Engineering efficient hole transport layer Ferrihydrite-MXene on BiVO4 photoanodes for photoelectrochemical water splitting: Work function and conductivity regulated

Although great interest is focused on development of semiconductor photoanodes for efficient photoelectrochemical (PEC) water splitting, the pressing bottleneck to address the intrinsic charge transport for enhancement of PEC performance still remains to be resolved. Herein, hole transport layer (Fh...

Full description

Saved in:
Bibliographic Details
Published inApplied catalysis. B, Environmental Vol. 315; p. 121606
Main Authors Bai, Weihao, Zhou, Ye, Peng, Gang, Wang, Jinnan, Li, Aimin, Corvini, Philippe François-Xavier
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.10.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Although great interest is focused on development of semiconductor photoanodes for efficient photoelectrochemical (PEC) water splitting, the pressing bottleneck to address the intrinsic charge transport for enhancement of PEC performance still remains to be resolved. Herein, hole transport layer (Fh-MXene) constructed by doping of MXene (Ti3C2) in Ferrihydrite (Fh) is loaded on BiVO4 photoanode. This novel BiVO4@Fh-MXene photoanode achieves high current density of 4.55 mA cm−2 at 1.23 V versus reversible hydrogen electrode (vs. RHE), exhibiting excellent photostability. From electrochemical analysis and density functional theory calculations, high PEC performance is ascribed to incorporation of Fh-MXene as hole transport layer, enhancing conductivity and water oxidation reaction. Notably, MXene can improve band alignment of BiVO4/Fh-MXene interface by tuning work function, which strengthens the built-in electric field for more efficient hole extraction. This work provides a simple method to design photoanodes with efficient charge transport layers for feasible PEC water splitting application. [Display omitted] •Novel hole transfer layer Fh-MXene loaded on BiVO4 photoanode for PEC water splitting.•MXene tune work function of Fh for strengthening the built-in electric field.•Fh-MXene with high conductivity promote the intrinsic charge transport of photoanode.•Exposure of metal sites and hydrophilic functional groups improve water oxidation.•BiVO4@Fh-MXene photoanode exhibit five times enhanced PEC performance than BiVO4.
AbstractList Although great interest is focused on development of semiconductor photoanodes for efficient photoelectrochemical (PEC) water splitting, the pressing bottleneck to address the intrinsic charge transport for enhancement of PEC performance still remains to be resolved. Herein, hole transport layer (Fh-MXene) constructed by doping of MXene (Ti3C2) in Ferrihydrite (Fh) is loaded on BiVO4 photoanode. This novel BiVO4@Fh-MXene photoanode achieves high current density of 4.55 mA cm−2 at 1.23 V versus reversible hydrogen electrode (vs. RHE), exhibiting excellent photostability. From electrochemical analysis and density functional theory calculations, high PEC performance is ascribed to incorporation of Fh-MXene as hole transport layer, enhancing conductivity and water oxidation reaction. Notably, MXene can improve band alignment of BiVO4/Fh-MXene interface by tuning work function, which strengthens the built-in electric field for more efficient hole extraction. This work provides a simple method to design photoanodes with efficient charge transport layers for feasible PEC water splitting application. [Display omitted] •Novel hole transfer layer Fh-MXene loaded on BiVO4 photoanode for PEC water splitting.•MXene tune work function of Fh for strengthening the built-in electric field.•Fh-MXene with high conductivity promote the intrinsic charge transport of photoanode.•Exposure of metal sites and hydrophilic functional groups improve water oxidation.•BiVO4@Fh-MXene photoanode exhibit five times enhanced PEC performance than BiVO4.
ArticleNumber 121606
Author Wang, Jinnan
Corvini, Philippe François-Xavier
Bai, Weihao
Zhou, Ye
Peng, Gang
Li, Aimin
Author_xml – sequence: 1
  givenname: Weihao
  surname: Bai
  fullname: Bai, Weihao
  organization: State Key Laboratory of Pollution Control and Resource Reuse & School of the Environment Nanjing University, Nanjing 210023, China
– sequence: 2
  givenname: Ye
  surname: Zhou
  fullname: Zhou, Ye
  organization: State Key Laboratory of Pollution Control and Resource Reuse & School of the Environment Nanjing University, Nanjing 210023, China
– sequence: 3
  givenname: Gang
  surname: Peng
  fullname: Peng, Gang
  organization: State Key Laboratory of Pollution Control and Resource Reuse & School of the Environment Nanjing University, Nanjing 210023, China
– sequence: 4
  givenname: Jinnan
  surname: Wang
  fullname: Wang, Jinnan
  email: wjnnju@163.com
  organization: State Key Laboratory of Pollution Control and Resource Reuse & School of the Environment Nanjing University, Nanjing 210023, China
– sequence: 5
  givenname: Aimin
  surname: Li
  fullname: Li, Aimin
  organization: State Key Laboratory of Pollution Control and Resource Reuse & School of the Environment Nanjing University, Nanjing 210023, China
– sequence: 6
  givenname: Philippe François-Xavier
  surname: Corvini
  fullname: Corvini, Philippe François-Xavier
  organization: School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Basel 4132, Switzerland
BookMark eNqFkc9uEzEQhy1UJNLSN-jBL7DBfzbeTQ9IULW0UlEvtHCzZu1x4rC1V7bTKg_Ee-JoOXGA0-h3-H6j-eaUnIQYkJALzpaccfVht4TJQBmWggmx5IIrpt6QBe872ci-lydkwdZCNVJ28h05zXnHGBNS9Avy6zpsfEBMPmwoOueNx1DoNo5IS4KQp5gKHeGAid5gSn57sMkXbL7-wIA0BvrZPz20dNrGEiFEi5m6mOaMI5qSotniszcw0lcotSZPoy-l7ruk32P6Sd0-mOJrEwRLTQx2X-OLLweacLMfK2Pfk7cOxoznf-YZeby5_nZ129w_fLm7-nTfGNmJ0gjFrFLAwApYwzCsYGU4M6JtB2VYp_q15bjig5MrB51jSimzFsDazkqo0uQZaedek2LOCZ2ekn-GdNCc6aNqvdOzan1UrWfVFbv8CzO-wPGmqtCP_4M_zjDWw148Jp2PPzBofar6tI3-3wW_ATPSo7E
CitedBy_id crossref_primary_10_1021_acscatal_3c00444
crossref_primary_10_1016_j_gee_2023_12_001
crossref_primary_10_1039_D4TA00337C
crossref_primary_10_1021_acs_inorgchem_3c04310
crossref_primary_10_1016_j_cej_2024_150176
crossref_primary_10_1016_j_jcis_2024_04_081
crossref_primary_10_1002_anie_202315763
crossref_primary_10_1016_j_jcis_2023_10_144
crossref_primary_10_1039_D3QM00990D
crossref_primary_10_1016_j_jelechem_2023_117750
crossref_primary_10_1016_j_cej_2023_147082
crossref_primary_10_1021_acs_analchem_4c02367
crossref_primary_10_1021_acs_inorgchem_4c03125
crossref_primary_10_1021_acs_nanolett_3c03743
crossref_primary_10_1016_j_mtener_2023_101469
crossref_primary_10_1016_j_solmat_2023_112360
crossref_primary_10_1016_j_cej_2024_149104
crossref_primary_10_1016_j_susmat_2023_e00718
crossref_primary_10_1007_s10854_023_11108_z
crossref_primary_10_1016_j_jece_2024_113058
crossref_primary_10_1515_revic_2024_0009
crossref_primary_10_1016_j_cej_2023_147713
crossref_primary_10_1039_D4SE00390J
crossref_primary_10_1007_s12274_023_5595_0
crossref_primary_10_1039_D4NJ02315C
crossref_primary_10_1016_j_jcis_2024_04_190
crossref_primary_10_1016_j_jcis_2025_02_180
crossref_primary_10_1039_D3TA06532D
crossref_primary_10_3390_nano13202764
crossref_primary_10_1016_j_ccr_2024_216180
crossref_primary_10_1016_j_cej_2024_157963
crossref_primary_10_1016_j_jallcom_2024_174725
crossref_primary_10_1021_acsnano_3c11638
crossref_primary_10_1007_s00604_025_07016_0
crossref_primary_10_1016_j_jallcom_2023_171997
crossref_primary_10_1016_j_jhazmat_2022_130576
crossref_primary_10_1016_j_cej_2025_160631
crossref_primary_10_1016_j_ijhydene_2024_10_076
crossref_primary_10_1016_j_scitotenv_2024_172816
crossref_primary_10_1002_adfm_202403396
crossref_primary_10_1016_j_apcatb_2023_123682
crossref_primary_10_1016_j_apcatb_2023_123288
crossref_primary_10_1016_j_jelechem_2024_118877
crossref_primary_10_1016_j_cej_2023_145169
crossref_primary_10_1021_acsami_3c02004
crossref_primary_10_1016_j_cej_2023_147625
crossref_primary_10_1016_j_ijhydene_2025_02_043
crossref_primary_10_1039_D4TA07992B
crossref_primary_10_1186_s40580_024_00454_1
crossref_primary_10_1016_j_jallcom_2023_172409
crossref_primary_10_1016_j_jcis_2024_01_049
crossref_primary_10_1016_j_cej_2024_155098
crossref_primary_10_1016_j_jmst_2024_02_093
crossref_primary_10_1016_j_ijhydene_2024_06_265
crossref_primary_10_1016_j_cclet_2024_110139
crossref_primary_10_1016_j_seppur_2023_123793
crossref_primary_10_1021_acsenergylett_5c00170
crossref_primary_10_1007_s10854_024_12380_3
crossref_primary_10_1021_acsanm_4c00528
crossref_primary_10_1016_j_jallcom_2024_178399
crossref_primary_10_1016_j_cej_2022_140081
crossref_primary_10_1016_j_ijhydene_2024_02_110
crossref_primary_10_1016_j_jwpe_2023_104084
crossref_primary_10_1016_j_matre_2023_100232
crossref_primary_10_1016_j_cplett_2024_141126
crossref_primary_10_1016_j_elecom_2023_107645
crossref_primary_10_1021_acsaem_4c00308
crossref_primary_10_1016_j_cej_2024_157662
crossref_primary_10_1016_j_inoche_2023_111292
crossref_primary_10_1021_acs_analchem_4c02261
crossref_primary_10_1016_j_apsusc_2024_161259
crossref_primary_10_1002_ange_202315763
crossref_primary_10_1016_j_ijhydene_2024_09_239
crossref_primary_10_1021_acssuschemeng_3c05782
crossref_primary_10_1016_j_apcatb_2023_123269
crossref_primary_10_1016_j_ijhydene_2025_01_491
crossref_primary_10_1002_adfm_202304723
crossref_primary_10_1016_j_cej_2024_157305
crossref_primary_10_1002_solr_202200743
crossref_primary_10_1021_acsami_2c19729
crossref_primary_10_1016_j_ijhydene_2024_10_299
crossref_primary_10_1016_j_jechem_2022_09_046
Cites_doi 10.1021/acscatal.0c03671
10.1021/ja207348x
10.1002/anie.202008198
10.1016/j.apcatb.2020.119477
10.1021/acs.jpcc.1c02369
10.1038/35104607
10.1002/adma.201804779
10.1021/acsaem.0c00834
10.1021/jacs.5b00256
10.1038/s41467-018-05580-z
10.1016/j.apcatb.2020.119054
10.1016/j.apsusc.2017.04.056
10.1002/anie.202014871
10.1038/ncomms13907
10.1038/s41563-019-0478-1
10.1021/jacs.6b01821
10.1038/nature13970
10.1016/j.apcatb.2021.120439
10.1039/C6SC03707K
10.1126/science.1102896
10.1021/acssuschemeng.9b02009
10.1038/s41467-019-11586-y
10.1039/C5TA02297E
10.1002/anie.201404697
10.1016/j.apcatb.2020.119855
10.1039/C5SC04519C
10.1002/anie.202001919
10.1038/238037a0
10.1016/j.nanoen.2019.103880
10.1002/anie.202100078
10.1021/acscatal.0c03272
10.1021/acscatal.6b03107
10.1021/jacs.7b01820
10.1016/j.apcatb.2021.120268
10.1021/cr3000626
10.1039/C5EE03871E
10.1016/j.apcatb.2020.119189
10.1002/smll.201802738
10.1016/j.apcatb.2019.02.048
10.1016/j.apcatb.2019.118206
10.1016/j.apcatb.2018.12.058
10.1063/1.3478010
10.1016/j.apcatb.2017.03.067
10.1016/j.apcatb.2021.120269
10.1021/acscatal.6b03483
10.1021/jacs.0c12739
10.1038/s41560-017-0057-0
10.1021/acs.chemmater.7b02847
10.1021/nl201766h
10.1016/j.apcatb.2019.05.040
10.1016/j.cej.2020.126458
10.1126/science.1246913
ContentType Journal Article
Copyright 2022
Copyright_xml – notice: 2022
DBID AAYXX
CITATION
DOI 10.1016/j.apcatb.2022.121606
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Environmental Sciences
EISSN 1873-3883
ExternalDocumentID 10_1016_j_apcatb_2022_121606
S0926337322005471
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LX7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPD
SSG
SSZ
T5K
~02
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AHHHB
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
EJD
FEDTE
FGOYB
HLY
HVGLF
HZ~
NDZJH
R2-
SCE
SEW
SSH
VH1
WUQ
XPP
ID FETCH-LOGICAL-c372t-260d66a0ad2a9abb5a5c10c244b6c07689d1e51bf35fa7f0666c92a047d3a1603
IEDL.DBID .~1
ISSN 0926-3373
IngestDate Tue Jul 01 04:35:21 EDT 2025
Thu Apr 24 22:56:20 EDT 2025
Sat Mar 02 16:01:03 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Work function and conductivity regulated
Hole transport layer
BiVO4 photoanodes
Ferrihydrite-MXene
Photoelectrochemical water splitting
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-260d66a0ad2a9abb5a5c10c244b6c07689d1e51bf35fa7f0666c92a047d3a1603
ParticipantIDs crossref_primary_10_1016_j_apcatb_2022_121606
crossref_citationtrail_10_1016_j_apcatb_2022_121606
elsevier_sciencedirect_doi_10_1016_j_apcatb_2022_121606
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-15
PublicationDateYYYYMMDD 2022-10-15
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-15
  day: 15
PublicationDecade 2020
PublicationTitle Applied catalysis. B, Environmental
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Mohammadi, Rosen, Gogotsi (bib35) 2021; 372
Liu, Wygant, Kawashima, Mabayoje, Hong, Lee, Lin, Kim, Yubuta, Li, Li, Mullins (bib9) 2019; 245
Qian, Zhao, Dang, Liao, Zhang, Wang, Lv, Luo, Jiang, Tang (bib36) 2021; 5
Fu, Dong, Zhou, Lu, Huang, Liu, Guo, Zhao, Chou, Shen (bib12) 2020; 260
Alhabeb, Maleski, Anasori, Lelyukh, Clark, Sin, Gogotsi (bib46) 2017; 29
Agresti, Pazniak, Pescetelli, Di Vito, Rossi, Pecchia, Maur, Liedl, Larciprete, Kuznetsov, Saranin, Di Carlo (bib40) 2019; 18
Yu, Li, Qu, Zheng, Cairney, Zhang, Zhu, Khan, Li (bib24) 2021; 404
Yang, Li, Wang, Ding, Li, Lin, Tang, Ren, Wang, Luo, Ye (bib41) 2021; 297
Jin, Ma, Pan, Zhu, Saji, Hu, Xu, Sun, Yin (bib59) 2021; 281
Fujishima, Honda (bib1) 1972; 238
Guo, Gao, Xu, Teo, Zhang, Kamata, Hayase, Ma (bib42) 2018; 14
Li, He, Sheehan, He, Thorne, Yao, Brudvig, Wang (bib23) 2016; 9
Ye, Li, Huang, Xiao, Qiu, Li, Hu, Mai, Ji, Yang (bib52) 2019; 10
Duan, Jiang, Shao, Feng, Yu, Guo, Chen, Tang (bib47) 2021; 297
Zhang, Yates (bib53) 2012; 112
Lianos (bib3) 2017; 210
Wang, Wang, Zhang, Jiang, Bao, Cheng, Zheng, Wang, Liu, Whangbo, Li, Dai, Huang (bib14) 2020; 10
Kalanur, Singh, Seo (bib10) 2021; 295
Wang, He, Chen, Du, Ostrikov, Huang, Wang (bib17) 2020; 32
Zhang, Huang, Zhang, Lu, Chou, Bi (bib49) 2020; 59
Zheng, Lyu, Wang, Xie, Zhou, Jiang, Wang (bib8) 2018; 9
Gaikwad, Suryawanshi, Ghorpade, Jang, Suryawanshi, Kim (bib16) 2021
Luo, Li, Liu, Wang, Gong (bib55) 2017; 8
Zhang, Du, Wang, Wang, Shi, Gao, Karuturi, Catchpole, Zhang, Fan, Shi, Liu (bib48) 2021; 60
Zhang, Nagashima, Tachikawa (bib56) 2020; 59
Guo, Wang, Chang, Zhang, Gao (bib54) 2010; 97
Li, Wang, Ma, Igbari, Kang, Wang, Song, Dong, Li, Yao, Meng, Wang, Yang (bib43) 2021; 143
Yin, Li, Wang, Li (bib28) 2021; 125
Liu, Shi, Zhang, Chen, Han, Ding, Chen, Wang, Han, Li, Tantalum (bib26) 2014; 53
Sun, Cheng, Liu, Qi (bib15) 2020; 277
Wang, Wang, Ling, Tang, Yang, Fitzmorris, Wang, Zhang, Li (bib7) 2011; 11
Zhang, Li, Byun, Wang, Shin, Jeong, Han, Li, Lee (bib57) 2020; 11
Bu, Li, Zhang, Lin, Wang, Zou, Xie (bib29) 2019; 7
Hantanasirisakul, Gogotsi (bib34) 2018; 30
Zhong, Choi, Gamelin (bib21) 2011; 133
Kecsenovity, Endrodi, Toth, Zou, Dryfe, Rajeshwar, Janaky (bib32) 2017; 139
Ghidiu, Lukatskaya, Zhao, Gogotsi, Barsoum (bib44) 2014; 516
Zhang, Li, Ni, Chen, Wang, Bu, Ao (bib4) 2019; 29
Wang, Chen, Bai, Yun, Liu, Wang (bib19) 2018; 30
Li, Liu, Xing, Wang, Zheng, Wang, Wang, Zheng, Cheng, Dai, Huang (bib38) 2021; 285
Lee, Choi (bib51) 2018; 3
Regmi, Kshetri, Kim, Pandey, Ray, Lee (bib50) 2017; 413
Wang, Gao, Zhao, Zhao, Claverie, Zhang, Wang, Liu, Sang (bib11) 2019; 248
Yu, Wang, Liu, Sun, Yang, Qiu (bib6) 2019; 63
Wang, Wang, Zhou, Zou (bib13) 2019; 255
Zhang, Ma, Xiong, Jiang, Tang (bib20) 2020; 3
Yin, Men, Sun, She, Zhang, Wu, Qin, Chen (bib31) 2015; 3
Kim, Choi (bib45) 2014; 343
Novoselov, Geim, Morozov, Jiang, Zhang, Dubonos, Grigorieva, Firsov (bib33) 2004; 306
Yu, Li, Yao, Du, Liang, Wang, Han, Sun (bib27) 2017; 7
Gratzel (bib2) 2001; 414
Wang, Li, Chi, Zhao, Wang, Li, Pang, Fu, Shi, Li (bib30) 2021; 60
Thorne, Jang, Liu, Wang (bib22) 2016; 7
He, Gao, Liu, Sun, Liu, Hu, Su, Wang (bib25) 2020; 10
Zhong, Hisatomi, Kuang, Zhao, Liu, Iwase, Jia, Nishiyama, Minegishi, Nakabayashi, Shibata, Niishiro, Katayama, Shibano, Katayama, Kudo, Yamada, Domen (bib58) 2015; 137
Ran, Gao, Li, Ma, Du, Qiao (bib39) 2017; 8
Liang, Lu (bib5) 2016; 138
Ding, Shi, Wang, Li (bib18) 2017; 7
Liao, Qian, Xie, Han, Dang, Wang, Lv, Zhao, Luo, Zhang, Jiang, Tang (bib37) 2020; 273
Duan (10.1016/j.apcatb.2022.121606_bib47) 2021; 297
Ghidiu (10.1016/j.apcatb.2022.121606_bib44) 2014; 516
Liang (10.1016/j.apcatb.2022.121606_bib5) 2016; 138
Wang (10.1016/j.apcatb.2022.121606_bib17) 2020; 32
Yu (10.1016/j.apcatb.2022.121606_bib6) 2019; 63
He (10.1016/j.apcatb.2022.121606_bib25) 2020; 10
Novoselov (10.1016/j.apcatb.2022.121606_bib33) 2004; 306
Liao (10.1016/j.apcatb.2022.121606_bib37) 2020; 273
Li (10.1016/j.apcatb.2022.121606_bib38) 2021; 285
Gaikwad (10.1016/j.apcatb.2022.121606_bib16) 2021
Wang (10.1016/j.apcatb.2022.121606_bib13) 2019; 255
Kecsenovity (10.1016/j.apcatb.2022.121606_bib32) 2017; 139
Zhang (10.1016/j.apcatb.2022.121606_bib48) 2021; 60
Ye (10.1016/j.apcatb.2022.121606_bib52) 2019; 10
Yu (10.1016/j.apcatb.2022.121606_bib27) 2017; 7
Agresti (10.1016/j.apcatb.2022.121606_bib40) 2019; 18
Wang (10.1016/j.apcatb.2022.121606_bib14) 2020; 10
Gratzel (10.1016/j.apcatb.2022.121606_bib2) 2001; 414
Thorne (10.1016/j.apcatb.2022.121606_bib22) 2016; 7
Yin (10.1016/j.apcatb.2022.121606_bib28) 2021; 125
Fujishima (10.1016/j.apcatb.2022.121606_bib1) 1972; 238
Yin (10.1016/j.apcatb.2022.121606_bib31) 2015; 3
Regmi (10.1016/j.apcatb.2022.121606_bib50) 2017; 413
Zhong (10.1016/j.apcatb.2022.121606_bib58) 2015; 137
Ran (10.1016/j.apcatb.2022.121606_bib39) 2017; 8
Sun (10.1016/j.apcatb.2022.121606_bib15) 2020; 277
Lee (10.1016/j.apcatb.2022.121606_bib51) 2018; 3
Zhang (10.1016/j.apcatb.2022.121606_bib49) 2020; 59
Zhang (10.1016/j.apcatb.2022.121606_bib53) 2012; 112
Alhabeb (10.1016/j.apcatb.2022.121606_bib46) 2017; 29
Kim (10.1016/j.apcatb.2022.121606_bib45) 2014; 343
Yu (10.1016/j.apcatb.2022.121606_bib24) 2021; 404
Mohammadi (10.1016/j.apcatb.2022.121606_bib35) 2021; 372
Li (10.1016/j.apcatb.2022.121606_bib43) 2021; 143
Lianos (10.1016/j.apcatb.2022.121606_bib3) 2017; 210
Liu (10.1016/j.apcatb.2022.121606_bib26) 2014; 53
Yang (10.1016/j.apcatb.2022.121606_bib41) 2021; 297
Liu (10.1016/j.apcatb.2022.121606_bib9) 2019; 245
Kalanur (10.1016/j.apcatb.2022.121606_bib10) 2021; 295
Wang (10.1016/j.apcatb.2022.121606_bib19) 2018; 30
Wang (10.1016/j.apcatb.2022.121606_bib11) 2019; 248
Hantanasirisakul (10.1016/j.apcatb.2022.121606_bib34) 2018; 30
Li (10.1016/j.apcatb.2022.121606_bib23) 2016; 9
Zhang (10.1016/j.apcatb.2022.121606_bib56) 2020; 59
Guo (10.1016/j.apcatb.2022.121606_bib54) 2010; 97
Luo (10.1016/j.apcatb.2022.121606_bib55) 2017; 8
Guo (10.1016/j.apcatb.2022.121606_bib42) 2018; 14
Zhang (10.1016/j.apcatb.2022.121606_bib4) 2019; 29
Qian (10.1016/j.apcatb.2022.121606_bib36) 2021; 5
Fu (10.1016/j.apcatb.2022.121606_bib12) 2020; 260
Zheng (10.1016/j.apcatb.2022.121606_bib8) 2018; 9
Bu (10.1016/j.apcatb.2022.121606_bib29) 2019; 7
Wang (10.1016/j.apcatb.2022.121606_bib30) 2021; 60
Ding (10.1016/j.apcatb.2022.121606_bib18) 2017; 7
Zhong (10.1016/j.apcatb.2022.121606_bib21) 2011; 133
Wang (10.1016/j.apcatb.2022.121606_bib7) 2011; 11
Jin (10.1016/j.apcatb.2022.121606_bib59) 2021; 281
Zhang (10.1016/j.apcatb.2022.121606_bib20) 2020; 3
Zhang (10.1016/j.apcatb.2022.121606_bib57) 2020; 11
References_xml – volume: 7
  start-page: 3347
  year: 2016
  end-page: 3354
  ident: bib22
  article-title: Understanding the origin of photoelectrode performance enhancement by probing surface kinetics
  publication-title: Chem. Sci.
– volume: 29
  year: 2019
  ident: bib4
  article-title: Improvement of BiVO4 photoanode performance during water photo-oxidation using Rh-Doped SrTiO3 perovskite as a Co-catalyst
  publication-title: Adv. Funct. Mater.
– volume: 125
  start-page: 8369
  year: 2021
  end-page: 8375
  ident: bib28
  article-title: Surface passivation effect of ferrihydrite with hole-storage ability in water oxidation on BiVO4 photoanode
  publication-title: J. Phys. Chem. C.
– volume: 143
  start-page: 2593
  year: 2021
  end-page: 2600
  ident: bib43
  article-title: Single-layered mxene nanosheets doping TiO2 for efficient and stable double perovskite solar cells
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 5927
  year: 2020
  end-page: 5936
  ident: bib20
  article-title: Well-crystallized alpha-FeOOH cocatalysts modified BiVO4 photoanodes for efficient and stable photoelectrochemical water splitting
  publication-title: Acs Appl. Energy Mater.
– volume: 255
  year: 2019
  ident: bib13
  article-title: Al-ZnO/CdS photoanode modified with a triple functions conformal TiO2 film for enhanced photoelectrochemical efficiency and stability
  publication-title: Appl. Catal. B-Environ.
– volume: 306
  start-page: 666
  year: 2004
  end-page: 669
  ident: bib33
  article-title: Electric field effect in atomically thin carbon films
  publication-title: Science
– volume: 413
  start-page: 253
  year: 2017
  end-page: 265
  ident: bib50
  article-title: Fabrication of Ni-doped BiVO4 semiconductors with enhanced visible-light photocatalytic performances for wastewater treatment
  publication-title: Appl. Surf. Sci.
– volume: 7
  start-page: 675
  year: 2017
  end-page: 688
  ident: bib18
  article-title: Photoelectrocatalytic water splitting: significance of cocatalysts, electrolyte, and interfaces
  publication-title: ACS Catal.
– volume: 5
  year: 2021
  ident: bib36
  article-title: Photocatalytic nitrogen reduction by Ti3C2 MXene derived oxygen vacancy-rich C/TiO2
  publication-title: Adv. Sustain. Syst.
– volume: 343
  start-page: 990
  year: 2014
  end-page: 994
  ident: bib45
  article-title: Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting
  publication-title: Science
– volume: 245
  start-page: 227
  year: 2019
  end-page: 239
  ident: bib9
  article-title: Facet effect on the photoelectrochemical performance of a WO3/BiVO4 heterojunction photoanode
  publication-title: Appl. Catal. B-Environ.
– volume: 10
  start-page: 13031
  year: 2020
  end-page: 13039
  ident: bib14
  article-title: Enhancing the photoelectrochemical water oxidation reaction of BiVO4 photoanode by employing carbon spheres as electron reservoirs
  publication-title: ACS Catal.
– year: 2021
  ident: bib16
  article-title: Emerging surface, bulk, and interface engineering strategies on BiVO4 for photoelectrochemical water splitting
  publication-title: Small
– volume: 8
  year: 2017
  ident: bib39
  article-title: Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production
  publication-title: Nat. Commun.
– volume: 59
  start-page: 18990
  year: 2020
  end-page: 18995
  ident: bib49
  article-title: Unveiling the activity and stability origin of BiVO(4)photoanodes with feni oxyhydroxides for oxygen evolution
  publication-title: Angew. Chem. -Int. Ed.
– volume: 295
  year: 2021
  ident: bib10
  article-title: Enhanced solar water splitting of an ideally doped and work function tuned {002} oriented one-dimensional WO3 with nanoscale surface charge mapping insights
  publication-title: Appl. Catal. B-Environ.
– volume: 63
  year: 2019
  ident: bib6
  article-title: A hierarchically porous and hydrophilic 3D nickel-iron/MXene electrode for accelerating oxygen and hydrogen evolution at high current densities
  publication-title: Nano Energy
– volume: 9
  year: 2018
  ident: bib8
  article-title: Crystalline TiO2 protective layer with graded oxygen defects for efficient and stable silicon-based photocathode
  publication-title: Nat. Commun.
– volume: 7
  start-page: 1868
  year: 2017
  end-page: 1874
  ident: bib27
  article-title: Fabrication and kinetic study of a ferrihydrite-modified BiVO4 photoanode
  publication-title: ACS Catal.
– volume: 277
  year: 2020
  ident: bib15
  article-title: A cobalt silicate modified BiVO4 photoanode for efficient solar water oxidation
  publication-title: Appl. Catal. B-Environ.
– volume: 139
  start-page: 6682
  year: 2017
  end-page: 6692
  ident: bib32
  article-title: Enhanced photoelectrochemical performance of cuprous oxide/graphene nanohybrids
  publication-title: J. Am. Chem. Soc.
– volume: 18
  start-page: 1228
  year: 2019
  ident: bib40
  article-title: Titanium-carbide MXenes for work function and interface engineering in perovskite solar cells
  publication-title: Nat. Mater.
– volume: 11
  start-page: 3026
  year: 2011
  end-page: 3033
  ident: bib7
  article-title: Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting
  publication-title: Nano Lett.
– volume: 7
  start-page: 10971
  year: 2019
  end-page: 10978
  ident: bib29
  article-title: Hole transfer channel of ferrihydrite designed between Ti-Fe2O3 and CoPi as an efficient and durable photoanode
  publication-title: ACS Sustain. Chem. Eng.
– volume: 138
  start-page: 7574
  year: 2016
  end-page: 7583
  ident: bib5
  article-title: Critical role of redox mediator in suppressing charging instabilities of lithium-oxygen batteries
  publication-title: J. Am. Chem. Soc.
– volume: 516
  start-page: 78
  year: 2014
  end-page: U171
  ident: bib44
  article-title: Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance
  publication-title: Nature
– volume: 248
  start-page: 388
  year: 2019
  end-page: 393
  ident: bib11
  article-title: Efficient photo-electrochemical water splitting based on hematite nanorods doped with phosphorus
  publication-title: Appl. Catal. B-Environ.
– volume: 97
  year: 2010
  ident: bib54
  article-title: High quantum efficiency of depth grade doping negative-electron-affinity GaN photocathode
  publication-title: Appl. Phys. Lett.
– volume: 137
  start-page: 5053
  year: 2015
  end-page: 5060
  ident: bib58
  article-title: Surface modification of CoOx Loaded BiVO4 photoanodes with ultrathin p-Type NiO layers for improved solar water oxidation
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 12016
  year: 2015
  end-page: 12022
  ident: bib31
  article-title: Enhanced photocurrent generation of bio-inspired graphene/ZnO composite films
  publication-title: J. Mater. Chem. A
– volume: 297
  year: 2021
  ident: bib41
  article-title: A universal strategy boosting photoelectrochemical water oxidation by utilizing MXene nanosheets as hole transfer mediators
  publication-title: Appl. Catal. B-Environ.
– volume: 53
  start-page: 7295
  year: 2014
  end-page: 7299
  ident: bib26
  article-title: Nitride photoanode modified with a hole-storage layer for highly stable solar water splitting
  publication-title: Angew. Chem. -Int. Ed.
– volume: 30
  year: 2018
  ident: bib34
  article-title: Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes)
  publication-title: Adv. Mater.
– volume: 14
  year: 2018
  ident: bib42
  article-title: High electrical conductivity 2D MXene serves as additive of perovskite for efficient solar cells
  publication-title: Small
– volume: 60
  start-page: 6691
  year: 2021
  end-page: 6698
  ident: bib30
  article-title: Unveiling the hydration structure of ferrihydrite for hole storage in photoelectrochemical water oxidation
  publication-title: Angew. Chem. -Int. Ed.
– volume: 60
  start-page: 11966
  year: 2021
  end-page: 11972
  ident: bib48
  article-title: Hole-storage enhanced a-Si photocathodes for efficient hydrogen production
  publication-title: Angew. Chem. -Int. Ed.
– volume: 8
  start-page: 91
  year: 2017
  end-page: 100
  ident: bib55
  article-title: Gradient doping of phosphorus in Fe2O3 nanoarray photoanodes for enhanced charge separation
  publication-title: Chem. Sci.
– volume: 9
  start-page: 1794
  year: 2016
  end-page: 1802
  ident: bib23
  article-title: Comparison of heterogenized molecular and heterogeneous oxide catalysts for photoelectrochemical water oxidation
  publication-title: Energy Environ. Sci.
– volume: 404
  year: 2021
  ident: bib24
  article-title: Enhanced photoelectrochemical water-splitting performance with a hierarchical heterostructure: Co3O4 nanodots anchored TiO2@P-C3N4 coreshell nanorod arrays
  publication-title: Chem. Eng. J.
– volume: 10
  start-page: 10570
  year: 2020
  end-page: 10576
  ident: bib25
  article-title: Yttrium-induced regulation of electron density in NiFe layered double hydroxides yields stable solar water splitting
  publication-title: ACS Catal.
– volume: 29
  start-page: 7633
  year: 2017
  end-page: 7644
  ident: bib46
  article-title: Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2TX MXene)
  publication-title: Chem. Mat.
– volume: 59
  start-page: 9047
  year: 2020
  end-page: 9054
  ident: bib56
  article-title: Ultra-narrow depletion layers in a hematite mesocrystal-based photoanode for boosting multihole water oxidation
  publication-title: Angew. Chem. -Int. Ed.
– volume: 10
  year: 2019
  ident: bib52
  article-title: Enhancing photoelectrochemical water splitting by combining work function tuning and heterojunction engineering Nature
  publication-title: Nat. Commun.
– volume: 32
  year: 2020
  ident: bib17
  article-title: In situ formation of oxygen vacancies achieving near-complete charge separation in planar BiVO4 photoanodes
  publication-title: Adv. Mater.
– volume: 112
  start-page: 5520
  year: 2012
  end-page: 5551
  ident: bib53
  article-title: Band bending in semiconductors: chemical and physical consequences at surfaces and interfaces
  publication-title: Chem. Rev.
– volume: 11
  year: 2020
  ident: bib57
  article-title: Gradient tantalum-doped hematite homojunction photoanode improves both photocurrents and turn-on voltage for solar water splitting
  publication-title: Nat. Commun.
– volume: 210
  start-page: 235
  year: 2017
  end-page: 254
  ident: bib3
  article-title: Review of recent trends in photoelectrocatalytic conversion of solar energy to electricity and hydrogen
  publication-title: Appl. Catal. B-Environ.
– volume: 273
  year: 2020
  ident: bib37
  article-title: 2D-layered Ti3C2 MXenes for promoted synthesis of NH3 on P25 photocatalysts
  publication-title: Appl. Catal. B-Environ.
– volume: 285
  year: 2021
  ident: bib38
  article-title: 2D/2D heterostructure of ultrathin BiVO4/Ti3C2 nanosheets for photocatalytic overall Water splitting
  publication-title: Appl. Catal. B-Environ.
– volume: 30
  year: 2018
  ident: bib19
  article-title: New BiVO4 dual photoanodes with enriched oxygen vacancies for efficient solar-driven water splitting
  publication-title: Adv. Mater.
– volume: 238
  start-page: 37
  year: 1972
  ident: bib1
  article-title: Electrochemical photolysis of water at a semiconductor electrode
  publication-title: Nature
– volume: 281
  year: 2021
  ident: bib59
  article-title: Oxygen vacancies activating surface reactivity to favor charge separation and transfer in nanoporous BiVO4 photoanodes
  publication-title: Appl. Catal. B-Environ.
– volume: 414
  start-page: 338
  year: 2001
  end-page: 344
  ident: bib2
  article-title: Photoelectrochemical cells
  publication-title: Nature
– volume: 372
  start-page: 1165
  year: 2021
  ident: bib35
  article-title: The world of two-dimensional carbides and nitrides (MXenes)
  publication-title: Science
– volume: 133
  start-page: 18370
  year: 2011
  end-page: 18377
  ident: bib21
  article-title: Near-complete suppression of surface recombination in solar photoelectrolysis by “Co-Pi” catalyst-modified W:BiVO4
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 53
  year: 2018
  end-page: 60
  ident: bib51
  article-title: Enhancing long-term photostability of BiVO4 photoanodes for solar water splitting by tuning electrolyte composition
  publication-title: Nat. Energy
– volume: 260
  year: 2020
  ident: bib12
  article-title: A ternary nanostructured alpha-Fe2O3/Au/TiO2 photoanode with reconstructed interfaces for efficient photoelectrocatalytic water splitting
  publication-title: Appl. Catal. B-Environ.
– volume: 297
  year: 2021
  ident: bib47
  article-title: Enhanced visible-light photocatalytic degradation activity of Ti3C2/PDIsm via pi-pi interaction and interfacial charge separation: experimental and theoretical investigations
  publication-title: Appl. Catal. B-Environ.
– volume: 10
  start-page: 13031
  year: 2020
  ident: 10.1016/j.apcatb.2022.121606_bib14
  article-title: Enhancing the photoelectrochemical water oxidation reaction of BiVO4 photoanode by employing carbon spheres as electron reservoirs
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c03671
– volume: 133
  start-page: 18370
  year: 2011
  ident: 10.1016/j.apcatb.2022.121606_bib21
  article-title: Near-complete suppression of surface recombination in solar photoelectrolysis by “Co-Pi” catalyst-modified W:BiVO4
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja207348x
– volume: 59
  start-page: 18990
  year: 2020
  ident: 10.1016/j.apcatb.2022.121606_bib49
  article-title: Unveiling the activity and stability origin of BiVO(4)photoanodes with feni oxyhydroxides for oxygen evolution
  publication-title: Angew. Chem. -Int. Ed.
  doi: 10.1002/anie.202008198
– volume: 281
  year: 2021
  ident: 10.1016/j.apcatb.2022.121606_bib59
  article-title: Oxygen vacancies activating surface reactivity to favor charge separation and transfer in nanoporous BiVO4 photoanodes
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2020.119477
– volume: 125
  start-page: 8369
  year: 2021
  ident: 10.1016/j.apcatb.2022.121606_bib28
  article-title: Surface passivation effect of ferrihydrite with hole-storage ability in water oxidation on BiVO4 photoanode
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/acs.jpcc.1c02369
– volume: 414
  start-page: 338
  year: 2001
  ident: 10.1016/j.apcatb.2022.121606_bib2
  article-title: Photoelectrochemical cells
  publication-title: Nature
  doi: 10.1038/35104607
– volume: 29
  year: 2019
  ident: 10.1016/j.apcatb.2022.121606_bib4
  article-title: Improvement of BiVO4 photoanode performance during water photo-oxidation using Rh-Doped SrTiO3 perovskite as a Co-catalyst
  publication-title: Adv. Funct. Mater.
– volume: 30
  year: 2018
  ident: 10.1016/j.apcatb.2022.121606_bib34
  article-title: Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes)
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201804779
– volume: 3
  start-page: 5927
  year: 2020
  ident: 10.1016/j.apcatb.2022.121606_bib20
  article-title: Well-crystallized alpha-FeOOH cocatalysts modified BiVO4 photoanodes for efficient and stable photoelectrochemical water splitting
  publication-title: Acs Appl. Energy Mater.
  doi: 10.1021/acsaem.0c00834
– volume: 137
  start-page: 5053
  year: 2015
  ident: 10.1016/j.apcatb.2022.121606_bib58
  article-title: Surface modification of CoOx Loaded BiVO4 photoanodes with ultrathin p-Type NiO layers for improved solar water oxidation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b00256
– volume: 9
  year: 2018
  ident: 10.1016/j.apcatb.2022.121606_bib8
  article-title: Crystalline TiO2 protective layer with graded oxygen defects for efficient and stable silicon-based photocathode
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05580-z
– volume: 273
  year: 2020
  ident: 10.1016/j.apcatb.2022.121606_bib37
  article-title: 2D-layered Ti3C2 MXenes for promoted synthesis of NH3 on P25 photocatalysts
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2020.119054
– volume: 413
  start-page: 253
  year: 2017
  ident: 10.1016/j.apcatb.2022.121606_bib50
  article-title: Fabrication of Ni-doped BiVO4 semiconductors with enhanced visible-light photocatalytic performances for wastewater treatment
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.04.056
– volume: 60
  start-page: 6691
  year: 2021
  ident: 10.1016/j.apcatb.2022.121606_bib30
  article-title: Unveiling the hydration structure of ferrihydrite for hole storage in photoelectrochemical water oxidation
  publication-title: Angew. Chem. -Int. Ed.
  doi: 10.1002/anie.202014871
– volume: 8
  year: 2017
  ident: 10.1016/j.apcatb.2022.121606_bib39
  article-title: Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13907
– volume: 18
  start-page: 1228
  year: 2019
  ident: 10.1016/j.apcatb.2022.121606_bib40
  article-title: Titanium-carbide MXenes for work function and interface engineering in perovskite solar cells
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0478-1
– volume: 138
  start-page: 7574
  year: 2016
  ident: 10.1016/j.apcatb.2022.121606_bib5
  article-title: Critical role of redox mediator in suppressing charging instabilities of lithium-oxygen batteries
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b01821
– volume: 516
  start-page: 78
  year: 2014
  ident: 10.1016/j.apcatb.2022.121606_bib44
  article-title: Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance
  publication-title: Nature
  doi: 10.1038/nature13970
– volume: 297
  year: 2021
  ident: 10.1016/j.apcatb.2022.121606_bib47
  article-title: Enhanced visible-light photocatalytic degradation activity of Ti3C2/PDIsm via pi-pi interaction and interfacial charge separation: experimental and theoretical investigations
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2021.120439
– volume: 8
  start-page: 91
  year: 2017
  ident: 10.1016/j.apcatb.2022.121606_bib55
  article-title: Gradient doping of phosphorus in Fe2O3 nanoarray photoanodes for enhanced charge separation
  publication-title: Chem. Sci.
  doi: 10.1039/C6SC03707K
– volume: 306
  start-page: 666
  year: 2004
  ident: 10.1016/j.apcatb.2022.121606_bib33
  article-title: Electric field effect in atomically thin carbon films
  publication-title: Science
  doi: 10.1126/science.1102896
– volume: 7
  start-page: 10971
  year: 2019
  ident: 10.1016/j.apcatb.2022.121606_bib29
  article-title: Hole transfer channel of ferrihydrite designed between Ti-Fe2O3 and CoPi as an efficient and durable photoanode
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.9b02009
– volume: 10
  year: 2019
  ident: 10.1016/j.apcatb.2022.121606_bib52
  article-title: Enhancing photoelectrochemical water splitting by combining work function tuning and heterojunction engineering Nature
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11586-y
– volume: 3
  start-page: 12016
  year: 2015
  ident: 10.1016/j.apcatb.2022.121606_bib31
  article-title: Enhanced photocurrent generation of bio-inspired graphene/ZnO composite films
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA02297E
– volume: 53
  start-page: 7295
  year: 2014
  ident: 10.1016/j.apcatb.2022.121606_bib26
  article-title: Nitride photoanode modified with a hole-storage layer for highly stable solar water splitting
  publication-title: Angew. Chem. -Int. Ed.
  doi: 10.1002/anie.201404697
– volume: 285
  year: 2021
  ident: 10.1016/j.apcatb.2022.121606_bib38
  article-title: 2D/2D heterostructure of ultrathin BiVO4/Ti3C2 nanosheets for photocatalytic overall Water splitting
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2020.119855
– volume: 372
  start-page: 1165
  year: 2021
  ident: 10.1016/j.apcatb.2022.121606_bib35
  article-title: The world of two-dimensional carbides and nitrides (MXenes)
  publication-title: Science
– volume: 7
  start-page: 3347
  year: 2016
  ident: 10.1016/j.apcatb.2022.121606_bib22
  article-title: Understanding the origin of photoelectrode performance enhancement by probing surface kinetics
  publication-title: Chem. Sci.
  doi: 10.1039/C5SC04519C
– volume: 59
  start-page: 9047
  year: 2020
  ident: 10.1016/j.apcatb.2022.121606_bib56
  article-title: Ultra-narrow depletion layers in a hematite mesocrystal-based photoanode for boosting multihole water oxidation
  publication-title: Angew. Chem. -Int. Ed.
  doi: 10.1002/anie.202001919
– volume: 238
  start-page: 37
  year: 1972
  ident: 10.1016/j.apcatb.2022.121606_bib1
  article-title: Electrochemical photolysis of water at a semiconductor electrode
  publication-title: Nature
  doi: 10.1038/238037a0
– volume: 63
  year: 2019
  ident: 10.1016/j.apcatb.2022.121606_bib6
  article-title: A hierarchically porous and hydrophilic 3D nickel-iron/MXene electrode for accelerating oxygen and hydrogen evolution at high current densities
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.103880
– volume: 60
  start-page: 11966
  year: 2021
  ident: 10.1016/j.apcatb.2022.121606_bib48
  article-title: Hole-storage enhanced a-Si photocathodes for efficient hydrogen production
  publication-title: Angew. Chem. -Int. Ed.
  doi: 10.1002/anie.202100078
– volume: 30
  year: 2018
  ident: 10.1016/j.apcatb.2022.121606_bib19
  article-title: New BiVO4 dual photoanodes with enriched oxygen vacancies for efficient solar-driven water splitting
  publication-title: Adv. Mater.
– volume: 10
  start-page: 10570
  year: 2020
  ident: 10.1016/j.apcatb.2022.121606_bib25
  article-title: Yttrium-induced regulation of electron density in NiFe layered double hydroxides yields stable solar water splitting
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c03272
– year: 2021
  ident: 10.1016/j.apcatb.2022.121606_bib16
  article-title: Emerging surface, bulk, and interface engineering strategies on BiVO4 for photoelectrochemical water splitting
  publication-title: Small
– volume: 7
  start-page: 675
  year: 2017
  ident: 10.1016/j.apcatb.2022.121606_bib18
  article-title: Photoelectrocatalytic water splitting: significance of cocatalysts, electrolyte, and interfaces
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b03107
– volume: 139
  start-page: 6682
  year: 2017
  ident: 10.1016/j.apcatb.2022.121606_bib32
  article-title: Enhanced photoelectrochemical performance of cuprous oxide/graphene nanohybrids
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b01820
– volume: 297
  year: 2021
  ident: 10.1016/j.apcatb.2022.121606_bib41
  article-title: A universal strategy boosting photoelectrochemical water oxidation by utilizing MXene nanosheets as hole transfer mediators
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2021.120268
– volume: 112
  start-page: 5520
  year: 2012
  ident: 10.1016/j.apcatb.2022.121606_bib53
  article-title: Band bending in semiconductors: chemical and physical consequences at surfaces and interfaces
  publication-title: Chem. Rev.
  doi: 10.1021/cr3000626
– volume: 11
  year: 2020
  ident: 10.1016/j.apcatb.2022.121606_bib57
  article-title: Gradient tantalum-doped hematite homojunction photoanode improves both photocurrents and turn-on voltage for solar water splitting
  publication-title: Nat. Commun.
– volume: 9
  start-page: 1794
  year: 2016
  ident: 10.1016/j.apcatb.2022.121606_bib23
  article-title: Comparison of heterogenized molecular and heterogeneous oxide catalysts for photoelectrochemical water oxidation
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE03871E
– volume: 277
  year: 2020
  ident: 10.1016/j.apcatb.2022.121606_bib15
  article-title: A cobalt silicate modified BiVO4 photoanode for efficient solar water oxidation
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2020.119189
– volume: 14
  year: 2018
  ident: 10.1016/j.apcatb.2022.121606_bib42
  article-title: High electrical conductivity 2D MXene serves as additive of perovskite for efficient solar cells
  publication-title: Small
  doi: 10.1002/smll.201802738
– volume: 248
  start-page: 388
  year: 2019
  ident: 10.1016/j.apcatb.2022.121606_bib11
  article-title: Efficient photo-electrochemical water splitting based on hematite nanorods doped with phosphorus
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2019.02.048
– volume: 5
  year: 2021
  ident: 10.1016/j.apcatb.2022.121606_bib36
  article-title: Photocatalytic nitrogen reduction by Ti3C2 MXene derived oxygen vacancy-rich C/TiO2
  publication-title: Adv. Sustain. Syst.
– volume: 260
  year: 2020
  ident: 10.1016/j.apcatb.2022.121606_bib12
  article-title: A ternary nanostructured alpha-Fe2O3/Au/TiO2 photoanode with reconstructed interfaces for efficient photoelectrocatalytic water splitting
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2019.118206
– volume: 245
  start-page: 227
  year: 2019
  ident: 10.1016/j.apcatb.2022.121606_bib9
  article-title: Facet effect on the photoelectrochemical performance of a WO3/BiVO4 heterojunction photoanode
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2018.12.058
– volume: 97
  year: 2010
  ident: 10.1016/j.apcatb.2022.121606_bib54
  article-title: High quantum efficiency of depth grade doping negative-electron-affinity GaN photocathode
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3478010
– volume: 210
  start-page: 235
  year: 2017
  ident: 10.1016/j.apcatb.2022.121606_bib3
  article-title: Review of recent trends in photoelectrocatalytic conversion of solar energy to electricity and hydrogen
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2017.03.067
– volume: 295
  year: 2021
  ident: 10.1016/j.apcatb.2022.121606_bib10
  article-title: Enhanced solar water splitting of an ideally doped and work function tuned {002} oriented one-dimensional WO3 with nanoscale surface charge mapping insights
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2021.120269
– volume: 32
  year: 2020
  ident: 10.1016/j.apcatb.2022.121606_bib17
  article-title: In situ formation of oxygen vacancies achieving near-complete charge separation in planar BiVO4 photoanodes
  publication-title: Adv. Mater.
– volume: 7
  start-page: 1868
  year: 2017
  ident: 10.1016/j.apcatb.2022.121606_bib27
  article-title: Fabrication and kinetic study of a ferrihydrite-modified BiVO4 photoanode
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b03483
– volume: 143
  start-page: 2593
  year: 2021
  ident: 10.1016/j.apcatb.2022.121606_bib43
  article-title: Single-layered mxene nanosheets doping TiO2 for efficient and stable double perovskite solar cells
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c12739
– volume: 3
  start-page: 53
  year: 2018
  ident: 10.1016/j.apcatb.2022.121606_bib51
  article-title: Enhancing long-term photostability of BiVO4 photoanodes for solar water splitting by tuning electrolyte composition
  publication-title: Nat. Energy
  doi: 10.1038/s41560-017-0057-0
– volume: 29
  start-page: 7633
  year: 2017
  ident: 10.1016/j.apcatb.2022.121606_bib46
  article-title: Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2TX MXene)
  publication-title: Chem. Mat.
  doi: 10.1021/acs.chemmater.7b02847
– volume: 11
  start-page: 3026
  year: 2011
  ident: 10.1016/j.apcatb.2022.121606_bib7
  article-title: Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting
  publication-title: Nano Lett.
  doi: 10.1021/nl201766h
– volume: 255
  year: 2019
  ident: 10.1016/j.apcatb.2022.121606_bib13
  article-title: Al-ZnO/CdS photoanode modified with a triple functions conformal TiO2 film for enhanced photoelectrochemical efficiency and stability
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2019.05.040
– volume: 404
  year: 2021
  ident: 10.1016/j.apcatb.2022.121606_bib24
  article-title: Enhanced photoelectrochemical water-splitting performance with a hierarchical heterostructure: Co3O4 nanodots anchored TiO2@P-C3N4 coreshell nanorod arrays
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.126458
– volume: 343
  start-page: 990
  year: 2014
  ident: 10.1016/j.apcatb.2022.121606_bib45
  article-title: Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting
  publication-title: Science
  doi: 10.1126/science.1246913
SSID ssj0002328
Score 2.63325
Snippet Although great interest is focused on development of semiconductor photoanodes for efficient photoelectrochemical (PEC) water splitting, the pressing...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 121606
SubjectTerms BiVO4 photoanodes
Ferrihydrite-MXene
Hole transport layer
Photoelectrochemical water splitting
Work function and conductivity regulated
Title Engineering efficient hole transport layer Ferrihydrite-MXene on BiVO4 photoanodes for photoelectrochemical water splitting: Work function and conductivity regulated
URI https://dx.doi.org/10.1016/j.apcatb.2022.121606
Volume 315
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BTtwwELUQHNoeKtgWlVLQHHp1d-PEMemNrlgtVMCBUu0tGjtOWYSS1W6qqhf-pv_ZmcSBrVQVqUdHYynKTGbeJOP3hHhPmBWt0lZGpfYy0aWXGVVCqTD1hL41dmQ65xfp9Do5m-nZhhj3Z2F4rDLk_i6nt9k6XBmGpzlczOfDq1Gm0jg2FJGMO9pz5EliOMo_3D-OeRBiaLMxGUu27o_PtTNeuHDYWOoSlWKahZR1j_5WntZKzmRbvAxYEY6729kRG74aiGfjXqJtIF6ssQkOxO7J46E12hbe2tUr8WvNDHzLGUEmwMq40PTk5nCHhL5hwkyNNz-LJUFReT6jTAh1BZ_mXy8TWNzUTY1VXfgVENbt1kFHxwXiAfhB4HUJK8K27UT1R-DP8cDlk0MAsCqAWnBmmW1lK2Dpv7GCmC9ei-vJyZfxVAZ5BulioxpJnVCRpjjCQmGG1mrULho5wgs2dfyDLysiryNbxrpEU3Kj5DKFo8QUMbK69a7YrOrKvxFgSkt10njCCy4xRy6zaCg1HDkVldRvmT0R917JXeAuZwmNu7wfUrvNO1_m7Mu88-WekA-7Fh13xxP2pnd4_kcM5lRe_rnz7X_v3BfPecXVMNLvxGaz_O4PCOY09rCN40OxdXz6eXrxG_4sAEU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB2VcigcEAQq2vIxBzguiddeb43EAUqjlDblQItyM7vrNQ2qnCgxqnrh3_AL-IPM2GsaJAQSUo-2dyzbs555Y8--B_CMMKuxUlkRlcqLRJVeZJQJhTSpJ_StTEumMz5OR6fJu4marMGPbi0Mt1WG2N_G9CZahz398DT78-m0_2GQyTSONc1Ixh06Cp2Vh_7yguq25auDt-Tk51IO90_2RiJICwgXa1kLQvFFmpqBKaTJjLXKKBcNHOU6mzr-OZUVkVeRLWNVGl0yyHeZNINEF7FhZWY67w24mVC4YNmEF9-u-koIojThn65O8OV16_WapjIzd6a2VJZKybwOKQst_SkfruS44V24E8Apvm7v_x6s-aoHG3udJlwPbq_QF_Zgc_9qlRyZhTCxvA_fV4ahb0gqaAiyFC_WHZs6nhuC-zhkasizy2JB2FeMJxR6cVbhm-nH9wnOz2b1zFSzwi-RwHW7HYR7XGA6wAtCywtcEphuWrhfIn__R87XPOfQVAVSzc-0to1OBi78Z5Ys88UDOL0Wp23CejWr_ENAXVpKzNoTQHGJ3nWZNZpi0a6TUUkFnt6CuPNK7gJZOmt2nOddV9yXvPVlzr7MW19ugfhlNW_JQv4xXncOz3-b9Dnls79abv-35VPYGJ2Mj_Kjg-PDHbjFRzgVR-oRrNeLr_4xYazaPmnmNMKn636JfgKnijtn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineering+efficient+hole+transport+layer+Ferrihydrite-MXene+on+BiVO4+photoanodes+for+photoelectrochemical+water+splitting%3A+Work+function+and+conductivity+regulated&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Bai%2C+Weihao&rft.au=Zhou%2C+Ye&rft.au=Peng%2C+Gang&rft.au=Wang%2C+Jinnan&rft.date=2022-10-15&rft.pub=Elsevier+B.V&rft.issn=0926-3373&rft.eissn=1873-3883&rft.volume=315&rft_id=info:doi/10.1016%2Fj.apcatb.2022.121606&rft.externalDocID=S0926337322005471
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon