A framework to model the STPA hierarchical control structure of an autonomous ship

•A framework to model a hierarchical control structure for the STPA analysis of an autonomous ship is presented.•STAMP, STPA and STECA were used as the foundation of the proposed framework.•The framework makes use of the available knowledge of current shipping operation and seafarers experience.•The...

Full description

Saved in:
Bibliographic Details
Published inSafety science Vol. 132; p. 104939
Main Authors Chaal, Meriam, Valdez Banda, Osiris A., Glomsrud, Jon Arne, Basnet, Sunil, Hirdaris, Spyros, Kujala, Pentti
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Ltd 01.12.2020
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A framework to model a hierarchical control structure for the STPA analysis of an autonomous ship is presented.•STAMP, STPA and STECA were used as the foundation of the proposed framework.•The framework makes use of the available knowledge of current shipping operation and seafarers experience.•The resulting control structure of shipping operation includes the autonomous ship and the Shore-based Control Centre as controlled processes.•The application to the Autonomous Navigation System reveals substantial information for the safety of autonomous ships. The demand for risk and safety analysis is becoming greater due to the increased complexity of modern systems such as autonomous ships. Safety is one of the main motivations behind the efforts of multiple organizations to develop autonomous ships. The adoption of an early system-theoretic approach to safety such as System Theoretic Process Analysis (STPA) is an effective way to integrate safety in complex systems. Furthermore, many authors have urged the use of this method to analyse the risks of autonomous vessels in the development phases. Applying STPA requires a description of the system to model the hierarchical control structure and conduct the analysis. At this stage, the functional description of autonomous ships remains limited, which poses a challenge in building the hierarchical control structure. This paper proposes a framework for developing a hierarchical control structure of an autonomous ship. The framework is founded on the principles of the STPA control structure and its five main elements. It makes use of the current shipping operation system, the available information about autonomous ships and the experience of seafarers executing diverse tasks on-board conventional ships. The application of the framework showed that the information provided by the seafarers is essential in developing an initial functional description of an autonomous ship. Furthermore, the results revealed that in addition to the technical aspects of autonomous ships, introducing these vessels into the organizational control structure of current maritime operation also poses challenges that need to be addressed in the earliest design phase.
AbstractList The demand for risk and safety analysis is becoming greater due to the increased complexity of modern systems such as autonomous ships. Safety is one of the main motivations behind the efforts of multiple organizations to develop autonomous ships. The adoption of an early system-theoretic approach to safety such as System Theoretic Process Analysis (STPA) is an effective way to integrate safety in complex systems. Furthermore, many authors have urged the use of this method to analyse the risks of autonomous vessels in the development phases. Applying STPA requires a description of the system to model the hierarchical control structure and conduct the analysis. At this stage, the functional description of autonomous ships remains limited, which poses a challenge in building the hierarchical control structure. This paper proposes a framework for developing a hierarchical control structure of an autonomous ship. The framework is founded on the principles of the STPA control structure and its five main elements. It makes use of the current shipping operation system, the available information about autonomous ships and the experience of seafarers executing diverse tasks on-board conventional ships. The application of the framework showed that the information provided by the seafarers is essential in developing an initial functional description of an autonomous ship. Furthermore, the results revealed that in addition to the technical aspects of autonomous ships, introducing these vessels into the organizational control structure of current maritime operation also poses challenges that need to be addressed in the earliest design phase.
•A framework to model a hierarchical control structure for the STPA analysis of an autonomous ship is presented.•STAMP, STPA and STECA were used as the foundation of the proposed framework.•The framework makes use of the available knowledge of current shipping operation and seafarers experience.•The resulting control structure of shipping operation includes the autonomous ship and the Shore-based Control Centre as controlled processes.•The application to the Autonomous Navigation System reveals substantial information for the safety of autonomous ships. The demand for risk and safety analysis is becoming greater due to the increased complexity of modern systems such as autonomous ships. Safety is one of the main motivations behind the efforts of multiple organizations to develop autonomous ships. The adoption of an early system-theoretic approach to safety such as System Theoretic Process Analysis (STPA) is an effective way to integrate safety in complex systems. Furthermore, many authors have urged the use of this method to analyse the risks of autonomous vessels in the development phases. Applying STPA requires a description of the system to model the hierarchical control structure and conduct the analysis. At this stage, the functional description of autonomous ships remains limited, which poses a challenge in building the hierarchical control structure. This paper proposes a framework for developing a hierarchical control structure of an autonomous ship. The framework is founded on the principles of the STPA control structure and its five main elements. It makes use of the current shipping operation system, the available information about autonomous ships and the experience of seafarers executing diverse tasks on-board conventional ships. The application of the framework showed that the information provided by the seafarers is essential in developing an initial functional description of an autonomous ship. Furthermore, the results revealed that in addition to the technical aspects of autonomous ships, introducing these vessels into the organizational control structure of current maritime operation also poses challenges that need to be addressed in the earliest design phase.
ArticleNumber 104939
Author Hirdaris, Spyros
Basnet, Sunil
Chaal, Meriam
Valdez Banda, Osiris A.
Glomsrud, Jon Arne
Kujala, Pentti
Author_xml – sequence: 1
  givenname: Meriam
  surname: Chaal
  fullname: Chaal, Meriam
  email: meriam.chaal@aalto.fi
  organization: Aalto University, Department of Mechanical Engineering (Marine Technology), Research Group on Safe and Efficient Marine Systems and Experience, Finland
– sequence: 2
  givenname: Osiris A.
  surname: Valdez Banda
  fullname: Valdez Banda, Osiris A.
  organization: Aalto University, Department of Mechanical Engineering (Marine Technology), Research Group on Safe and Efficient Marine Systems and Experience, Finland
– sequence: 3
  givenname: Jon Arne
  surname: Glomsrud
  fullname: Glomsrud, Jon Arne
  organization: Group Technology and Research, DNV GL, Norway
– sequence: 4
  givenname: Sunil
  surname: Basnet
  fullname: Basnet, Sunil
  organization: Aalto University, Department of Mechanical Engineering (Marine Technology), Research Group on Safe and Efficient Marine Systems and Experience, Finland
– sequence: 5
  givenname: Spyros
  surname: Hirdaris
  fullname: Hirdaris, Spyros
  organization: Aalto University, Department of Mechanical Engineering (Marine Technology), Research Group on Safe and Efficient Marine Systems and Experience, Finland
– sequence: 6
  givenname: Pentti
  surname: Kujala
  fullname: Kujala, Pentti
  organization: Aalto University, Department of Mechanical Engineering (Marine Technology), Research Group on Safe and Efficient Marine Systems and Experience, Finland
BookMark eNp9kEtLxDAUhYOM4Dj6B1wFXHfMo2kbcDMMvmBA0XEdOsktbW2bMUkV_70pde3qci7n3Hv4ztFisAMgdEXJmhKa3bRr73WzZoRNi1RyeYKWtMhlEhVboCWRTCS54OIMnXvfEkIoz-gSvW5w5coevq37wMHi3hrocKgBv-1fNrhuwJVO140uO6ztEJztsA9u1GF0gG2FywGXY7CD7e3osa-b4wU6rcrOw-XfXKH3-7v99jHZPT88bTe7RPOchYQxnXNWaTCSmuwghckYN8AqXggjDoJDRWWVFpALOAgthMxzylJKjCayKDK-Qtfz3aOznyP4oFo7uiG-VCwtMiFomtLoYrNLO-u9g0odXdOX7kdRoiZ2qlUTOzWxUzO7GLqdQxD7f0UGKjpgiF0bBzooY5v_4r9FN3j2
CitedBy_id crossref_primary_10_1016_j_oceaneng_2022_111187
crossref_primary_10_1016_j_oceaneng_2022_111100
crossref_primary_10_1177_1748006X211069705
crossref_primary_10_1016_j_ress_2024_110046
crossref_primary_10_1016_j_ssci_2023_106232
crossref_primary_10_1016_j_oceaneng_2023_116073
crossref_primary_10_3390_jmse12061007
crossref_primary_10_1017_S0373463322000121
crossref_primary_10_1016_j_ssci_2020_105144
crossref_primary_10_1016_j_ress_2022_108355
crossref_primary_10_1016_j_tranpol_2022_10_012
crossref_primary_10_1016_j_cose_2023_103179
crossref_primary_10_1016_j_oceaneng_2022_111252
crossref_primary_10_1016_j_ress_2024_110176
crossref_primary_10_1177_1748006X211051829
crossref_primary_10_1016_j_ress_2022_108709
crossref_primary_10_1016_j_ijcip_2024_100695
crossref_primary_10_1016_j_ress_2021_108246
crossref_primary_10_1016_j_ssci_2021_105566
crossref_primary_10_1016_j_ress_2021_107558
crossref_primary_10_1016_j_ocecoaman_2024_107206
crossref_primary_10_1177_1748006X241233863
crossref_primary_10_3390_jmse12071129
crossref_primary_10_1080_20464177_2024_2302249
crossref_primary_10_1016_j_ijhydene_2024_04_082
crossref_primary_10_3390_app11104553
crossref_primary_10_1155_2022_3437255
crossref_primary_10_1016_j_oceaneng_2022_111045
crossref_primary_10_1016_j_oceaneng_2023_114673
crossref_primary_10_3390_jmse9020180
crossref_primary_10_1109_ACCESS_2023_3243906
crossref_primary_10_3390_app14114609
crossref_primary_10_4031_MTSJ_56_4_11
crossref_primary_10_1016_j_ssci_2023_106256
crossref_primary_10_1080_20464177_2024_2319369
crossref_primary_10_1016_j_ress_2024_109946
crossref_primary_10_1016_j_oceaneng_2024_118444
crossref_primary_10_1109_ACCESS_2024_3360275
crossref_primary_10_3389_fphy_2022_958450
crossref_primary_10_1016_j_ress_2023_109388
crossref_primary_10_1016_j_ress_2021_108176
crossref_primary_10_1016_j_ijnaoe_2022_100457
crossref_primary_10_1080_00140139_2022_2105959
crossref_primary_10_1016_j_oceaneng_2022_111797
crossref_primary_10_1016_j_oceaneng_2022_112643
crossref_primary_10_1057_s41278_022_00212_2
crossref_primary_10_1080_20464177_2024_2315646
crossref_primary_10_3390_su16010328
crossref_primary_10_1016_j_physa_2023_128936
crossref_primary_10_1016_j_ssci_2021_105596
crossref_primary_10_1016_j_oceaneng_2024_117570
crossref_primary_10_1016_j_oceaneng_2024_118174
crossref_primary_10_1088_1742_6596_2618_1_012014
crossref_primary_10_1016_j_ocecoaman_2023_107003
crossref_primary_10_1088_1742_6596_2311_1_012021
crossref_primary_10_1088_1742_6596_2311_1_012024
crossref_primary_10_1016_j_heliyon_2024_e31483
crossref_primary_10_1016_j_aap_2024_107619
crossref_primary_10_1016_j_ress_2023_109195
crossref_primary_10_3390_logistics8010023
Cites_doi 10.7551/mitpress/8179.001.0001
10.1016/j.ress.2019.106757
10.1016/j.ress.2019.106584
10.1016/j.ress.2018.05.019
10.1007/s10669-018-9686-5
10.1109/OCEANSKOBE.2018.8559061
10.2514/1.A32449
10.1016/j.proeng.2015.11.498
10.1016/S0925-7535(03)00047-X
10.1007/s11569-017-0301-x
10.1016/S0925-7535(97)00052-0
10.4271/2015-01-0274
10.3850/978-981-11-2724-3_0105-cd
10.23919/ECC.2019.8796273
10.2478/9788395669606-012
10.1109/MSPEC.2017.7833502
10.1007/s11219-017-9396-0
10.1038/sj.embor.7400227
10.1016/j.ssci.2019.03.024
10.1016/j.oceaneng.2018.07.040
10.1016/j.ress.2019.106697
10.1016/j.ress.2017.03.029
10.1002/j.2334-5837.2015.00111.x
10.4324/9781315665894-18
10.1016/j.ssci.2020.104797
10.1016/j.ress.2014.10.008
10.1007/s10669-014-9488-3
10.1088/1742-6596/1357/1/012024
10.1016/j.ssci.2012.12.005
10.4271/2012-01-2134
10.1051/matecconf/201927302002
ContentType Journal Article
Copyright 2020 The Authors
Copyright Elsevier BV Dec 2020
Copyright_xml – notice: 2020 The Authors
– notice: Copyright Elsevier BV Dec 2020
DBID 6I.
AAFTH
AAYXX
CITATION
7QF
7QQ
7SC
7SE
7SP
7SR
7T2
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
DOI 10.1016/j.ssci.2020.104939
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Aluminium Industry Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Health and Safety Science Abstracts (Full archive)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Environmental Sciences and Pollution Management
Computer and Information Systems Abstracts Professional
Aerospace Database
Copper Technical Reference Library
Nursing & Allied Health Premium
Engineered Materials Abstracts
Health & Safety Science Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Public Health
EISSN 1879-1042
ExternalDocumentID 10_1016_j_ssci_2020_104939
S0925753520303362
GroupedDBID ---
--K
--M
.~1
0R~
123
13V
1B1
1RT
1~.
1~5
29P
4.4
457
4G.
53G
5VS
6I.
7-5
71M
8P~
9JM
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABBQC
ABFNM
ABIVO
ABJNI
ABKBG
ABLVK
ABMAC
ABMMH
ABMVD
ABMZM
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHRH
ACIWK
ACJTP
ACNNM
ACNTT
ACPRK
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXBA
AFXIZ
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHPOS
AIEXJ
AIKHN
AISVY
AITUG
AJBFU
AJOXV
AJRQY
AKURH
AKYCK
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOMHK
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F3I
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEH
HMK
HMO
HMY
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LCYCR
M29
M3W
M3Y
M41
MO0
N9A
NAHTW
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
PRBVW
Q38
R2-
RIG
ROL
RPZ
SAE
SDF
SDG
SES
SEW
SNG
SPC
SPCBC
SSB
SSG
SSH
SSL
SSO
SSS
SST
SSZ
T5K
UHS
WH7
WUQ
YHZ
~02
~G-
0SF
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
7QF
7QQ
7SC
7SE
7SP
7SR
7T2
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
ID FETCH-LOGICAL-c372t-22c732fced91d6b95d623de2f385d5b53ef19f48e75eb5c5597712410dc098863
IEDL.DBID .~1
ISSN 0925-7535
IngestDate Thu Oct 10 20:21:44 EDT 2024
Thu Sep 26 18:05:56 EDT 2024
Fri Feb 23 02:46:43 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Maritime safety
STAMP
System safety engineering
STPA
Autonomous Navigation System
Autonomous ship
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-22c732fced91d6b95d623de2f385d5b53ef19f48e75eb5c5597712410dc098863
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0925753520303362
PQID 2486551441
PQPubID 2045403
ParticipantIDs proquest_journals_2486551441
crossref_primary_10_1016_j_ssci_2020_104939
elsevier_sciencedirect_doi_10_1016_j_ssci_2020_104939
PublicationCentury 2000
PublicationDate December 2020
2020-12-00
20201201
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: December 2020
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Safety science
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Lloyds Register, 2017. LR_Code_for_Unmanned_Marine_Systems.
Valdez Banda, Kannos, Goerlandt, van Gelder, Bergström, Kujala (b0255) 2019; 191
Fleming, C.H., 2015. Safety-driven Early Concept Analysis and Development.
Wilthil, Flåten, Brekke (b0275) 2017
Heffner, Rødseth (b0060) 2019; 1357
(accessed 8.13.20).
Rodseth, O., Nordahl, H., Hoem, A., 2018. Characterization of Autonomy in Merchant Ships, in: 2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO). Presented at the 2018 OCEANS - MTS/IEEE Kobe Techno-Ocean (OTO), IEEE, Kobe, pp. 1–7. https://doi.org/10.1109/OCEANSKOBE.2018.8559061.
Kongsberg, 2018. YARA selects Norwegian shipbuilder VARD for zero-emission vessel Yara Birkeland - KONGSBERG [WWW Document]. URL https://www.kongsberg.com/news-and-media/news-archive/2018/yara-selects-norwegian-shipbuilder-vard-for-zero-emission-vessel-yara-birkeland/ (accessed 7.5.19).
Wróbel, Montewka, Kujala (b0295) 2018; 178
Renn, Klinke (b0190) 2004; 5
Wróbel, Gil, Montewka (b0280) 2020; 129
MUNIN, 2016. Final Report Summary - MUNIN (Maritime Unmanned Navigation through Intelligence in Networks) | Report Summary | MUNIN | FP7 | CORDIS | European Commission [WWW Document]. URL https://cordis.europa.eu/project/rcn/104631/reporting/en (accessed 6.26.19).
Ramos, M.A., Thieme, C., Utne, I.B., Mosleh, A., 2019. Autonomous systems safety – state of the art and challenges. In: 1st IWASS. NTNU.
Hollnagel (b0065) 2014
Montewka, J., Wróbel, K., Heikkila, E., Valdez-Banda, O., Goerlandt, F., Haugen, S., 2018. Challenges, solution proposals and research directions in safety and risk assessment of autonomous shipping. Los Angeles 12.
IMO, 2018. Report of the maritime safety committee on its one hundredth session.
Wróbel, K., Montewka, J., 2019. Comments to the article by Ramos et al. ‘Collision avoidance on maritime autonomous surface ships: Operators’ tasks and human failure events’ (Safety Science Vol. 116, July 2019, pp. 33–44). Saf. Sci. https://doi.org/10.1016/j.ssci.2019.03.024.
Smart Ships Coalition, 2017. Smart Ships Coalition [WWW Document]. Smart Ships Coalition. URL https://smartshipscoalition.org/maritime-autonomy-research-site-mars/ (accessed 1.21.20).
.
Wróbel, Montewka, Kujala (b0300) 2017; 165
Rolls Royce, 2018. Rolls-Royce and Finferries demonstrate world’s first Fully Autonomous Ferry [WWW Document]. URL https://www.rolls-royce.com/media/press-releases.aspx (accessed 1.21.20).
Ishimatsu, Leveson, Thomas, Fleming, Katahira, Miyamoto, Ujiie, Nakao, Hoshino (b0095) 2014; 51
Levander (b0110) 2017; 54
IHO, 2020. Home | IHO [WWW Document]. URL https://iho.int/ (accessed 1.19.20).
Basnet, Valdez Banda, Hirdaris (b0020) 2019
van de Poel, Robaey (b0265) 2017; 11
Glomsrud, J.A., Xie, J., 2019. A Structured STPA Safety and Security Co-analysis Framework for Autonomous Ships. Presented at the ESREL 2019.
IALA, 2020. About IALA [WWW Document]. IALA AISM. URL https://www.iala-aism.org/about-iala/ (accessed 1.19.20).
Zou, J., 2018. Systems-Theoretic Process Analysis (STPA) Applied to the Operation of Fully Autonomous Vessels.
IMO, 2013. IMO instruments implementation code (III CODE), Resolution A. 1070(28).
Kufoalor, D.K.M., Wilthil, E., Hagen, I.B., Brekke, E.F., Johansen, T.A., 2019. Autonomous COLREGs-compliant decision making using maritime radar tracking and model predictive control. In: 2019 18th European Control Conference (ECC). Presented at the 2019 18th European Control Conference (ECC), IEEE, Naples, Italy, pp. 2536–2542. https://doi.org/10.23919/ECC.2019.8796273.
Omitola, Downes, Wills, Zwolinski, Butler (b0165) 2018
Autoferry, 2016. Autoferry - NTNU [WWW Document]. URL https://www.ntnu.edu/autoferry (accessed 1.21.20).
Leveson, N.G., 2011. Engineering a Safer World, <systems Thinking Applied to Safety.
Leveson (b0120) 2004; 42
Ramos, Thieme, Utne, Mosleh (b0175) 2020; 195
Rasmussen (b0180) 1997; 27
Solberg, C.L., 2018. An STPA Analysis of the ReVolt.
Linkov, Anklam, Collier, DiMase, Renn (b0140) 2014; 34
AAWA, 2016. Remote and autonomous ships the next steps.
Fleming, Leveson (b0045) 2015; 25
Rokseth, Haugen, Utne (b0200) 2019; 273
Utne, I.B., 2017. NTNU Centre for Autonomous Marine Operations and Systems: - Shipping and digitalization.
Leveson, Fleming, Spencer, Thomas, Wilkinson (b0130) 2012; 5
Sulaman, Beer, Felderer, Höst (b0220) 2019; 27
Wróbel, Krata, Montewka (b0285) 2019
Fleming, Spencer, Thomas, Leveson, Wilkinson (b0050) 2013; 55
Valdez Banda, O.A., Kujala, P., Goerlandt, F., Bergström, M., Ahola, M., van Gelder, P.H.A.J.M., Sonninen, S., 2018. The need for systematic and systemic safety management for autonomous vessels. Presented at the Marie Design XIII.
Thieme, C.A., Guo, C., Utne, I.B., Haugen, S., 2019. Preliminary hazard analysis of a small harbor passenger ferry – results, challenges and further work. J. Phys.: Conf. Ser. 1357, 012024. https://doi.org/10.1088/1742-6596/1357/1/012024.
Utne, Rokseth, Sørensen, Vinnem (b0245) 2020; 196
Valdez Banda, O.A., Kannos, S., 2017. Hazard analysis process for autonomous vessels.
Thieme, Utne, Haugen (b0230) 2018; 165
Abdulkhaleq, Wagner, Leveson (b0010) 2015; 128
Leveson (b0115) 2015; 136
Ventikos, N.P., Louzis, K., 2019. The Future of Risk in the Context of Autonomous Ship Operation, in: 1st IWASS.
Chaal , M. , Valdez-Banda , O.A. , Basnet , S. , Hirdaris , S. , Kujala , P. , 2020 . Proceedings of the international seminar on safety and security of autonomous vessels (ISSAV) and European STAMP Workshop and Conference (ESWC) 2019. Sciendo, Warsaw, Poland .
Leveson, N., Thomas, J., 2018. STPA HANDBOOK.
Blanke, M., Henriques, M., Bang, J., 2018. A pre-analysis on autonomous ships.
Brekke, Wilthil, Eriksen, Kufoalor, Helgesen, Hagen, Breivik, Johansen (b0030) 2019; 1357
IMO, 2019. Autonomous shipping [WWW Document]. URL
Linkov, Trump, Anklam, Berube, Boisseasu, Cummings, Ferson, Florin, Goldstein, Hristozov, Jensen, Katalagarianakis, Kuzma, Lambert, Malloy, Malsch, Marcomini, Merad, Palma-Oliveira, Perkins, Renn, Seager, Stone, Vallero, Vermeire (b0145) 2018; 38
Thomas, J., Sgueglia, J., Suo, D., Leveson, N., Vernacchia, M., Sundaram, P., 2015. An integrated approach to requirements development and hazard analysis. Presented at the SAE 2015 World Congress & Exhibition, pp. 2015-01–0274. https://doi.org/10.4271/2015-01-0274.
Renn, O., 2017. Risk governance: Concept and application to systemic risk. Risk Conundrums: Solving Unsolvable Problems 243–259.
Ramos (10.1016/j.ssci.2020.104939_b0175) 2020; 195
Linkov (10.1016/j.ssci.2020.104939_b0145) 2018; 38
10.1016/j.ssci.2020.104939_b0090
Hollnagel (10.1016/j.ssci.2020.104939_b0065) 2014
10.1016/j.ssci.2020.104939_b0210
10.1016/j.ssci.2020.104939_b0135
10.1016/j.ssci.2020.104939_b0015
van de Poel (10.1016/j.ssci.2020.104939_b0265) 2017; 11
10.1016/j.ssci.2020.104939_b0215
Fleming (10.1016/j.ssci.2020.104939_b0050) 2013; 55
Ishimatsu (10.1016/j.ssci.2020.104939_b0095) 2014; 51
Omitola (10.1016/j.ssci.2020.104939_b0165) 2018
10.1016/j.ssci.2020.104939_b0290
10.1016/j.ssci.2020.104939_b0170
Wilthil (10.1016/j.ssci.2020.104939_b0275) 2017
10.1016/j.ssci.2020.104939_b0250
10.1016/j.ssci.2020.104939_b0055
Wróbel (10.1016/j.ssci.2020.104939_b0280) 2020; 129
Fleming (10.1016/j.ssci.2020.104939_b0045) 2015; 25
10.1016/j.ssci.2020.104939_b0080
Leveson (10.1016/j.ssci.2020.104939_b0130) 2012; 5
Renn (10.1016/j.ssci.2020.104939_b0190) 2004; 5
Heffner (10.1016/j.ssci.2020.104939_b0060) 2019; 1357
Wróbel (10.1016/j.ssci.2020.104939_b0295) 2018; 178
10.1016/j.ssci.2020.104939_b0125
10.1016/j.ssci.2020.104939_b0005
10.1016/j.ssci.2020.104939_b0205
10.1016/j.ssci.2020.104939_b0160
Wróbel (10.1016/j.ssci.2020.104939_b0300) 2017; 165
10.1016/j.ssci.2020.104939_b0040
Wróbel (10.1016/j.ssci.2020.104939_b0285) 2019
10.1016/j.ssci.2020.104939_b0085
10.1016/j.ssci.2020.104939_b0240
Basnet (10.1016/j.ssci.2020.104939_b0020) 2019
Leveson (10.1016/j.ssci.2020.104939_b0115) 2015; 136
Leveson (10.1016/j.ssci.2020.104939_b0120) 2004; 42
10.1016/j.ssci.2020.104939_b0155
10.1016/j.ssci.2020.104939_b0035
10.1016/j.ssci.2020.104939_b0235
Sulaman (10.1016/j.ssci.2020.104939_b0220) 2019; 27
10.1016/j.ssci.2020.104939_b0070
Rasmussen (10.1016/j.ssci.2020.104939_b0180) 1997; 27
10.1016/j.ssci.2020.104939_b0270
10.1016/j.ssci.2020.104939_b0150
10.1016/j.ssci.2020.104939_b0195
10.1016/j.ssci.2020.104939_b0075
Linkov (10.1016/j.ssci.2020.104939_b0140) 2014; 34
Levander (10.1016/j.ssci.2020.104939_b0110) 2017; 54
Brekke (10.1016/j.ssci.2020.104939_b0030) 2019; 1357
Thieme (10.1016/j.ssci.2020.104939_b0230) 2018; 165
Rokseth (10.1016/j.ssci.2020.104939_b0200) 2019; 273
10.1016/j.ssci.2020.104939_b0100
10.1016/j.ssci.2020.104939_b0025
10.1016/j.ssci.2020.104939_b0225
10.1016/j.ssci.2020.104939_b0105
Utne (10.1016/j.ssci.2020.104939_b0245) 2020; 196
Valdez Banda (10.1016/j.ssci.2020.104939_b0255) 2019; 191
10.1016/j.ssci.2020.104939_b0305
10.1016/j.ssci.2020.104939_b0260
Abdulkhaleq (10.1016/j.ssci.2020.104939_b0010) 2015; 128
10.1016/j.ssci.2020.104939_b0185
References_xml – volume: 51
  start-page: 509
  year: 2014
  end-page: 522
  ident: b0095
  article-title: Hazard analysis of complex spacecraft using systems-theoretic process analysis
  publication-title: J. Spacecraft Rockets
  contributor:
    fullname: Hoshino
– year: 2019
  ident: b0020
  article-title: The management of risk in autonomous marine ecosystems – preliminary ideas
  publication-title: Proceedings of the First International Workshop on Autonomous Systems Safety
  contributor:
    fullname: Hirdaris
– volume: 34
  start-page: 134
  year: 2014
  end-page: 137
  ident: b0140
  article-title: Risk-based standards: integrating top–down and bottom–up approaches
  publication-title: Environ. Syst. Decis.
  contributor:
    fullname: Renn
– volume: 165
  start-page: 155
  year: 2017
  end-page: 169
  ident: b0300
  article-title: Towards the assessment of potential impact of unmanned vessels on maritime transportation safety
  publication-title: Reliab. Eng. Syst. Saf.
  contributor:
    fullname: Kujala
– volume: 27
  start-page: 183
  year: 1997
  end-page: 213
  ident: b0180
  article-title: Risk management in a dynamic society: a modelling problem
  publication-title: Saf. Sci.
  contributor:
    fullname: Rasmussen
– volume: 42
  start-page: 237
  year: 2004
  end-page: 270
  ident: b0120
  article-title: A new accident model for engineering safer systems
  publication-title: Saf. Sci.
  contributor:
    fullname: Leveson
– year: 2018
  ident: b0165
  article-title: Securing navigation of unmanned maritime systems
  publication-title: Presented at the International Robotic Sailing Conference 2018
  contributor:
    fullname: Butler
– start-page: 269
  year: 2017
  end-page: 288
  ident: b0275
  article-title: A target tracking system for ASV collision avoidance based on the PDAF
  publication-title: Sensing and Control for Autonomous Vehicles
  contributor:
    fullname: Brekke
– volume: 273
  start-page: 02002
  year: 2019
  ident: b0200
  article-title: Safety verification for autonomous ships
  publication-title: MATEC Web Conf.
  contributor:
    fullname: Utne
– volume: 128
  start-page: 2
  year: 2015
  end-page: 11
  ident: b0010
  article-title: A comprehensive safety engineering approach for software-intensive systems based on STPA
  publication-title: Procedia Eng.
  contributor:
    fullname: Leveson
– year: 2014
  ident: b0065
  article-title: Safety-I and safety-II: the past and future of safety management
  contributor:
    fullname: Hollnagel
– year: 2019
  ident: b0285
  article-title: Preliminary results of a system-theoretic assessment of maritime autonomous surface ships’
  publication-title: Safety. ResearchGate.
  contributor:
    fullname: Montewka
– volume: 165
  start-page: 140
  year: 2018
  end-page: 154
  ident: b0230
  article-title: Assessing ship risk model applicability to marine autonomous surface ships
  publication-title: Ocean Eng.
  contributor:
    fullname: Haugen
– volume: 1357
  year: 2019
  ident: b0030
  article-title: The Autosea project: Developing closed-loop target tracking and collision avoidance systems
  publication-title: J. Phys.: Conf. Ser.
  contributor:
    fullname: Johansen
– volume: 55
  start-page: 173
  year: 2013
  end-page: 187
  ident: b0050
  article-title: Safety assurance in NextGen and complex transportation systems
  publication-title: Saf. Sci.
  contributor:
    fullname: Wilkinson
– volume: 1357
  year: 2019
  ident: b0060
  article-title: Enabling technologies for maritime autonomous surface ships
  publication-title: J. Phys.: Conf. Ser.
  contributor:
    fullname: Rødseth
– volume: 5
  start-page: 233
  year: 2012
  end-page: 244
  ident: b0130
  article-title: Safety assessment of complex, software-intensive systems
  publication-title: SAE Int. J. Aerosp.
  contributor:
    fullname: Wilkinson
– volume: 27
  start-page: 349
  year: 2019
  end-page: 387
  ident: b0220
  article-title: Comparison of the FMEA and STPA safety analysis methods–a case study
  publication-title: Software Qual. J.
  contributor:
    fullname: Höst
– volume: 11
  start-page: 297
  year: 2017
  end-page: 306
  ident: b0265
  article-title: Safe-by-design: from safety to responsibility
  publication-title: Nanoethics
  contributor:
    fullname: Robaey
– volume: 5
  start-page: S41
  year: 2004
  end-page: S46
  ident: b0190
  article-title: Systemic risks: a new challenge for risk management
  publication-title: EMBO Rep.
  contributor:
    fullname: Klinke
– volume: 195
  year: 2020
  ident: b0175
  article-title: Human-system concurrent task analysis for maritime autonomous surface ship operation and safety
  publication-title: Reliab. Eng. Syst. Saf.
  contributor:
    fullname: Mosleh
– volume: 129
  year: 2020
  ident: b0280
  article-title: Identifying research directions of a remotely-controlled merchant ship by revisiting her system-theoretic safety control structure
  publication-title: Saf. Sci.
  contributor:
    fullname: Montewka
– volume: 136
  start-page: 17
  year: 2015
  end-page: 34
  ident: b0115
  article-title: A systems approach to risk management through leading safety indicators
  publication-title: Reliab. Eng. Syst. Saf.
  contributor:
    fullname: Leveson
– volume: 196
  year: 2020
  ident: b0245
  article-title: Towards supervisory risk control of autonomous ships
  publication-title: Reliab. Eng. Syst. Saf.
  contributor:
    fullname: Vinnem
– volume: 25
  start-page: 989
  year: 2015
  end-page: 1003
  ident: b0045
  article-title: Integrating systems safety into systems engineering during concept development
  publication-title: INCOSE International Symposium
  contributor:
    fullname: Leveson
– volume: 38
  start-page: 170
  year: 2018
  end-page: 176
  ident: b0145
  article-title: Comparative, collaborative, and integrative risk governance for emerging technologies
  publication-title: Environ. Syst. Decisions
  contributor:
    fullname: Vermeire
– volume: 178
  start-page: 209
  year: 2018
  end-page: 224
  ident: b0295
  article-title: Towards the development of a system-theoretic model for safety assessment of autonomous merchant vessels
  publication-title: Reliab. Eng. Syst. Saf.
  contributor:
    fullname: Kujala
– volume: 54
  start-page: 26
  year: 2017
  end-page: 31
  ident: b0110
  article-title: Autonomous ships on the high seas
  publication-title: IEEE Spectr.
  contributor:
    fullname: Levander
– volume: 191
  year: 2019
  ident: b0255
  article-title: A systemic hazard analysis and management process for the concept design phase of an autonomous vessel
  publication-title: Reliab. Eng. Syst. Saf.
  contributor:
    fullname: Kujala
– ident: 10.1016/j.ssci.2020.104939_b0215
– ident: 10.1016/j.ssci.2020.104939_b0240
– ident: 10.1016/j.ssci.2020.104939_b0125
  doi: 10.7551/mitpress/8179.001.0001
– volume: 196
  year: 2020
  ident: 10.1016/j.ssci.2020.104939_b0245
  article-title: Towards supervisory risk control of autonomous ships
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2019.106757
  contributor:
    fullname: Utne
– year: 2018
  ident: 10.1016/j.ssci.2020.104939_b0165
  article-title: Securing navigation of unmanned maritime systems
  contributor:
    fullname: Omitola
– ident: 10.1016/j.ssci.2020.104939_b0070
– ident: 10.1016/j.ssci.2020.104939_b0150
– ident: 10.1016/j.ssci.2020.104939_b0135
– ident: 10.1016/j.ssci.2020.104939_b0205
– ident: 10.1016/j.ssci.2020.104939_b0305
– volume: 191
  year: 2019
  ident: 10.1016/j.ssci.2020.104939_b0255
  article-title: A systemic hazard analysis and management process for the concept design phase of an autonomous vessel
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2019.106584
  contributor:
    fullname: Valdez Banda
– volume: 178
  start-page: 209
  year: 2018
  ident: 10.1016/j.ssci.2020.104939_b0295
  article-title: Towards the development of a system-theoretic model for safety assessment of autonomous merchant vessels
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2018.05.019
  contributor:
    fullname: Wróbel
– volume: 1357
  year: 2019
  ident: 10.1016/j.ssci.2020.104939_b0060
  article-title: Enabling technologies for maritime autonomous surface ships
  publication-title: J. Phys.: Conf. Ser.
  contributor:
    fullname: Heffner
– volume: 38
  start-page: 170
  year: 2018
  ident: 10.1016/j.ssci.2020.104939_b0145
  article-title: Comparative, collaborative, and integrative risk governance for emerging technologies
  publication-title: Environ. Syst. Decisions
  doi: 10.1007/s10669-018-9686-5
  contributor:
    fullname: Linkov
– ident: 10.1016/j.ssci.2020.104939_b0195
  doi: 10.1109/OCEANSKOBE.2018.8559061
– volume: 51
  start-page: 509
  year: 2014
  ident: 10.1016/j.ssci.2020.104939_b0095
  article-title: Hazard analysis of complex spacecraft using systems-theoretic process analysis
  publication-title: J. Spacecraft Rockets
  doi: 10.2514/1.A32449
  contributor:
    fullname: Ishimatsu
– ident: 10.1016/j.ssci.2020.104939_b0075
– volume: 1357
  year: 2019
  ident: 10.1016/j.ssci.2020.104939_b0030
  article-title: The Autosea project: Developing closed-loop target tracking and collision avoidance systems
  publication-title: J. Phys.: Conf. Ser.
  contributor:
    fullname: Brekke
– year: 2019
  ident: 10.1016/j.ssci.2020.104939_b0020
  article-title: The management of risk in autonomous marine ecosystems – preliminary ideas
  contributor:
    fullname: Basnet
– volume: 128
  start-page: 2
  year: 2015
  ident: 10.1016/j.ssci.2020.104939_b0010
  article-title: A comprehensive safety engineering approach for software-intensive systems based on STPA
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2015.11.498
  contributor:
    fullname: Abdulkhaleq
– year: 2014
  ident: 10.1016/j.ssci.2020.104939_b0065
  contributor:
    fullname: Hollnagel
– volume: 42
  start-page: 237
  year: 2004
  ident: 10.1016/j.ssci.2020.104939_b0120
  article-title: A new accident model for engineering safer systems
  publication-title: Saf. Sci.
  doi: 10.1016/S0925-7535(03)00047-X
  contributor:
    fullname: Leveson
– volume: 11
  start-page: 297
  year: 2017
  ident: 10.1016/j.ssci.2020.104939_b0265
  article-title: Safe-by-design: from safety to responsibility
  publication-title: Nanoethics
  doi: 10.1007/s11569-017-0301-x
  contributor:
    fullname: van de Poel
– ident: 10.1016/j.ssci.2020.104939_b0040
– volume: 27
  start-page: 183
  year: 1997
  ident: 10.1016/j.ssci.2020.104939_b0180
  article-title: Risk management in a dynamic society: a modelling problem
  publication-title: Saf. Sci.
  doi: 10.1016/S0925-7535(97)00052-0
  contributor:
    fullname: Rasmussen
– ident: 10.1016/j.ssci.2020.104939_b0170
– ident: 10.1016/j.ssci.2020.104939_b0235
  doi: 10.4271/2015-01-0274
– ident: 10.1016/j.ssci.2020.104939_b0055
  doi: 10.3850/978-981-11-2724-3_0105-cd
– ident: 10.1016/j.ssci.2020.104939_b0160
– ident: 10.1016/j.ssci.2020.104939_b0210
– ident: 10.1016/j.ssci.2020.104939_b0105
  doi: 10.23919/ECC.2019.8796273
– ident: 10.1016/j.ssci.2020.104939_b0035
  doi: 10.2478/9788395669606-012
– year: 2019
  ident: 10.1016/j.ssci.2020.104939_b0285
  article-title: Preliminary results of a system-theoretic assessment of maritime autonomous surface ships’
  publication-title: Safety. ResearchGate.
  contributor:
    fullname: Wróbel
– ident: 10.1016/j.ssci.2020.104939_b0005
– volume: 54
  start-page: 26
  year: 2017
  ident: 10.1016/j.ssci.2020.104939_b0110
  article-title: Autonomous ships on the high seas
  publication-title: IEEE Spectr.
  doi: 10.1109/MSPEC.2017.7833502
  contributor:
    fullname: Levander
– volume: 27
  start-page: 349
  year: 2019
  ident: 10.1016/j.ssci.2020.104939_b0220
  article-title: Comparison of the FMEA and STPA safety analysis methods–a case study
  publication-title: Software Qual. J.
  doi: 10.1007/s11219-017-9396-0
  contributor:
    fullname: Sulaman
– ident: 10.1016/j.ssci.2020.104939_b0085
– start-page: 269
  year: 2017
  ident: 10.1016/j.ssci.2020.104939_b0275
  article-title: A target tracking system for ASV collision avoidance based on the PDAF
  contributor:
    fullname: Wilthil
– volume: 5
  start-page: S41
  year: 2004
  ident: 10.1016/j.ssci.2020.104939_b0190
  article-title: Systemic risks: a new challenge for risk management
  publication-title: EMBO Rep.
  doi: 10.1038/sj.embor.7400227
  contributor:
    fullname: Renn
– ident: 10.1016/j.ssci.2020.104939_b0100
– ident: 10.1016/j.ssci.2020.104939_b0290
  doi: 10.1016/j.ssci.2019.03.024
– ident: 10.1016/j.ssci.2020.104939_b0270
– ident: 10.1016/j.ssci.2020.104939_b0155
– ident: 10.1016/j.ssci.2020.104939_b0025
– volume: 165
  start-page: 140
  year: 2018
  ident: 10.1016/j.ssci.2020.104939_b0230
  article-title: Assessing ship risk model applicability to marine autonomous surface ships
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2018.07.040
  contributor:
    fullname: Thieme
– volume: 195
  year: 2020
  ident: 10.1016/j.ssci.2020.104939_b0175
  article-title: Human-system concurrent task analysis for maritime autonomous surface ship operation and safety
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2019.106697
  contributor:
    fullname: Ramos
– ident: 10.1016/j.ssci.2020.104939_b0090
– volume: 165
  start-page: 155
  year: 2017
  ident: 10.1016/j.ssci.2020.104939_b0300
  article-title: Towards the assessment of potential impact of unmanned vessels on maritime transportation safety
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2017.03.029
  contributor:
    fullname: Wróbel
– ident: 10.1016/j.ssci.2020.104939_b0260
– volume: 25
  start-page: 989
  year: 2015
  ident: 10.1016/j.ssci.2020.104939_b0045
  article-title: Integrating systems safety into systems engineering during concept development
  publication-title: INCOSE International Symposium
  doi: 10.1002/j.2334-5837.2015.00111.x
  contributor:
    fullname: Fleming
– ident: 10.1016/j.ssci.2020.104939_b0185
  doi: 10.4324/9781315665894-18
– ident: 10.1016/j.ssci.2020.104939_b0250
– volume: 129
  year: 2020
  ident: 10.1016/j.ssci.2020.104939_b0280
  article-title: Identifying research directions of a remotely-controlled merchant ship by revisiting her system-theoretic safety control structure
  publication-title: Saf. Sci.
  doi: 10.1016/j.ssci.2020.104797
  contributor:
    fullname: Wróbel
– volume: 136
  start-page: 17
  year: 2015
  ident: 10.1016/j.ssci.2020.104939_b0115
  article-title: A systems approach to risk management through leading safety indicators
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2014.10.008
  contributor:
    fullname: Leveson
– ident: 10.1016/j.ssci.2020.104939_b0080
– volume: 34
  start-page: 134
  year: 2014
  ident: 10.1016/j.ssci.2020.104939_b0140
  article-title: Risk-based standards: integrating top–down and bottom–up approaches
  publication-title: Environ. Syst. Decis.
  doi: 10.1007/s10669-014-9488-3
  contributor:
    fullname: Linkov
– ident: 10.1016/j.ssci.2020.104939_b0225
  doi: 10.1088/1742-6596/1357/1/012024
– ident: 10.1016/j.ssci.2020.104939_b0015
– volume: 55
  start-page: 173
  year: 2013
  ident: 10.1016/j.ssci.2020.104939_b0050
  article-title: Safety assurance in NextGen and complex transportation systems
  publication-title: Saf. Sci.
  doi: 10.1016/j.ssci.2012.12.005
  contributor:
    fullname: Fleming
– volume: 5
  start-page: 233
  year: 2012
  ident: 10.1016/j.ssci.2020.104939_b0130
  article-title: Safety assessment of complex, software-intensive systems
  publication-title: SAE Int. J. Aerosp.
  doi: 10.4271/2012-01-2134
  contributor:
    fullname: Leveson
– volume: 273
  start-page: 02002
  year: 2019
  ident: 10.1016/j.ssci.2020.104939_b0200
  article-title: Safety verification for autonomous ships
  publication-title: MATEC Web Conf.
  doi: 10.1051/matecconf/201927302002
  contributor:
    fullname: Rokseth
SSID ssj0001361
Score 2.557192
Snippet •A framework to model a hierarchical control structure for the STPA analysis of an autonomous ship is presented.•STAMP, STPA and STECA were used as the...
The demand for risk and safety analysis is becoming greater due to the increased complexity of modern systems such as autonomous ships. Safety is one of the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 104939
SubjectTerms Autonomous Navigation System
Autonomous ship
Autonomous vehicles
Complex systems
Complexity
Control systems
Maritime safety
Risk analysis
Safety
Safety management
Safety research
Sea vessels
Ships
STAMP
STPA
Structural hierarchy
System effectiveness
System safety engineering
Systems theory
Theoretical mathematics
Title A framework to model the STPA hierarchical control structure of an autonomous ship
URI https://dx.doi.org/10.1016/j.ssci.2020.104939
https://www.proquest.com/docview/2486551441
Volume 132
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jHhREdCpO58jBm9S1TdI2xzEcU3GI22C30OYHzMM6XHf1b_claRFFPHhsSUL53st7L8333kPohheyoFFqqTqGBTRVKshIkgeSZUmU5UqmrovC8zSZLOjjki1baNTkwlhaZW37vU131rp-M6jRHGxWq8Es5KButjoJ6CnxdpiC-wOdvvv4onlExNVMtYMDO7pOnPEcry0sDGfE2F11ctsw_Hfn9MNMO98zPkZHddCIh_67TlBLrztov8kp3nbQof_7hn1S0Sl6HWLTsK5wVWLX7wZDrIdn85chtv2v3Q0CCAjXZHXsK8nu3jUuDc7XON9Vdv1yt8WW0XWGFuP7-WgS1N0TAknSuAriWKYkNoAjj1RScKYg0lE6NiRjihWMaBNxQzOdMl0w6QrRgbOPQiVDnmUJOUftdbnWFwhTWURGqjAHAVKYyCGGIVxrFnMZGZp00W0Dm9j4IhmiYY-9CQuysCALD3IXsQZZ8U3UAqz4n_N6jRhEvdG2IqY2s9aeCi__uewVOrBPnqLSQ20AW19DoFEVfadJfbQ3fHiaTD8B-nDQeA
link.rule.ids 315,783,787,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA_DHSaI6FScTs3Bm5StTdM2xzEcm_tA3Aa7hTYfMA_rcNv_78tHBUU8eG2aUH4v-eWl-b33EHpkhSjiMDVSHU2DOJUyyEiSB4JmSZjlUqS2isJ0lgyX8cuKrmqoX8XCGFml537H6Zat_ZOOR7OzXa878y6D6Wayk8A8JZaH6-ANMFid9d5oPJx9EXJIbNpU835gOvjYGSfz2sHYcEyM7G0nMzXDf9-ffjC13X4GZ-jU-4245z7tHNXUpokaVVjxrolO3A847OKKLtBbD-tKeIX3JbYlbzC4e3i-eO1hUwLbXiKAjbDXq2OXTPbwoXCpcb7B-WFvxi8PO2xEXZdoOXhe9IeBL6AQCJJG-yCKREoiDVCyUCYFoxKcHakiTTIqaUGJ0iHTcaZSqgoqbC462O_DrhRdlmUJuUJHm3KjrhGORRFqIbs52DCGjgzcGMKUohEToY6TFnqqYONblyeDVwKyd25A5gZk7kBuIVohy79ZmwOR_9mvXZmB-7W241FsgmvNwfDmn8M-oMZwMZ3wyWg2vkXHpsUpVtroCIBXd-B37It7P68-ATuv0yw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+framework+to+model+the+STPA+hierarchical+control+structure+of+an+autonomous+ship&rft.jtitle=Safety+science&rft.au=Chaal%2C+Meriam&rft.au=Valdez+Banda%2C+Osiris+A&rft.au=Glomsrud%2C+Jon+Arne&rft.au=Basnet%2C+Sunil&rft.date=2020-12-01&rft.pub=Elsevier+BV&rft.issn=0925-7535&rft.eissn=1879-1042&rft.volume=132&rft.spage=1&rft_id=info:doi/10.1016%2Fj.ssci.2020.104939&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-7535&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-7535&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-7535&client=summon