYGvSdCukoIYFn3GqXZIWUOrIBRBMa5dbXDqcWFm_5OIYt0rwha45kzYmseRbA0XTKsCmc8d_gzoTwuf-H6nzG8QAOpo9R-imkoUtXfdIY1JKSys4FsNUwbPo1hIqpEDwN4HjCwdnL_1zKzv9L2YVF3sgOi7odaI0-Pt0ewpKR2fey9w3McdwG
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Rb9QwDLbGDYnxMMGArTAgSPACitZL0qYVQmiDTTe2nRBs0t5CkuamSVN7rDeh-1P8xtnX9k5oYm-r-pY0jWwn_hzHNsDbbISgAqE3lyOLBkqeOu6CTXkWJMpXkKn3FO98NEwHJ-rbaXK6BH-7WBi6VtntibONuqg8nZFvkf8HsQja6p_HvzlVjSLvaldCoxGLgzD9gyZb_Wn_K_L3nRB7u8dfBrytKsC91GLChS6EDj5WhUZtaC2KiZcO1ZjUQdgklSJXeeycRkWNug8fHVQcEsQ9hZRFX-K492BZSTRlerC8szv8_mNxqqOTBBs696nMtmrVV1pzstKozAXP_1WAN1DtDY_sTNHtPYLVFqGy7UakHsNSKNfg4fbZZZulI6zB_Z0KMeX0CXz82SY8qFk1YuMmeyxymp3TiyyjAmEUkcWaaEw2pQtz7Myel_VTOLkTwj2DXlmVYQOYs8HliXJoqxUqUACEyIW3Ic0LpWzsI4g7Ghnf5iqnkhkXZuYzl5lpyGqQrIbIavII3s8_GTeJOm7rvNkR3rRrtjYLCYvgzbwZVxu5UGwZqivqg7uyojR3Eaw3DJv_DaFpJqXIIvjQcXAx-H-n8vz2qbyGB4Pjo0NzuD88eAEropEjHvc3oTe5vAovERJN3KtWDhn8umvRvwZ5JhWm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Syndromes+of+production+in+intercropping+impact+yield+gains&rft.jtitle=Nature+plants&rft.au=Li%2C+Chunjie&rft.au=Hoffland%2C+Ellis&rft.au=Kuyper%2C+Thomas+W&rft.au=Yu%2C+Yang&rft.date=2020-06-01&rft.eissn=2055-0278&rft.volume=6&rft.issue=6&rft.spage=653&rft_id=info:doi/10.1038%2Fs41477-020-0680-9&rft_id=info%3Apmid%2F32483328&rft.externalDocID=32483328
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2055-0278&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2055-0278&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2055-0278&client=summon