RobustSleepNet: Transfer Learning for Automated Sleep Staging at Scale

Sleep disorder diagnosis relies on the analysis of polysomnography (PSG) records. As a preliminary step of this examination, sleep stages are systematically determined. In practice, sleep stage classification relies on the visual inspection of 30-second epochs of polysomnography signals. Numerous au...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 29; pp. 1441 - 1451
Main Authors Guillot, Antoine, Thorey, Valentin
Format Journal Article
LanguageEnglish
Published New York IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Sleep disorder diagnosis relies on the analysis of polysomnography (PSG) records. As a preliminary step of this examination, sleep stages are systematically determined. In practice, sleep stage classification relies on the visual inspection of 30-second epochs of polysomnography signals. Numerous automatic approaches have been developed to replace this tedious and expensive task. Although these methods demonstrated better performance than human sleep experts on specific datasets, they remain largely unused in sleep clinics. The main reason is that each sleep clinic uses a specific PSG montage that most automatic approaches cannot handle out-of-the-box. Moreover, even when the PSG montage is compatible, publications have shown that automatic approaches perform poorly on unseen data with different demographics. To address these issues, we introduce RobustSleepNet, a deep learning model for automatic sleep stage classification able to handle arbitrary PSG montages. We trained and evaluated this model in a leave-one-out-dataset fashion on a large corpus of 8 heterogeneous sleep staging datasets to make it robust to demographic changes. When evaluated on an unseen dataset, RobustSleepNet reaches 97% of the F1 of a model explicitly trained on this dataset. Hence, RobustSleepNet unlocks the possibility to perform high-quality out-of-the-box automatic sleep staging with any clinical setup. We further show that finetuning RobustSleepNet, using a part of the unseen dataset, increases the F1 by 2% when compared to a model trained specifically for this dataset. Therefore, finetuning might be used to reach a state-of-the-art level of performance on a specific population.
AbstractList Sleep disorder diagnosis relies on the analysis of polysomnography (PSG) records. As a preliminary step of this examination, sleep stages are systematically determined. In practice, sleep stage classification relies on the visual inspection of 30-second epochs of polysomnography signals. Numerous automatic approaches have been developed to replace this tedious and expensive task. Although these methods demonstrated better performance than human sleep experts on specific datasets, they remain largely unused in sleep clinics. The main reason is that each sleep clinic uses a specific PSG montage that most automatic approaches cannot handle out-of-the-box. Moreover, even when the PSG montage is compatible, publications have shown that automatic approaches perform poorly on unseen data with different demographics. To address these issues, we introduce RobustSleepNet, a deep learning model for automatic sleep stage classification able to handle arbitrary PSG montages. We trained and evaluated this model in a leave-one-out-dataset fashion on a large corpus of 8 heterogeneous sleep staging datasets to make it robust to demographic changes. When evaluated on an unseen dataset, RobustSleepNet reaches 97% of the F1 of a model explicitly trained on this dataset. Hence, RobustSleepNet unlocks the possibility to perform high-quality out-of-the-box automatic sleep staging with any clinical setup. We further show that finetuning RobustSleepNet, using a part of the unseen dataset, increases the F1 by 2% when compared to a model trained specifically for this dataset. Therefore, finetuning might be used to reach a state-of-the-art level of performance on a specific population.Sleep disorder diagnosis relies on the analysis of polysomnography (PSG) records. As a preliminary step of this examination, sleep stages are systematically determined. In practice, sleep stage classification relies on the visual inspection of 30-second epochs of polysomnography signals. Numerous automatic approaches have been developed to replace this tedious and expensive task. Although these methods demonstrated better performance than human sleep experts on specific datasets, they remain largely unused in sleep clinics. The main reason is that each sleep clinic uses a specific PSG montage that most automatic approaches cannot handle out-of-the-box. Moreover, even when the PSG montage is compatible, publications have shown that automatic approaches perform poorly on unseen data with different demographics. To address these issues, we introduce RobustSleepNet, a deep learning model for automatic sleep stage classification able to handle arbitrary PSG montages. We trained and evaluated this model in a leave-one-out-dataset fashion on a large corpus of 8 heterogeneous sleep staging datasets to make it robust to demographic changes. When evaluated on an unseen dataset, RobustSleepNet reaches 97% of the F1 of a model explicitly trained on this dataset. Hence, RobustSleepNet unlocks the possibility to perform high-quality out-of-the-box automatic sleep staging with any clinical setup. We further show that finetuning RobustSleepNet, using a part of the unseen dataset, increases the F1 by 2% when compared to a model trained specifically for this dataset. Therefore, finetuning might be used to reach a state-of-the-art level of performance on a specific population.
Sleep disorder diagnosis relies on the analysis of polysomnography (PSG) records. As a preliminary step of this examination, sleep stages are systematically determined. In practice, sleep stage classification relies on the visual inspection of 30-second epochs of polysomnography signals. Numerous automatic approaches have been developed to replace this tedious and expensive task. Although these methods demonstrated better performance than human sleep experts on specific datasets, they remain largely unused in sleep clinics. The main reason is that each sleep clinic uses a specific PSG montage that most automatic approaches cannot handle out-of-the-box. Moreover, even when the PSG montage is compatible, publications have shown that automatic approaches perform poorly on unseen data with different demographics. To address these issues, we introduce RobustSleepNet, a deep learning model for automatic sleep stage classification able to handle arbitrary PSG montages. We trained and evaluated this model in a leave-one-out-dataset fashion on a large corpus of 8 heterogeneous sleep staging datasets to make it robust to demographic changes. When evaluated on an unseen dataset, RobustSleepNet reaches 97% of the F1 of a model explicitly trained on this dataset. Hence, RobustSleepNet unlocks the possibility to perform high-quality out-of-the-box automatic sleep staging with any clinical setup. We further show that finetuning RobustSleepNet, using a part of the unseen dataset, increases the F1 by 2% when compared to a model trained specifically for this dataset. Therefore, finetuning might be used to reach a state-of-the-art level of performance on a specific population.
Author Thorey, Valentin
Guillot, Antoine
Author_xml – sequence: 1
  givenname: Antoine
  surname: Guillot
  fullname: Guillot, Antoine
  organization: Algorithm Team, Dreem, Paris, France
– sequence: 2
  givenname: Valentin
  orcidid: 0000-0002-8327-815X
  surname: Thorey
  fullname: Thorey, Valentin
  email: v.thorey@gmail.com
  organization: Algorithm Team, Dreem, Paris, France
BookMark eNp9kE1Lw0AQhhep2A_9A3oJePGSup_ZjTcprQqlQlPPYZNMSkqarbubg__epC0eevA0w8zzDMM7RoPGNIDQPcFTQnD8vFkl6_mUYkqmDMcqjtQVGhEhVNiN8KDvGQ85o3iIxs7tMCYyEvIGDRmnSilJR2ixNlnrfFIDHFbgX4KN1Y0rwQZL0Lapmm1QGhu8tt7stYciOJJB4vW232kfJLmu4RZdl7p2cHeuE_S1mG9m7-Hy8-1j9roMcyapDynHEclYCTqnJCKcEh2RUqkoizkGnklWAJOFUAK0KmQWywh4SaSINMlIjtkEPZ3uHqz5bsH5dF-5HOpaN2Bal1IhOBMMM9WhjxfozrS26b7rKSGplIJ2lDpRuTXOWSjTvPLaV6bxVld1SnDaZ50es077rNNz1p1KL9SDrfba_vwvPZykCgD-hJjHlFDBfgHTy4jq
CODEN ITNSB3
CitedBy_id crossref_primary_10_1109_ACCESS_2023_3293421
crossref_primary_10_1088_1361_6579_ac6049
crossref_primary_10_1109_JBHI_2023_3240437
crossref_primary_10_3390_biomedinformatics3010014
crossref_primary_10_1016_j_neuroimage_2022_118994
crossref_primary_10_1016_j_bspc_2023_105203
crossref_primary_10_1016_j_compbiomed_2024_109515
crossref_primary_10_1111_jsr_14300
crossref_primary_10_3390_s23104950
crossref_primary_10_1109_TIM_2024_3470049
crossref_primary_10_1007_s12204_024_2734_z
crossref_primary_10_1109_JBHI_2023_3310869
crossref_primary_10_3389_fncom_2024_1505746
crossref_primary_10_3389_fphys_2023_1287342
crossref_primary_10_1109_LSP_2022_3215086
crossref_primary_10_1109_TNSRE_2022_3144169
crossref_primary_10_3389_fnins_2023_1143495
crossref_primary_10_3390_physiologia4010001
crossref_primary_10_1142_S0219519424500064
crossref_primary_10_1016_j_jsmc_2023_05_002
crossref_primary_10_3390_bioengineering11121226
crossref_primary_10_1109_JBHI_2023_3337261
crossref_primary_10_5664_jcsm_11380
crossref_primary_10_1088_1741_2552_ac6ca8
crossref_primary_10_1093_sleep_zsae202
crossref_primary_10_1007_s41237_023_00199_x
crossref_primary_10_3390_diagnostics14090909
crossref_primary_10_1109_TBME_2022_3147187
crossref_primary_10_1038_s41598_024_76197_0
crossref_primary_10_3390_s22228804
crossref_primary_10_3390_electronics12112394
crossref_primary_10_1109_JBHI_2023_3303197
crossref_primary_10_1145_3550314
crossref_primary_10_1093_sleep_zsad242
crossref_primary_10_1007_s42979_024_03310_5
crossref_primary_10_1016_j_bspc_2023_105062
crossref_primary_10_3389_fnins_2023_1176551
crossref_primary_10_1109_JBHI_2024_3457969
crossref_primary_10_1016_j_compbiomed_2025_109735
crossref_primary_10_1186_s12911_024_02522_2
crossref_primary_10_1016_j_compbiomed_2024_108205
crossref_primary_10_1109_TNSRE_2022_3173994
crossref_primary_10_1016_j_sleh_2024_08_007
crossref_primary_10_1109_TNSRE_2023_3246478
crossref_primary_10_1016_j_bspc_2022_104009
crossref_primary_10_1109_JBHI_2023_3253728
crossref_primary_10_3389_fphys_2023_1188678
crossref_primary_10_1016_j_compbiomed_2023_107501
crossref_primary_10_1186_s12938_022_01033_3
crossref_primary_10_1007_s10462_022_10332_z
crossref_primary_10_1007_s10462_024_10926_9
crossref_primary_10_1142_S012906572550008X
crossref_primary_10_3389_fnins_2023_1167723
crossref_primary_10_1007_s11760_023_02792_9
crossref_primary_10_1109_JSEN_2022_3140383
crossref_primary_10_1109_TBME_2022_3174680
crossref_primary_10_1016_j_asoc_2025_112722
crossref_primary_10_3390_bioengineering11030206
crossref_primary_10_1016_j_eswa_2023_121427
crossref_primary_10_1038_s41746_023_00784_0
crossref_primary_10_1007_s11517_024_03096_x
crossref_primary_10_1007_s13534_022_00244_w
Cites_doi 10.1093/sleep/zsaa097
10.23919/EUSIPCO.2019.8902977
10.1145/3233547.3233725
10.1109/EMBC.2018.8512214
10.1088/1361-6579/ab921e
10.1016/j.bspc.2017.12.001
10.1109/TNSRE.2017.2721116
10.1109/EMBC.2019.8856877
10.1109/TNSRE.2020.3011181
10.1109/TPAMI.2021.3070057
10.1016/j.cct.2005.05.005
10.1093/sleep/21.7.759
10.5664/jcsm.3630
10.1109/10.867928
10.1016/j.cct.2005.05.006
10.1109/PRNI.2018.8423957
10.1038/s41467-018-07229-3
10.5665/sleep.5774
10.1109/TNSRE.2019.2896659
10.1111/jsr.12169
10.1016/j.bspc.2020.102037
10.1111/j.1532-5415.2011.03731.x
10.1109/EMBC.2015.7319762
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/TNSRE.2021.3098968
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Neurosciences Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1558-0210
EndPage 1451
ExternalDocumentID 10_1109_TNSRE_2021_3098968
9492125
Genre orig-research
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
AIBXA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
GROUPED_DOAJ
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c372t-24061b3feac2161421a61f886b940e4b73de37d585ea8d7b976e4f1756a1b1c03
IEDL.DBID RIE
ISSN 1534-4320
1558-0210
IngestDate Thu Jul 10 17:35:32 EDT 2025
Mon Jul 14 06:58:18 EDT 2025
Tue Jul 01 00:43:23 EDT 2025
Thu Apr 24 22:52:56 EDT 2025
Wed Aug 27 02:40:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-24061b3feac2161421a61f886b940e4b73de37d585ea8d7b976e4f1756a1b1c03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8327-815X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9492125
PMID 34288872
PQID 2555727752
PQPubID 85423
PageCount 11
ParticipantIDs proquest_miscellaneous_2554353038
crossref_citationtrail_10_1109_TNSRE_2021_3098968
crossref_primary_10_1109_TNSRE_2021_3098968
proquest_journals_2555727752
ieee_primary_9492125
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAbbrev TNSRE
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref15
ref14
iber (ref1) 2007
ref31
ref30
ref33
ref11
ref10
ref2
rechtschaffen (ref25) 1973
ref16
srivastava (ref20) 2014; 15
quan (ref32) 1997; 20
perslev (ref9) 2019
chung (ref19) 2014; abs 1412 3555
ref24
paszke (ref18) 2017
ref26
fernández-varela (ref23) 2019
ref21
ref28
ref27
ref29
ref8
ref7
ref4
bahdanau (ref17) 2014
ref3
jia (ref22) 2020
ref6
ref5
phan (ref12) 2019
References_xml – volume: abs 1412 3555
  start-page: 1
  year: 2014
  ident: ref19
  article-title: Empirical evaluation of gated recurrent neural networks on sequence modeling
  publication-title: CoRR
– ident: ref6
  doi: 10.1093/sleep/zsaa097
– volume: 20
  start-page: 1077
  year: 1997
  ident: ref32
  article-title: The sleep heart health study: Design, rationale, and methods
  publication-title: Sleep
– ident: ref15
  doi: 10.23919/EUSIPCO.2019.8902977
– ident: ref31
  doi: 10.1145/3233547.3233725
– year: 1973
  ident: ref25
  publication-title: A Manual Standardized Terminology Techn Scoring Syst for Sleep Stages Human Subjects
– ident: ref34
  doi: 10.1109/EMBC.2018.8512214
– ident: ref16
  doi: 10.1088/1361-6579/ab921e
– ident: ref24
  doi: 10.1016/j.bspc.2017.12.001
– ident: ref7
  doi: 10.1109/TNSRE.2017.2721116
– ident: ref3
  doi: 10.1109/EMBC.2019.8856877
– volume: 15
  start-page: 1929
  year: 2014
  ident: ref20
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J Mach Learn Res
– ident: ref5
  doi: 10.1109/TNSRE.2020.3011181
– year: 2007
  ident: ref1
  publication-title: The AASM Manual for the scoring of sleep and associated events Rules terminology and technical specifications
– ident: ref10
  doi: 10.1109/TPAMI.2021.3070057
– ident: ref27
  doi: 10.1016/j.cct.2005.05.005
– ident: ref33
  doi: 10.1093/sleep/21.7.759
– ident: ref4
  doi: 10.5664/jcsm.3630
– ident: ref14
  doi: 10.1109/10.867928
– ident: ref28
  doi: 10.1016/j.cct.2005.05.006
– ident: ref11
  doi: 10.1109/PRNI.2018.8423957
– ident: ref2
  doi: 10.1038/s41467-018-07229-3
– ident: ref30
  doi: 10.5665/sleep.5774
– ident: ref8
  doi: 10.1109/TNSRE.2019.2896659
– ident: ref13
  doi: 10.1111/jsr.12169
– start-page: 1
  year: 2017
  ident: ref18
  article-title: Automatic differentiation in PyTorch
  publication-title: Proc NIPS Autodiff Workshop
– ident: ref21
  doi: 10.1016/j.bspc.2020.102037
– year: 2019
  ident: ref12
  article-title: Towards more accurate automatic sleep staging via deep transfer learning
  publication-title: arXiv 1907 13177
– start-page: 1324
  year: 2020
  ident: ref22
  article-title: Graphsleepnet: Adaptive spatial-temporal graph convolutional networks for sleep stage classification
  publication-title: Proc 29th Int Joint Conf Artif Intell
– ident: ref29
  doi: 10.1111/j.1532-5415.2011.03731.x
– year: 2019
  ident: ref9
  article-title: U-time: A fully convolutional network for time series segmentation applied to sleep staging
  publication-title: arXiv 1910 11162
– year: 2019
  ident: ref23
  article-title: A convolutional network for sleep stages classification
  publication-title: arXiv 1902 05748
– year: 2014
  ident: ref17
  article-title: Neural machine translation by jointly learning to align and translate
  publication-title: arXiv 1409 0473
– ident: ref26
  doi: 10.1109/EMBC.2015.7319762
SSID ssj0017657
Score 2.5881257
Snippet Sleep disorder diagnosis relies on the analysis of polysomnography (PSG) records. As a preliminary step of this examination, sleep stages are systematically...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1441
SubjectTerms Automated sleep stage classification
Brain modeling
Classification
Datasets
Deep learning
Demographics
Demography
EEG
Electroencephalography
Electromyography
Electrooculography
Human performance
Inspection
Machine learning
PSG
Sleep
Sleep disorders
Training
Transfer learning
Visual signals
Title RobustSleepNet: Transfer Learning for Automated Sleep Staging at Scale
URI https://ieeexplore.ieee.org/document/9492125
https://www.proquest.com/docview/2555727752
https://www.proquest.com/docview/2554353038
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4Bp15aKK26vORKtBfIYsdOHPeGKlYIiT3sLhK3KLYnPRRtECSX_vqOnWxU2qrqLVImD-vzeL7PjxmAUy2V49zLBB1JFCW9SKpKpkktQtk0ivDaB6F4O8-v79TNfXa_BefjWRhEjJvPcBou41q-b1wXpsoujDI00mbbsE3CrT-rNa4Y6Dxm9SQHVvTJlG8OyHBzsZovF1ckBVMxldwUJg9F-iTxbnKw9EU8igVW_hiVY6iZvYHbzU_2O0y-T7vWTt2P3_I3_m8rduH1wDnZZd9J9mAL12_h06_5hdmqTy7APrPFi9Td-zBbNLZ7bpcPiI9zbL-wGN1qfGJDatZvjHgvu-zahsgvehYtGZHYUP6IVS1bUjfAd3A3u1p9vU6G4guJkzptkxjpraxpYE6JFapUVLmoiyK3RnFUVkuPUntSG1gVXluiNahqIiN5JaxwXL6HnXWzxg_ASEQWptAuq7xTRqDNjSyymmKjqZWVfAJiA0HphuaFAhkPZVQo3JQRwTIgWA4ITuBsfOaxz8vxT-v9gMNoOUAwgaMN0uXgus8laayMSJ3O0gl8HG-T04WVlGqNTRdtiGZS9C8O_v7mQ3gVvt_P1RzBTvvU4TGxl9aeRNV_EjvvT8yo6HA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoALr4JYKGAk4ALZ-pU45lahrhbo7mF3K_UWxfGEA9WmapMLv56xk40oIMQtUiYPazz-vs-PGYA3RumKc68SrEiiaOVFUpZKJrUIZdMI4Y0PQnGxzOZn-st5er4HH8azMIgYN5_hNFzGtXzfVF2YKjuy2tJIm96C24T7qexPa41rBiaLeT0phDV9VPLdERlujzbL9eqExKAUU8VtbrNQpk8R86YQkzcQKZZY-WNcjmAzuw-L3W_2e0y-T7vWTasfv2Vw_N92PIB7A-tkx303eQh7uH0Eb3_NMMw2fXoB9o6tbiTvPoDZqnHddbu-QLxcYvuRRXyr8YoNyVm_MWK-7LhrG6K_6Fm0ZERjQwEkVrZsTR0BH8PZ7GTzaZ4M5ReSShnZJhHrnappaJbEC7UUZSbqPM-c1Ry1M8qjMp70Bpa5N46IDeqa6EhWCicqrp7A_rbZ4lNgJCNzm5sqLX2lrUCXWZWnNaGjrbVTfAJi54KiGpoXSmRcFFGjcFtEDxbBg8XgwQm8H5-57DNz_NP6IPhhtBxcMIHDnaeLIXivC1JZKdE6k8oJvB5vU9iFtZRyi00XbYhoEv7nz_7-5ldwZ75ZnBann5dfn8Pd8C_9zM0h7LdXHb4gLtO6l7EL_wSc2-rF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RobustSleepNet%3A+Transfer+Learning+for+Automated+Sleep+Staging+at+Scale&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Guillot%2C+Antoine&rft.au=Thorey%2C+Valentin&rft.date=2021&rft.issn=1534-4320&rft.eissn=1558-0210&rft.volume=29&rft.spage=1441&rft.epage=1451&rft_id=info:doi/10.1109%2FTNSRE.2021.3098968&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNSRE_2021_3098968
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon