Engineering efficient hole transport layer Ferrihydrite-MXene on BiVO4 photoanodes for photoelectrochemical water splitting: Work function and conductivity regulated
Although great interest is focused on development of semiconductor photoanodes for efficient photoelectrochemical (PEC) water splitting, the pressing bottleneck to address the intrinsic charge transport for enhancement of PEC performance still remains to be resolved. Herein, hole transport layer (Fh...
Saved in:
Published in | Applied catalysis. B, Environmental Vol. 315; p. 121606 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.10.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Although great interest is focused on development of semiconductor photoanodes for efficient photoelectrochemical (PEC) water splitting, the pressing bottleneck to address the intrinsic charge transport for enhancement of PEC performance still remains to be resolved. Herein, hole transport layer (Fh-MXene) constructed by doping of MXene (Ti3C2) in Ferrihydrite (Fh) is loaded on BiVO4 photoanode. This novel BiVO4@Fh-MXene photoanode achieves high current density of 4.55 mA cm−2 at 1.23 V versus reversible hydrogen electrode (vs. RHE), exhibiting excellent photostability. From electrochemical analysis and density functional theory calculations, high PEC performance is ascribed to incorporation of Fh-MXene as hole transport layer, enhancing conductivity and water oxidation reaction. Notably, MXene can improve band alignment of BiVO4/Fh-MXene interface by tuning work function, which strengthens the built-in electric field for more efficient hole extraction. This work provides a simple method to design photoanodes with efficient charge transport layers for feasible PEC water splitting application.
[Display omitted]
•Novel hole transfer layer Fh-MXene loaded on BiVO4 photoanode for PEC water splitting.•MXene tune work function of Fh for strengthening the built-in electric field.•Fh-MXene with high conductivity promote the intrinsic charge transport of photoanode.•Exposure of metal sites and hydrophilic functional groups improve water oxidation.•BiVO4@Fh-MXene photoanode exhibit five times enhanced PEC performance than BiVO4. |
---|---|
AbstractList | Although great interest is focused on development of semiconductor photoanodes for efficient photoelectrochemical (PEC) water splitting, the pressing bottleneck to address the intrinsic charge transport for enhancement of PEC performance still remains to be resolved. Herein, hole transport layer (Fh-MXene) constructed by doping of MXene (Ti3C2) in Ferrihydrite (Fh) is loaded on BiVO4 photoanode. This novel BiVO4@Fh-MXene photoanode achieves high current density of 4.55 mA cm−2 at 1.23 V versus reversible hydrogen electrode (vs. RHE), exhibiting excellent photostability. From electrochemical analysis and density functional theory calculations, high PEC performance is ascribed to incorporation of Fh-MXene as hole transport layer, enhancing conductivity and water oxidation reaction. Notably, MXene can improve band alignment of BiVO4/Fh-MXene interface by tuning work function, which strengthens the built-in electric field for more efficient hole extraction. This work provides a simple method to design photoanodes with efficient charge transport layers for feasible PEC water splitting application.
[Display omitted]
•Novel hole transfer layer Fh-MXene loaded on BiVO4 photoanode for PEC water splitting.•MXene tune work function of Fh for strengthening the built-in electric field.•Fh-MXene with high conductivity promote the intrinsic charge transport of photoanode.•Exposure of metal sites and hydrophilic functional groups improve water oxidation.•BiVO4@Fh-MXene photoanode exhibit five times enhanced PEC performance than BiVO4. |
ArticleNumber | 121606 |
Author | Wang, Jinnan Corvini, Philippe François-Xavier Bai, Weihao Zhou, Ye Peng, Gang Li, Aimin |
Author_xml | – sequence: 1 givenname: Weihao surname: Bai fullname: Bai, Weihao organization: State Key Laboratory of Pollution Control and Resource Reuse & School of the Environment Nanjing University, Nanjing 210023, China – sequence: 2 givenname: Ye surname: Zhou fullname: Zhou, Ye organization: State Key Laboratory of Pollution Control and Resource Reuse & School of the Environment Nanjing University, Nanjing 210023, China – sequence: 3 givenname: Gang surname: Peng fullname: Peng, Gang organization: State Key Laboratory of Pollution Control and Resource Reuse & School of the Environment Nanjing University, Nanjing 210023, China – sequence: 4 givenname: Jinnan surname: Wang fullname: Wang, Jinnan email: wjnnju@163.com organization: State Key Laboratory of Pollution Control and Resource Reuse & School of the Environment Nanjing University, Nanjing 210023, China – sequence: 5 givenname: Aimin surname: Li fullname: Li, Aimin organization: State Key Laboratory of Pollution Control and Resource Reuse & School of the Environment Nanjing University, Nanjing 210023, China – sequence: 6 givenname: Philippe François-Xavier surname: Corvini fullname: Corvini, Philippe François-Xavier organization: School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Basel 4132, Switzerland |
BookMark | eNqFkc9uEzEQhy1UJNLSN-jBL7DBfzbeTQ9IULW0UlEvtHCzZu1x4rC1V7bTKg_Ee-JoOXGA0-h3-H6j-eaUnIQYkJALzpaccfVht4TJQBmWggmx5IIrpt6QBe872ci-lydkwdZCNVJ28h05zXnHGBNS9Avy6zpsfEBMPmwoOueNx1DoNo5IS4KQp5gKHeGAid5gSn57sMkXbL7-wIA0BvrZPz20dNrGEiFEi5m6mOaMI5qSotniszcw0lcotSZPoy-l7ruk32P6Sd0-mOJrEwRLTQx2X-OLLweacLMfK2Pfk7cOxoznf-YZeby5_nZ129w_fLm7-nTfGNmJ0gjFrFLAwApYwzCsYGU4M6JtB2VYp_q15bjig5MrB51jSimzFsDazkqo0uQZaedek2LOCZ2ekn-GdNCc6aNqvdOzan1UrWfVFbv8CzO-wPGmqtCP_4M_zjDWw148Jp2PPzBofar6tI3-3wW_ATPSo7E |
CitedBy_id | crossref_primary_10_1021_acscatal_3c00444 crossref_primary_10_1016_j_gee_2023_12_001 crossref_primary_10_1039_D4TA00337C crossref_primary_10_1021_acs_inorgchem_3c04310 crossref_primary_10_1016_j_cej_2024_150176 crossref_primary_10_1016_j_jcis_2024_04_081 crossref_primary_10_1002_anie_202315763 crossref_primary_10_1016_j_jcis_2023_10_144 crossref_primary_10_1039_D3QM00990D crossref_primary_10_1016_j_jelechem_2023_117750 crossref_primary_10_1016_j_cej_2023_147082 crossref_primary_10_1021_acs_analchem_4c02367 crossref_primary_10_1021_acs_inorgchem_4c03125 crossref_primary_10_1021_acs_nanolett_3c03743 crossref_primary_10_1016_j_mtener_2023_101469 crossref_primary_10_1016_j_solmat_2023_112360 crossref_primary_10_1016_j_cej_2024_149104 crossref_primary_10_1016_j_susmat_2023_e00718 crossref_primary_10_1007_s10854_023_11108_z crossref_primary_10_1016_j_jece_2024_113058 crossref_primary_10_1515_revic_2024_0009 crossref_primary_10_1016_j_cej_2023_147713 crossref_primary_10_1039_D4SE00390J crossref_primary_10_1007_s12274_023_5595_0 crossref_primary_10_1039_D4NJ02315C crossref_primary_10_1016_j_jcis_2024_04_190 crossref_primary_10_1016_j_jcis_2025_02_180 crossref_primary_10_1039_D3TA06532D crossref_primary_10_3390_nano13202764 crossref_primary_10_1016_j_ccr_2024_216180 crossref_primary_10_1016_j_cej_2024_157963 crossref_primary_10_1016_j_jallcom_2024_174725 crossref_primary_10_1021_acsnano_3c11638 crossref_primary_10_1007_s00604_025_07016_0 crossref_primary_10_1016_j_jallcom_2023_171997 crossref_primary_10_1016_j_jhazmat_2022_130576 crossref_primary_10_1016_j_cej_2025_160631 crossref_primary_10_1016_j_ijhydene_2024_10_076 crossref_primary_10_1016_j_scitotenv_2024_172816 crossref_primary_10_1002_adfm_202403396 crossref_primary_10_1016_j_apcatb_2023_123682 crossref_primary_10_1016_j_apcatb_2023_123288 crossref_primary_10_1016_j_jelechem_2024_118877 crossref_primary_10_1016_j_cej_2023_145169 crossref_primary_10_1021_acsami_3c02004 crossref_primary_10_1016_j_cej_2023_147625 crossref_primary_10_1016_j_ijhydene_2025_02_043 crossref_primary_10_1039_D4TA07992B crossref_primary_10_1186_s40580_024_00454_1 crossref_primary_10_1016_j_jallcom_2023_172409 crossref_primary_10_1016_j_jcis_2024_01_049 crossref_primary_10_1016_j_cej_2024_155098 crossref_primary_10_1016_j_jmst_2024_02_093 crossref_primary_10_1016_j_ijhydene_2024_06_265 crossref_primary_10_1016_j_cclet_2024_110139 crossref_primary_10_1016_j_seppur_2023_123793 crossref_primary_10_1021_acsenergylett_5c00170 crossref_primary_10_1007_s10854_024_12380_3 crossref_primary_10_1021_acsanm_4c00528 crossref_primary_10_1016_j_jallcom_2024_178399 crossref_primary_10_1016_j_cej_2022_140081 crossref_primary_10_1016_j_ijhydene_2024_02_110 crossref_primary_10_1016_j_jwpe_2023_104084 crossref_primary_10_1016_j_matre_2023_100232 crossref_primary_10_1016_j_cplett_2024_141126 crossref_primary_10_1016_j_elecom_2023_107645 crossref_primary_10_1021_acsaem_4c00308 crossref_primary_10_1016_j_cej_2024_157662 crossref_primary_10_1016_j_inoche_2023_111292 crossref_primary_10_1021_acs_analchem_4c02261 crossref_primary_10_1016_j_apsusc_2024_161259 crossref_primary_10_1002_ange_202315763 crossref_primary_10_1016_j_ijhydene_2024_09_239 crossref_primary_10_1021_acssuschemeng_3c05782 crossref_primary_10_1016_j_apcatb_2023_123269 crossref_primary_10_1016_j_ijhydene_2025_01_491 crossref_primary_10_1002_adfm_202304723 crossref_primary_10_1016_j_cej_2024_157305 crossref_primary_10_1002_solr_202200743 crossref_primary_10_1021_acsami_2c19729 crossref_primary_10_1016_j_ijhydene_2024_10_299 crossref_primary_10_1016_j_jechem_2022_09_046 |
Cites_doi | 10.1021/acscatal.0c03671 10.1021/ja207348x 10.1002/anie.202008198 10.1016/j.apcatb.2020.119477 10.1021/acs.jpcc.1c02369 10.1038/35104607 10.1002/adma.201804779 10.1021/acsaem.0c00834 10.1021/jacs.5b00256 10.1038/s41467-018-05580-z 10.1016/j.apcatb.2020.119054 10.1016/j.apsusc.2017.04.056 10.1002/anie.202014871 10.1038/ncomms13907 10.1038/s41563-019-0478-1 10.1021/jacs.6b01821 10.1038/nature13970 10.1016/j.apcatb.2021.120439 10.1039/C6SC03707K 10.1126/science.1102896 10.1021/acssuschemeng.9b02009 10.1038/s41467-019-11586-y 10.1039/C5TA02297E 10.1002/anie.201404697 10.1016/j.apcatb.2020.119855 10.1039/C5SC04519C 10.1002/anie.202001919 10.1038/238037a0 10.1016/j.nanoen.2019.103880 10.1002/anie.202100078 10.1021/acscatal.0c03272 10.1021/acscatal.6b03107 10.1021/jacs.7b01820 10.1016/j.apcatb.2021.120268 10.1021/cr3000626 10.1039/C5EE03871E 10.1016/j.apcatb.2020.119189 10.1002/smll.201802738 10.1016/j.apcatb.2019.02.048 10.1016/j.apcatb.2019.118206 10.1016/j.apcatb.2018.12.058 10.1063/1.3478010 10.1016/j.apcatb.2017.03.067 10.1016/j.apcatb.2021.120269 10.1021/acscatal.6b03483 10.1021/jacs.0c12739 10.1038/s41560-017-0057-0 10.1021/acs.chemmater.7b02847 10.1021/nl201766h 10.1016/j.apcatb.2019.05.040 10.1016/j.cej.2020.126458 10.1126/science.1246913 |
ContentType | Journal Article |
Copyright | 2022 |
Copyright_xml | – notice: 2022 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.apcatb.2022.121606 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Environmental Sciences |
EISSN | 1873-3883 |
ExternalDocumentID | 10_1016_j_apcatb_2022_121606 S0926337322005471 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABMAC ABNUV ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPD SSG SSZ T5K ~02 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AHHHB AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB HLY HVGLF HZ~ NDZJH R2- SCE SEW SSH VH1 WUQ XPP |
ID | FETCH-LOGICAL-c372t-260d66a0ad2a9abb5a5c10c244b6c07689d1e51bf35fa7f0666c92a047d3a1603 |
IEDL.DBID | .~1 |
ISSN | 0926-3373 |
IngestDate | Tue Jul 01 04:35:21 EDT 2025 Thu Apr 24 22:56:20 EDT 2025 Sat Mar 02 16:01:03 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Work function and conductivity regulated Hole transport layer BiVO4 photoanodes Ferrihydrite-MXene Photoelectrochemical water splitting |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-260d66a0ad2a9abb5a5c10c244b6c07689d1e51bf35fa7f0666c92a047d3a1603 |
ParticipantIDs | crossref_primary_10_1016_j_apcatb_2022_121606 crossref_citationtrail_10_1016_j_apcatb_2022_121606 elsevier_sciencedirect_doi_10_1016_j_apcatb_2022_121606 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-15 |
PublicationDateYYYYMMDD | 2022-10-15 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Applied catalysis. B, Environmental |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Mohammadi, Rosen, Gogotsi (bib35) 2021; 372 Liu, Wygant, Kawashima, Mabayoje, Hong, Lee, Lin, Kim, Yubuta, Li, Li, Mullins (bib9) 2019; 245 Qian, Zhao, Dang, Liao, Zhang, Wang, Lv, Luo, Jiang, Tang (bib36) 2021; 5 Fu, Dong, Zhou, Lu, Huang, Liu, Guo, Zhao, Chou, Shen (bib12) 2020; 260 Alhabeb, Maleski, Anasori, Lelyukh, Clark, Sin, Gogotsi (bib46) 2017; 29 Agresti, Pazniak, Pescetelli, Di Vito, Rossi, Pecchia, Maur, Liedl, Larciprete, Kuznetsov, Saranin, Di Carlo (bib40) 2019; 18 Yu, Li, Qu, Zheng, Cairney, Zhang, Zhu, Khan, Li (bib24) 2021; 404 Yang, Li, Wang, Ding, Li, Lin, Tang, Ren, Wang, Luo, Ye (bib41) 2021; 297 Jin, Ma, Pan, Zhu, Saji, Hu, Xu, Sun, Yin (bib59) 2021; 281 Fujishima, Honda (bib1) 1972; 238 Guo, Gao, Xu, Teo, Zhang, Kamata, Hayase, Ma (bib42) 2018; 14 Li, He, Sheehan, He, Thorne, Yao, Brudvig, Wang (bib23) 2016; 9 Ye, Li, Huang, Xiao, Qiu, Li, Hu, Mai, Ji, Yang (bib52) 2019; 10 Duan, Jiang, Shao, Feng, Yu, Guo, Chen, Tang (bib47) 2021; 297 Zhang, Yates (bib53) 2012; 112 Lianos (bib3) 2017; 210 Wang, Wang, Zhang, Jiang, Bao, Cheng, Zheng, Wang, Liu, Whangbo, Li, Dai, Huang (bib14) 2020; 10 Kalanur, Singh, Seo (bib10) 2021; 295 Wang, He, Chen, Du, Ostrikov, Huang, Wang (bib17) 2020; 32 Zhang, Huang, Zhang, Lu, Chou, Bi (bib49) 2020; 59 Zheng, Lyu, Wang, Xie, Zhou, Jiang, Wang (bib8) 2018; 9 Gaikwad, Suryawanshi, Ghorpade, Jang, Suryawanshi, Kim (bib16) 2021 Luo, Li, Liu, Wang, Gong (bib55) 2017; 8 Zhang, Du, Wang, Wang, Shi, Gao, Karuturi, Catchpole, Zhang, Fan, Shi, Liu (bib48) 2021; 60 Zhang, Nagashima, Tachikawa (bib56) 2020; 59 Guo, Wang, Chang, Zhang, Gao (bib54) 2010; 97 Li, Wang, Ma, Igbari, Kang, Wang, Song, Dong, Li, Yao, Meng, Wang, Yang (bib43) 2021; 143 Yin, Li, Wang, Li (bib28) 2021; 125 Liu, Shi, Zhang, Chen, Han, Ding, Chen, Wang, Han, Li, Tantalum (bib26) 2014; 53 Sun, Cheng, Liu, Qi (bib15) 2020; 277 Wang, Wang, Ling, Tang, Yang, Fitzmorris, Wang, Zhang, Li (bib7) 2011; 11 Zhang, Li, Byun, Wang, Shin, Jeong, Han, Li, Lee (bib57) 2020; 11 Bu, Li, Zhang, Lin, Wang, Zou, Xie (bib29) 2019; 7 Hantanasirisakul, Gogotsi (bib34) 2018; 30 Zhong, Choi, Gamelin (bib21) 2011; 133 Kecsenovity, Endrodi, Toth, Zou, Dryfe, Rajeshwar, Janaky (bib32) 2017; 139 Ghidiu, Lukatskaya, Zhao, Gogotsi, Barsoum (bib44) 2014; 516 Zhang, Li, Ni, Chen, Wang, Bu, Ao (bib4) 2019; 29 Wang, Chen, Bai, Yun, Liu, Wang (bib19) 2018; 30 Li, Liu, Xing, Wang, Zheng, Wang, Wang, Zheng, Cheng, Dai, Huang (bib38) 2021; 285 Lee, Choi (bib51) 2018; 3 Regmi, Kshetri, Kim, Pandey, Ray, Lee (bib50) 2017; 413 Wang, Gao, Zhao, Zhao, Claverie, Zhang, Wang, Liu, Sang (bib11) 2019; 248 Yu, Wang, Liu, Sun, Yang, Qiu (bib6) 2019; 63 Wang, Wang, Zhou, Zou (bib13) 2019; 255 Zhang, Ma, Xiong, Jiang, Tang (bib20) 2020; 3 Yin, Men, Sun, She, Zhang, Wu, Qin, Chen (bib31) 2015; 3 Kim, Choi (bib45) 2014; 343 Novoselov, Geim, Morozov, Jiang, Zhang, Dubonos, Grigorieva, Firsov (bib33) 2004; 306 Yu, Li, Yao, Du, Liang, Wang, Han, Sun (bib27) 2017; 7 Gratzel (bib2) 2001; 414 Wang, Li, Chi, Zhao, Wang, Li, Pang, Fu, Shi, Li (bib30) 2021; 60 Thorne, Jang, Liu, Wang (bib22) 2016; 7 He, Gao, Liu, Sun, Liu, Hu, Su, Wang (bib25) 2020; 10 Zhong, Hisatomi, Kuang, Zhao, Liu, Iwase, Jia, Nishiyama, Minegishi, Nakabayashi, Shibata, Niishiro, Katayama, Shibano, Katayama, Kudo, Yamada, Domen (bib58) 2015; 137 Ran, Gao, Li, Ma, Du, Qiao (bib39) 2017; 8 Liang, Lu (bib5) 2016; 138 Ding, Shi, Wang, Li (bib18) 2017; 7 Liao, Qian, Xie, Han, Dang, Wang, Lv, Zhao, Luo, Zhang, Jiang, Tang (bib37) 2020; 273 Duan (10.1016/j.apcatb.2022.121606_bib47) 2021; 297 Ghidiu (10.1016/j.apcatb.2022.121606_bib44) 2014; 516 Liang (10.1016/j.apcatb.2022.121606_bib5) 2016; 138 Wang (10.1016/j.apcatb.2022.121606_bib17) 2020; 32 Yu (10.1016/j.apcatb.2022.121606_bib6) 2019; 63 He (10.1016/j.apcatb.2022.121606_bib25) 2020; 10 Novoselov (10.1016/j.apcatb.2022.121606_bib33) 2004; 306 Liao (10.1016/j.apcatb.2022.121606_bib37) 2020; 273 Li (10.1016/j.apcatb.2022.121606_bib38) 2021; 285 Gaikwad (10.1016/j.apcatb.2022.121606_bib16) 2021 Wang (10.1016/j.apcatb.2022.121606_bib13) 2019; 255 Kecsenovity (10.1016/j.apcatb.2022.121606_bib32) 2017; 139 Zhang (10.1016/j.apcatb.2022.121606_bib48) 2021; 60 Ye (10.1016/j.apcatb.2022.121606_bib52) 2019; 10 Yu (10.1016/j.apcatb.2022.121606_bib27) 2017; 7 Agresti (10.1016/j.apcatb.2022.121606_bib40) 2019; 18 Wang (10.1016/j.apcatb.2022.121606_bib14) 2020; 10 Gratzel (10.1016/j.apcatb.2022.121606_bib2) 2001; 414 Thorne (10.1016/j.apcatb.2022.121606_bib22) 2016; 7 Yin (10.1016/j.apcatb.2022.121606_bib28) 2021; 125 Fujishima (10.1016/j.apcatb.2022.121606_bib1) 1972; 238 Yin (10.1016/j.apcatb.2022.121606_bib31) 2015; 3 Regmi (10.1016/j.apcatb.2022.121606_bib50) 2017; 413 Zhong (10.1016/j.apcatb.2022.121606_bib58) 2015; 137 Ran (10.1016/j.apcatb.2022.121606_bib39) 2017; 8 Sun (10.1016/j.apcatb.2022.121606_bib15) 2020; 277 Lee (10.1016/j.apcatb.2022.121606_bib51) 2018; 3 Zhang (10.1016/j.apcatb.2022.121606_bib49) 2020; 59 Zhang (10.1016/j.apcatb.2022.121606_bib53) 2012; 112 Alhabeb (10.1016/j.apcatb.2022.121606_bib46) 2017; 29 Kim (10.1016/j.apcatb.2022.121606_bib45) 2014; 343 Yu (10.1016/j.apcatb.2022.121606_bib24) 2021; 404 Mohammadi (10.1016/j.apcatb.2022.121606_bib35) 2021; 372 Li (10.1016/j.apcatb.2022.121606_bib43) 2021; 143 Lianos (10.1016/j.apcatb.2022.121606_bib3) 2017; 210 Liu (10.1016/j.apcatb.2022.121606_bib26) 2014; 53 Yang (10.1016/j.apcatb.2022.121606_bib41) 2021; 297 Liu (10.1016/j.apcatb.2022.121606_bib9) 2019; 245 Kalanur (10.1016/j.apcatb.2022.121606_bib10) 2021; 295 Wang (10.1016/j.apcatb.2022.121606_bib19) 2018; 30 Wang (10.1016/j.apcatb.2022.121606_bib11) 2019; 248 Hantanasirisakul (10.1016/j.apcatb.2022.121606_bib34) 2018; 30 Li (10.1016/j.apcatb.2022.121606_bib23) 2016; 9 Zhang (10.1016/j.apcatb.2022.121606_bib56) 2020; 59 Guo (10.1016/j.apcatb.2022.121606_bib54) 2010; 97 Luo (10.1016/j.apcatb.2022.121606_bib55) 2017; 8 Guo (10.1016/j.apcatb.2022.121606_bib42) 2018; 14 Zhang (10.1016/j.apcatb.2022.121606_bib4) 2019; 29 Qian (10.1016/j.apcatb.2022.121606_bib36) 2021; 5 Fu (10.1016/j.apcatb.2022.121606_bib12) 2020; 260 Zheng (10.1016/j.apcatb.2022.121606_bib8) 2018; 9 Bu (10.1016/j.apcatb.2022.121606_bib29) 2019; 7 Wang (10.1016/j.apcatb.2022.121606_bib30) 2021; 60 Ding (10.1016/j.apcatb.2022.121606_bib18) 2017; 7 Zhong (10.1016/j.apcatb.2022.121606_bib21) 2011; 133 Wang (10.1016/j.apcatb.2022.121606_bib7) 2011; 11 Jin (10.1016/j.apcatb.2022.121606_bib59) 2021; 281 Zhang (10.1016/j.apcatb.2022.121606_bib20) 2020; 3 Zhang (10.1016/j.apcatb.2022.121606_bib57) 2020; 11 |
References_xml | – volume: 7 start-page: 3347 year: 2016 end-page: 3354 ident: bib22 article-title: Understanding the origin of photoelectrode performance enhancement by probing surface kinetics publication-title: Chem. Sci. – volume: 29 year: 2019 ident: bib4 article-title: Improvement of BiVO4 photoanode performance during water photo-oxidation using Rh-Doped SrTiO3 perovskite as a Co-catalyst publication-title: Adv. Funct. Mater. – volume: 125 start-page: 8369 year: 2021 end-page: 8375 ident: bib28 article-title: Surface passivation effect of ferrihydrite with hole-storage ability in water oxidation on BiVO4 photoanode publication-title: J. Phys. Chem. C. – volume: 143 start-page: 2593 year: 2021 end-page: 2600 ident: bib43 article-title: Single-layered mxene nanosheets doping TiO2 for efficient and stable double perovskite solar cells publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 5927 year: 2020 end-page: 5936 ident: bib20 article-title: Well-crystallized alpha-FeOOH cocatalysts modified BiVO4 photoanodes for efficient and stable photoelectrochemical water splitting publication-title: Acs Appl. Energy Mater. – volume: 255 year: 2019 ident: bib13 article-title: Al-ZnO/CdS photoanode modified with a triple functions conformal TiO2 film for enhanced photoelectrochemical efficiency and stability publication-title: Appl. Catal. B-Environ. – volume: 306 start-page: 666 year: 2004 end-page: 669 ident: bib33 article-title: Electric field effect in atomically thin carbon films publication-title: Science – volume: 413 start-page: 253 year: 2017 end-page: 265 ident: bib50 article-title: Fabrication of Ni-doped BiVO4 semiconductors with enhanced visible-light photocatalytic performances for wastewater treatment publication-title: Appl. Surf. Sci. – volume: 7 start-page: 675 year: 2017 end-page: 688 ident: bib18 article-title: Photoelectrocatalytic water splitting: significance of cocatalysts, electrolyte, and interfaces publication-title: ACS Catal. – volume: 5 year: 2021 ident: bib36 article-title: Photocatalytic nitrogen reduction by Ti3C2 MXene derived oxygen vacancy-rich C/TiO2 publication-title: Adv. Sustain. Syst. – volume: 343 start-page: 990 year: 2014 end-page: 994 ident: bib45 article-title: Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting publication-title: Science – volume: 245 start-page: 227 year: 2019 end-page: 239 ident: bib9 article-title: Facet effect on the photoelectrochemical performance of a WO3/BiVO4 heterojunction photoanode publication-title: Appl. Catal. B-Environ. – volume: 10 start-page: 13031 year: 2020 end-page: 13039 ident: bib14 article-title: Enhancing the photoelectrochemical water oxidation reaction of BiVO4 photoanode by employing carbon spheres as electron reservoirs publication-title: ACS Catal. – year: 2021 ident: bib16 article-title: Emerging surface, bulk, and interface engineering strategies on BiVO4 for photoelectrochemical water splitting publication-title: Small – volume: 8 year: 2017 ident: bib39 article-title: Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production publication-title: Nat. Commun. – volume: 59 start-page: 18990 year: 2020 end-page: 18995 ident: bib49 article-title: Unveiling the activity and stability origin of BiVO(4)photoanodes with feni oxyhydroxides for oxygen evolution publication-title: Angew. Chem. -Int. Ed. – volume: 295 year: 2021 ident: bib10 article-title: Enhanced solar water splitting of an ideally doped and work function tuned {002} oriented one-dimensional WO3 with nanoscale surface charge mapping insights publication-title: Appl. Catal. B-Environ. – volume: 63 year: 2019 ident: bib6 article-title: A hierarchically porous and hydrophilic 3D nickel-iron/MXene electrode for accelerating oxygen and hydrogen evolution at high current densities publication-title: Nano Energy – volume: 9 year: 2018 ident: bib8 article-title: Crystalline TiO2 protective layer with graded oxygen defects for efficient and stable silicon-based photocathode publication-title: Nat. Commun. – volume: 7 start-page: 1868 year: 2017 end-page: 1874 ident: bib27 article-title: Fabrication and kinetic study of a ferrihydrite-modified BiVO4 photoanode publication-title: ACS Catal. – volume: 277 year: 2020 ident: bib15 article-title: A cobalt silicate modified BiVO4 photoanode for efficient solar water oxidation publication-title: Appl. Catal. B-Environ. – volume: 139 start-page: 6682 year: 2017 end-page: 6692 ident: bib32 article-title: Enhanced photoelectrochemical performance of cuprous oxide/graphene nanohybrids publication-title: J. Am. Chem. Soc. – volume: 18 start-page: 1228 year: 2019 ident: bib40 article-title: Titanium-carbide MXenes for work function and interface engineering in perovskite solar cells publication-title: Nat. Mater. – volume: 11 start-page: 3026 year: 2011 end-page: 3033 ident: bib7 article-title: Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting publication-title: Nano Lett. – volume: 7 start-page: 10971 year: 2019 end-page: 10978 ident: bib29 article-title: Hole transfer channel of ferrihydrite designed between Ti-Fe2O3 and CoPi as an efficient and durable photoanode publication-title: ACS Sustain. Chem. Eng. – volume: 138 start-page: 7574 year: 2016 end-page: 7583 ident: bib5 article-title: Critical role of redox mediator in suppressing charging instabilities of lithium-oxygen batteries publication-title: J. Am. Chem. Soc. – volume: 516 start-page: 78 year: 2014 end-page: U171 ident: bib44 article-title: Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance publication-title: Nature – volume: 248 start-page: 388 year: 2019 end-page: 393 ident: bib11 article-title: Efficient photo-electrochemical water splitting based on hematite nanorods doped with phosphorus publication-title: Appl. Catal. B-Environ. – volume: 97 year: 2010 ident: bib54 article-title: High quantum efficiency of depth grade doping negative-electron-affinity GaN photocathode publication-title: Appl. Phys. Lett. – volume: 137 start-page: 5053 year: 2015 end-page: 5060 ident: bib58 article-title: Surface modification of CoOx Loaded BiVO4 photoanodes with ultrathin p-Type NiO layers for improved solar water oxidation publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 12016 year: 2015 end-page: 12022 ident: bib31 article-title: Enhanced photocurrent generation of bio-inspired graphene/ZnO composite films publication-title: J. Mater. Chem. A – volume: 297 year: 2021 ident: bib41 article-title: A universal strategy boosting photoelectrochemical water oxidation by utilizing MXene nanosheets as hole transfer mediators publication-title: Appl. Catal. B-Environ. – volume: 53 start-page: 7295 year: 2014 end-page: 7299 ident: bib26 article-title: Nitride photoanode modified with a hole-storage layer for highly stable solar water splitting publication-title: Angew. Chem. -Int. Ed. – volume: 30 year: 2018 ident: bib34 article-title: Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes) publication-title: Adv. Mater. – volume: 14 year: 2018 ident: bib42 article-title: High electrical conductivity 2D MXene serves as additive of perovskite for efficient solar cells publication-title: Small – volume: 60 start-page: 6691 year: 2021 end-page: 6698 ident: bib30 article-title: Unveiling the hydration structure of ferrihydrite for hole storage in photoelectrochemical water oxidation publication-title: Angew. Chem. -Int. Ed. – volume: 60 start-page: 11966 year: 2021 end-page: 11972 ident: bib48 article-title: Hole-storage enhanced a-Si photocathodes for efficient hydrogen production publication-title: Angew. Chem. -Int. Ed. – volume: 8 start-page: 91 year: 2017 end-page: 100 ident: bib55 article-title: Gradient doping of phosphorus in Fe2O3 nanoarray photoanodes for enhanced charge separation publication-title: Chem. Sci. – volume: 9 start-page: 1794 year: 2016 end-page: 1802 ident: bib23 article-title: Comparison of heterogenized molecular and heterogeneous oxide catalysts for photoelectrochemical water oxidation publication-title: Energy Environ. Sci. – volume: 404 year: 2021 ident: bib24 article-title: Enhanced photoelectrochemical water-splitting performance with a hierarchical heterostructure: Co3O4 nanodots anchored TiO2@P-C3N4 coreshell nanorod arrays publication-title: Chem. Eng. J. – volume: 10 start-page: 10570 year: 2020 end-page: 10576 ident: bib25 article-title: Yttrium-induced regulation of electron density in NiFe layered double hydroxides yields stable solar water splitting publication-title: ACS Catal. – volume: 29 start-page: 7633 year: 2017 end-page: 7644 ident: bib46 article-title: Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2TX MXene) publication-title: Chem. Mat. – volume: 59 start-page: 9047 year: 2020 end-page: 9054 ident: bib56 article-title: Ultra-narrow depletion layers in a hematite mesocrystal-based photoanode for boosting multihole water oxidation publication-title: Angew. Chem. -Int. Ed. – volume: 10 year: 2019 ident: bib52 article-title: Enhancing photoelectrochemical water splitting by combining work function tuning and heterojunction engineering Nature publication-title: Nat. Commun. – volume: 32 year: 2020 ident: bib17 article-title: In situ formation of oxygen vacancies achieving near-complete charge separation in planar BiVO4 photoanodes publication-title: Adv. Mater. – volume: 112 start-page: 5520 year: 2012 end-page: 5551 ident: bib53 article-title: Band bending in semiconductors: chemical and physical consequences at surfaces and interfaces publication-title: Chem. Rev. – volume: 11 year: 2020 ident: bib57 article-title: Gradient tantalum-doped hematite homojunction photoanode improves both photocurrents and turn-on voltage for solar water splitting publication-title: Nat. Commun. – volume: 210 start-page: 235 year: 2017 end-page: 254 ident: bib3 article-title: Review of recent trends in photoelectrocatalytic conversion of solar energy to electricity and hydrogen publication-title: Appl. Catal. B-Environ. – volume: 273 year: 2020 ident: bib37 article-title: 2D-layered Ti3C2 MXenes for promoted synthesis of NH3 on P25 photocatalysts publication-title: Appl. Catal. B-Environ. – volume: 285 year: 2021 ident: bib38 article-title: 2D/2D heterostructure of ultrathin BiVO4/Ti3C2 nanosheets for photocatalytic overall Water splitting publication-title: Appl. Catal. B-Environ. – volume: 30 year: 2018 ident: bib19 article-title: New BiVO4 dual photoanodes with enriched oxygen vacancies for efficient solar-driven water splitting publication-title: Adv. Mater. – volume: 238 start-page: 37 year: 1972 ident: bib1 article-title: Electrochemical photolysis of water at a semiconductor electrode publication-title: Nature – volume: 281 year: 2021 ident: bib59 article-title: Oxygen vacancies activating surface reactivity to favor charge separation and transfer in nanoporous BiVO4 photoanodes publication-title: Appl. Catal. B-Environ. – volume: 414 start-page: 338 year: 2001 end-page: 344 ident: bib2 article-title: Photoelectrochemical cells publication-title: Nature – volume: 372 start-page: 1165 year: 2021 ident: bib35 article-title: The world of two-dimensional carbides and nitrides (MXenes) publication-title: Science – volume: 133 start-page: 18370 year: 2011 end-page: 18377 ident: bib21 article-title: Near-complete suppression of surface recombination in solar photoelectrolysis by “Co-Pi” catalyst-modified W:BiVO4 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 53 year: 2018 end-page: 60 ident: bib51 article-title: Enhancing long-term photostability of BiVO4 photoanodes for solar water splitting by tuning electrolyte composition publication-title: Nat. Energy – volume: 260 year: 2020 ident: bib12 article-title: A ternary nanostructured alpha-Fe2O3/Au/TiO2 photoanode with reconstructed interfaces for efficient photoelectrocatalytic water splitting publication-title: Appl. Catal. B-Environ. – volume: 297 year: 2021 ident: bib47 article-title: Enhanced visible-light photocatalytic degradation activity of Ti3C2/PDIsm via pi-pi interaction and interfacial charge separation: experimental and theoretical investigations publication-title: Appl. Catal. B-Environ. – volume: 10 start-page: 13031 year: 2020 ident: 10.1016/j.apcatb.2022.121606_bib14 article-title: Enhancing the photoelectrochemical water oxidation reaction of BiVO4 photoanode by employing carbon spheres as electron reservoirs publication-title: ACS Catal. doi: 10.1021/acscatal.0c03671 – volume: 133 start-page: 18370 year: 2011 ident: 10.1016/j.apcatb.2022.121606_bib21 article-title: Near-complete suppression of surface recombination in solar photoelectrolysis by “Co-Pi” catalyst-modified W:BiVO4 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja207348x – volume: 59 start-page: 18990 year: 2020 ident: 10.1016/j.apcatb.2022.121606_bib49 article-title: Unveiling the activity and stability origin of BiVO(4)photoanodes with feni oxyhydroxides for oxygen evolution publication-title: Angew. Chem. -Int. Ed. doi: 10.1002/anie.202008198 – volume: 281 year: 2021 ident: 10.1016/j.apcatb.2022.121606_bib59 article-title: Oxygen vacancies activating surface reactivity to favor charge separation and transfer in nanoporous BiVO4 photoanodes publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2020.119477 – volume: 125 start-page: 8369 year: 2021 ident: 10.1016/j.apcatb.2022.121606_bib28 article-title: Surface passivation effect of ferrihydrite with hole-storage ability in water oxidation on BiVO4 photoanode publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.1c02369 – volume: 414 start-page: 338 year: 2001 ident: 10.1016/j.apcatb.2022.121606_bib2 article-title: Photoelectrochemical cells publication-title: Nature doi: 10.1038/35104607 – volume: 29 year: 2019 ident: 10.1016/j.apcatb.2022.121606_bib4 article-title: Improvement of BiVO4 photoanode performance during water photo-oxidation using Rh-Doped SrTiO3 perovskite as a Co-catalyst publication-title: Adv. Funct. Mater. – volume: 30 year: 2018 ident: 10.1016/j.apcatb.2022.121606_bib34 article-title: Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes) publication-title: Adv. Mater. doi: 10.1002/adma.201804779 – volume: 3 start-page: 5927 year: 2020 ident: 10.1016/j.apcatb.2022.121606_bib20 article-title: Well-crystallized alpha-FeOOH cocatalysts modified BiVO4 photoanodes for efficient and stable photoelectrochemical water splitting publication-title: Acs Appl. Energy Mater. doi: 10.1021/acsaem.0c00834 – volume: 137 start-page: 5053 year: 2015 ident: 10.1016/j.apcatb.2022.121606_bib58 article-title: Surface modification of CoOx Loaded BiVO4 photoanodes with ultrathin p-Type NiO layers for improved solar water oxidation publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b00256 – volume: 9 year: 2018 ident: 10.1016/j.apcatb.2022.121606_bib8 article-title: Crystalline TiO2 protective layer with graded oxygen defects for efficient and stable silicon-based photocathode publication-title: Nat. Commun. doi: 10.1038/s41467-018-05580-z – volume: 273 year: 2020 ident: 10.1016/j.apcatb.2022.121606_bib37 article-title: 2D-layered Ti3C2 MXenes for promoted synthesis of NH3 on P25 photocatalysts publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2020.119054 – volume: 413 start-page: 253 year: 2017 ident: 10.1016/j.apcatb.2022.121606_bib50 article-title: Fabrication of Ni-doped BiVO4 semiconductors with enhanced visible-light photocatalytic performances for wastewater treatment publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.04.056 – volume: 60 start-page: 6691 year: 2021 ident: 10.1016/j.apcatb.2022.121606_bib30 article-title: Unveiling the hydration structure of ferrihydrite for hole storage in photoelectrochemical water oxidation publication-title: Angew. Chem. -Int. Ed. doi: 10.1002/anie.202014871 – volume: 8 year: 2017 ident: 10.1016/j.apcatb.2022.121606_bib39 article-title: Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production publication-title: Nat. Commun. doi: 10.1038/ncomms13907 – volume: 18 start-page: 1228 year: 2019 ident: 10.1016/j.apcatb.2022.121606_bib40 article-title: Titanium-carbide MXenes for work function and interface engineering in perovskite solar cells publication-title: Nat. Mater. doi: 10.1038/s41563-019-0478-1 – volume: 138 start-page: 7574 year: 2016 ident: 10.1016/j.apcatb.2022.121606_bib5 article-title: Critical role of redox mediator in suppressing charging instabilities of lithium-oxygen batteries publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b01821 – volume: 516 start-page: 78 year: 2014 ident: 10.1016/j.apcatb.2022.121606_bib44 article-title: Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance publication-title: Nature doi: 10.1038/nature13970 – volume: 297 year: 2021 ident: 10.1016/j.apcatb.2022.121606_bib47 article-title: Enhanced visible-light photocatalytic degradation activity of Ti3C2/PDIsm via pi-pi interaction and interfacial charge separation: experimental and theoretical investigations publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2021.120439 – volume: 8 start-page: 91 year: 2017 ident: 10.1016/j.apcatb.2022.121606_bib55 article-title: Gradient doping of phosphorus in Fe2O3 nanoarray photoanodes for enhanced charge separation publication-title: Chem. Sci. doi: 10.1039/C6SC03707K – volume: 306 start-page: 666 year: 2004 ident: 10.1016/j.apcatb.2022.121606_bib33 article-title: Electric field effect in atomically thin carbon films publication-title: Science doi: 10.1126/science.1102896 – volume: 7 start-page: 10971 year: 2019 ident: 10.1016/j.apcatb.2022.121606_bib29 article-title: Hole transfer channel of ferrihydrite designed between Ti-Fe2O3 and CoPi as an efficient and durable photoanode publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b02009 – volume: 10 year: 2019 ident: 10.1016/j.apcatb.2022.121606_bib52 article-title: Enhancing photoelectrochemical water splitting by combining work function tuning and heterojunction engineering Nature publication-title: Nat. Commun. doi: 10.1038/s41467-019-11586-y – volume: 3 start-page: 12016 year: 2015 ident: 10.1016/j.apcatb.2022.121606_bib31 article-title: Enhanced photocurrent generation of bio-inspired graphene/ZnO composite films publication-title: J. Mater. Chem. A doi: 10.1039/C5TA02297E – volume: 53 start-page: 7295 year: 2014 ident: 10.1016/j.apcatb.2022.121606_bib26 article-title: Nitride photoanode modified with a hole-storage layer for highly stable solar water splitting publication-title: Angew. Chem. -Int. Ed. doi: 10.1002/anie.201404697 – volume: 285 year: 2021 ident: 10.1016/j.apcatb.2022.121606_bib38 article-title: 2D/2D heterostructure of ultrathin BiVO4/Ti3C2 nanosheets for photocatalytic overall Water splitting publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2020.119855 – volume: 372 start-page: 1165 year: 2021 ident: 10.1016/j.apcatb.2022.121606_bib35 article-title: The world of two-dimensional carbides and nitrides (MXenes) publication-title: Science – volume: 7 start-page: 3347 year: 2016 ident: 10.1016/j.apcatb.2022.121606_bib22 article-title: Understanding the origin of photoelectrode performance enhancement by probing surface kinetics publication-title: Chem. Sci. doi: 10.1039/C5SC04519C – volume: 59 start-page: 9047 year: 2020 ident: 10.1016/j.apcatb.2022.121606_bib56 article-title: Ultra-narrow depletion layers in a hematite mesocrystal-based photoanode for boosting multihole water oxidation publication-title: Angew. Chem. -Int. Ed. doi: 10.1002/anie.202001919 – volume: 238 start-page: 37 year: 1972 ident: 10.1016/j.apcatb.2022.121606_bib1 article-title: Electrochemical photolysis of water at a semiconductor electrode publication-title: Nature doi: 10.1038/238037a0 – volume: 63 year: 2019 ident: 10.1016/j.apcatb.2022.121606_bib6 article-title: A hierarchically porous and hydrophilic 3D nickel-iron/MXene electrode for accelerating oxygen and hydrogen evolution at high current densities publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.103880 – volume: 60 start-page: 11966 year: 2021 ident: 10.1016/j.apcatb.2022.121606_bib48 article-title: Hole-storage enhanced a-Si photocathodes for efficient hydrogen production publication-title: Angew. Chem. -Int. Ed. doi: 10.1002/anie.202100078 – volume: 30 year: 2018 ident: 10.1016/j.apcatb.2022.121606_bib19 article-title: New BiVO4 dual photoanodes with enriched oxygen vacancies for efficient solar-driven water splitting publication-title: Adv. Mater. – volume: 10 start-page: 10570 year: 2020 ident: 10.1016/j.apcatb.2022.121606_bib25 article-title: Yttrium-induced regulation of electron density in NiFe layered double hydroxides yields stable solar water splitting publication-title: ACS Catal. doi: 10.1021/acscatal.0c03272 – year: 2021 ident: 10.1016/j.apcatb.2022.121606_bib16 article-title: Emerging surface, bulk, and interface engineering strategies on BiVO4 for photoelectrochemical water splitting publication-title: Small – volume: 7 start-page: 675 year: 2017 ident: 10.1016/j.apcatb.2022.121606_bib18 article-title: Photoelectrocatalytic water splitting: significance of cocatalysts, electrolyte, and interfaces publication-title: ACS Catal. doi: 10.1021/acscatal.6b03107 – volume: 139 start-page: 6682 year: 2017 ident: 10.1016/j.apcatb.2022.121606_bib32 article-title: Enhanced photoelectrochemical performance of cuprous oxide/graphene nanohybrids publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b01820 – volume: 297 year: 2021 ident: 10.1016/j.apcatb.2022.121606_bib41 article-title: A universal strategy boosting photoelectrochemical water oxidation by utilizing MXene nanosheets as hole transfer mediators publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2021.120268 – volume: 112 start-page: 5520 year: 2012 ident: 10.1016/j.apcatb.2022.121606_bib53 article-title: Band bending in semiconductors: chemical and physical consequences at surfaces and interfaces publication-title: Chem. Rev. doi: 10.1021/cr3000626 – volume: 11 year: 2020 ident: 10.1016/j.apcatb.2022.121606_bib57 article-title: Gradient tantalum-doped hematite homojunction photoanode improves both photocurrents and turn-on voltage for solar water splitting publication-title: Nat. Commun. – volume: 9 start-page: 1794 year: 2016 ident: 10.1016/j.apcatb.2022.121606_bib23 article-title: Comparison of heterogenized molecular and heterogeneous oxide catalysts for photoelectrochemical water oxidation publication-title: Energy Environ. Sci. doi: 10.1039/C5EE03871E – volume: 277 year: 2020 ident: 10.1016/j.apcatb.2022.121606_bib15 article-title: A cobalt silicate modified BiVO4 photoanode for efficient solar water oxidation publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2020.119189 – volume: 14 year: 2018 ident: 10.1016/j.apcatb.2022.121606_bib42 article-title: High electrical conductivity 2D MXene serves as additive of perovskite for efficient solar cells publication-title: Small doi: 10.1002/smll.201802738 – volume: 248 start-page: 388 year: 2019 ident: 10.1016/j.apcatb.2022.121606_bib11 article-title: Efficient photo-electrochemical water splitting based on hematite nanorods doped with phosphorus publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2019.02.048 – volume: 5 year: 2021 ident: 10.1016/j.apcatb.2022.121606_bib36 article-title: Photocatalytic nitrogen reduction by Ti3C2 MXene derived oxygen vacancy-rich C/TiO2 publication-title: Adv. Sustain. Syst. – volume: 260 year: 2020 ident: 10.1016/j.apcatb.2022.121606_bib12 article-title: A ternary nanostructured alpha-Fe2O3/Au/TiO2 photoanode with reconstructed interfaces for efficient photoelectrocatalytic water splitting publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2019.118206 – volume: 245 start-page: 227 year: 2019 ident: 10.1016/j.apcatb.2022.121606_bib9 article-title: Facet effect on the photoelectrochemical performance of a WO3/BiVO4 heterojunction photoanode publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2018.12.058 – volume: 97 year: 2010 ident: 10.1016/j.apcatb.2022.121606_bib54 article-title: High quantum efficiency of depth grade doping negative-electron-affinity GaN photocathode publication-title: Appl. Phys. Lett. doi: 10.1063/1.3478010 – volume: 210 start-page: 235 year: 2017 ident: 10.1016/j.apcatb.2022.121606_bib3 article-title: Review of recent trends in photoelectrocatalytic conversion of solar energy to electricity and hydrogen publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2017.03.067 – volume: 295 year: 2021 ident: 10.1016/j.apcatb.2022.121606_bib10 article-title: Enhanced solar water splitting of an ideally doped and work function tuned {002} oriented one-dimensional WO3 with nanoscale surface charge mapping insights publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2021.120269 – volume: 32 year: 2020 ident: 10.1016/j.apcatb.2022.121606_bib17 article-title: In situ formation of oxygen vacancies achieving near-complete charge separation in planar BiVO4 photoanodes publication-title: Adv. Mater. – volume: 7 start-page: 1868 year: 2017 ident: 10.1016/j.apcatb.2022.121606_bib27 article-title: Fabrication and kinetic study of a ferrihydrite-modified BiVO4 photoanode publication-title: ACS Catal. doi: 10.1021/acscatal.6b03483 – volume: 143 start-page: 2593 year: 2021 ident: 10.1016/j.apcatb.2022.121606_bib43 article-title: Single-layered mxene nanosheets doping TiO2 for efficient and stable double perovskite solar cells publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c12739 – volume: 3 start-page: 53 year: 2018 ident: 10.1016/j.apcatb.2022.121606_bib51 article-title: Enhancing long-term photostability of BiVO4 photoanodes for solar water splitting by tuning electrolyte composition publication-title: Nat. Energy doi: 10.1038/s41560-017-0057-0 – volume: 29 start-page: 7633 year: 2017 ident: 10.1016/j.apcatb.2022.121606_bib46 article-title: Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2TX MXene) publication-title: Chem. Mat. doi: 10.1021/acs.chemmater.7b02847 – volume: 11 start-page: 3026 year: 2011 ident: 10.1016/j.apcatb.2022.121606_bib7 article-title: Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting publication-title: Nano Lett. doi: 10.1021/nl201766h – volume: 255 year: 2019 ident: 10.1016/j.apcatb.2022.121606_bib13 article-title: Al-ZnO/CdS photoanode modified with a triple functions conformal TiO2 film for enhanced photoelectrochemical efficiency and stability publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2019.05.040 – volume: 404 year: 2021 ident: 10.1016/j.apcatb.2022.121606_bib24 article-title: Enhanced photoelectrochemical water-splitting performance with a hierarchical heterostructure: Co3O4 nanodots anchored TiO2@P-C3N4 coreshell nanorod arrays publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126458 – volume: 343 start-page: 990 year: 2014 ident: 10.1016/j.apcatb.2022.121606_bib45 article-title: Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting publication-title: Science doi: 10.1126/science.1246913 |
SSID | ssj0002328 |
Score | 2.63325 |
Snippet | Although great interest is focused on development of semiconductor photoanodes for efficient photoelectrochemical (PEC) water splitting, the pressing... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 121606 |
SubjectTerms | BiVO4 photoanodes Ferrihydrite-MXene Hole transport layer Photoelectrochemical water splitting Work function and conductivity regulated |
Title | Engineering efficient hole transport layer Ferrihydrite-MXene on BiVO4 photoanodes for photoelectrochemical water splitting: Work function and conductivity regulated |
URI | https://dx.doi.org/10.1016/j.apcatb.2022.121606 |
Volume | 315 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BTtwwELUQHNoeKtgWlVLQHHp1d-PEMemNrlgtVMCBUu0tGjtOWYSS1W6qqhf-pv_ZmcSBrVQVqUdHYynKTGbeJOP3hHhPmBWt0lZGpfYy0aWXGVVCqTD1hL41dmQ65xfp9Do5m-nZhhj3Z2F4rDLk_i6nt9k6XBmGpzlczOfDq1Gm0jg2FJGMO9pz5EliOMo_3D-OeRBiaLMxGUu27o_PtTNeuHDYWOoSlWKahZR1j_5WntZKzmRbvAxYEY6729kRG74aiGfjXqJtIF6ssQkOxO7J46E12hbe2tUr8WvNDHzLGUEmwMq40PTk5nCHhL5hwkyNNz-LJUFReT6jTAh1BZ_mXy8TWNzUTY1VXfgVENbt1kFHxwXiAfhB4HUJK8K27UT1R-DP8cDlk0MAsCqAWnBmmW1lK2Dpv7GCmC9ei-vJyZfxVAZ5BulioxpJnVCRpjjCQmGG1mrULho5wgs2dfyDLysiryNbxrpEU3Kj5DKFo8QUMbK69a7YrOrKvxFgSkt10njCCy4xRy6zaCg1HDkVldRvmT0R917JXeAuZwmNu7wfUrvNO1_m7Mu88-WekA-7Fh13xxP2pnd4_kcM5lRe_rnz7X_v3BfPecXVMNLvxGaz_O4PCOY09rCN40OxdXz6eXrxG_4sAEU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB2VcigcEAQq2vIxBzguiddeb43EAUqjlDblQItyM7vrNQ2qnCgxqnrh3_AL-IPM2GsaJAQSUo-2dyzbs555Y8--B_CMMKuxUlkRlcqLRJVeZJQJhTSpJ_StTEumMz5OR6fJu4marMGPbi0Mt1WG2N_G9CZahz398DT78-m0_2GQyTSONc1Ixh06Cp2Vh_7yguq25auDt-Tk51IO90_2RiJICwgXa1kLQvFFmpqBKaTJjLXKKBcNHOU6mzr-OZUVkVeRLWNVGl0yyHeZNINEF7FhZWY67w24mVC4YNmEF9-u-koIojThn65O8OV16_WapjIzd6a2VJZKybwOKQst_SkfruS44V24E8Apvm7v_x6s-aoHG3udJlwPbq_QF_Zgc_9qlRyZhTCxvA_fV4ahb0gqaAiyFC_WHZs6nhuC-zhkasizy2JB2FeMJxR6cVbhm-nH9wnOz2b1zFSzwi-RwHW7HYR7XGA6wAtCywtcEphuWrhfIn__R87XPOfQVAVSzc-0to1OBi78Z5Ys88UDOL0Wp23CejWr_ENAXVpKzNoTQHGJ3nWZNZpi0a6TUUkFnt6CuPNK7gJZOmt2nOddV9yXvPVlzr7MW19ugfhlNW_JQv4xXncOz3-b9Dnls79abv-35VPYGJ2Mj_Kjg-PDHbjFRzgVR-oRrNeLr_4xYazaPmnmNMKn636JfgKnijtn |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineering+efficient+hole+transport+layer+Ferrihydrite-MXene+on+BiVO4+photoanodes+for+photoelectrochemical+water+splitting%3A+Work+function+and+conductivity+regulated&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Bai%2C+Weihao&rft.au=Zhou%2C+Ye&rft.au=Peng%2C+Gang&rft.au=Wang%2C+Jinnan&rft.date=2022-10-15&rft.pub=Elsevier+B.V&rft.issn=0926-3373&rft.eissn=1873-3883&rft.volume=315&rft_id=info:doi/10.1016%2Fj.apcatb.2022.121606&rft.externalDocID=S0926337322005471 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon |