RobustSleepNet: Transfer Learning for Automated Sleep Staging at Scale
Sleep disorder diagnosis relies on the analysis of polysomnography (PSG) records. As a preliminary step of this examination, sleep stages are systematically determined. In practice, sleep stage classification relies on the visual inspection of 30-second epochs of polysomnography signals. Numerous au...
Saved in:
Published in | IEEE transactions on neural systems and rehabilitation engineering Vol. 29; pp. 1441 - 1451 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Sleep disorder diagnosis relies on the analysis of polysomnography (PSG) records. As a preliminary step of this examination, sleep stages are systematically determined. In practice, sleep stage classification relies on the visual inspection of 30-second epochs of polysomnography signals. Numerous automatic approaches have been developed to replace this tedious and expensive task. Although these methods demonstrated better performance than human sleep experts on specific datasets, they remain largely unused in sleep clinics. The main reason is that each sleep clinic uses a specific PSG montage that most automatic approaches cannot handle out-of-the-box. Moreover, even when the PSG montage is compatible, publications have shown that automatic approaches perform poorly on unseen data with different demographics. To address these issues, we introduce RobustSleepNet, a deep learning model for automatic sleep stage classification able to handle arbitrary PSG montages. We trained and evaluated this model in a leave-one-out-dataset fashion on a large corpus of 8 heterogeneous sleep staging datasets to make it robust to demographic changes. When evaluated on an unseen dataset, RobustSleepNet reaches 97% of the F1 of a model explicitly trained on this dataset. Hence, RobustSleepNet unlocks the possibility to perform high-quality out-of-the-box automatic sleep staging with any clinical setup. We further show that finetuning RobustSleepNet, using a part of the unseen dataset, increases the F1 by 2% when compared to a model trained specifically for this dataset. Therefore, finetuning might be used to reach a state-of-the-art level of performance on a specific population. |
---|---|
AbstractList | Sleep disorder diagnosis relies on the analysis of polysomnography (PSG) records. As a preliminary step of this examination, sleep stages are systematically determined. In practice, sleep stage classification relies on the visual inspection of 30-second epochs of polysomnography signals. Numerous automatic approaches have been developed to replace this tedious and expensive task. Although these methods demonstrated better performance than human sleep experts on specific datasets, they remain largely unused in sleep clinics. The main reason is that each sleep clinic uses a specific PSG montage that most automatic approaches cannot handle out-of-the-box. Moreover, even when the PSG montage is compatible, publications have shown that automatic approaches perform poorly on unseen data with different demographics. To address these issues, we introduce RobustSleepNet, a deep learning model for automatic sleep stage classification able to handle arbitrary PSG montages. We trained and evaluated this model in a leave-one-out-dataset fashion on a large corpus of 8 heterogeneous sleep staging datasets to make it robust to demographic changes. When evaluated on an unseen dataset, RobustSleepNet reaches 97% of the F1 of a model explicitly trained on this dataset. Hence, RobustSleepNet unlocks the possibility to perform high-quality out-of-the-box automatic sleep staging with any clinical setup. We further show that finetuning RobustSleepNet, using a part of the unseen dataset, increases the F1 by 2% when compared to a model trained specifically for this dataset. Therefore, finetuning might be used to reach a state-of-the-art level of performance on a specific population.Sleep disorder diagnosis relies on the analysis of polysomnography (PSG) records. As a preliminary step of this examination, sleep stages are systematically determined. In practice, sleep stage classification relies on the visual inspection of 30-second epochs of polysomnography signals. Numerous automatic approaches have been developed to replace this tedious and expensive task. Although these methods demonstrated better performance than human sleep experts on specific datasets, they remain largely unused in sleep clinics. The main reason is that each sleep clinic uses a specific PSG montage that most automatic approaches cannot handle out-of-the-box. Moreover, even when the PSG montage is compatible, publications have shown that automatic approaches perform poorly on unseen data with different demographics. To address these issues, we introduce RobustSleepNet, a deep learning model for automatic sleep stage classification able to handle arbitrary PSG montages. We trained and evaluated this model in a leave-one-out-dataset fashion on a large corpus of 8 heterogeneous sleep staging datasets to make it robust to demographic changes. When evaluated on an unseen dataset, RobustSleepNet reaches 97% of the F1 of a model explicitly trained on this dataset. Hence, RobustSleepNet unlocks the possibility to perform high-quality out-of-the-box automatic sleep staging with any clinical setup. We further show that finetuning RobustSleepNet, using a part of the unseen dataset, increases the F1 by 2% when compared to a model trained specifically for this dataset. Therefore, finetuning might be used to reach a state-of-the-art level of performance on a specific population. Sleep disorder diagnosis relies on the analysis of polysomnography (PSG) records. As a preliminary step of this examination, sleep stages are systematically determined. In practice, sleep stage classification relies on the visual inspection of 30-second epochs of polysomnography signals. Numerous automatic approaches have been developed to replace this tedious and expensive task. Although these methods demonstrated better performance than human sleep experts on specific datasets, they remain largely unused in sleep clinics. The main reason is that each sleep clinic uses a specific PSG montage that most automatic approaches cannot handle out-of-the-box. Moreover, even when the PSG montage is compatible, publications have shown that automatic approaches perform poorly on unseen data with different demographics. To address these issues, we introduce RobustSleepNet, a deep learning model for automatic sleep stage classification able to handle arbitrary PSG montages. We trained and evaluated this model in a leave-one-out-dataset fashion on a large corpus of 8 heterogeneous sleep staging datasets to make it robust to demographic changes. When evaluated on an unseen dataset, RobustSleepNet reaches 97% of the F1 of a model explicitly trained on this dataset. Hence, RobustSleepNet unlocks the possibility to perform high-quality out-of-the-box automatic sleep staging with any clinical setup. We further show that finetuning RobustSleepNet, using a part of the unseen dataset, increases the F1 by 2% when compared to a model trained specifically for this dataset. Therefore, finetuning might be used to reach a state-of-the-art level of performance on a specific population. |
Author | Thorey, Valentin Guillot, Antoine |
Author_xml | – sequence: 1 givenname: Antoine surname: Guillot fullname: Guillot, Antoine organization: Algorithm Team, Dreem, Paris, France – sequence: 2 givenname: Valentin orcidid: 0000-0002-8327-815X surname: Thorey fullname: Thorey, Valentin email: v.thorey@gmail.com organization: Algorithm Team, Dreem, Paris, France |
BookMark | eNp9kE1Lw0AQhhep2A_9A3oJePGSup_ZjTcprQqlQlPPYZNMSkqarbubg__epC0eevA0w8zzDMM7RoPGNIDQPcFTQnD8vFkl6_mUYkqmDMcqjtQVGhEhVNiN8KDvGQ85o3iIxs7tMCYyEvIGDRmnSilJR2ixNlnrfFIDHFbgX4KN1Y0rwQZL0Lapmm1QGhu8tt7stYciOJJB4vW232kfJLmu4RZdl7p2cHeuE_S1mG9m7-Hy8-1j9roMcyapDynHEclYCTqnJCKcEh2RUqkoizkGnklWAJOFUAK0KmQWywh4SaSINMlIjtkEPZ3uHqz5bsH5dF-5HOpaN2Bal1IhOBMMM9WhjxfozrS26b7rKSGplIJ2lDpRuTXOWSjTvPLaV6bxVld1SnDaZ50es077rNNz1p1KL9SDrfba_vwvPZykCgD-hJjHlFDBfgHTy4jq |
CODEN | ITNSB3 |
CitedBy_id | crossref_primary_10_1109_ACCESS_2023_3293421 crossref_primary_10_1088_1361_6579_ac6049 crossref_primary_10_1109_JBHI_2023_3240437 crossref_primary_10_3390_biomedinformatics3010014 crossref_primary_10_1016_j_neuroimage_2022_118994 crossref_primary_10_1016_j_bspc_2023_105203 crossref_primary_10_1016_j_compbiomed_2024_109515 crossref_primary_10_1111_jsr_14300 crossref_primary_10_3390_s23104950 crossref_primary_10_1109_TIM_2024_3470049 crossref_primary_10_1007_s12204_024_2734_z crossref_primary_10_1109_JBHI_2023_3310869 crossref_primary_10_3389_fncom_2024_1505746 crossref_primary_10_3389_fphys_2023_1287342 crossref_primary_10_1109_LSP_2022_3215086 crossref_primary_10_1109_TNSRE_2022_3144169 crossref_primary_10_3389_fnins_2023_1143495 crossref_primary_10_3390_physiologia4010001 crossref_primary_10_1142_S0219519424500064 crossref_primary_10_1016_j_jsmc_2023_05_002 crossref_primary_10_3390_bioengineering11121226 crossref_primary_10_1109_JBHI_2023_3337261 crossref_primary_10_5664_jcsm_11380 crossref_primary_10_1088_1741_2552_ac6ca8 crossref_primary_10_1093_sleep_zsae202 crossref_primary_10_1007_s41237_023_00199_x crossref_primary_10_3390_diagnostics14090909 crossref_primary_10_1109_TBME_2022_3147187 crossref_primary_10_1038_s41598_024_76197_0 crossref_primary_10_3390_s22228804 crossref_primary_10_3390_electronics12112394 crossref_primary_10_1109_JBHI_2023_3303197 crossref_primary_10_1145_3550314 crossref_primary_10_1093_sleep_zsad242 crossref_primary_10_1007_s42979_024_03310_5 crossref_primary_10_1016_j_bspc_2023_105062 crossref_primary_10_3389_fnins_2023_1176551 crossref_primary_10_1109_JBHI_2024_3457969 crossref_primary_10_1016_j_compbiomed_2025_109735 crossref_primary_10_1186_s12911_024_02522_2 crossref_primary_10_1016_j_compbiomed_2024_108205 crossref_primary_10_1109_TNSRE_2022_3173994 crossref_primary_10_1016_j_sleh_2024_08_007 crossref_primary_10_1109_TNSRE_2023_3246478 crossref_primary_10_1016_j_bspc_2022_104009 crossref_primary_10_1109_JBHI_2023_3253728 crossref_primary_10_3389_fphys_2023_1188678 crossref_primary_10_1016_j_compbiomed_2023_107501 crossref_primary_10_1186_s12938_022_01033_3 crossref_primary_10_1007_s10462_022_10332_z crossref_primary_10_1007_s10462_024_10926_9 crossref_primary_10_1142_S012906572550008X crossref_primary_10_3389_fnins_2023_1167723 crossref_primary_10_1007_s11760_023_02792_9 crossref_primary_10_1109_JSEN_2022_3140383 crossref_primary_10_1109_TBME_2022_3174680 crossref_primary_10_1016_j_asoc_2025_112722 crossref_primary_10_3390_bioengineering11030206 crossref_primary_10_1016_j_eswa_2023_121427 crossref_primary_10_1038_s41746_023_00784_0 crossref_primary_10_1007_s11517_024_03096_x crossref_primary_10_1007_s13534_022_00244_w |
Cites_doi | 10.1093/sleep/zsaa097 10.23919/EUSIPCO.2019.8902977 10.1145/3233547.3233725 10.1109/EMBC.2018.8512214 10.1088/1361-6579/ab921e 10.1016/j.bspc.2017.12.001 10.1109/TNSRE.2017.2721116 10.1109/EMBC.2019.8856877 10.1109/TNSRE.2020.3011181 10.1109/TPAMI.2021.3070057 10.1016/j.cct.2005.05.005 10.1093/sleep/21.7.759 10.5664/jcsm.3630 10.1109/10.867928 10.1016/j.cct.2005.05.006 10.1109/PRNI.2018.8423957 10.1038/s41467-018-07229-3 10.5665/sleep.5774 10.1109/TNSRE.2019.2896659 10.1111/jsr.12169 10.1016/j.bspc.2020.102037 10.1111/j.1532-5415.2011.03731.x 10.1109/EMBC.2015.7319762 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
DOI | 10.1109/TNSRE.2021.3098968 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Neurosciences Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Occupational Therapy & Rehabilitation |
EISSN | 1558-0210 |
EndPage | 1451 |
ExternalDocumentID | 10_1109_TNSRE_2021_3098968 9492125 |
Genre | orig-research |
GroupedDBID | --- -~X 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACGFO ACGFS ACIWK ACPRK AENEX AETIX AFPKN AFRAH AGSQL AIBXA ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P GROUPED_DOAJ HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL OK1 P2P RIA RIE RNS AAYXX CITATION RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c372t-24061b3feac2161421a61f886b940e4b73de37d585ea8d7b976e4f1756a1b1c03 |
IEDL.DBID | RIE |
ISSN | 1534-4320 1558-0210 |
IngestDate | Thu Jul 10 17:35:32 EDT 2025 Mon Jul 14 06:58:18 EDT 2025 Tue Jul 01 00:43:23 EDT 2025 Thu Apr 24 22:52:56 EDT 2025 Wed Aug 27 02:40:04 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-24061b3feac2161421a61f886b940e4b73de37d585ea8d7b976e4f1756a1b1c03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8327-815X |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9492125 |
PMID | 34288872 |
PQID | 2555727752 |
PQPubID | 85423 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2554353038 crossref_citationtrail_10_1109_TNSRE_2021_3098968 crossref_primary_10_1109_TNSRE_2021_3098968 proquest_journals_2555727752 ieee_primary_9492125 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210000 2021-00-00 20210101 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 20210000 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on neural systems and rehabilitation engineering |
PublicationTitleAbbrev | TNSRE |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref34 ref15 ref14 iber (ref1) 2007 ref31 ref30 ref33 ref11 ref10 ref2 rechtschaffen (ref25) 1973 ref16 srivastava (ref20) 2014; 15 quan (ref32) 1997; 20 perslev (ref9) 2019 chung (ref19) 2014; abs 1412 3555 ref24 paszke (ref18) 2017 ref26 fernández-varela (ref23) 2019 ref21 ref28 ref27 ref29 ref8 ref7 ref4 bahdanau (ref17) 2014 ref3 jia (ref22) 2020 ref6 ref5 phan (ref12) 2019 |
References_xml | – volume: abs 1412 3555 start-page: 1 year: 2014 ident: ref19 article-title: Empirical evaluation of gated recurrent neural networks on sequence modeling publication-title: CoRR – ident: ref6 doi: 10.1093/sleep/zsaa097 – volume: 20 start-page: 1077 year: 1997 ident: ref32 article-title: The sleep heart health study: Design, rationale, and methods publication-title: Sleep – ident: ref15 doi: 10.23919/EUSIPCO.2019.8902977 – ident: ref31 doi: 10.1145/3233547.3233725 – year: 1973 ident: ref25 publication-title: A Manual Standardized Terminology Techn Scoring Syst for Sleep Stages Human Subjects – ident: ref34 doi: 10.1109/EMBC.2018.8512214 – ident: ref16 doi: 10.1088/1361-6579/ab921e – ident: ref24 doi: 10.1016/j.bspc.2017.12.001 – ident: ref7 doi: 10.1109/TNSRE.2017.2721116 – ident: ref3 doi: 10.1109/EMBC.2019.8856877 – volume: 15 start-page: 1929 year: 2014 ident: ref20 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: J Mach Learn Res – ident: ref5 doi: 10.1109/TNSRE.2020.3011181 – year: 2007 ident: ref1 publication-title: The AASM Manual for the scoring of sleep and associated events Rules terminology and technical specifications – ident: ref10 doi: 10.1109/TPAMI.2021.3070057 – ident: ref27 doi: 10.1016/j.cct.2005.05.005 – ident: ref33 doi: 10.1093/sleep/21.7.759 – ident: ref4 doi: 10.5664/jcsm.3630 – ident: ref14 doi: 10.1109/10.867928 – ident: ref28 doi: 10.1016/j.cct.2005.05.006 – ident: ref11 doi: 10.1109/PRNI.2018.8423957 – ident: ref2 doi: 10.1038/s41467-018-07229-3 – ident: ref30 doi: 10.5665/sleep.5774 – ident: ref8 doi: 10.1109/TNSRE.2019.2896659 – ident: ref13 doi: 10.1111/jsr.12169 – start-page: 1 year: 2017 ident: ref18 article-title: Automatic differentiation in PyTorch publication-title: Proc NIPS Autodiff Workshop – ident: ref21 doi: 10.1016/j.bspc.2020.102037 – year: 2019 ident: ref12 article-title: Towards more accurate automatic sleep staging via deep transfer learning publication-title: arXiv 1907 13177 – start-page: 1324 year: 2020 ident: ref22 article-title: Graphsleepnet: Adaptive spatial-temporal graph convolutional networks for sleep stage classification publication-title: Proc 29th Int Joint Conf Artif Intell – ident: ref29 doi: 10.1111/j.1532-5415.2011.03731.x – year: 2019 ident: ref9 article-title: U-time: A fully convolutional network for time series segmentation applied to sleep staging publication-title: arXiv 1910 11162 – year: 2019 ident: ref23 article-title: A convolutional network for sleep stages classification publication-title: arXiv 1902 05748 – year: 2014 ident: ref17 article-title: Neural machine translation by jointly learning to align and translate publication-title: arXiv 1409 0473 – ident: ref26 doi: 10.1109/EMBC.2015.7319762 |
SSID | ssj0017657 |
Score | 2.5881257 |
Snippet | Sleep disorder diagnosis relies on the analysis of polysomnography (PSG) records. As a preliminary step of this examination, sleep stages are systematically... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1441 |
SubjectTerms | Automated sleep stage classification Brain modeling Classification Datasets Deep learning Demographics Demography EEG Electroencephalography Electromyography Electrooculography Human performance Inspection Machine learning PSG Sleep Sleep disorders Training Transfer learning Visual signals |
Title | RobustSleepNet: Transfer Learning for Automated Sleep Staging at Scale |
URI | https://ieeexplore.ieee.org/document/9492125 https://www.proquest.com/docview/2555727752 https://www.proquest.com/docview/2554353038 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4Bp15aKK26vORKtBfIYsdOHPeGKlYIiT3sLhK3KLYnPRRtECSX_vqOnWxU2qrqLVImD-vzeL7PjxmAUy2V49zLBB1JFCW9SKpKpkktQtk0ivDaB6F4O8-v79TNfXa_BefjWRhEjJvPcBou41q-b1wXpsoujDI00mbbsE3CrT-rNa4Y6Dxm9SQHVvTJlG8OyHBzsZovF1ckBVMxldwUJg9F-iTxbnKw9EU8igVW_hiVY6iZvYHbzU_2O0y-T7vWTt2P3_I3_m8rduH1wDnZZd9J9mAL12_h06_5hdmqTy7APrPFi9Td-zBbNLZ7bpcPiI9zbL-wGN1qfGJDatZvjHgvu-zahsgvehYtGZHYUP6IVS1bUjfAd3A3u1p9vU6G4guJkzptkxjpraxpYE6JFapUVLmoiyK3RnFUVkuPUntSG1gVXluiNahqIiN5JaxwXL6HnXWzxg_ASEQWptAuq7xTRqDNjSyymmKjqZWVfAJiA0HphuaFAhkPZVQo3JQRwTIgWA4ITuBsfOaxz8vxT-v9gMNoOUAwgaMN0uXgus8laayMSJ3O0gl8HG-T04WVlGqNTRdtiGZS9C8O_v7mQ3gVvt_P1RzBTvvU4TGxl9aeRNV_EjvvT8yo6HA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoALr4JYKGAk4ALZ-pU45lahrhbo7mF3K_UWxfGEA9WmapMLv56xk40oIMQtUiYPazz-vs-PGYA3RumKc68SrEiiaOVFUpZKJrUIZdMI4Y0PQnGxzOZn-st5er4HH8azMIgYN5_hNFzGtXzfVF2YKjuy2tJIm96C24T7qexPa41rBiaLeT0phDV9VPLdERlujzbL9eqExKAUU8VtbrNQpk8R86YQkzcQKZZY-WNcjmAzuw-L3W_2e0y-T7vWTasfv2Vw_N92PIB7A-tkx303eQh7uH0Eb3_NMMw2fXoB9o6tbiTvPoDZqnHddbu-QLxcYvuRRXyr8YoNyVm_MWK-7LhrG6K_6Fm0ZERjQwEkVrZsTR0BH8PZ7GTzaZ4M5ReSShnZJhHrnappaJbEC7UUZSbqPM-c1Ry1M8qjMp70Bpa5N46IDeqa6EhWCicqrp7A_rbZ4lNgJCNzm5sqLX2lrUCXWZWnNaGjrbVTfAJi54KiGpoXSmRcFFGjcFtEDxbBg8XgwQm8H5-57DNz_NP6IPhhtBxcMIHDnaeLIXivC1JZKdE6k8oJvB5vU9iFtZRyi00XbYhoEv7nz_7-5ldwZ75ZnBann5dfn8Pd8C_9zM0h7LdXHb4gLtO6l7EL_wSc2-rF |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RobustSleepNet%3A+Transfer+Learning+for+Automated+Sleep+Staging+at+Scale&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Guillot%2C+Antoine&rft.au=Thorey%2C+Valentin&rft.date=2021&rft.issn=1534-4320&rft.eissn=1558-0210&rft.volume=29&rft.spage=1441&rft.epage=1451&rft_id=info:doi/10.1109%2FTNSRE.2021.3098968&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNSRE_2021_3098968 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon |