A framework to model the STPA hierarchical control structure of an autonomous ship
•A framework to model a hierarchical control structure for the STPA analysis of an autonomous ship is presented.•STAMP, STPA and STECA were used as the foundation of the proposed framework.•The framework makes use of the available knowledge of current shipping operation and seafarers experience.•The...
Saved in:
Published in | Safety science Vol. 132; p. 104939 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier Ltd
01.12.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A framework to model a hierarchical control structure for the STPA analysis of an autonomous ship is presented.•STAMP, STPA and STECA were used as the foundation of the proposed framework.•The framework makes use of the available knowledge of current shipping operation and seafarers experience.•The resulting control structure of shipping operation includes the autonomous ship and the Shore-based Control Centre as controlled processes.•The application to the Autonomous Navigation System reveals substantial information for the safety of autonomous ships.
The demand for risk and safety analysis is becoming greater due to the increased complexity of modern systems such as autonomous ships. Safety is one of the main motivations behind the efforts of multiple organizations to develop autonomous ships. The adoption of an early system-theoretic approach to safety such as System Theoretic Process Analysis (STPA) is an effective way to integrate safety in complex systems. Furthermore, many authors have urged the use of this method to analyse the risks of autonomous vessels in the development phases. Applying STPA requires a description of the system to model the hierarchical control structure and conduct the analysis. At this stage, the functional description of autonomous ships remains limited, which poses a challenge in building the hierarchical control structure. This paper proposes a framework for developing a hierarchical control structure of an autonomous ship. The framework is founded on the principles of the STPA control structure and its five main elements. It makes use of the current shipping operation system, the available information about autonomous ships and the experience of seafarers executing diverse tasks on-board conventional ships. The application of the framework showed that the information provided by the seafarers is essential in developing an initial functional description of an autonomous ship. Furthermore, the results revealed that in addition to the technical aspects of autonomous ships, introducing these vessels into the organizational control structure of current maritime operation also poses challenges that need to be addressed in the earliest design phase. |
---|---|
AbstractList | The demand for risk and safety analysis is becoming greater due to the increased complexity of modern systems such as autonomous ships. Safety is one of the main motivations behind the efforts of multiple organizations to develop autonomous ships. The adoption of an early system-theoretic approach to safety such as System Theoretic Process Analysis (STPA) is an effective way to integrate safety in complex systems. Furthermore, many authors have urged the use of this method to analyse the risks of autonomous vessels in the development phases. Applying STPA requires a description of the system to model the hierarchical control structure and conduct the analysis. At this stage, the functional description of autonomous ships remains limited, which poses a challenge in building the hierarchical control structure. This paper proposes a framework for developing a hierarchical control structure of an autonomous ship. The framework is founded on the principles of the STPA control structure and its five main elements. It makes use of the current shipping operation system, the available information about autonomous ships and the experience of seafarers executing diverse tasks on-board conventional ships. The application of the framework showed that the information provided by the seafarers is essential in developing an initial functional description of an autonomous ship. Furthermore, the results revealed that in addition to the technical aspects of autonomous ships, introducing these vessels into the organizational control structure of current maritime operation also poses challenges that need to be addressed in the earliest design phase. •A framework to model a hierarchical control structure for the STPA analysis of an autonomous ship is presented.•STAMP, STPA and STECA were used as the foundation of the proposed framework.•The framework makes use of the available knowledge of current shipping operation and seafarers experience.•The resulting control structure of shipping operation includes the autonomous ship and the Shore-based Control Centre as controlled processes.•The application to the Autonomous Navigation System reveals substantial information for the safety of autonomous ships. The demand for risk and safety analysis is becoming greater due to the increased complexity of modern systems such as autonomous ships. Safety is one of the main motivations behind the efforts of multiple organizations to develop autonomous ships. The adoption of an early system-theoretic approach to safety such as System Theoretic Process Analysis (STPA) is an effective way to integrate safety in complex systems. Furthermore, many authors have urged the use of this method to analyse the risks of autonomous vessels in the development phases. Applying STPA requires a description of the system to model the hierarchical control structure and conduct the analysis. At this stage, the functional description of autonomous ships remains limited, which poses a challenge in building the hierarchical control structure. This paper proposes a framework for developing a hierarchical control structure of an autonomous ship. The framework is founded on the principles of the STPA control structure and its five main elements. It makes use of the current shipping operation system, the available information about autonomous ships and the experience of seafarers executing diverse tasks on-board conventional ships. The application of the framework showed that the information provided by the seafarers is essential in developing an initial functional description of an autonomous ship. Furthermore, the results revealed that in addition to the technical aspects of autonomous ships, introducing these vessels into the organizational control structure of current maritime operation also poses challenges that need to be addressed in the earliest design phase. |
ArticleNumber | 104939 |
Author | Hirdaris, Spyros Basnet, Sunil Chaal, Meriam Valdez Banda, Osiris A. Glomsrud, Jon Arne Kujala, Pentti |
Author_xml | – sequence: 1 givenname: Meriam surname: Chaal fullname: Chaal, Meriam email: meriam.chaal@aalto.fi organization: Aalto University, Department of Mechanical Engineering (Marine Technology), Research Group on Safe and Efficient Marine Systems and Experience, Finland – sequence: 2 givenname: Osiris A. surname: Valdez Banda fullname: Valdez Banda, Osiris A. organization: Aalto University, Department of Mechanical Engineering (Marine Technology), Research Group on Safe and Efficient Marine Systems and Experience, Finland – sequence: 3 givenname: Jon Arne surname: Glomsrud fullname: Glomsrud, Jon Arne organization: Group Technology and Research, DNV GL, Norway – sequence: 4 givenname: Sunil surname: Basnet fullname: Basnet, Sunil organization: Aalto University, Department of Mechanical Engineering (Marine Technology), Research Group on Safe and Efficient Marine Systems and Experience, Finland – sequence: 5 givenname: Spyros surname: Hirdaris fullname: Hirdaris, Spyros organization: Aalto University, Department of Mechanical Engineering (Marine Technology), Research Group on Safe and Efficient Marine Systems and Experience, Finland – sequence: 6 givenname: Pentti surname: Kujala fullname: Kujala, Pentti organization: Aalto University, Department of Mechanical Engineering (Marine Technology), Research Group on Safe and Efficient Marine Systems and Experience, Finland |
BookMark | eNp9kEtLxDAUhYOM4Dj6B1wFXHfMo2kbcDMMvmBA0XEdOsktbW2bMUkV_70pde3qci7n3Hv4ztFisAMgdEXJmhKa3bRr73WzZoRNi1RyeYKWtMhlEhVboCWRTCS54OIMnXvfEkIoz-gSvW5w5coevq37wMHi3hrocKgBv-1fNrhuwJVO140uO6ztEJztsA9u1GF0gG2FywGXY7CD7e3osa-b4wU6rcrOw-XfXKH3-7v99jHZPT88bTe7RPOchYQxnXNWaTCSmuwghckYN8AqXggjDoJDRWWVFpALOAgthMxzylJKjCayKDK-Qtfz3aOznyP4oFo7uiG-VCwtMiFomtLoYrNLO-u9g0odXdOX7kdRoiZ2qlUTOzWxUzO7GLqdQxD7f0UGKjpgiF0bBzooY5v_4r9FN3j2 |
CitedBy_id | crossref_primary_10_1016_j_oceaneng_2022_111187 crossref_primary_10_1016_j_oceaneng_2022_111100 crossref_primary_10_1177_1748006X211069705 crossref_primary_10_1016_j_ress_2024_110046 crossref_primary_10_1016_j_ssci_2023_106232 crossref_primary_10_1016_j_oceaneng_2023_116073 crossref_primary_10_3390_jmse12061007 crossref_primary_10_1017_S0373463322000121 crossref_primary_10_1016_j_ssci_2020_105144 crossref_primary_10_1016_j_ress_2022_108355 crossref_primary_10_1016_j_tranpol_2022_10_012 crossref_primary_10_1016_j_cose_2023_103179 crossref_primary_10_1016_j_oceaneng_2022_111252 crossref_primary_10_1016_j_ress_2024_110176 crossref_primary_10_1177_1748006X211051829 crossref_primary_10_1016_j_ress_2022_108709 crossref_primary_10_1016_j_ijcip_2024_100695 crossref_primary_10_1016_j_ress_2021_108246 crossref_primary_10_1016_j_ssci_2021_105566 crossref_primary_10_1016_j_ress_2021_107558 crossref_primary_10_1016_j_ocecoaman_2024_107206 crossref_primary_10_1177_1748006X241233863 crossref_primary_10_3390_jmse12071129 crossref_primary_10_1080_20464177_2024_2302249 crossref_primary_10_1016_j_ijhydene_2024_04_082 crossref_primary_10_3390_app11104553 crossref_primary_10_1155_2022_3437255 crossref_primary_10_1016_j_oceaneng_2022_111045 crossref_primary_10_1016_j_oceaneng_2023_114673 crossref_primary_10_3390_jmse9020180 crossref_primary_10_1109_ACCESS_2023_3243906 crossref_primary_10_3390_app14114609 crossref_primary_10_4031_MTSJ_56_4_11 crossref_primary_10_1016_j_ssci_2023_106256 crossref_primary_10_1080_20464177_2024_2319369 crossref_primary_10_1016_j_ress_2024_109946 crossref_primary_10_1016_j_oceaneng_2024_118444 crossref_primary_10_1109_ACCESS_2024_3360275 crossref_primary_10_3389_fphy_2022_958450 crossref_primary_10_1016_j_ress_2023_109388 crossref_primary_10_1016_j_ress_2021_108176 crossref_primary_10_1016_j_ijnaoe_2022_100457 crossref_primary_10_1080_00140139_2022_2105959 crossref_primary_10_1016_j_oceaneng_2022_111797 crossref_primary_10_1016_j_oceaneng_2022_112643 crossref_primary_10_1057_s41278_022_00212_2 crossref_primary_10_1080_20464177_2024_2315646 crossref_primary_10_3390_su16010328 crossref_primary_10_1016_j_physa_2023_128936 crossref_primary_10_1016_j_ssci_2021_105596 crossref_primary_10_1016_j_oceaneng_2024_117570 crossref_primary_10_1016_j_oceaneng_2024_118174 crossref_primary_10_1088_1742_6596_2618_1_012014 crossref_primary_10_1016_j_ocecoaman_2023_107003 crossref_primary_10_1088_1742_6596_2311_1_012021 crossref_primary_10_1088_1742_6596_2311_1_012024 crossref_primary_10_1016_j_heliyon_2024_e31483 crossref_primary_10_1016_j_aap_2024_107619 crossref_primary_10_1016_j_ress_2023_109195 crossref_primary_10_3390_logistics8010023 |
Cites_doi | 10.7551/mitpress/8179.001.0001 10.1016/j.ress.2019.106757 10.1016/j.ress.2019.106584 10.1016/j.ress.2018.05.019 10.1007/s10669-018-9686-5 10.1109/OCEANSKOBE.2018.8559061 10.2514/1.A32449 10.1016/j.proeng.2015.11.498 10.1016/S0925-7535(03)00047-X 10.1007/s11569-017-0301-x 10.1016/S0925-7535(97)00052-0 10.4271/2015-01-0274 10.3850/978-981-11-2724-3_0105-cd 10.23919/ECC.2019.8796273 10.2478/9788395669606-012 10.1109/MSPEC.2017.7833502 10.1007/s11219-017-9396-0 10.1038/sj.embor.7400227 10.1016/j.ssci.2019.03.024 10.1016/j.oceaneng.2018.07.040 10.1016/j.ress.2019.106697 10.1016/j.ress.2017.03.029 10.1002/j.2334-5837.2015.00111.x 10.4324/9781315665894-18 10.1016/j.ssci.2020.104797 10.1016/j.ress.2014.10.008 10.1007/s10669-014-9488-3 10.1088/1742-6596/1357/1/012024 10.1016/j.ssci.2012.12.005 10.4271/2012-01-2134 10.1051/matecconf/201927302002 |
ContentType | Journal Article |
Copyright | 2020 The Authors Copyright Elsevier BV Dec 2020 |
Copyright_xml | – notice: 2020 The Authors – notice: Copyright Elsevier BV Dec 2020 |
DBID | 6I. AAFTH AAYXX CITATION 7QF 7QQ 7SC 7SE 7SP 7SR 7T2 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D NAPCQ |
DOI | 10.1016/j.ssci.2020.104939 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Aluminium Industry Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Health and Safety Science Abstracts (Full archive) Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Environmental Sciences and Pollution Management Computer and Information Systems Abstracts Professional Aerospace Database Copper Technical Reference Library Nursing & Allied Health Premium Engineered Materials Abstracts Health & Safety Science Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Public Health |
EISSN | 1879-1042 |
ExternalDocumentID | 10_1016_j_ssci_2020_104939 S0925753520303362 |
GroupedDBID | --- --K --M .~1 0R~ 123 13V 1B1 1RT 1~. 1~5 29P 4.4 457 4G. 53G 5VS 6I. 7-5 71M 8P~ 9JM 9JN 9JO AABNK AACTN AAEDT AAEDW AAFJI AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABBQC ABFNM ABIVO ABJNI ABKBG ABLVK ABMAC ABMMH ABMVD ABMZM ABNUV ABXDB ABYKQ ACDAQ ACGFS ACHRH ACIWK ACJTP ACNNM ACNTT ACPRK ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AFXBA AFXIZ AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHPOS AIEXJ AIKHN AISVY AITUG AJBFU AJOXV AJRQY AKURH AKYCK ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOMHK ASPBG AVARZ AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV BNSAS CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F3I F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEH HMK HMO HMY HVGLF HZ~ IHE J1W JJJVA KOM LCYCR M29 M3W M3Y M41 MO0 N9A NAHTW O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ PRBVW Q38 R2- RIG ROL RPZ SAE SDF SDG SES SEW SNG SPC SPCBC SSB SSG SSH SSL SSO SSS SST SSZ T5K UHS WH7 WUQ YHZ ~02 ~G- 0SF AAXKI AAYXX AFJKZ AKRWK CITATION 7QF 7QQ 7SC 7SE 7SP 7SR 7T2 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D NAPCQ |
ID | FETCH-LOGICAL-c372t-22c732fced91d6b95d623de2f385d5b53ef19f48e75eb5c5597712410dc098863 |
IEDL.DBID | .~1 |
ISSN | 0925-7535 |
IngestDate | Thu Oct 10 20:21:44 EDT 2024 Thu Sep 26 18:05:56 EDT 2024 Fri Feb 23 02:46:43 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Maritime safety STAMP System safety engineering STPA Autonomous Navigation System Autonomous ship |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-22c732fced91d6b95d623de2f385d5b53ef19f48e75eb5c5597712410dc098863 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0925753520303362 |
PQID | 2486551441 |
PQPubID | 2045403 |
ParticipantIDs | proquest_journals_2486551441 crossref_primary_10_1016_j_ssci_2020_104939 elsevier_sciencedirect_doi_10_1016_j_ssci_2020_104939 |
PublicationCentury | 2000 |
PublicationDate | December 2020 2020-12-00 20201201 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: December 2020 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Safety science |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Lloyds Register, 2017. LR_Code_for_Unmanned_Marine_Systems. Valdez Banda, Kannos, Goerlandt, van Gelder, Bergström, Kujala (b0255) 2019; 191 Fleming, C.H., 2015. Safety-driven Early Concept Analysis and Development. Wilthil, Flåten, Brekke (b0275) 2017 Heffner, Rødseth (b0060) 2019; 1357 (accessed 8.13.20). Rodseth, O., Nordahl, H., Hoem, A., 2018. Characterization of Autonomy in Merchant Ships, in: 2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO). Presented at the 2018 OCEANS - MTS/IEEE Kobe Techno-Ocean (OTO), IEEE, Kobe, pp. 1–7. https://doi.org/10.1109/OCEANSKOBE.2018.8559061. Kongsberg, 2018. YARA selects Norwegian shipbuilder VARD for zero-emission vessel Yara Birkeland - KONGSBERG [WWW Document]. URL https://www.kongsberg.com/news-and-media/news-archive/2018/yara-selects-norwegian-shipbuilder-vard-for-zero-emission-vessel-yara-birkeland/ (accessed 7.5.19). Wróbel, Montewka, Kujala (b0295) 2018; 178 Renn, Klinke (b0190) 2004; 5 Wróbel, Gil, Montewka (b0280) 2020; 129 MUNIN, 2016. Final Report Summary - MUNIN (Maritime Unmanned Navigation through Intelligence in Networks) | Report Summary | MUNIN | FP7 | CORDIS | European Commission [WWW Document]. URL https://cordis.europa.eu/project/rcn/104631/reporting/en (accessed 6.26.19). Ramos, M.A., Thieme, C., Utne, I.B., Mosleh, A., 2019. Autonomous systems safety – state of the art and challenges. In: 1st IWASS. NTNU. Hollnagel (b0065) 2014 Montewka, J., Wróbel, K., Heikkila, E., Valdez-Banda, O., Goerlandt, F., Haugen, S., 2018. Challenges, solution proposals and research directions in safety and risk assessment of autonomous shipping. Los Angeles 12. IMO, 2018. Report of the maritime safety committee on its one hundredth session. Wróbel, K., Montewka, J., 2019. Comments to the article by Ramos et al. ‘Collision avoidance on maritime autonomous surface ships: Operators’ tasks and human failure events’ (Safety Science Vol. 116, July 2019, pp. 33–44). Saf. Sci. https://doi.org/10.1016/j.ssci.2019.03.024. Smart Ships Coalition, 2017. Smart Ships Coalition [WWW Document]. Smart Ships Coalition. URL https://smartshipscoalition.org/maritime-autonomy-research-site-mars/ (accessed 1.21.20). . Wróbel, Montewka, Kujala (b0300) 2017; 165 Rolls Royce, 2018. Rolls-Royce and Finferries demonstrate world’s first Fully Autonomous Ferry [WWW Document]. URL https://www.rolls-royce.com/media/press-releases.aspx (accessed 1.21.20). Ishimatsu, Leveson, Thomas, Fleming, Katahira, Miyamoto, Ujiie, Nakao, Hoshino (b0095) 2014; 51 Levander (b0110) 2017; 54 IHO, 2020. Home | IHO [WWW Document]. URL https://iho.int/ (accessed 1.19.20). Basnet, Valdez Banda, Hirdaris (b0020) 2019 van de Poel, Robaey (b0265) 2017; 11 Glomsrud, J.A., Xie, J., 2019. A Structured STPA Safety and Security Co-analysis Framework for Autonomous Ships. Presented at the ESREL 2019. IALA, 2020. About IALA [WWW Document]. IALA AISM. URL https://www.iala-aism.org/about-iala/ (accessed 1.19.20). Zou, J., 2018. Systems-Theoretic Process Analysis (STPA) Applied to the Operation of Fully Autonomous Vessels. IMO, 2013. IMO instruments implementation code (III CODE), Resolution A. 1070(28). Kufoalor, D.K.M., Wilthil, E., Hagen, I.B., Brekke, E.F., Johansen, T.A., 2019. Autonomous COLREGs-compliant decision making using maritime radar tracking and model predictive control. In: 2019 18th European Control Conference (ECC). Presented at the 2019 18th European Control Conference (ECC), IEEE, Naples, Italy, pp. 2536–2542. https://doi.org/10.23919/ECC.2019.8796273. Omitola, Downes, Wills, Zwolinski, Butler (b0165) 2018 Autoferry, 2016. Autoferry - NTNU [WWW Document]. URL https://www.ntnu.edu/autoferry (accessed 1.21.20). Leveson, N.G., 2011. Engineering a Safer World, <systems Thinking Applied to Safety. Leveson (b0120) 2004; 42 Ramos, Thieme, Utne, Mosleh (b0175) 2020; 195 Rasmussen (b0180) 1997; 27 Solberg, C.L., 2018. An STPA Analysis of the ReVolt. Linkov, Anklam, Collier, DiMase, Renn (b0140) 2014; 34 AAWA, 2016. Remote and autonomous ships the next steps. Fleming, Leveson (b0045) 2015; 25 Rokseth, Haugen, Utne (b0200) 2019; 273 Utne, I.B., 2017. NTNU Centre for Autonomous Marine Operations and Systems: - Shipping and digitalization. Leveson, Fleming, Spencer, Thomas, Wilkinson (b0130) 2012; 5 Sulaman, Beer, Felderer, Höst (b0220) 2019; 27 Wróbel, Krata, Montewka (b0285) 2019 Fleming, Spencer, Thomas, Leveson, Wilkinson (b0050) 2013; 55 Valdez Banda, O.A., Kujala, P., Goerlandt, F., Bergström, M., Ahola, M., van Gelder, P.H.A.J.M., Sonninen, S., 2018. The need for systematic and systemic safety management for autonomous vessels. Presented at the Marie Design XIII. Thieme, C.A., Guo, C., Utne, I.B., Haugen, S., 2019. Preliminary hazard analysis of a small harbor passenger ferry – results, challenges and further work. J. Phys.: Conf. Ser. 1357, 012024. https://doi.org/10.1088/1742-6596/1357/1/012024. Utne, Rokseth, Sørensen, Vinnem (b0245) 2020; 196 Valdez Banda, O.A., Kannos, S., 2017. Hazard analysis process for autonomous vessels. Thieme, Utne, Haugen (b0230) 2018; 165 Abdulkhaleq, Wagner, Leveson (b0010) 2015; 128 Leveson (b0115) 2015; 136 Ventikos, N.P., Louzis, K., 2019. The Future of Risk in the Context of Autonomous Ship Operation, in: 1st IWASS. Chaal , M. , Valdez-Banda , O.A. , Basnet , S. , Hirdaris , S. , Kujala , P. , 2020 . Proceedings of the international seminar on safety and security of autonomous vessels (ISSAV) and European STAMP Workshop and Conference (ESWC) 2019. Sciendo, Warsaw, Poland . Leveson, N., Thomas, J., 2018. STPA HANDBOOK. Blanke, M., Henriques, M., Bang, J., 2018. A pre-analysis on autonomous ships. Brekke, Wilthil, Eriksen, Kufoalor, Helgesen, Hagen, Breivik, Johansen (b0030) 2019; 1357 IMO, 2019. Autonomous shipping [WWW Document]. URL Linkov, Trump, Anklam, Berube, Boisseasu, Cummings, Ferson, Florin, Goldstein, Hristozov, Jensen, Katalagarianakis, Kuzma, Lambert, Malloy, Malsch, Marcomini, Merad, Palma-Oliveira, Perkins, Renn, Seager, Stone, Vallero, Vermeire (b0145) 2018; 38 Thomas, J., Sgueglia, J., Suo, D., Leveson, N., Vernacchia, M., Sundaram, P., 2015. An integrated approach to requirements development and hazard analysis. Presented at the SAE 2015 World Congress & Exhibition, pp. 2015-01–0274. https://doi.org/10.4271/2015-01-0274. Renn, O., 2017. Risk governance: Concept and application to systemic risk. Risk Conundrums: Solving Unsolvable Problems 243–259. Ramos (10.1016/j.ssci.2020.104939_b0175) 2020; 195 Linkov (10.1016/j.ssci.2020.104939_b0145) 2018; 38 10.1016/j.ssci.2020.104939_b0090 Hollnagel (10.1016/j.ssci.2020.104939_b0065) 2014 10.1016/j.ssci.2020.104939_b0210 10.1016/j.ssci.2020.104939_b0135 10.1016/j.ssci.2020.104939_b0015 van de Poel (10.1016/j.ssci.2020.104939_b0265) 2017; 11 10.1016/j.ssci.2020.104939_b0215 Fleming (10.1016/j.ssci.2020.104939_b0050) 2013; 55 Ishimatsu (10.1016/j.ssci.2020.104939_b0095) 2014; 51 Omitola (10.1016/j.ssci.2020.104939_b0165) 2018 10.1016/j.ssci.2020.104939_b0290 10.1016/j.ssci.2020.104939_b0170 Wilthil (10.1016/j.ssci.2020.104939_b0275) 2017 10.1016/j.ssci.2020.104939_b0250 10.1016/j.ssci.2020.104939_b0055 Wróbel (10.1016/j.ssci.2020.104939_b0280) 2020; 129 Fleming (10.1016/j.ssci.2020.104939_b0045) 2015; 25 10.1016/j.ssci.2020.104939_b0080 Leveson (10.1016/j.ssci.2020.104939_b0130) 2012; 5 Renn (10.1016/j.ssci.2020.104939_b0190) 2004; 5 Heffner (10.1016/j.ssci.2020.104939_b0060) 2019; 1357 Wróbel (10.1016/j.ssci.2020.104939_b0295) 2018; 178 10.1016/j.ssci.2020.104939_b0125 10.1016/j.ssci.2020.104939_b0005 10.1016/j.ssci.2020.104939_b0205 10.1016/j.ssci.2020.104939_b0160 Wróbel (10.1016/j.ssci.2020.104939_b0300) 2017; 165 10.1016/j.ssci.2020.104939_b0040 Wróbel (10.1016/j.ssci.2020.104939_b0285) 2019 10.1016/j.ssci.2020.104939_b0085 10.1016/j.ssci.2020.104939_b0240 Basnet (10.1016/j.ssci.2020.104939_b0020) 2019 Leveson (10.1016/j.ssci.2020.104939_b0115) 2015; 136 Leveson (10.1016/j.ssci.2020.104939_b0120) 2004; 42 10.1016/j.ssci.2020.104939_b0155 10.1016/j.ssci.2020.104939_b0035 10.1016/j.ssci.2020.104939_b0235 Sulaman (10.1016/j.ssci.2020.104939_b0220) 2019; 27 10.1016/j.ssci.2020.104939_b0070 Rasmussen (10.1016/j.ssci.2020.104939_b0180) 1997; 27 10.1016/j.ssci.2020.104939_b0270 10.1016/j.ssci.2020.104939_b0150 10.1016/j.ssci.2020.104939_b0195 10.1016/j.ssci.2020.104939_b0075 Linkov (10.1016/j.ssci.2020.104939_b0140) 2014; 34 Levander (10.1016/j.ssci.2020.104939_b0110) 2017; 54 Brekke (10.1016/j.ssci.2020.104939_b0030) 2019; 1357 Thieme (10.1016/j.ssci.2020.104939_b0230) 2018; 165 Rokseth (10.1016/j.ssci.2020.104939_b0200) 2019; 273 10.1016/j.ssci.2020.104939_b0100 10.1016/j.ssci.2020.104939_b0025 10.1016/j.ssci.2020.104939_b0225 10.1016/j.ssci.2020.104939_b0105 Utne (10.1016/j.ssci.2020.104939_b0245) 2020; 196 Valdez Banda (10.1016/j.ssci.2020.104939_b0255) 2019; 191 10.1016/j.ssci.2020.104939_b0305 10.1016/j.ssci.2020.104939_b0260 Abdulkhaleq (10.1016/j.ssci.2020.104939_b0010) 2015; 128 10.1016/j.ssci.2020.104939_b0185 |
References_xml | – volume: 51 start-page: 509 year: 2014 end-page: 522 ident: b0095 article-title: Hazard analysis of complex spacecraft using systems-theoretic process analysis publication-title: J. Spacecraft Rockets contributor: fullname: Hoshino – year: 2019 ident: b0020 article-title: The management of risk in autonomous marine ecosystems – preliminary ideas publication-title: Proceedings of the First International Workshop on Autonomous Systems Safety contributor: fullname: Hirdaris – volume: 34 start-page: 134 year: 2014 end-page: 137 ident: b0140 article-title: Risk-based standards: integrating top–down and bottom–up approaches publication-title: Environ. Syst. Decis. contributor: fullname: Renn – volume: 165 start-page: 155 year: 2017 end-page: 169 ident: b0300 article-title: Towards the assessment of potential impact of unmanned vessels on maritime transportation safety publication-title: Reliab. Eng. Syst. Saf. contributor: fullname: Kujala – volume: 27 start-page: 183 year: 1997 end-page: 213 ident: b0180 article-title: Risk management in a dynamic society: a modelling problem publication-title: Saf. Sci. contributor: fullname: Rasmussen – volume: 42 start-page: 237 year: 2004 end-page: 270 ident: b0120 article-title: A new accident model for engineering safer systems publication-title: Saf. Sci. contributor: fullname: Leveson – year: 2018 ident: b0165 article-title: Securing navigation of unmanned maritime systems publication-title: Presented at the International Robotic Sailing Conference 2018 contributor: fullname: Butler – start-page: 269 year: 2017 end-page: 288 ident: b0275 article-title: A target tracking system for ASV collision avoidance based on the PDAF publication-title: Sensing and Control for Autonomous Vehicles contributor: fullname: Brekke – volume: 273 start-page: 02002 year: 2019 ident: b0200 article-title: Safety verification for autonomous ships publication-title: MATEC Web Conf. contributor: fullname: Utne – volume: 128 start-page: 2 year: 2015 end-page: 11 ident: b0010 article-title: A comprehensive safety engineering approach for software-intensive systems based on STPA publication-title: Procedia Eng. contributor: fullname: Leveson – year: 2014 ident: b0065 article-title: Safety-I and safety-II: the past and future of safety management contributor: fullname: Hollnagel – year: 2019 ident: b0285 article-title: Preliminary results of a system-theoretic assessment of maritime autonomous surface ships’ publication-title: Safety. ResearchGate. contributor: fullname: Montewka – volume: 165 start-page: 140 year: 2018 end-page: 154 ident: b0230 article-title: Assessing ship risk model applicability to marine autonomous surface ships publication-title: Ocean Eng. contributor: fullname: Haugen – volume: 1357 year: 2019 ident: b0030 article-title: The Autosea project: Developing closed-loop target tracking and collision avoidance systems publication-title: J. Phys.: Conf. Ser. contributor: fullname: Johansen – volume: 55 start-page: 173 year: 2013 end-page: 187 ident: b0050 article-title: Safety assurance in NextGen and complex transportation systems publication-title: Saf. Sci. contributor: fullname: Wilkinson – volume: 1357 year: 2019 ident: b0060 article-title: Enabling technologies for maritime autonomous surface ships publication-title: J. Phys.: Conf. Ser. contributor: fullname: Rødseth – volume: 5 start-page: 233 year: 2012 end-page: 244 ident: b0130 article-title: Safety assessment of complex, software-intensive systems publication-title: SAE Int. J. Aerosp. contributor: fullname: Wilkinson – volume: 27 start-page: 349 year: 2019 end-page: 387 ident: b0220 article-title: Comparison of the FMEA and STPA safety analysis methods–a case study publication-title: Software Qual. J. contributor: fullname: Höst – volume: 11 start-page: 297 year: 2017 end-page: 306 ident: b0265 article-title: Safe-by-design: from safety to responsibility publication-title: Nanoethics contributor: fullname: Robaey – volume: 5 start-page: S41 year: 2004 end-page: S46 ident: b0190 article-title: Systemic risks: a new challenge for risk management publication-title: EMBO Rep. contributor: fullname: Klinke – volume: 195 year: 2020 ident: b0175 article-title: Human-system concurrent task analysis for maritime autonomous surface ship operation and safety publication-title: Reliab. Eng. Syst. Saf. contributor: fullname: Mosleh – volume: 129 year: 2020 ident: b0280 article-title: Identifying research directions of a remotely-controlled merchant ship by revisiting her system-theoretic safety control structure publication-title: Saf. Sci. contributor: fullname: Montewka – volume: 136 start-page: 17 year: 2015 end-page: 34 ident: b0115 article-title: A systems approach to risk management through leading safety indicators publication-title: Reliab. Eng. Syst. Saf. contributor: fullname: Leveson – volume: 196 year: 2020 ident: b0245 article-title: Towards supervisory risk control of autonomous ships publication-title: Reliab. Eng. Syst. Saf. contributor: fullname: Vinnem – volume: 25 start-page: 989 year: 2015 end-page: 1003 ident: b0045 article-title: Integrating systems safety into systems engineering during concept development publication-title: INCOSE International Symposium contributor: fullname: Leveson – volume: 38 start-page: 170 year: 2018 end-page: 176 ident: b0145 article-title: Comparative, collaborative, and integrative risk governance for emerging technologies publication-title: Environ. Syst. Decisions contributor: fullname: Vermeire – volume: 178 start-page: 209 year: 2018 end-page: 224 ident: b0295 article-title: Towards the development of a system-theoretic model for safety assessment of autonomous merchant vessels publication-title: Reliab. Eng. Syst. Saf. contributor: fullname: Kujala – volume: 54 start-page: 26 year: 2017 end-page: 31 ident: b0110 article-title: Autonomous ships on the high seas publication-title: IEEE Spectr. contributor: fullname: Levander – volume: 191 year: 2019 ident: b0255 article-title: A systemic hazard analysis and management process for the concept design phase of an autonomous vessel publication-title: Reliab. Eng. Syst. Saf. contributor: fullname: Kujala – ident: 10.1016/j.ssci.2020.104939_b0215 – ident: 10.1016/j.ssci.2020.104939_b0240 – ident: 10.1016/j.ssci.2020.104939_b0125 doi: 10.7551/mitpress/8179.001.0001 – volume: 196 year: 2020 ident: 10.1016/j.ssci.2020.104939_b0245 article-title: Towards supervisory risk control of autonomous ships publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2019.106757 contributor: fullname: Utne – year: 2018 ident: 10.1016/j.ssci.2020.104939_b0165 article-title: Securing navigation of unmanned maritime systems contributor: fullname: Omitola – ident: 10.1016/j.ssci.2020.104939_b0070 – ident: 10.1016/j.ssci.2020.104939_b0150 – ident: 10.1016/j.ssci.2020.104939_b0135 – ident: 10.1016/j.ssci.2020.104939_b0205 – ident: 10.1016/j.ssci.2020.104939_b0305 – volume: 191 year: 2019 ident: 10.1016/j.ssci.2020.104939_b0255 article-title: A systemic hazard analysis and management process for the concept design phase of an autonomous vessel publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2019.106584 contributor: fullname: Valdez Banda – volume: 178 start-page: 209 year: 2018 ident: 10.1016/j.ssci.2020.104939_b0295 article-title: Towards the development of a system-theoretic model for safety assessment of autonomous merchant vessels publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2018.05.019 contributor: fullname: Wróbel – volume: 1357 year: 2019 ident: 10.1016/j.ssci.2020.104939_b0060 article-title: Enabling technologies for maritime autonomous surface ships publication-title: J. Phys.: Conf. Ser. contributor: fullname: Heffner – volume: 38 start-page: 170 year: 2018 ident: 10.1016/j.ssci.2020.104939_b0145 article-title: Comparative, collaborative, and integrative risk governance for emerging technologies publication-title: Environ. Syst. Decisions doi: 10.1007/s10669-018-9686-5 contributor: fullname: Linkov – ident: 10.1016/j.ssci.2020.104939_b0195 doi: 10.1109/OCEANSKOBE.2018.8559061 – volume: 51 start-page: 509 year: 2014 ident: 10.1016/j.ssci.2020.104939_b0095 article-title: Hazard analysis of complex spacecraft using systems-theoretic process analysis publication-title: J. Spacecraft Rockets doi: 10.2514/1.A32449 contributor: fullname: Ishimatsu – ident: 10.1016/j.ssci.2020.104939_b0075 – volume: 1357 year: 2019 ident: 10.1016/j.ssci.2020.104939_b0030 article-title: The Autosea project: Developing closed-loop target tracking and collision avoidance systems publication-title: J. Phys.: Conf. Ser. contributor: fullname: Brekke – year: 2019 ident: 10.1016/j.ssci.2020.104939_b0020 article-title: The management of risk in autonomous marine ecosystems – preliminary ideas contributor: fullname: Basnet – volume: 128 start-page: 2 year: 2015 ident: 10.1016/j.ssci.2020.104939_b0010 article-title: A comprehensive safety engineering approach for software-intensive systems based on STPA publication-title: Procedia Eng. doi: 10.1016/j.proeng.2015.11.498 contributor: fullname: Abdulkhaleq – year: 2014 ident: 10.1016/j.ssci.2020.104939_b0065 contributor: fullname: Hollnagel – volume: 42 start-page: 237 year: 2004 ident: 10.1016/j.ssci.2020.104939_b0120 article-title: A new accident model for engineering safer systems publication-title: Saf. Sci. doi: 10.1016/S0925-7535(03)00047-X contributor: fullname: Leveson – volume: 11 start-page: 297 year: 2017 ident: 10.1016/j.ssci.2020.104939_b0265 article-title: Safe-by-design: from safety to responsibility publication-title: Nanoethics doi: 10.1007/s11569-017-0301-x contributor: fullname: van de Poel – ident: 10.1016/j.ssci.2020.104939_b0040 – volume: 27 start-page: 183 year: 1997 ident: 10.1016/j.ssci.2020.104939_b0180 article-title: Risk management in a dynamic society: a modelling problem publication-title: Saf. Sci. doi: 10.1016/S0925-7535(97)00052-0 contributor: fullname: Rasmussen – ident: 10.1016/j.ssci.2020.104939_b0170 – ident: 10.1016/j.ssci.2020.104939_b0235 doi: 10.4271/2015-01-0274 – ident: 10.1016/j.ssci.2020.104939_b0055 doi: 10.3850/978-981-11-2724-3_0105-cd – ident: 10.1016/j.ssci.2020.104939_b0160 – ident: 10.1016/j.ssci.2020.104939_b0210 – ident: 10.1016/j.ssci.2020.104939_b0105 doi: 10.23919/ECC.2019.8796273 – ident: 10.1016/j.ssci.2020.104939_b0035 doi: 10.2478/9788395669606-012 – year: 2019 ident: 10.1016/j.ssci.2020.104939_b0285 article-title: Preliminary results of a system-theoretic assessment of maritime autonomous surface ships’ publication-title: Safety. ResearchGate. contributor: fullname: Wróbel – ident: 10.1016/j.ssci.2020.104939_b0005 – volume: 54 start-page: 26 year: 2017 ident: 10.1016/j.ssci.2020.104939_b0110 article-title: Autonomous ships on the high seas publication-title: IEEE Spectr. doi: 10.1109/MSPEC.2017.7833502 contributor: fullname: Levander – volume: 27 start-page: 349 year: 2019 ident: 10.1016/j.ssci.2020.104939_b0220 article-title: Comparison of the FMEA and STPA safety analysis methods–a case study publication-title: Software Qual. J. doi: 10.1007/s11219-017-9396-0 contributor: fullname: Sulaman – ident: 10.1016/j.ssci.2020.104939_b0085 – start-page: 269 year: 2017 ident: 10.1016/j.ssci.2020.104939_b0275 article-title: A target tracking system for ASV collision avoidance based on the PDAF contributor: fullname: Wilthil – volume: 5 start-page: S41 year: 2004 ident: 10.1016/j.ssci.2020.104939_b0190 article-title: Systemic risks: a new challenge for risk management publication-title: EMBO Rep. doi: 10.1038/sj.embor.7400227 contributor: fullname: Renn – ident: 10.1016/j.ssci.2020.104939_b0100 – ident: 10.1016/j.ssci.2020.104939_b0290 doi: 10.1016/j.ssci.2019.03.024 – ident: 10.1016/j.ssci.2020.104939_b0270 – ident: 10.1016/j.ssci.2020.104939_b0155 – ident: 10.1016/j.ssci.2020.104939_b0025 – volume: 165 start-page: 140 year: 2018 ident: 10.1016/j.ssci.2020.104939_b0230 article-title: Assessing ship risk model applicability to marine autonomous surface ships publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2018.07.040 contributor: fullname: Thieme – volume: 195 year: 2020 ident: 10.1016/j.ssci.2020.104939_b0175 article-title: Human-system concurrent task analysis for maritime autonomous surface ship operation and safety publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2019.106697 contributor: fullname: Ramos – ident: 10.1016/j.ssci.2020.104939_b0090 – volume: 165 start-page: 155 year: 2017 ident: 10.1016/j.ssci.2020.104939_b0300 article-title: Towards the assessment of potential impact of unmanned vessels on maritime transportation safety publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2017.03.029 contributor: fullname: Wróbel – ident: 10.1016/j.ssci.2020.104939_b0260 – volume: 25 start-page: 989 year: 2015 ident: 10.1016/j.ssci.2020.104939_b0045 article-title: Integrating systems safety into systems engineering during concept development publication-title: INCOSE International Symposium doi: 10.1002/j.2334-5837.2015.00111.x contributor: fullname: Fleming – ident: 10.1016/j.ssci.2020.104939_b0185 doi: 10.4324/9781315665894-18 – ident: 10.1016/j.ssci.2020.104939_b0250 – volume: 129 year: 2020 ident: 10.1016/j.ssci.2020.104939_b0280 article-title: Identifying research directions of a remotely-controlled merchant ship by revisiting her system-theoretic safety control structure publication-title: Saf. Sci. doi: 10.1016/j.ssci.2020.104797 contributor: fullname: Wróbel – volume: 136 start-page: 17 year: 2015 ident: 10.1016/j.ssci.2020.104939_b0115 article-title: A systems approach to risk management through leading safety indicators publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2014.10.008 contributor: fullname: Leveson – ident: 10.1016/j.ssci.2020.104939_b0080 – volume: 34 start-page: 134 year: 2014 ident: 10.1016/j.ssci.2020.104939_b0140 article-title: Risk-based standards: integrating top–down and bottom–up approaches publication-title: Environ. Syst. Decis. doi: 10.1007/s10669-014-9488-3 contributor: fullname: Linkov – ident: 10.1016/j.ssci.2020.104939_b0225 doi: 10.1088/1742-6596/1357/1/012024 – ident: 10.1016/j.ssci.2020.104939_b0015 – volume: 55 start-page: 173 year: 2013 ident: 10.1016/j.ssci.2020.104939_b0050 article-title: Safety assurance in NextGen and complex transportation systems publication-title: Saf. Sci. doi: 10.1016/j.ssci.2012.12.005 contributor: fullname: Fleming – volume: 5 start-page: 233 year: 2012 ident: 10.1016/j.ssci.2020.104939_b0130 article-title: Safety assessment of complex, software-intensive systems publication-title: SAE Int. J. Aerosp. doi: 10.4271/2012-01-2134 contributor: fullname: Leveson – volume: 273 start-page: 02002 year: 2019 ident: 10.1016/j.ssci.2020.104939_b0200 article-title: Safety verification for autonomous ships publication-title: MATEC Web Conf. doi: 10.1051/matecconf/201927302002 contributor: fullname: Rokseth |
SSID | ssj0001361 |
Score | 2.557192 |
Snippet | •A framework to model a hierarchical control structure for the STPA analysis of an autonomous ship is presented.•STAMP, STPA and STECA were used as the... The demand for risk and safety analysis is becoming greater due to the increased complexity of modern systems such as autonomous ships. Safety is one of the... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 104939 |
SubjectTerms | Autonomous Navigation System Autonomous ship Autonomous vehicles Complex systems Complexity Control systems Maritime safety Risk analysis Safety Safety management Safety research Sea vessels Ships STAMP STPA Structural hierarchy System effectiveness System safety engineering Systems theory Theoretical mathematics |
Title | A framework to model the STPA hierarchical control structure of an autonomous ship |
URI | https://dx.doi.org/10.1016/j.ssci.2020.104939 https://www.proquest.com/docview/2486551441 |
Volume | 132 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jHhREdCpO58jBm9S1TdI2xzEcU3GI22C30OYHzMM6XHf1b_claRFFPHhsSUL53st7L8333kPohheyoFFqqTqGBTRVKshIkgeSZUmU5UqmrovC8zSZLOjjki1baNTkwlhaZW37vU131rp-M6jRHGxWq8Es5KButjoJ6CnxdpiC-wOdvvv4onlExNVMtYMDO7pOnPEcry0sDGfE2F11ctsw_Hfn9MNMO98zPkZHddCIh_67TlBLrztov8kp3nbQof_7hn1S0Sl6HWLTsK5wVWLX7wZDrIdn85chtv2v3Q0CCAjXZHXsK8nu3jUuDc7XON9Vdv1yt8WW0XWGFuP7-WgS1N0TAknSuAriWKYkNoAjj1RScKYg0lE6NiRjihWMaBNxQzOdMl0w6QrRgbOPQiVDnmUJOUftdbnWFwhTWURGqjAHAVKYyCGGIVxrFnMZGZp00W0Dm9j4IhmiYY-9CQuysCALD3IXsQZZ8U3UAqz4n_N6jRhEvdG2IqY2s9aeCi__uewVOrBPnqLSQ20AW19DoFEVfadJfbQ3fHiaTD8B-nDQeA |
link.rule.ids | 315,783,787,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA_DHSaI6FScTs3Bm5StTdM2xzEcm_tA3Aa7hTYfMA_rcNv_78tHBUU8eG2aUH4v-eWl-b33EHpkhSjiMDVSHU2DOJUyyEiSB4JmSZjlUqS2isJ0lgyX8cuKrmqoX8XCGFml537H6Zat_ZOOR7OzXa878y6D6Wayk8A8JZaH6-ANMFid9d5oPJx9EXJIbNpU835gOvjYGSfz2sHYcEyM7G0nMzXDf9-ffjC13X4GZ-jU-4245z7tHNXUpokaVVjxrolO3A847OKKLtBbD-tKeIX3JbYlbzC4e3i-eO1hUwLbXiKAjbDXq2OXTPbwoXCpcb7B-WFvxi8PO2xEXZdoOXhe9IeBL6AQCJJG-yCKREoiDVCyUCYFoxKcHakiTTIqaUGJ0iHTcaZSqgoqbC462O_DrhRdlmUJuUJHm3KjrhGORRFqIbs52DCGjgzcGMKUohEToY6TFnqqYONblyeDVwKyd25A5gZk7kBuIVohy79ZmwOR_9mvXZmB-7W241FsgmvNwfDmn8M-oMZwMZ3wyWg2vkXHpsUpVtroCIBXd-B37It7P68-ATuv0yw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+framework+to+model+the+STPA+hierarchical+control+structure+of+an+autonomous+ship&rft.jtitle=Safety+science&rft.au=Chaal%2C+Meriam&rft.au=Valdez+Banda%2C+Osiris+A&rft.au=Glomsrud%2C+Jon+Arne&rft.au=Basnet%2C+Sunil&rft.date=2020-12-01&rft.pub=Elsevier+BV&rft.issn=0925-7535&rft.eissn=1879-1042&rft.volume=132&rft.spage=1&rft_id=info:doi/10.1016%2Fj.ssci.2020.104939&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-7535&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-7535&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-7535&client=summon |