Syndromes of production in intercropping impact yield gains
Intercropping, the simultaneous production of multiple crops on the same field, provides opportunities for the sustainable intensification of agriculture if it can provide a greater yield per unit land and fertilizer than sole crops. The worldwide absolute yield gain of intercropping as compared wit...
Saved in:
Published in | Nature plants Vol. 6; no. 6; pp. 653 - 660 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.06.2020
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Intercropping, the simultaneous production of multiple crops on the same field, provides opportunities for the sustainable intensification of agriculture if it can provide a greater yield per unit land and fertilizer than sole crops. The worldwide absolute yield gain of intercropping as compared with sole crops has not been analysed. We therefore performed a global meta-analysis to quantify the effect of intercropping on the yield gain, exploring the effects of crop species combinations, temporal and spatial arrangements, and fertilizer input. We found that the absolute yield gains, compared with monocultures, were the greatest for mixtures of maize with short-grain cereals or legumes that had substantial temporal niche differentiation from maize, when grown with high nutrient inputs, and using multirow strips of each species. This approach, commonly practised in China, provided yield gains that were (in an absolute sense) about four times as large as those in another, low-input intercropping strategy, commonly practised outside China. The alternative intercropping strategy consisted of growing mixtures of short-stature crop species, often as full mixtures, with the same growing period and with low to moderate nutrient inputs. Both the low- and high-yield intercropping strategies saved 16–29% of the land and 19–36% of the fertilizer compared with monocultures grown under the same management as the intercrop. The two syndromes of production in intercropping uncovered by this meta-analysis show that intercropping offers opportunities for the sustainable intensification of both high- and low-input agriculture.
Intercropping can provide for agricultural intensification within a sustainable footprint. This study of Chinese methods finds yields four times greater than intercropping outside China with less land and fertilizer use. |
---|---|
AbstractList | Intercropping, the simultaneous production of multiple crops on the same field, provides opportunities for the sustainable intensification of agriculture if it can provide a greater yield per unit land and fertilizer than sole crops. The worldwide absolute yield gain of intercropping as compared with sole crops has not been analysed. We therefore performed a global meta-analysis to quantify the effect of intercropping on the yield gain, exploring the effects of crop species combinations, temporal and spatial arrangements, and fertilizer input. We found that the absolute yield gains, compared with monocultures, were the greatest for mixtures of maize with short-grain cereals or legumes that had substantial temporal niche differentiation from maize, when grown with high nutrient inputs, and using multirow strips of each species. This approach, commonly practised in China, provided yield gains that were (in an absolute sense) about four times as large as those in another, low-input intercropping strategy, commonly practised outside China. The alternative intercropping strategy consisted of growing mixtures of short-stature crop species, often as full mixtures, with the same growing period and with low to moderate nutrient inputs. Both the low- and high-yield intercropping strategies saved 16–29% of the land and 19–36% of the fertilizer compared with monocultures grown under the same management as the intercrop. The two syndromes of production in intercropping uncovered by this meta-analysis show that intercropping offers opportunities for the sustainable intensification of both high- and low-input agriculture.
Intercropping can provide for agricultural intensification within a sustainable footprint. This study of Chinese methods finds yields four times greater than intercropping outside China with less land and fertilizer use. Intercropping, the simultaneous production of multiple crops on the same field, provides opportunities for the sustainable intensification of agriculture if it can provide a greater yield per unit land and fertilizer than sole crops. The worldwide absolute yield gain of intercropping as compared with sole crops has not been analysed. We therefore performed a global meta-analysis to quantify the effect of intercropping on the yield gain, exploring the effects of crop species combinations, temporal and spatial arrangements, and fertilizer input. We found that the absolute yield gains, compared with monocultures, were the greatest for mixtures of maize with short-grain cereals or legumes that had substantial temporal niche differentiation from maize, when grown with high nutrient inputs, and using multirow strips of each species. This approach, commonly practised in China, provided yield gains that were (in an absolute sense) about four times as large as those in another, low-input intercropping strategy, commonly practised outside China. The alternative intercropping strategy consisted of growing mixtures of short-stature crop species, often as full mixtures, with the same growing period and with low to moderate nutrient inputs. Both the low- and high-yield intercropping strategies saved 16-29% of the land and 19-36% of the fertilizer compared with monocultures grown under the same management as the intercrop. The two syndromes of production in intercropping uncovered by this meta-analysis show that intercropping offers opportunities for the sustainable intensification of both high- and low-input agriculture. Intercropping, the simultaneous production of multiple crops on the same field, provides opportunities for the sustainable intensification of agriculture if it can provide a greater yield per unit land and fertilizer than sole crops. The worldwide absolute yield gain of intercropping as compared with sole crops has not been analysed. We therefore performed a global meta-analysis to quantify the effect of intercropping on the yield gain, exploring the effects of crop species combinations, temporal and spatial arrangements, and fertilizer input. We found that the absolute yield gains, compared with monocultures, were the greatest for mixtures of maize with short-grain cereals or legumes that had substantial temporal niche differentiation from maize, when grown with high nutrient inputs, and using multirow strips of each species. This approach, commonly practised in China, provided yield gains that were (in an absolute sense) about four times as large as those in another, low-input intercropping strategy, commonly practised outside China. The alternative intercropping strategy consisted of growing mixtures of short-stature crop species, often as full mixtures, with the same growing period and with low to moderate nutrient inputs. Both the low- and high-yield intercropping strategies saved 16-29% of the land and 19-36% of the fertilizer compared with monocultures grown under the same management as the intercrop. The two syndromes of production in intercropping uncovered by this meta-analysis show that intercropping offers opportunities for the sustainable intensification of both high- and low-input agriculture.Intercropping, the simultaneous production of multiple crops on the same field, provides opportunities for the sustainable intensification of agriculture if it can provide a greater yield per unit land and fertilizer than sole crops. The worldwide absolute yield gain of intercropping as compared with sole crops has not been analysed. We therefore performed a global meta-analysis to quantify the effect of intercropping on the yield gain, exploring the effects of crop species combinations, temporal and spatial arrangements, and fertilizer input. We found that the absolute yield gains, compared with monocultures, were the greatest for mixtures of maize with short-grain cereals or legumes that had substantial temporal niche differentiation from maize, when grown with high nutrient inputs, and using multirow strips of each species. This approach, commonly practised in China, provided yield gains that were (in an absolute sense) about four times as large as those in another, low-input intercropping strategy, commonly practised outside China. The alternative intercropping strategy consisted of growing mixtures of short-stature crop species, often as full mixtures, with the same growing period and with low to moderate nutrient inputs. Both the low- and high-yield intercropping strategies saved 16-29% of the land and 19-36% of the fertilizer compared with monocultures grown under the same management as the intercrop. The two syndromes of production in intercropping uncovered by this meta-analysis show that intercropping offers opportunities for the sustainable intensification of both high- and low-input agriculture. Intercropping, the simultaneous production of multiple crops on the same field, provides opportunities for the sustainable intensification of agriculture if it can provide a greater yield per unit land and fertilizer than sole crops. The worldwide absolute yield gain of intercropping as compared with sole crops has not been analysed. We therefore performed a global meta-analysis to quantify the effect of intercropping on the yield gain, exploring the effects of crop species combinations, temporal and spatial arrangements, and fertilizer input. We found that the absolute yield gains, compared with monocultures, were the greatest for mixtures of maize with short-grain cereals or legumes that had substantial temporal niche differentiation from maize, when grown with high nutrient inputs, and using multirow strips of each species. This approach, commonly practised in China, provided yield gains that were (in an absolute sense) about four times as large as those in another, low-input intercropping strategy, commonly practised outside China. The alternative intercropping strategy consisted of growing mixtures of short-stature crop species, often as full mixtures, with the same growing period and with low to moderate nutrient inputs. Both the low- and high-yield intercropping strategies saved 16–29% of the land and 19–36% of the fertilizer compared with monocultures grown under the same management as the intercrop. The two syndromes of production in intercropping uncovered by this meta-analysis show that intercropping offers opportunities for the sustainable intensification of both high- and low-input agriculture.Intercropping can provide for agricultural intensification within a sustainable footprint. This study of Chinese methods finds yields four times greater than intercropping outside China with less land and fertilizer use. |
Author | Zhang, Chaochun Zhang, Fusuo Yu, Yang Kuyper, Thomas W. Li, Haigang van der Werf, Wopke Li, Chunjie Hoffland, Ellis |
Author_xml | – sequence: 1 givenname: Chunjie orcidid: 0000-0002-2761-1085 surname: Li fullname: Li, Chunjie organization: College of Resources and Environmental Science, National Academy of Agriculture Green Development, China Agricultural University, Soil Biology Group, Wageningen University, Centre for Crop Systems Analysis, Wageningen University – sequence: 2 givenname: Ellis orcidid: 0000-0002-6995-1109 surname: Hoffland fullname: Hoffland, Ellis organization: Soil Biology Group, Wageningen University – sequence: 3 givenname: Thomas W. orcidid: 0000-0002-3896-4943 surname: Kuyper fullname: Kuyper, Thomas W. organization: Soil Biology Group, Wageningen University – sequence: 4 givenname: Yang surname: Yu fullname: Yu, Yang organization: Centre for Crop Systems Analysis, Wageningen University – sequence: 5 givenname: Chaochun orcidid: 0000-0002-1278-8400 surname: Zhang fullname: Zhang, Chaochun organization: College of Resources and Environmental Science, National Academy of Agriculture Green Development, China Agricultural University – sequence: 6 givenname: Haigang orcidid: 0000-0003-3889-919X surname: Li fullname: Li, Haigang organization: College of Resources and Environmental Science, National Academy of Agriculture Green Development, China Agricultural University, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University – sequence: 7 givenname: Fusuo orcidid: 0000-0001-8971-0129 surname: Zhang fullname: Zhang, Fusuo email: zhangfs@cau.edu.cn organization: College of Resources and Environmental Science, National Academy of Agriculture Green Development, China Agricultural University – sequence: 8 givenname: Wopke orcidid: 0000-0002-5506-4699 surname: van der Werf fullname: van der Werf, Wopke email: wopke.vanderwerf@wur.nl organization: Centre for Crop Systems Analysis, Wageningen University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32483328$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kM1LwzAchoNM3Jz7A7xIwYuX6i-_pE2LJxl-wcCDeg5Zm42MNq1Je9h_b8rmBwMNgYTwvMmb55SMbGM1IecUrimw7MZzyoWIASGGNIM4PyIThCQJJyIb_dqPycz7DQBQkSQshRMyZsgzxjCbkNvXrS1dU2sfNauodU3ZF51pbGSG2WlXuKZtjV1Hpm5V0UVbo6syWitj_Rk5XqnK69l-nZL3h_u3-VO8eHl8nt8t4oIJ7GIUJQpdAC9FRnOlEKBgS5ogExpVkjLMeQ7LpchFinwYQnPQSZKmJWMlZVNytbs31Pvote9kbXyhq0pZ3fReIocs45SlIqCXB-im6Z0N7QJFGTKKgIG62FP9stalbJ2pldvKLy0BoDsg_N57p1ffCAU52Jc7-zLYl4N9mYeMOMgUplODy84pU_2bxF3Sh1fsWruf0n-HPgHr95TV |
CitedBy_id | crossref_primary_10_1016_j_eja_2025_127508 crossref_primary_10_17221_665_2020_PSE crossref_primary_10_3389_fpls_2022_848893 crossref_primary_10_1007_s11104_024_06705_8 crossref_primary_10_15302_J_FASE_2021418 crossref_primary_10_3389_fsufs_2022_744700 crossref_primary_10_3389_fpls_2024_1368509 crossref_primary_10_1016_j_agee_2024_109196 crossref_primary_10_1016_j_plaphy_2023_02_043 crossref_primary_10_1007_s42729_025_02327_w crossref_primary_10_1038_s41597_023_02831_7 crossref_primary_10_1016_j_tplants_2022_11_008 crossref_primary_10_1016_j_chemosphere_2023_140328 crossref_primary_10_1016_j_biocontrol_2024_105571 crossref_primary_10_1016_j_fcr_2024_109363 crossref_primary_10_3389_fpls_2022_846237 crossref_primary_10_3390_agriculture12050697 crossref_primary_10_1002_jsfa_13268 crossref_primary_10_1038_s41467_024_45207_0 crossref_primary_10_3389_fpls_2022_1006720 crossref_primary_10_1002_jsfa_12973 crossref_primary_10_1093_jxb_erab077 crossref_primary_10_3390_agriculture12070996 crossref_primary_10_1016_j_eja_2021_126303 crossref_primary_10_1016_j_oneear_2024_11_018 crossref_primary_10_3390_agronomy14030586 crossref_primary_10_1007_s11104_023_06423_7 crossref_primary_10_1016_j_agwat_2024_108876 crossref_primary_10_1016_j_agee_2024_109180 crossref_primary_10_1002_pld3_365 crossref_primary_10_1016_j_eja_2024_127222 crossref_primary_10_1038_s41893_021_00768_6 crossref_primary_10_3389_fpls_2020_620400 crossref_primary_10_4236_ajps_2023_143019 crossref_primary_10_1007_s11104_023_06037_z crossref_primary_10_1007_s11104_023_06363_2 crossref_primary_10_1007_s11104_024_07129_0 crossref_primary_10_3389_fpls_2021_663730 crossref_primary_10_1038_s41598_023_43288_3 crossref_primary_10_1016_j_agee_2024_109173 crossref_primary_10_1016_j_fcr_2022_108803 crossref_primary_10_1007_s11104_022_05558_3 crossref_primary_10_1016_j_fcr_2020_108052 crossref_primary_10_3390_agronomy13020413 crossref_primary_10_1016_j_jece_2023_111619 crossref_primary_10_3390_agriculture14081249 crossref_primary_10_1002_sae2_12026 crossref_primary_10_1016_j_fcr_2024_109262 crossref_primary_10_1016_j_jclepro_2023_139701 crossref_primary_10_3390_agronomy14102245 crossref_primary_10_3390_agronomy15010158 crossref_primary_10_1007_s11104_024_06987_y crossref_primary_10_1111_gcb_15747 crossref_primary_10_1186_s13717_024_00562_0 crossref_primary_10_3389_fpls_2022_958852 crossref_primary_10_1016_j_agee_2024_108992 crossref_primary_10_3390_agronomy13082017 crossref_primary_10_1093_jpe_rtad018 crossref_primary_10_1093_jpe_rtad017 crossref_primary_10_3390_agronomy14102381 crossref_primary_10_1093_jpe_rtad016 crossref_primary_10_1002_fes3_282 crossref_primary_10_1016_j_fcr_2023_109093 crossref_primary_10_1093_jpe_rtad015 crossref_primary_10_1007_s11104_024_07018_6 crossref_primary_10_1016_j_eja_2024_127237 crossref_primary_10_1016_j_eja_2024_127119 crossref_primary_10_1111_pce_14784 crossref_primary_10_1016_j_cj_2023_05_011 crossref_primary_10_3390_su14020799 crossref_primary_10_1007_s11104_022_05487_1 crossref_primary_10_1007_s11427_024_2683_y crossref_primary_10_1111_1365_2745_13592 crossref_primary_10_1016_j_eja_2022_126470 crossref_primary_10_1016_j_fcr_2025_109850 crossref_primary_10_1016_j_gloenvcha_2021_102313 crossref_primary_10_3390_agronomy12092187 crossref_primary_10_1088_1748_9326_ad9d61 crossref_primary_10_1016_j_catena_2023_107247 crossref_primary_10_1016_j_jenvman_2024_120886 crossref_primary_10_1080_13504509_2022_2124552 crossref_primary_10_1007_s13593_022_00787_3 crossref_primary_10_3389_fpls_2023_1273675 crossref_primary_10_7717_peerj_13777 crossref_primary_10_1007_s11104_024_06478_0 crossref_primary_10_1016_j_agee_2024_109030 crossref_primary_10_3390_agronomy12102326 crossref_primary_10_1016_j_baae_2022_03_009 crossref_primary_10_1007_s11104_021_05232_0 crossref_primary_10_34133_plantphenomics_0095 crossref_primary_10_1038_s41477_020_0677_4 crossref_primary_10_3390_su142315651 crossref_primary_10_1016_j_jenvman_2025_124731 crossref_primary_10_1016_j_fcr_2024_109560 crossref_primary_10_1007_s11104_024_06963_6 crossref_primary_10_1016_j_tplants_2022_02_003 crossref_primary_10_1007_s11104_022_05436_y crossref_primary_10_1016_j_jia_2022_08_054 crossref_primary_10_1038_s43016_021_00402_w crossref_primary_10_1016_j_agee_2023_108510 crossref_primary_10_1016_j_jia_2024_12_018 crossref_primary_10_1016_j_cub_2021_06_082 crossref_primary_10_3390_microorganisms11122978 crossref_primary_10_1016_j_agee_2024_109141 crossref_primary_10_1016_j_eja_2024_127136 crossref_primary_10_1016_j_apsoil_2024_105613 crossref_primary_10_1073_pnas_2305517121 crossref_primary_10_3390_plants13233289 crossref_primary_10_1016_j_agee_2021_107540 crossref_primary_10_1016_j_scitotenv_2024_177350 crossref_primary_10_1007_s11032_023_01375_3 crossref_primary_10_1016_j_still_2025_106553 crossref_primary_10_3389_fmicb_2022_868312 crossref_primary_10_1016_j_still_2023_105867 crossref_primary_10_3390_biology11050630 crossref_primary_10_1111_pce_15299 crossref_primary_10_1016_j_eja_2025_127563 crossref_primary_10_3390_agronomy11040737 crossref_primary_10_1016_j_jafr_2024_100964 crossref_primary_10_3389_fpls_2022_846720 crossref_primary_10_1016_j_fcr_2024_109335 crossref_primary_10_3389_fpls_2023_1280382 crossref_primary_10_1007_s11104_024_06744_1 crossref_primary_10_36253_jaeid_14672 crossref_primary_10_1016_j_fcr_2024_109695 crossref_primary_10_1016_j_agwat_2024_109160 crossref_primary_10_3390_agronomy12122994 crossref_primary_10_1007_s11104_022_05508_z crossref_primary_10_1007_s11104_021_04876_2 crossref_primary_10_1016_j_agee_2023_108767 crossref_primary_10_3389_fpls_2021_605172 crossref_primary_10_3390_ruminants4040041 crossref_primary_10_1016_j_jia_2024_11_002 crossref_primary_10_1016_j_agee_2024_109254 crossref_primary_10_1016_j_agee_2023_108880 crossref_primary_10_1111_pce_13886 crossref_primary_10_1016_j_indcrop_2022_115259 crossref_primary_10_3390_agronomy13092268 crossref_primary_10_3390_su13116419 crossref_primary_10_1016_j_agee_2022_108239 crossref_primary_10_3390_agriculture12091428 crossref_primary_10_1016_j_fcr_2024_109467 crossref_primary_10_15302_J_FASE_2020352 crossref_primary_10_1007_s13593_024_00964_6 crossref_primary_10_1016_j_fcr_2023_109188 crossref_primary_10_1016_j_apsoil_2024_105274 crossref_primary_10_1007_s13593_022_00754_y crossref_primary_10_1016_j_jia_2022_08_078 crossref_primary_10_3390_agriculture12020151 crossref_primary_10_1007_s10340_024_01801_1 crossref_primary_10_1016_j_agee_2024_109360 crossref_primary_10_1016_j_eja_2021_126408 crossref_primary_10_3389_fsufs_2024_1328800 crossref_primary_10_1007_s11104_023_06460_2 crossref_primary_10_3390_w12092646 crossref_primary_10_1002_fes3_364 crossref_primary_10_1016_j_agee_2024_109243 crossref_primary_10_1016_j_soilbio_2024_109318 crossref_primary_10_1038_s41598_024_72493_x crossref_primary_10_3390_ijms26010109 crossref_primary_10_3390_agronomy15010084 crossref_primary_10_1007_s10705_022_10234_0 crossref_primary_10_1016_j_fcr_2021_108281 crossref_primary_10_1016_j_jclepro_2022_131557 crossref_primary_10_1038_s41893_021_00767_7 crossref_primary_10_1016_j_fcr_2024_109595 crossref_primary_10_1016_j_fcr_2023_109174 crossref_primary_10_1079_PAVSNNR202116005 crossref_primary_10_3389_fmicb_2024_1403338 crossref_primary_10_1071_AN24246 crossref_primary_10_1073_pnas_2111321118 crossref_primary_10_1016_j_plaphy_2025_109686 crossref_primary_10_1177_00307270231194086 crossref_primary_10_1016_j_scitotenv_2024_170632 crossref_primary_10_1016_j_agsy_2023_103619 crossref_primary_10_3390_agronomy14112472 crossref_primary_10_1007_s11104_020_04768_x crossref_primary_10_1007_s42729_022_00936_3 crossref_primary_10_1016_j_still_2021_105154 crossref_primary_10_3390_agriculture15050456 crossref_primary_10_1016_j_eja_2024_127504 crossref_primary_10_1016_j_fcr_2024_109647 crossref_primary_10_1016_j_agsy_2023_103850 crossref_primary_10_3390_agronomy12081900 crossref_primary_10_1007_s11104_023_05955_2 crossref_primary_10_1016_j_fcr_2023_109241 crossref_primary_10_1007_s11104_021_05076_8 crossref_primary_10_3389_fmicb_2024_1364355 crossref_primary_10_1016_j_envpol_2021_117844 crossref_primary_10_1016_j_fcr_2023_109246 crossref_primary_10_1002_ppp3_10481 crossref_primary_10_1016_j_eja_2023_126943 crossref_primary_10_1016_j_jes_2021_08_005 crossref_primary_10_1038_s43016_024_00992_1 crossref_primary_10_1007_s11104_023_06251_9 crossref_primary_10_1016_j_agee_2023_108795 crossref_primary_10_1038_s41477_021_00948_4 crossref_primary_10_3390_plants11212936 crossref_primary_10_1007_s11356_023_31318_6 crossref_primary_10_3390_land11040581 crossref_primary_10_1016_j_ppees_2021_125612 crossref_primary_10_1016_j_fcr_2023_108820 crossref_primary_10_1038_s41598_024_64138_w crossref_primary_10_1016_j_fcr_2023_109116 crossref_primary_10_1016_j_jenvman_2022_114568 crossref_primary_10_2478_agri_2022_0015 crossref_primary_10_1016_j_agsy_2022_103584 crossref_primary_10_1016_j_chemosphere_2023_139975 crossref_primary_10_3389_fmicb_2022_972587 crossref_primary_10_3390_agronomy14061222 crossref_primary_10_1016_j_fcr_2022_108561 crossref_primary_10_1016_j_agrformet_2022_109091 crossref_primary_10_1038_s41477_022_01210_1 crossref_primary_10_1038_s41598_024_69903_5 crossref_primary_10_1371_journal_pone_0300573 crossref_primary_10_1016_j_agee_2023_108444 crossref_primary_10_1016_j_pld_2021_06_005 crossref_primary_10_1016_j_agee_2023_108564 crossref_primary_10_1007_s10668_024_04617_2 crossref_primary_10_1007_s11104_020_04668_0 crossref_primary_10_1073_pnas_2201886120 crossref_primary_10_3390_agriculture11111100 crossref_primary_10_1016_j_agee_2023_108680 crossref_primary_10_1016_j_cosust_2023_101336 crossref_primary_10_1007_s11104_024_07041_7 crossref_primary_10_1016_j_agee_2024_109450 crossref_primary_10_1111_1365_2745_13765 crossref_primary_10_1016_j_fcr_2023_108974 crossref_primary_10_1007_s11104_022_05554_7 crossref_primary_10_1016_j_fcr_2023_108854 crossref_primary_10_1093_jee_toac045 crossref_primary_10_1016_j_fcr_2022_108656 crossref_primary_10_3390_agronomy12123095 crossref_primary_10_1007_s11104_024_06542_9 crossref_primary_10_1016_j_jhazmat_2024_136224 crossref_primary_10_1016_j_fcr_2022_108779 crossref_primary_10_1016_j_still_2023_105857 crossref_primary_10_1007_s11427_020_1776_y crossref_primary_10_1016_j_isci_2022_105551 crossref_primary_10_3389_fpls_2024_1454130 crossref_primary_10_1007_s11367_024_02360_4 crossref_primary_10_1016_j_jhazmat_2022_129442 crossref_primary_10_1111_nph_19906 crossref_primary_10_1016_j_fcr_2022_108771 crossref_primary_10_1016_j_fcr_2024_109663 crossref_primary_10_1007_s42729_024_01708_x crossref_primary_10_1016_j_agee_2024_109324 crossref_primary_10_7554_eLife_77577 crossref_primary_10_1007_s11104_024_06861_x crossref_primary_10_1007_s13593_022_00839_8 crossref_primary_10_1016_j_jia_2024_04_013 crossref_primary_10_1016_j_ecolind_2022_108901 crossref_primary_10_1016_j_fcr_2021_108122 crossref_primary_10_1016_j_fcr_2023_108964 crossref_primary_10_1016_j_scitotenv_2023_162700 crossref_primary_10_1016_j_apsoil_2023_104809 crossref_primary_10_1007_s10340_023_01629_1 crossref_primary_10_1016_j_indcrop_2024_119868 crossref_primary_10_1007_s13593_022_00761_z crossref_primary_10_1016_j_resconrec_2024_107898 crossref_primary_10_1016_j_eja_2023_127024 crossref_primary_10_3390_app14146059 crossref_primary_10_1016_j_jia_2023_06_035 crossref_primary_10_1016_j_eti_2022_102964 crossref_primary_10_1111_pce_15206 crossref_primary_10_1016_j_chemosphere_2021_132470 crossref_primary_10_1111_eea_13508 crossref_primary_10_1016_j_fcr_2024_109600 crossref_primary_10_1016_j_tplants_2024_04_010 crossref_primary_10_1016_j_fcr_2024_109607 crossref_primary_10_1016_j_fcr_2022_108757 crossref_primary_10_1016_j_isci_2022_104168 crossref_primary_10_1016_j_still_2023_105913 crossref_primary_10_1093_hr_uhae018 crossref_primary_10_1007_s13593_022_00816_1 crossref_primary_10_1016_j_eja_2023_127032 crossref_primary_10_3389_fagro_2021_734923 crossref_primary_10_1007_s11104_022_05701_0 crossref_primary_10_1016_j_agsy_2024_104109 crossref_primary_10_3389_fpls_2024_1354672 crossref_primary_10_1016_j_scitotenv_2024_174009 crossref_primary_10_1021_acs_jafc_1c02821 crossref_primary_10_1007_s11104_023_06464_y crossref_primary_10_3390_ijgi12050195 crossref_primary_10_1007_s11104_024_06775_8 crossref_primary_10_3390_plants13070991 crossref_primary_10_1007_s11104_023_06425_5 crossref_primary_10_1007_s11104_021_05165_8 crossref_primary_10_3389_fpls_2023_1266969 crossref_primary_10_1111_pce_14128 crossref_primary_10_1016_j_fcr_2024_109612 crossref_primary_10_1016_j_compag_2024_109162 crossref_primary_10_1016_j_fcr_2022_108523 crossref_primary_10_1088_1748_9326_abf529 crossref_primary_10_1111_pce_14487 crossref_primary_10_1186_s12870_022_03706_6 crossref_primary_10_1007_s00374_024_01804_1 crossref_primary_10_1007_s42729_024_01684_2 crossref_primary_10_1016_j_agsy_2022_103540 crossref_primary_10_1038_s41598_021_98179_2 crossref_primary_10_1016_j_envpol_2021_118724 crossref_primary_10_3390_agronomy12020418 crossref_primary_10_1016_j_ecolind_2024_111897 crossref_primary_10_1016_j_indcrop_2023_117203 crossref_primary_10_4236_nr_2024_158013 crossref_primary_10_1016_j_apsoil_2023_105264 crossref_primary_10_1016_j_eja_2022_126676 crossref_primary_10_1016_j_rser_2024_115235 crossref_primary_10_1016_j_still_2024_106063 crossref_primary_10_3390_agronomy14030635 crossref_primary_10_1016_j_molp_2023_09_003 crossref_primary_10_1016_j_fcr_2021_108208 crossref_primary_10_1016_j_fcr_2023_108926 crossref_primary_10_1186_s40168_022_01287_y crossref_primary_10_1016_j_eja_2022_126679 crossref_primary_10_3389_fpls_2021_731949 crossref_primary_10_1016_j_biocontrol_2024_105677 crossref_primary_10_5897_AJAR2023_16598 crossref_primary_10_3390_land11020255 crossref_primary_10_1016_j_agwat_2022_107690 crossref_primary_10_1177_00307270221077442 crossref_primary_10_1007_s13593_024_00968_2 crossref_primary_10_1007_s11104_024_07111_w crossref_primary_10_3389_fpls_2022_843065 crossref_primary_10_1016_j_eja_2023_126960 crossref_primary_10_1016_j_geoderma_2024_116786 crossref_primary_10_1016_j_baae_2022_05_004 crossref_primary_10_1111_plb_13582 crossref_primary_10_3390_plants12010139 crossref_primary_10_3389_fpls_2023_1266704 crossref_primary_10_1126_science_abo7429 crossref_primary_10_1007_s11104_023_06136_x crossref_primary_10_1016_j_fcr_2024_109513 crossref_primary_10_1016_j_fcr_2025_109817 crossref_primary_10_1016_j_tree_2020_06_012 crossref_primary_10_3390_su142316137 crossref_primary_10_1007_s11104_024_07168_7 crossref_primary_10_1007_s11104_024_06950_x crossref_primary_10_1016_j_scitotenv_2024_172714 |
Cites_doi | 10.1016/j.fcr.2016.08.022 10.1016/j.fcr.2007.12.014 10.1016/0167-8809(89)90105-9 10.1016/j.eja.2007.02.004 10.1016/j.fcr.2012.07.014 10.1016/j.fcr.2018.05.010 10.1016/S2095-3119(17)61789-1 10.2307/1941795 10.1038/s41598-017-14271-6 10.1007/s11104-016-3063-2 10.1016/j.fcr.2012.09.019 10.1006/jema.1997.0128 10.1073/pnas.1116437108 10.1126/science.1066860 10.1007/s13593-013-0180-7 10.1038/35021046 10.1046/j.1365-2745.1999.00365.x 10.1016/j.fcr.2006.03.008 10.1371/journal.pone.0008049 10.1007/s13593-013-0189-y 10.1016/j.agee.2017.04.019 10.1007/s13593-019-0562-6 10.1016/j.fcr.2011.12.014 10.1007/s13593-013-0161-x 10.1016/j.fcr.2011.07.013 10.1016/S0378-4290(01)00176-9 10.1016/0378-3774(90)90069-B 10.1007/BF00010992 10.1016/j.scitotenv.2017.10.024 10.1080/1343943X.2018.1541137 10.1073/pnas.0813417106 10.1126/science.277.5325.504 10.1017/S0014479700010978 10.1016/S0378-4290(01)00156-3 10.1038/35083573 10.1073/pnas.0704591104 10.1016/j.eja.2019.125987 10.1007/BF00011315 10.1073/pnas.96.11.5952 10.1016/j.agsy.2016.11.009 10.1016/j.fcr.2009.04.009 10.1016/j.eja.2017.09.009 10.1038/17709 10.1007/s13593-018-0531-5 10.1016/j.fcr.2019.107613 10.1038/nature01014 10.1016/j.fcr.2015.09.010 10.1890/0012-9658(2003)084[0955:SSLPAD]2.0.CO;2 10.1890/130162 10.1016/j.agsy.2019.03.007 10.1007/s13593-014-0277-7 10.1071/CP16211 10.1007/s11104-010-0686-6 10.1016/0378-4290(93)90123-5 10.1111/gcb.12738 10.1016/j.fcr.2019.107661 10.1016/j.eja.2012.01.010 10.1111/nph.13132 10.1007/978-0-387-87458-6 10.1016/B978-0-12-384719-5.00363-4 10.1007/978-90-481-2716-0_3 10.1007/978-94-007-7927-3_3 10.1017/CBO9780511623523 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2020 The Author(s), under exclusive licence to Springer Nature Limited 2020. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020 – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SN AEUYN AFKRA BENPR BHPHI BKSAR C1K CCPQU DWQXO HCIFZ PCBAR PHGZM PHGZT PKEHL PQEST PQQKQ PQUKI 7X8 |
DOI | 10.1038/s41477-020-0680-9 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Ecology Abstracts ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea SciTech Premium Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database SciTech Premium Collection ProQuest One Community College Ecology Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Sustainability ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea ProQuest One Academic ProQuest Central (New) ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic ProQuest One Academic Middle East (New) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany Agriculture |
EISSN | 2055-0278 |
EndPage | 660 |
ExternalDocumentID | 32483328 10_1038_s41477_020_0680_9 |
Genre | Meta-Analysis Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: Wageningen UR | Wageningen University funderid: https://doi.org/10.13039/501100004890 – fundername: National Key R&D Program of China (grant number: 2017YFD0200200/2017YFD0200207). – fundername: Chinese National Basic Research Program (2015CB150400) – fundername: European Union’s Horizon 2020 Programme for Research & Innovation under grant agreement n°727217 (www.remix-intercrops.eu)” |
GroupedDBID | 0R~ 4.4 5BI 8FE 8FH AAEEF AAHBH AARCD AAYZH AAZLF ABJNI ABLJU ACBWK ACGFS ADBBV AENEX AEUYN AFKRA AFSHS AFWHJ AGAYW AHSBF AIBTJ ALFFA ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN BENPR BHPHI BKKNO BKSAR CCPQU EBS EJD FSGXE FZEXT HCIFZ HZ~ LK5 M7R NNMJJ O9- ODYON PCBAR RNT SHXYY SIXXV SNYQT SOJ TAOOD TBHMF TDRGL TSG AAYXX ABFSG ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ATHPR CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NFIDA NPM 7SN C1K DWQXO PKEHL PQEST PQQKQ PQUKI 7X8 |
ID | FETCH-LOGICAL-c372t-27d27ec04d7819aa200c3b15237e2a56329490bb79762444447e40e5566d33d13 |
IEDL.DBID | BENPR |
ISSN | 2055-0278 |
IngestDate | Fri Jul 11 16:26:43 EDT 2025 Sat Aug 23 13:10:13 EDT 2025 Thu Apr 03 06:55:31 EDT 2025 Thu Apr 24 23:10:31 EDT 2025 Tue Jul 01 03:33:58 EDT 2025 Fri Feb 21 02:39:19 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-27d27ec04d7819aa200c3b15237e2a56329490bb79762444447e40e5566d33d13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3896-4943 0000-0001-8971-0129 0000-0002-5506-4699 0000-0002-1278-8400 0000-0002-6995-1109 0000-0002-2761-1085 0000-0003-3889-919X |
PMID | 32483328 |
PQID | 2413231202 |
PQPubID | 2069614 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2408841367 proquest_journals_2413231202 pubmed_primary_32483328 crossref_primary_10_1038_s41477_020_0680_9 crossref_citationtrail_10_1038_s41477_020_0680_9 springer_journals_10_1038_s41477_020_0680_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200600 2020-06-01 2020-06-00 20200601 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 6 year: 2020 text: 20200600 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature plants |
PublicationTitleAbbrev | Nat. Plants |
PublicationTitleAlternate | Nat Plants |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Andow, Hidaka (CR37) 1989; 27 Hong, Heerink, Zhao, van der Werf (CR39) 2019; 173 Ren (CR7) 2014; 12 Whitmore, Schröder (CR48) 2007; 27 Lithourgidis, Vasilakoglou, Dhima, Dordas, Yiakoulaki (CR33) 2006; 99 Li (CR49) 2011; 342 Loreau, Hector (CR24) 2001; 412 Cong (CR18) 2015; 21 CR34 Xu (CR29) 2020; 246 Mead, Willey (CR22) 1980; 16 Li (CR35) 2020; 113 Vandermeer (CR38) 1997; 51 Yang, Huang, Chai, Luo (CR14) 2011; 124 Zhang (CR12) 2008; 107 CR6 Jensen (CR17) 1996; 182 Willey (CR5) 1990; 17 Peñuelas, Filella (CR52) 2001; 294 Anten, Hirose (CR43) 1999; 87 CR45 Trenbath (CR10) 1993; 34 Rusinamhodzi, Corbeels, Nyamangara, Giller (CR50) 2012; 136 Ju (CR47) 2009; 106 Li (CR19) 2007; 104 Yu, Stomph, Makowski, van der Werf (CR23) 2015; 184 Martin-Guay, Paquette, Dupras, Rivest (CR8) 2018; 615 Zhu (CR11) 2000; 406 Menzel, Fabian (CR53) 1999; 397 Tilman, Cassman, Matson, Naylor, Polasky (CR2) 2002; 418 Tan (CR15) 2020; 246 Hu (CR55) 2016; 198 Lithourgidis, Dordas, Damalas, Vlachostergios (CR26) 2011; 5 Wezel (CR61) 2014; 34 Du (CR46) 2018; 17 Pelzer (CR56) 2012; 40 Anten, Hirose (CR42) 2003; 84 Hauggaard-Nielsen, Jensen (CR36) 2001; 72 Chai, Qin, Gan, Yu (CR62) 2014; 34 Barbieri, Pellerin, Nesme (CR32) 2017; 7 Hu (CR54) 2017; 412 Gou (CR28) 2017; 151 Fletcher (CR60) 2017; 67 Viguier, Bedoussac, Journet, Justes (CR58) 2018; 38 Matson, Parton, Power, Swift (CR3) 1997; 277 Voisin (CR31) 2014; 34 Raseduzzaman, Jensen (CR51) 2017; 91 Brooker (CR30) 2015; 206 Li (CR40) 2001; 71 Cassman (CR4) 1999; 96 Iqbal (CR59) 2019; 22 Ngwira, Aune, Mkwinda (CR57) 2012; 132 Hauggaard-Nielsen (CR16) 2009; 113 Li (CR20) 2009; 4 Mao (CR13) 2012; 138 CR25 Liu (CR41) 2018; 224 Fujita, Ofosubudu, Ogata (CR44) 1992; 141 Hong (CR27) 2017; 244 CR67 CR66 CR65 CR64 CR63 Tilman, Balzer, Hill, Befort (CR1) 2011; 108 Liebman, Dyck (CR9) 1993; 3 Gaudio (CR68) 2019; 39 Bedoussac (CR21) 2015; 35 N Anten (680_CR43) 1999; 87 AR Ngwira (680_CR57) 2012; 132 N Anten (680_CR42) 2003; 84 M Loreau (680_CR24) 2001; 412 Y Hong (680_CR39) 2019; 173 H Hauggaard-Nielsen (680_CR36) 2001; 72 PA Matson (680_CR3) 1997; 277 L Bedoussac (680_CR21) 2015; 35 D Tilman (680_CR1) 2011; 108 Q Chai (680_CR62) 2014; 34 AS Lithourgidis (680_CR33) 2006; 99 AP Whitmore (680_CR48) 2007; 27 L Li (680_CR40) 2001; 71 N Iqbal (680_CR59) 2019; 22 K Fujita (680_CR44) 1992; 141 Y Yu (680_CR23) 2015; 184 680_CR34 L Zhang (680_CR12) 2008; 107 RW Willey (680_CR5) 1990; 17 DA Andow (680_CR37) 1989; 27 KG Cassman (680_CR4) 1999; 96 M Tan (680_CR15) 2020; 246 L Rusinamhodzi (680_CR50) 2012; 136 E Pelzer (680_CR56) 2012; 40 ES Jensen (680_CR17) 1996; 182 Y Hong (680_CR27) 2017; 244 R Mead (680_CR22) 1980; 16 RW Brooker (680_CR30) 2015; 206 L Li (680_CR19) 2007; 104 H Hauggaard-Nielsen (680_CR16) 2009; 113 B Trenbath (680_CR10) 1993; 34 CJ Li (680_CR35) 2020; 113 680_CR45 680_CR65 Y Zhu (680_CR11) 2000; 406 680_CR64 JB Du (680_CR46) 2018; 17 680_CR63 AL Fletcher (680_CR60) 2017; 67 A Wezel (680_CR61) 2014; 34 M Liebman (680_CR9) 1993; 3 Z Xu (680_CR29) 2020; 246 X Liu (680_CR41) 2018; 224 J Peñuelas (680_CR52) 2001; 294 FL Hu (680_CR55) 2016; 198 AS Voisin (680_CR31) 2014; 34 C Yang (680_CR14) 2011; 124 LL Mao (680_CR13) 2012; 138 FL Hu (680_CR54) 2017; 412 N Gaudio (680_CR68) 2019; 39 WF Cong (680_CR18) 2015; 21 F Gou (680_CR28) 2017; 151 A Menzel (680_CR53) 1999; 397 M Raseduzzaman (680_CR51) 2017; 91 680_CR6 WZ Ren (680_CR7) 2014; 12 XT Ju (680_CR47) 2009; 106 CJ Li (680_CR49) 2011; 342 L Viguier (680_CR58) 2018; 38 P Barbieri (680_CR32) 2017; 7 C Li (680_CR20) 2009; 4 J Vandermeer (680_CR38) 1997; 51 MO Martin-Guay (680_CR8) 2018; 615 D Tilman (680_CR2) 2002; 418 680_CR25 A Lithourgidis (680_CR26) 2011; 5 680_CR67 680_CR66 32483327 - Nat Plants. 2020 Jun;6(6):604-605 |
References_xml | – ident: CR45 – volume: 198 start-page: 50 year: 2016 end-page: 60 ident: CR55 article-title: Boosting system productivity through the improved coordination of interspecific competition in maize/pea strip intercropping publication-title: Field Crops Res. doi: 10.1016/j.fcr.2016.08.022 – volume: 107 start-page: 29 year: 2008 end-page: 42 ident: CR12 article-title: Light interception and utilization in relay intercrops of wheat and cotton publication-title: Field Crops Res. doi: 10.1016/j.fcr.2007.12.014 – volume: 27 start-page: 447 year: 1989 end-page: 462 ident: CR37 article-title: Experimental natural history of sustainable agriculture: syndromes of production publication-title: Agric. Ecosyst. Environ. doi: 10.1016/0167-8809(89)90105-9 – volume: 27 start-page: 81 year: 2007 end-page: 88 ident: CR48 article-title: Intercropping reduces nitrate leaching from under field crops without loss of yield: a modelling study publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2007.02.004 – volume: 136 start-page: 12 year: 2012 end-page: 22 ident: CR50 article-title: Maize–grain legume intercropping is an attractive option for ecological intensification that reduces climatic risk for smallholder farmers in central Mozambique publication-title: Field Crops Res. doi: 10.1016/j.fcr.2012.07.014 – volume: 224 start-page: 91 year: 2018 end-page: 101 ident: CR41 article-title: Relationships among light distribution, radiation use efficiency and land equivalent ratio in maize–soybean strip intercropping publication-title: Field Crops Res. doi: 10.1016/j.fcr.2018.05.010 – volume: 17 start-page: 747 year: 2018 end-page: 754 ident: CR46 article-title: Maize–soybean strip intercropping: achieved a balance between high productivity and sustainability publication-title: J. Integr. Agric. doi: 10.1016/S2095-3119(17)61789-1 – volume: 5 start-page: 396 year: 2011 end-page: 410 ident: CR26 article-title: Annual intercrops: an alternative pathway for sustainable agriculture publication-title: Aust. J. Crop Sci. – volume: 3 start-page: 92 year: 1993 end-page: 122 ident: CR9 article-title: Crop rotation and intercropping strategies for weed management publication-title: Ecol. Appl. doi: 10.2307/1941795 – volume: 7 year: 2017 ident: CR32 article-title: Comparing crop rotations between organic and conventional farming publication-title: Sci. Rep. doi: 10.1038/s41598-017-14271-6 – volume: 412 start-page: 235 year: 2017 end-page: 251 ident: CR54 article-title: Improving N management through intercropping alleviates the inhibitory effect of mineral N on nodulation in pea publication-title: Plant Soil doi: 10.1007/s11104-016-3063-2 – volume: 138 start-page: 11 year: 2012 end-page: 20 ident: CR13 article-title: Yield advantage and water saving in maize/pea intercrop publication-title: Field Crops Res. doi: 10.1016/j.fcr.2012.09.019 – volume: 51 start-page: 59 year: 1997 end-page: 72 ident: CR38 article-title: Syndromes of production: an emergent property of simple agroecosystem dynamics publication-title: J. Environ. Manage. doi: 10.1006/jema.1997.0128 – volume: 108 start-page: 20260 year: 2011 end-page: 20264 ident: CR1 article-title: Global food demand and the sustainable intensification of agriculture publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1116437108 – volume: 294 start-page: 793 year: 2001 end-page: 795 ident: CR52 article-title: Responses to a warming world publication-title: Science doi: 10.1126/science.1066860 – volume: 34 start-page: 1 year: 2014 end-page: 20 ident: CR61 article-title: Agroecological practices for sustainable agriculture: a review publication-title: Agron. Sustain. Dev. doi: 10.1007/s13593-013-0180-7 – volume: 406 start-page: 718 year: 2000 end-page: 722 ident: CR11 article-title: Genetic diversity and disease control in rice publication-title: Nature doi: 10.1038/35021046 – ident: CR25 – volume: 87 start-page: 583 year: 1999 end-page: 597 ident: CR43 article-title: Interspecific differences in above-ground growth patterns result in spatial and temporal partitioning of light among species in a tall-grass meadow publication-title: J. Ecol. doi: 10.1046/j.1365-2745.1999.00365.x – volume: 99 start-page: 106 year: 2006 end-page: 113 ident: CR33 article-title: Forage yield and quality of common vetch mixtures with oat and triticale in two seeding ratios publication-title: Field Crops Res. doi: 10.1016/j.fcr.2006.03.008 – volume: 4 start-page: e8049 year: 2009 ident: CR20 article-title: Crop diversity for yield increase publication-title: PLoS ONE doi: 10.1371/journal.pone.0008049 – ident: CR67 – volume: 34 start-page: 361 year: 2014 end-page: 380 ident: CR31 article-title: Legumes for feed, food, biomaterials and bioenergy in Europe: a review publication-title: Agron. Sustain. Dev. doi: 10.1007/s13593-013-0189-y – volume: 244 start-page: 52 year: 2017 end-page: 61 ident: CR27 article-title: Intercropping and agroforestry in China—current state and trends publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2017.04.019 – volume: 39 year: 2019 ident: CR68 article-title: Current knowledge and future research opportunities for modeling annual crop mixtures: a review publication-title: Agron. Sustain. Dev. doi: 10.1007/s13593-019-0562-6 – volume: 132 start-page: 149 year: 2012 end-page: 157 ident: CR57 article-title: On-farm evaluation of yield and economic benefit of short term maize legume intercropping systems under conservation agriculture in Malawi publication-title: Field Crops Res. doi: 10.1016/j.fcr.2011.12.014 – volume: 34 start-page: 535 year: 2014 end-page: 543 ident: CR62 article-title: Higher yield and lower carbon emission by intercropping maize with rape, pea, and wheat in arid irrigation areas publication-title: Agron. Sustain. Dev. doi: 10.1007/s13593-013-0161-x – volume: 124 start-page: 426 year: 2011 end-page: 432 ident: CR14 article-title: Water use and yield of wheat/maize intercropping under alternate irrigation in the oasis field of northwest China publication-title: Field Crops Res. doi: 10.1016/j.fcr.2011.07.013 – ident: CR64 – volume: 72 start-page: 185 year: 2001 end-page: 196 ident: CR36 article-title: Evaluating pea and barley cultivars for complementarity in intercropping at different levels of soil N availability publication-title: Field Crops Res. doi: 10.1016/S0378-4290(01)00176-9 – volume: 17 start-page: 215 year: 1990 end-page: 231 ident: CR5 article-title: Resource use in intercropping systems publication-title: Agric. Water Manage. doi: 10.1016/0378-3774(90)90069-B – volume: 182 start-page: 25 year: 1996 end-page: 38 ident: CR17 article-title: Grain yield, symbiotic N fixation and interspecific competition for inorganic N in pea–barley intercrops publication-title: Plant Soil doi: 10.1007/BF00010992 – volume: 615 start-page: 767 year: 2018 end-page: 772 ident: CR8 article-title: The new green revolution: sustainable intensification of agriculture by intercropping publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.10.024 – volume: 22 start-page: 131 year: 2019 end-page: 142 ident: CR59 article-title: Comparative analysis of maize–soybean strip intercropping systems: a review publication-title: Plant Prod. Sci. doi: 10.1080/1343943X.2018.1541137 – ident: CR66 – volume: 106 start-page: 3041 year: 2009 end-page: 3046 ident: CR47 article-title: Reducing environmental risk by improving N management in intensive Chinese agricultural systems publication-title: . Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0813417106 – volume: 277 start-page: 504 year: 1997 end-page: 509 ident: CR3 article-title: Agricultural intensification and ecosystem properties publication-title: Science doi: 10.1126/science.277.5325.504 – volume: 16 start-page: 217 year: 1980 end-page: 228 ident: CR22 article-title: The concept of a ‘land equivalent ratio’ and advantages in yields from intercropping publication-title: Exp. Agric. doi: 10.1017/S0014479700010978 – volume: 71 start-page: 123 year: 2001 end-page: 137 ident: CR40 article-title: Wheat/maize or wheat/soybean strip intercropping I. Yield advantage and interspecific interactions on nutrients publication-title: Field Crops Res. doi: 10.1016/S0378-4290(01)00156-3 – volume: 412 start-page: 72 year: 2001 end-page: 76 ident: CR24 article-title: Partitioning selection and complementarity in biodiversity experiments publication-title: Nature doi: 10.1038/35083573 – volume: 104 start-page: 11192 year: 2007 end-page: 11196 ident: CR19 article-title: Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0704591104 – volume: 113 start-page: 125987 year: 2020 ident: CR35 article-title: Yield gain, complementarity and competitive dominance in intercropping in China: a meta-analysis of drivers of yield gain using additive partitioning publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2019.125987 – ident: CR6 – volume: 141 start-page: 155 year: 1992 end-page: 175 ident: CR44 article-title: Biological nitrogen-fixation in mixed legume–cereal cropping systems publication-title: Plant Soil doi: 10.1007/BF00011315 – volume: 96 start-page: 5952 year: 1999 end-page: 5959 ident: CR4 article-title: Ecological intensification of cereal production systems: yield potential, soil quality, and precision agriculture publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.96.11.5952 – ident: CR63 – volume: 151 start-page: 96 year: 2017 end-page: 105 ident: CR28 article-title: On yield gaps and yield gains in intercropping: opportunities for increasing grain production in northwest China publication-title: Agric. Syst. doi: 10.1016/j.agsy.2016.11.009 – volume: 113 start-page: 64 year: 2009 end-page: 71 ident: CR16 article-title: Pea–barley intercropping for efficient symbiotic N -fixation, soil N acquisition and use of other nutrients in European organic cropping systems publication-title: Field Crops Res. doi: 10.1016/j.fcr.2009.04.009 – volume: 91 start-page: 25 year: 2017 end-page: 33 ident: CR51 article-title: Does intercropping enhance yield stability in arable crop production? A meta-analysis publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2017.09.009 – volume: 397 start-page: 659 year: 1999 ident: CR53 article-title: Growing season extended in Europe publication-title: Nature doi: 10.1038/17709 – volume: 38 year: 2018 ident: CR58 article-title: Yield gap analysis extended to marketable grain reveals the profitability of organic lentil–spring wheat intercrops publication-title: Agron. Sustain. Dev. doi: 10.1007/s13593-018-0531-5 – volume: 246 start-page: 107613 year: 2020 ident: CR15 article-title: Dynamic process-based modelling of crop growth and competitive water extraction in relay strip intercropping: model development and application to wheat–maize intercropping publication-title: Field Crops Res. doi: 10.1016/j.fcr.2019.107613 – volume: 418 start-page: 671 year: 2002 end-page: 677 ident: CR2 article-title: Agricultural sustainability and intensive production practices publication-title: Nature doi: 10.1038/nature01014 – volume: 184 start-page: 133 year: 2015 end-page: 144 ident: CR23 article-title: Temporal niche differentiation increases the land equivalent ratio of annual intercrops: a meta-analysis publication-title: Field Crops Res. doi: 10.1016/j.fcr.2015.09.010 – volume: 84 start-page: 955 year: 2003 end-page: 968 ident: CR42 article-title: Shoot structure, leaf physiology, and daily carbon gain of plant species in a tallgrass meadow publication-title: Ecology doi: 10.1890/0012-9658(2003)084[0955:SSLPAD]2.0.CO;2 – volume: 12 start-page: 507 year: 2014 end-page: 514 ident: CR7 article-title: Can positive interactions between cultivated species help to sustain modern agriculture? publication-title: Front. Ecol. Environ. doi: 10.1890/130162 – volume: 173 start-page: 317 year: 2019 end-page: 324 ident: CR39 article-title: Intercropping contributes to a higher technical efficiency in smallholder farming: evidence from a case study in Gaotai County, China publication-title: Agric. Syst. doi: 10.1016/j.agsy.2019.03.007 – ident: CR65 – volume: 35 start-page: 911 year: 2015 end-page: 935 ident: CR21 article-title: Ecological principles underlying the increase of productivity achieved by cereal-grain legume intercrops in organic farming: a review publication-title: Agron. Sustain. Dev. doi: 10.1007/s13593-014-0277-7 – volume: 67 start-page: 1252 year: 2017 end-page: 1267 ident: CR60 article-title: Prospects to utilise intercrops and crop variety mixtures in mechanised, rain-fed, temperate cropping systems publication-title: Crop Pasture Sci. doi: 10.1071/CP16211 – volume: 342 start-page: 221 year: 2011 end-page: 231 ident: CR49 article-title: Crop nitrogen use and soil mineral nitrogen accumulation under different crop combinations and patterns of strip intercropping in northwest China publication-title: Plant Soil doi: 10.1007/s11104-010-0686-6 – volume: 34 start-page: 381 year: 1993 end-page: 405 ident: CR10 article-title: Intercropping for the management of pests and diseases publication-title: Field Crops Res. doi: 10.1016/0378-4290(93)90123-5 – volume: 21 start-page: 1715 year: 2015 end-page: 1726 ident: CR18 article-title: Intercropping enhances soil carbon and nitrogen publication-title: Glob. Change Biol. doi: 10.1111/gcb.12738 – ident: CR34 – volume: 246 start-page: 107661 year: 2020 ident: CR29 article-title: Intercropping maize and soybean increases efficiency of land and fertilizer nitrogen use: a meta-analysis publication-title: Field Crops Res. doi: 10.1016/j.fcr.2019.107661 – volume: 40 start-page: 39 year: 2012 end-page: 53 ident: CR56 article-title: Pea–wheat intercrops in low-input conditions combine high economic performances and low environmental impacts publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2012.01.010 – volume: 206 start-page: 106 year: 2015 end-page: 117 ident: CR30 article-title: Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology publication-title: New Phytol. doi: 10.1111/nph.13132 – volume: 106 start-page: 3041 year: 2009 ident: 680_CR47 publication-title: . Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0813417106 – volume: 12 start-page: 507 year: 2014 ident: 680_CR7 publication-title: Front. Ecol. Environ. doi: 10.1890/130162 – volume: 27 start-page: 81 year: 2007 ident: 680_CR48 publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2007.02.004 – volume: 91 start-page: 25 year: 2017 ident: 680_CR51 publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2017.09.009 – volume: 87 start-page: 583 year: 1999 ident: 680_CR43 publication-title: J. Ecol. doi: 10.1046/j.1365-2745.1999.00365.x – volume: 34 start-page: 1 year: 2014 ident: 680_CR61 publication-title: Agron. Sustain. Dev. doi: 10.1007/s13593-013-0180-7 – ident: 680_CR63 – volume: 412 start-page: 72 year: 2001 ident: 680_CR24 publication-title: Nature doi: 10.1038/35083573 – volume: 113 start-page: 125987 year: 2020 ident: 680_CR35 publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2019.125987 – volume: 224 start-page: 91 year: 2018 ident: 680_CR41 publication-title: Field Crops Res. doi: 10.1016/j.fcr.2018.05.010 – volume: 21 start-page: 1715 year: 2015 ident: 680_CR18 publication-title: Glob. Change Biol. doi: 10.1111/gcb.12738 – volume: 72 start-page: 185 year: 2001 ident: 680_CR36 publication-title: Field Crops Res. doi: 10.1016/S0378-4290(01)00176-9 – volume: 71 start-page: 123 year: 2001 ident: 680_CR40 publication-title: Field Crops Res. doi: 10.1016/S0378-4290(01)00156-3 – ident: 680_CR67 – volume: 17 start-page: 747 year: 2018 ident: 680_CR46 publication-title: J. Integr. Agric. doi: 10.1016/S2095-3119(17)61789-1 – volume: 27 start-page: 447 year: 1989 ident: 680_CR37 publication-title: Agric. Ecosyst. Environ. doi: 10.1016/0167-8809(89)90105-9 – volume: 39 year: 2019 ident: 680_CR68 publication-title: Agron. Sustain. Dev. doi: 10.1007/s13593-019-0562-6 – volume: 294 start-page: 793 year: 2001 ident: 680_CR52 publication-title: Science doi: 10.1126/science.1066860 – volume: 34 start-page: 535 year: 2014 ident: 680_CR62 publication-title: Agron. Sustain. Dev. doi: 10.1007/s13593-013-0161-x – ident: 680_CR66 doi: 10.1007/978-0-387-87458-6 – volume: 124 start-page: 426 year: 2011 ident: 680_CR14 publication-title: Field Crops Res. doi: 10.1016/j.fcr.2011.07.013 – volume: 84 start-page: 955 year: 2003 ident: 680_CR42 publication-title: Ecology doi: 10.1890/0012-9658(2003)084[0955:SSLPAD]2.0.CO;2 – volume: 418 start-page: 671 year: 2002 ident: 680_CR2 publication-title: Nature doi: 10.1038/nature01014 – volume: 206 start-page: 106 year: 2015 ident: 680_CR30 publication-title: New Phytol. doi: 10.1111/nph.13132 – volume: 182 start-page: 25 year: 1996 ident: 680_CR17 publication-title: Plant Soil doi: 10.1007/BF00010992 – volume: 246 start-page: 107613 year: 2020 ident: 680_CR15 publication-title: Field Crops Res. doi: 10.1016/j.fcr.2019.107613 – volume: 40 start-page: 39 year: 2012 ident: 680_CR56 publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2012.01.010 – volume: 17 start-page: 215 year: 1990 ident: 680_CR5 publication-title: Agric. Water Manage. doi: 10.1016/0378-3774(90)90069-B – volume: 104 start-page: 11192 year: 2007 ident: 680_CR19 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0704591104 – ident: 680_CR25 doi: 10.1016/B978-0-12-384719-5.00363-4 – ident: 680_CR64 – volume: 412 start-page: 235 year: 2017 ident: 680_CR54 publication-title: Plant Soil doi: 10.1007/s11104-016-3063-2 – volume: 51 start-page: 59 year: 1997 ident: 680_CR38 publication-title: J. Environ. Manage. doi: 10.1006/jema.1997.0128 – volume: 184 start-page: 133 year: 2015 ident: 680_CR23 publication-title: Field Crops Res. doi: 10.1016/j.fcr.2015.09.010 – volume: 5 start-page: 396 year: 2011 ident: 680_CR26 publication-title: Aust. J. Crop Sci. – volume: 38 year: 2018 ident: 680_CR58 publication-title: Agron. Sustain. Dev. doi: 10.1007/s13593-018-0531-5 – ident: 680_CR45 doi: 10.1007/978-90-481-2716-0_3 – volume: 67 start-page: 1252 year: 2017 ident: 680_CR60 publication-title: Crop Pasture Sci. doi: 10.1071/CP16211 – volume: 277 start-page: 504 year: 1997 ident: 680_CR3 publication-title: Science doi: 10.1126/science.277.5325.504 – volume: 198 start-page: 50 year: 2016 ident: 680_CR55 publication-title: Field Crops Res. doi: 10.1016/j.fcr.2016.08.022 – volume: 99 start-page: 106 year: 2006 ident: 680_CR33 publication-title: Field Crops Res. doi: 10.1016/j.fcr.2006.03.008 – volume: 107 start-page: 29 year: 2008 ident: 680_CR12 publication-title: Field Crops Res. doi: 10.1016/j.fcr.2007.12.014 – volume: 141 start-page: 155 year: 1992 ident: 680_CR44 publication-title: Plant Soil doi: 10.1007/BF00011315 – volume: 3 start-page: 92 year: 1993 ident: 680_CR9 publication-title: Ecol. Appl. doi: 10.2307/1941795 – volume: 342 start-page: 221 year: 2011 ident: 680_CR49 publication-title: Plant Soil doi: 10.1007/s11104-010-0686-6 – volume: 615 start-page: 767 year: 2018 ident: 680_CR8 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.10.024 – volume: 246 start-page: 107661 year: 2020 ident: 680_CR29 publication-title: Field Crops Res. doi: 10.1016/j.fcr.2019.107661 – volume: 4 start-page: e8049 year: 2009 ident: 680_CR20 publication-title: PLoS ONE doi: 10.1371/journal.pone.0008049 – volume: 22 start-page: 131 year: 2019 ident: 680_CR59 publication-title: Plant Prod. Sci. doi: 10.1080/1343943X.2018.1541137 – volume: 108 start-page: 20260 year: 2011 ident: 680_CR1 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1116437108 – volume: 136 start-page: 12 year: 2012 ident: 680_CR50 publication-title: Field Crops Res. doi: 10.1016/j.fcr.2012.07.014 – ident: 680_CR65 – volume: 132 start-page: 149 year: 2012 ident: 680_CR57 publication-title: Field Crops Res. doi: 10.1016/j.fcr.2011.12.014 – volume: 16 start-page: 217 year: 1980 ident: 680_CR22 publication-title: Exp. Agric. doi: 10.1017/S0014479700010978 – ident: 680_CR34 doi: 10.1007/978-94-007-7927-3_3 – volume: 138 start-page: 11 year: 2012 ident: 680_CR13 publication-title: Field Crops Res. doi: 10.1016/j.fcr.2012.09.019 – volume: 96 start-page: 5952 year: 1999 ident: 680_CR4 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.96.11.5952 – volume: 35 start-page: 911 year: 2015 ident: 680_CR21 publication-title: Agron. Sustain. Dev. doi: 10.1007/s13593-014-0277-7 – volume: 244 start-page: 52 year: 2017 ident: 680_CR27 publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2017.04.019 – volume: 7 year: 2017 ident: 680_CR32 publication-title: Sci. Rep. doi: 10.1038/s41598-017-14271-6 – volume: 406 start-page: 718 year: 2000 ident: 680_CR11 publication-title: Nature doi: 10.1038/35021046 – ident: 680_CR6 doi: 10.1017/CBO9780511623523 – volume: 151 start-page: 96 year: 2017 ident: 680_CR28 publication-title: Agric. Syst. doi: 10.1016/j.agsy.2016.11.009 – volume: 34 start-page: 381 year: 1993 ident: 680_CR10 publication-title: Field Crops Res. doi: 10.1016/0378-4290(93)90123-5 – volume: 34 start-page: 361 year: 2014 ident: 680_CR31 publication-title: Agron. Sustain. Dev. doi: 10.1007/s13593-013-0189-y – volume: 113 start-page: 64 year: 2009 ident: 680_CR16 publication-title: Field Crops Res. doi: 10.1016/j.fcr.2009.04.009 – volume: 397 start-page: 659 year: 1999 ident: 680_CR53 publication-title: Nature doi: 10.1038/17709 – volume: 173 start-page: 317 year: 2019 ident: 680_CR39 publication-title: Agric. Syst. doi: 10.1016/j.agsy.2019.03.007 – reference: 32483327 - Nat Plants. 2020 Jun;6(6):604-605 |
SSID | ssj0001755360 |
Score | 2.6294389 |
SecondaryResourceType | review_article |
Snippet | Intercropping, the simultaneous production of multiple crops on the same field, provides opportunities for the sustainable intensification of agriculture if it... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 653 |
SubjectTerms | 631/449 706/1143 Agricultural practices Agricultural production Agriculture Biomedical and Life Sciences China Corn Crop Production - methods Crops Crops, Agricultural - growth & development Edible Grain - growth & development Fabaceae - growth & development Fertilizers Intensive farming Intercropping Life Sciences Monoculture Nutrients Plant Breeding Plant Sciences Sole cropping Sustainability Zea mays - growth & development |
Title | Syndromes of production in intercropping impact yield gains |
URI | https://link.springer.com/article/10.1038/s41477-020-0680-9 https://www.ncbi.nlm.nih.gov/pubmed/32483328 https://www.proquest.com/docview/2413231202 https://www.proquest.com/docview/2408841367 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED9080EfxG-rUyr4pAS7JG1afBAVZQiK-AG-lSTNhiDttPPB_967NdsQ0dK3Jm24u979Lpe7AzhM-wgqEHoz0dfooGSJYcbphKVOoHw5kVhL-c63d0nvWd68xC9-w632xyonOnGsqIvK0h75CcV_EIugr342fGfUNYqiq76Fxjy0UQWn6Hy1L67u7h9muywqjkUyDWeK9KSWXakUI6-J2k6w7KdB-oUyf0VIx4bnegWWPWIMzxsWr8KcK9dg6Xzw4atmuDVYuKgQ432tw-mjL0BQh1U_HDbVXJHy4SvdSEJq2EUZUmGTHRl-0QG2cKBfy3oDnq-vni57zLdHYFYoPmJcFVw5G8lCoVnXGuXdCoP2WCjHdZwInsksMkYh4kAjjpdyMnIxArhCiKIrNqFVVqXbhtBoZ7JYGvSdCukoIYFn3GqXZIWUOrIBRBMa5dbXDqcWFm_5OIYt0rwha45kzYmseRbA0XTKsCmc8d_gzoTwuf-H6nzG8QAOpo9R-imkoUtXfdIY1JKSys4FsNUwbPo1hIqpEDwN4HjCwdnL_1zKzv9L2YVF3sgOi7odaI0-Pt0ewpKR2fey9w3McdwG |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Rb9QwDLbGDYnxMMGArTAgSPACitZL0qYVQmiDTTe2nRBs0t5CkuamSVN7rDeh-1P8xtnX9k5oYm-r-pY0jWwn_hzHNsDbbISgAqE3lyOLBkqeOu6CTXkWJMpXkKn3FO98NEwHJ-rbaXK6BH-7WBi6VtntibONuqg8nZFvkf8HsQja6p_HvzlVjSLvaldCoxGLgzD9gyZb_Wn_K_L3nRB7u8dfBrytKsC91GLChS6EDj5WhUZtaC2KiZcO1ZjUQdgklSJXeeycRkWNug8fHVQcEsQ9hZRFX-K492BZSTRlerC8szv8_mNxqqOTBBs696nMtmrVV1pzstKozAXP_1WAN1DtDY_sTNHtPYLVFqGy7UakHsNSKNfg4fbZZZulI6zB_Z0KMeX0CXz82SY8qFk1YuMmeyxymp3TiyyjAmEUkcWaaEw2pQtz7Myel_VTOLkTwj2DXlmVYQOYs8HliXJoqxUqUACEyIW3Ic0LpWzsI4g7Ghnf5iqnkhkXZuYzl5lpyGqQrIbIavII3s8_GTeJOm7rvNkR3rRrtjYLCYvgzbwZVxu5UGwZqivqg7uyojR3Eaw3DJv_DaFpJqXIIvjQcXAx-H-n8vz2qbyGB4Pjo0NzuD88eAEropEjHvc3oTe5vAovERJN3KtWDhn8umvRvwZ5JhWm |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Syndromes+of+production+in+intercropping+impact+yield+gains&rft.jtitle=Nature+plants&rft.au=Li%2C+Chunjie&rft.au=Hoffland%2C+Ellis&rft.au=Kuyper%2C+Thomas+W&rft.au=Yu%2C+Yang&rft.date=2020-06-01&rft.eissn=2055-0278&rft.volume=6&rft.issue=6&rft.spage=653&rft_id=info:doi/10.1038%2Fs41477-020-0680-9&rft_id=info%3Apmid%2F32483328&rft.externalDocID=32483328 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2055-0278&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2055-0278&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2055-0278&client=summon |