Constructing highly tribopositive elastic yarn through interfacial design and assembly for efficient energy harvesting and human-interactive sensing
Fibers/yarns with superior triboelectrification and robust stretchability are considered indispensable building blocks for booming fiber-shaped wearable electronics. Here, a new class of highly tribopositive elastic yarn is developed through an interfacial design and assembly using polyethylene oxid...
Saved in:
Published in | Nano energy Vol. 94; p. 106956 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.04.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Fibers/yarns with superior triboelectrification and robust stretchability are considered indispensable building blocks for booming fiber-shaped wearable electronics. Here, a new class of highly tribopositive elastic yarn is developed through an interfacial design and assembly using polyethylene oxide/waterborne polyurethane/alliin composite as stretchable tribomaterial and polyethyleneimine/multiwalled carbon nanotubes/phytic acid polyionic nanomaterial as electrode. The contact triboelectrification and mechanical stretch behaviors of yarn are separately modulated by multiple functional groups coordination and hydrogen bond crosslinking/electrostatic interactions, realizing efficient charge transfer/accumulation capability and stretchable robustness. The optimized yarn TENG with single-electrode mode can deliver a high voltage of 137 V and power density of 2.25 mW/m by varying content of alliin and controlling the thickness of tribocomposite, which is superior to fiber-shaped TENGs reported thus far. Importantly, the device exhibits good electrical output stability and durability in multiple dynamic deformations or long-term service. The yarn can be easily integrated into the stretchable fabric for motion energy harvesting and can also be used as pressure/strain sensor to realize whole-body physiological signals detection and human-interactive sensing in virtual reality space. This work provides feasible proposal for the design of stretchable high-performance fiber TENGs and greatly promotes the advancement in wearable energy/sensing/interactive systems.
A highly tribopositive elastic yarn with efficient charge transfer and accumulation is developed through interfacial design and assembly technology. The cooperation of multiple functional groups and multilayered interface interaction realize high positive triboelectrification and robust extensibility. This yarn can be used for collecting biomechanical energy, detecting physiological signals, and realizing human-interactive sensing, exhibiting promising applications in intelligent wearable systems. [Display omitted]
•Highly tribopositive elastic yarn with charge transfer/accumulation capability is proposed via interfacial design/assembly.•Functional groups and hydrogen bonding/electrostatic interactions modulate triboelectrification and mechanical behavior.•Yarn TENG is optimized by investigating the effect of alliin content and thickness of tribolayer on electrical performance.•The yarn can collect biomechanical energy, detect whole-body physiological signals, and realize VR human-interactive sensing. |
---|---|
AbstractList | Fibers/yarns with superior triboelectrification and robust stretchability are considered indispensable building blocks for booming fiber-shaped wearable electronics. Here, a new class of highly tribopositive elastic yarn is developed through an interfacial design and assembly using polyethylene oxide/waterborne polyurethane/alliin composite as stretchable tribomaterial and polyethyleneimine/multiwalled carbon nanotubes/phytic acid polyionic nanomaterial as electrode. The contact triboelectrification and mechanical stretch behaviors of yarn are separately modulated by multiple functional groups coordination and hydrogen bond crosslinking/electrostatic interactions, realizing efficient charge transfer/accumulation capability and stretchable robustness. The optimized yarn TENG with single-electrode mode can deliver a high voltage of 137 V and power density of 2.25 mW/m by varying content of alliin and controlling the thickness of tribocomposite, which is superior to fiber-shaped TENGs reported thus far. Importantly, the device exhibits good electrical output stability and durability in multiple dynamic deformations or long-term service. The yarn can be easily integrated into the stretchable fabric for motion energy harvesting and can also be used as pressure/strain sensor to realize whole-body physiological signals detection and human-interactive sensing in virtual reality space. This work provides feasible proposal for the design of stretchable high-performance fiber TENGs and greatly promotes the advancement in wearable energy/sensing/interactive systems.
A highly tribopositive elastic yarn with efficient charge transfer and accumulation is developed through interfacial design and assembly technology. The cooperation of multiple functional groups and multilayered interface interaction realize high positive triboelectrification and robust extensibility. This yarn can be used for collecting biomechanical energy, detecting physiological signals, and realizing human-interactive sensing, exhibiting promising applications in intelligent wearable systems. [Display omitted]
•Highly tribopositive elastic yarn with charge transfer/accumulation capability is proposed via interfacial design/assembly.•Functional groups and hydrogen bonding/electrostatic interactions modulate triboelectrification and mechanical behavior.•Yarn TENG is optimized by investigating the effect of alliin content and thickness of tribolayer on electrical performance.•The yarn can collect biomechanical energy, detect whole-body physiological signals, and realize VR human-interactive sensing. |
ArticleNumber | 106956 |
Author | Zhang, Zixuan Shi, Qiongfeng Yang, Yanqin Zhou, Buguang Xu, Yunlong Zhang, Zhi Zhu, Minglu Guo, Jiansheng Lee, Chengkuo Bai, Zhiqing He, Tianyiyi |
Author_xml | – sequence: 1 givenname: Zhiqing surname: Bai fullname: Bai, Zhiqing organization: Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China – sequence: 2 givenname: Tianyiyi surname: He fullname: He, Tianyiyi organization: Department of Electrical and Computer Engineering and Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117583, Singapore – sequence: 3 givenname: Zixuan surname: Zhang fullname: Zhang, Zixuan organization: Department of Electrical and Computer Engineering and Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117583, Singapore – sequence: 4 givenname: Yunlong surname: Xu fullname: Xu, Yunlong organization: Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China – sequence: 5 givenname: Zhi surname: Zhang fullname: Zhang, Zhi organization: Key Laboratory of Polymer Chemistry and Physics (MOE), Department of Materials Science and Engineering, Peking University, Beijing 100871, China – sequence: 6 givenname: Qiongfeng surname: Shi fullname: Shi, Qiongfeng organization: Department of Electrical and Computer Engineering and Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117583, Singapore – sequence: 7 givenname: Yanqin surname: Yang fullname: Yang, Yanqin organization: Department of Electrical and Computer Engineering and Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117583, Singapore – sequence: 8 givenname: Buguang surname: Zhou fullname: Zhou, Buguang organization: Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China – sequence: 9 givenname: Minglu surname: Zhu fullname: Zhu, Minglu organization: Department of Electrical and Computer Engineering and Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117583, Singapore – sequence: 10 givenname: Jiansheng surname: Guo fullname: Guo, Jiansheng email: jsguo@dhu.edu.cn organization: Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China – sequence: 11 givenname: Chengkuo surname: Lee fullname: Lee, Chengkuo email: elelc@nus.edu.sg organization: Department of Electrical and Computer Engineering and Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117583, Singapore |
BookMark | eNqFkE1OAzEMhbMAib_egEUuMCXJtNOWBRKq-JOQ2MA68nicGVfTBCVppd6DAzNtWbEAbyzZfu_J34U48cGTENdajbXS1c1q7MEH8mOjjBlG1WJanYhzY7QuzHw6PROjlFZqqGqqZ9qci69l8CnHDWb2rey47fqdzJHr8BkSZ96SpB5SZpQ7iF7mLoZN20n2maIDZOhlQ4lbL8E3ElKidT1YuBAlOcfI5LMkT7HdyQ7iltIhaX_cbdbgi4MT4CEqkU_D9kqcOugTjX76pfh4fHhfPhevb08vy_vXAsuZyYUxqAGaua4WNTZzMyFUpADmJVLl0NSTajaBAUW5QFeTQTRVqTSZ0mkF2pWXYnL0xRhSiuTsZ-Q1xJ3Vyu6B2pU9ArV7oPYIdJDd_pIhZ8gcfI7A_X_iu6OYhse2TNGmPSOkhiNhtk3gvw2-AT8Bnbk |
CitedBy_id | crossref_primary_10_1002_adsu_202300583 crossref_primary_10_1002_cnl2_39 crossref_primary_10_1007_s10854_022_09640_5 crossref_primary_10_1016_j_compositesa_2024_108043 crossref_primary_10_1021_acsami_4c15137 crossref_primary_10_1002_admt_202400844 crossref_primary_10_1002_marc_202300033 crossref_primary_10_1007_s40843_023_2619_7 crossref_primary_10_1016_j_cej_2022_139209 crossref_primary_10_1002_adma_202403905 crossref_primary_10_1002_adfm_202313824 crossref_primary_10_1002_admt_202201294 crossref_primary_10_1002_adfm_202301589 crossref_primary_10_1007_s12274_022_4564_3 crossref_primary_10_1016_j_snb_2022_132775 crossref_primary_10_1016_j_cej_2024_148994 crossref_primary_10_1016_j_cej_2025_161794 crossref_primary_10_1039_D2NH00323F crossref_primary_10_1016_j_xcrp_2022_101191 crossref_primary_10_1021_acsami_3c14156 crossref_primary_10_1016_j_mattod_2022_11_005 crossref_primary_10_1063_5_0221553 crossref_primary_10_1016_j_nanoen_2022_108043 crossref_primary_10_1021_acssuschemeng_3c03309 crossref_primary_10_1002_adfm_202205275 crossref_primary_10_1007_s42765_024_00381_0 crossref_primary_10_1002_aesr_202400127 crossref_primary_10_1063_5_0219633 crossref_primary_10_34133_research_0154 crossref_primary_10_1021_acsami_3c07589 crossref_primary_10_1186_s11671_023_03888_4 crossref_primary_10_1038_s41378_023_00509_z crossref_primary_10_1002_aenm_202201288 crossref_primary_10_1038_s41467_023_38269_z crossref_primary_10_3390_nano12081366 crossref_primary_10_1016_j_nanoen_2022_107737 crossref_primary_10_1021_acsanm_3c04869 crossref_primary_10_1186_s42234_023_00118_1 crossref_primary_10_1002_inf2_12360 crossref_primary_10_1016_j_nanoen_2022_107634 crossref_primary_10_1039_D2NA00608A crossref_primary_10_3390_polym14132695 crossref_primary_10_1016_j_nanoen_2023_108324 crossref_primary_10_1016_j_nanoen_2023_108224 |
Cites_doi | 10.1021/acsnano.0c09146 10.1002/aenm.201801114 10.1016/j.mattod.2020.11.012 10.1021/ma200318k 10.1002/adfm.201604462 10.1002/adfm.202008347 10.1021/acsnano.8b00147 10.1016/j.chemosphere.2020.128395 10.1039/C7TA00248C 10.1016/j.ensm.2019.03.009 10.1002/adfm.201604378 10.1016/j.nanoen.2020.104973 10.1016/j.nanoen.2018.10.075 10.1038/s41467-020-17345-8 10.1002/aenm.202100411 10.1016/j.cej.2019.123723 10.1021/la00014a042 10.1126/sciadv.1600097 10.34133/2020/3405826 10.1002/aenm.202002969 10.1016/j.nanoen.2021.105867 10.1002/adma.201904882 10.1039/D0EE03911J 10.1016/j.nanoen.2018.01.034 10.1016/j.nanoen.2019.104012 10.1002/adma.201901958 10.1016/j.isci.2020.101360 10.1016/j.ces.2020.115488 10.1016/j.nanoen.2021.106058 10.1016/j.nanoen.2020.104884 10.1016/j.nanoen.2021.105954 10.1002/adfm.202006679 10.1016/j.nanoen.2020.105389 10.1038/s41528-020-0064-2 10.1016/j.nanoen.2016.01.017 10.1002/aenm.202101631 10.1002/adma.201902549 10.1016/j.tibtech.2017.04.005 10.1002/advs.201900617 10.1016/j.nanoen.2020.104863 10.1002/aenm.201804005 10.1039/C5EE01532D 10.1007/s40544-020-0390-3 10.1002/aenm.201600665 10.1038/s41528-017-0001-1 10.1038/s41467-020-17842-w 10.1021/ma0626362 10.1038/s41467-019-08846-2 10.1039/C9NJ00826H 10.17660/ActaHortic.2016.1143.19 10.1126/science.1218829 10.1016/j.nanoen.2013.07.012 10.1016/j.nanoen.2018.05.041 10.1002/adfm.202104701 10.1021/acs.macromol.9b01725 10.1002/adfm.202104365 10.1039/C7RA10285B |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.nanoen.2022.106956 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_nanoen_2022_106956 S2211285522000416 |
GroupedDBID | --K --M .~1 0R~ 1~. 1~5 4.4 457 4G. 5VS 7-5 8P~ AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC EBS EFJIC EFLBG EJD FDB FIRID FNPLU FYGXN GBLVA HZ~ JARJE KOM M41 MAGPM MO0 O-L O9- OAUVE P-8 P-9 PC. Q38 RIG ROL SDF SPC SPCBC SSM SSR SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c372t-22c1aad8169bcd824ec0e0aa83ce6fc2b4674a20239cfbe2cc26301e23f10a1f3 |
IEDL.DBID | .~1 |
ISSN | 2211-2855 |
IngestDate | Tue Jul 01 00:56:52 EDT 2025 Thu Apr 24 23:04:17 EDT 2025 Fri Feb 23 02:40:19 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Interfacial design/assembly Stretchable robustness Dual charge transfer Tribopositive yarn Versatility |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-22c1aad8169bcd824ec0e0aa83ce6fc2b4674a20239cfbe2cc26301e23f10a1f3 |
ParticipantIDs | crossref_primary_10_1016_j_nanoen_2022_106956 crossref_citationtrail_10_1016_j_nanoen_2022_106956 elsevier_sciencedirect_doi_10_1016_j_nanoen_2022_106956 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2022 2022-04-00 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: April 2022 |
PublicationDecade | 2020 |
PublicationTitle | Nano energy |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Wang, Yap, Gong, Wang, Wang, Cheng (bib7) 2021; 31 Zhang, Ding, Ocko, Lhermitte, Strzalka, Choi, Fisher, Yager, Black (bib38) 2020; 53 Pei, Malho, Ruokolainen, Zhou, Berglund (bib57) 2011; 44 Ning, Dong, Cheng, Yi, Ye, Peng, Sheng, Jiang, Wang (bib23) 2021; 31 Kim, Lee, You, Kim, Jeong (bib61) 2018; 50 Li, Liang, Cheng, Li, Zhao, Kong (bib42) 2019; 9 Tasci, Kutuk, Koca (bib59) 2016; 19 Roy, Ko, Maji, Van Hai, Kim (bib40) 2020; 385 Gao, Wang, Jiang, Wang, Yao, Liu, Chu, Cheng, Lu (bib4) 2021; 14 Dong, Leber, Das, Chandran, Volpi, Qu, Nguyen-Dang, Bartolomei, Yan, Sorin (bib32) 2020; 11 Bai, Han, Sun, An, Wei, Liu, Xu, Sun, Sun, Yu, Zhang, Wei, Xu, Yang, Qin, Xie, Lin, Huang (bib44) 2020; 2020 Tong, Feng, Kim, Robertson, Jia, Johnson (bib35) 2020; 75 Halakoo, Feng (bib37) 2020; 216 Kwon, Nam, Lee, Kim, Yeom, Moon, Lee, Ko (bib41) 2021; 11 Zhou, Fuentes-Hernandez, Shim, Meyer, Giordano, Li, Winget, Papadopoulos, Cheun, Kim, Fenoll, Dindar, Haske, Najafabadi, Khan, Sojoudi, Barlow, Graham, Bredas, Marder, Kahn, Kippelen (bib55) 2012; 336 Zahirović, Žilić, Pavelić, Hukić, Muratović, Harej, Kahrović (bib58) 2019; 43 Ko, Lee, Kwon, Lee (bib47) 2021; 11 Dong, Deng, Ding, Wang, Wang, Cheng, Wang, Jin, Gu, Sun, Wang (bib26) 2018; 8 Shuai, Guo, Zhang, Wan, Pu, Wang (bib33) 2020; 78 Lai, Lu, Wu, Zhang, Yang, Ma, Shamsi, Vallem, Dickey (bib20) 2021; 11 Chen, Wen, Shi, Jian, Li, Yeow, Sun (bib9) 2020; 11 Nguyen, Yang (bib60) 2013; 2 Bai, Xu, Zhang, Zhu, Gao, Zhang, Jia, Guo (bib48) 2020; 75 Cao, Jie, Wang, Wang (bib11) 2016; 6 Chen, Yusuf, Del Rio, Wang (bib53) 2021; 81 Zhou, Liu, Wang, Wang (bib49) 2020; 8 Ding, Chen, Farooq, Zhao, Soin, Yu, Jin, Wang, Dong, Luo (bib54) 2018; 46 Gunawardhana, Wanasekara, Dharmasena (bib16) 2020; 23 Park, Choi, Lee, Kim, Kim (bib34) 2017; 7 Han, Xu, Zhang, Xu, Xiong, Cao, Liang, Zheng, Sun, Zhai, Sun, Wang (bib17) 2021; 15 An, Wang, Li, Zhang, Lu, Sun (bib45) 2019; 31 Proto, Penhaker, Conforto, Schmid (bib10) 2017; 35 Wang, Yang, Wang (bib13) 2017; 1 Feng, Zhang, Zheng, Wang, Zhou, Liu (bib39) 2019; 55 Chang, Peng, Chen, Chang, Wu, Hwang, Gan, Lin (bib52) 2016; 21 Zeng, Lin, Cai, Lu, Fu, Li, Yan, Wen, Zhou, Zhang (bib36) 2021; 264 Bai, Xu, Lee, Guo (bib43) 2021; 31 He, Zi, Guo, Zheng, Xi, Wu, Wang, Zhang, Lu, Wang (bib22) 2017; 27 Wang, Chen, Lin (bib1) 2015; 8 Shi, Liu, Zhang, Yang, Shu, Yang, Ren, Wang, Chen, Chen, Chai, Tao (bib3) 2019; 32 Chen, Deng, Ouyang, Zheng, Jiang, Bai, Xue (bib29) 2021; 84 Gong, Hou, Zhou, Guo, Zhang, Li, Zhang, Wang (bib19) 2019; 10 Lai, Deng, Zhang, Niu, Guo, Wang (bib21) 2017; 27 Zixuan, Tianyiyi, Minglu, Zhongda, Qiongfeng, Jianxiong, Bowei, Rasit, Chengkuo (bib2) 2020; 4 He, Du, Feng, Li, Wang, Zhang, Yu, Wan, Zhai (bib25) 2021; 86 Lan, Jiang, Yao, Ping, Ying (bib28) 2021; 84 Shi, Lee (bib5) 2019; 6 Bai, Zhang, Li, Guo (bib8) 2019; 65 Yang, Sun, Wen, Cheng, Zheng, Shao, Xia, Chen, Lan, Xie, Zhou, Zhong, Sun, Lee (bib30) 2018; 12 Mattia, Painter (bib56) 2007; 40 Luo, Wang (bib50) 2019; 23 Jing, Xu, Yang (bib24) 2021; 84 Li, Hao, Yang, Sun, Bai, Ding, Wang, Zhang (bib6) 2020; 72 Liu, Wang, Hu (bib12) 2021; 45 Bai, Jia, Liu, Wang, Lin, Huang, Liu, Liu (bib46) 2021 Dong, Peng, Wang (bib15) 2020; 32 Chen, Wang, Zhang, Wang, Liu, Chen, Wei (bib31) 2021; 12 Yu, Pan, Zhang, Sun, He, Qiu, Lou, Sun, Peng (bib18) 2017; 5 Jiang, Li, Ying, Ping (bib27) 2020; 74 Wen, Yeh, Guo, Wang, Zi, Xu, Deng, Zhu, Wang, Hu, Zhu, Sun, Wang (bib14) 2016; 2 Pence, Novotny, Diaz (bib51) 1994; 10 An (10.1016/j.nanoen.2022.106956_bib45) 2019; 31 Yang (10.1016/j.nanoen.2022.106956_bib30) 2018; 12 Zhang (10.1016/j.nanoen.2022.106956_bib38) 2020; 53 Li (10.1016/j.nanoen.2022.106956_bib6) 2020; 72 Chen (10.1016/j.nanoen.2022.106956_bib9) 2020; 11 Zhou (10.1016/j.nanoen.2022.106956_bib49) 2020; 8 Zahirović (10.1016/j.nanoen.2022.106956_bib58) 2019; 43 Chen (10.1016/j.nanoen.2022.106956_bib53) 2021; 81 Chen (10.1016/j.nanoen.2022.106956_bib31) 2021; 12 Dong (10.1016/j.nanoen.2022.106956_bib32) 2020; 11 Gunawardhana (10.1016/j.nanoen.2022.106956_bib16) 2020; 23 Nguyen (10.1016/j.nanoen.2022.106956_bib60) 2013; 2 Mattia (10.1016/j.nanoen.2022.106956_bib56) 2007; 40 Proto (10.1016/j.nanoen.2022.106956_bib10) 2017; 35 Lai (10.1016/j.nanoen.2022.106956_bib20) 2021; 11 Dong (10.1016/j.nanoen.2022.106956_bib15) 2020; 32 He (10.1016/j.nanoen.2022.106956_bib22) 2017; 27 Dong (10.1016/j.nanoen.2022.106956_bib26) 2018; 8 Park (10.1016/j.nanoen.2022.106956_bib34) 2017; 7 Tong (10.1016/j.nanoen.2022.106956_bib35) 2020; 75 Roy (10.1016/j.nanoen.2022.106956_bib40) 2020; 385 Tasci (10.1016/j.nanoen.2022.106956_bib59) 2016; 19 Han (10.1016/j.nanoen.2022.106956_bib17) 2021; 15 He (10.1016/j.nanoen.2022.106956_bib25) 2021; 86 Gao (10.1016/j.nanoen.2022.106956_bib4) 2021; 14 Ko (10.1016/j.nanoen.2022.106956_bib47) 2021; 11 Zixuan (10.1016/j.nanoen.2022.106956_bib2) 2020; 4 Bai (10.1016/j.nanoen.2022.106956_bib44) 2020; 2020 Zeng (10.1016/j.nanoen.2022.106956_bib36) 2021; 264 Bai (10.1016/j.nanoen.2022.106956_bib43) 2021; 31 Ding (10.1016/j.nanoen.2022.106956_bib54) 2018; 46 Jing (10.1016/j.nanoen.2022.106956_bib24) 2021; 84 Bai (10.1016/j.nanoen.2022.106956_bib46) 2021 Wen (10.1016/j.nanoen.2022.106956_bib14) 2016; 2 Li (10.1016/j.nanoen.2022.106956_bib42) 2019; 9 Pei (10.1016/j.nanoen.2022.106956_bib57) 2011; 44 Bai (10.1016/j.nanoen.2022.106956_bib8) 2019; 65 Wang (10.1016/j.nanoen.2022.106956_bib7) 2021; 31 Lai (10.1016/j.nanoen.2022.106956_bib21) 2017; 27 Jiang (10.1016/j.nanoen.2022.106956_bib27) 2020; 74 Chang (10.1016/j.nanoen.2022.106956_bib52) 2016; 21 Kwon (10.1016/j.nanoen.2022.106956_bib41) 2021; 11 Wang (10.1016/j.nanoen.2022.106956_bib1) 2015; 8 Shi (10.1016/j.nanoen.2022.106956_bib3) 2019; 32 Gong (10.1016/j.nanoen.2022.106956_bib19) 2019; 10 Ning (10.1016/j.nanoen.2022.106956_bib23) 2021; 31 Chen (10.1016/j.nanoen.2022.106956_bib29) 2021; 84 Luo (10.1016/j.nanoen.2022.106956_bib50) 2019; 23 Pence (10.1016/j.nanoen.2022.106956_bib51) 1994; 10 Lan (10.1016/j.nanoen.2022.106956_bib28) 2021; 84 Feng (10.1016/j.nanoen.2022.106956_bib39) 2019; 55 Liu (10.1016/j.nanoen.2022.106956_bib12) 2021; 45 Shuai (10.1016/j.nanoen.2022.106956_bib33) 2020; 78 Bai (10.1016/j.nanoen.2022.106956_bib48) 2020; 75 Wang (10.1016/j.nanoen.2022.106956_bib13) 2017; 1 Zhou (10.1016/j.nanoen.2022.106956_bib55) 2012; 336 Kim (10.1016/j.nanoen.2022.106956_bib61) 2018; 50 Halakoo (10.1016/j.nanoen.2022.106956_bib37) 2020; 216 Yu (10.1016/j.nanoen.2022.106956_bib18) 2017; 5 Shi (10.1016/j.nanoen.2022.106956_bib5) 2019; 6 Cao (10.1016/j.nanoen.2022.106956_bib11) 2016; 6 |
References_xml | – volume: 86 year: 2021 ident: bib25 publication-title: Nano Energy – volume: 81 year: 2021 ident: bib53 publication-title: Nano Energy – volume: 11 start-page: 2002969 year: 2021 ident: bib47 publication-title: J. Cho Adv. Energy Mater. – volume: 2020 start-page: 1 year: 2020 end-page: 15 ident: bib44 publication-title: Research – volume: 31 start-page: 2104365 year: 2021 ident: bib43 publication-title: Adv. Funct. Mater. – volume: 84 year: 2021 ident: bib29 publication-title: Nano Energy – volume: 75 year: 2020 ident: bib35 publication-title: Nano Energy – volume: 385 year: 2020 ident: bib40 publication-title: Chem. Eng. J. – volume: 336 start-page: 327 year: 2012 end-page: 332 ident: bib55 publication-title: Sci. (80-. ). – volume: 27 start-page: 1604378 year: 2017 ident: bib22 publication-title: Adv. Funct. Mater. – volume: 6 start-page: 1600665 year: 2016 ident: bib11 publication-title: Adv. Energy Mater. – volume: 14 start-page: 2114 year: 2021 ident: bib4 publication-title: Energy Environ. Sci. – volume: 27 start-page: 1604462 year: 2017 ident: bib21 publication-title: Adv. Funct. Mater. – volume: 8 start-page: 2250 year: 2015 end-page: 2282 ident: bib1 publication-title: Energy Environ. Sci. – volume: 74 year: 2020 ident: bib27 publication-title: Nano Energy – volume: 32 start-page: 1902549 year: 2020 ident: bib15 publication-title: Adv. Mater. – volume: 11 start-page: 4143 year: 2020 ident: bib9 publication-title: Nat. Commun. – volume: 12 year: 2021 ident: bib31 publication-title: Nat. Commun. – volume: 55 start-page: 260 year: 2019 end-page: 268 ident: bib39 publication-title: Nano Energy – start-page: 2104701 year: 2021 ident: bib46 publication-title: Adv. Funct. Mater. – volume: 10 start-page: 592 year: 1994 end-page: 596 ident: bib51 publication-title: Langmuir – volume: 46 start-page: 63 year: 2018 end-page: 72 ident: bib54 publication-title: Nano Energy – volume: 32 start-page: 1901958 year: 2019 ident: bib3 publication-title: Adv. Mater. – volume: 2 start-page: 1600097 year: 2016 ident: bib14 publication-title: Sci. Adv. – volume: 40 start-page: 1546 year: 2007 end-page: 1554 ident: bib56 publication-title: Macromolecules – volume: 84 year: 2021 ident: bib24 publication-title: Nano Energy – volume: 11 start-page: 2100411 year: 2021 ident: bib20 publication-title: Adv. Energy Mater. – volume: 23 start-page: 617 year: 2019 end-page: 628 ident: bib50 publication-title: Energy Storage Mater. – volume: 11 start-page: 3537 year: 2020 ident: bib32 publication-title: Nat. Commun. – volume: 21 start-page: 238 year: 2016 end-page: 246 ident: bib52 publication-title: Nano Energy – volume: 78 year: 2020 ident: bib33 publication-title: Nano Energy – volume: 6 start-page: 1900617 year: 2019 ident: bib5 publication-title: Adv. Sci. – volume: 4 start-page: 1 year: 2020 end-page: 12 ident: bib2 publication-title: Npj Flex. Electron – volume: 45 start-page: 93 year: 2021 end-page: 119 ident: bib12 publication-title: Mater. Today – volume: 35 start-page: 610 year: 2017 end-page: 624 ident: bib10 publication-title: Trends Biotechnol. – volume: 75 year: 2020 ident: bib48 publication-title: Nano Energy – volume: 23 year: 2020 ident: bib16 publication-title: IScience – volume: 8 start-page: 481 year: 2020 end-page: 506 ident: bib49 publication-title: Friction – volume: 15 start-page: 1597 year: 2021 end-page: 1607 ident: bib17 publication-title: ACS Nano – volume: 44 start-page: 4422 year: 2011 end-page: 4427 ident: bib57 publication-title: Macromolecules – volume: 11 start-page: 2101631 year: 2021 ident: bib41 publication-title: J. Cho, Adv. Energy Mater. – volume: 65 year: 2019 ident: bib8 publication-title: Nano Energy – volume: 31 start-page: 2008347 year: 2021 ident: bib7 publication-title: Adv. Funct. Mater. – volume: 19 start-page: 133 year: 2016 end-page: 138 ident: bib59 publication-title: Acta Hortic. – volume: 84 year: 2021 ident: bib28 publication-title: Nano Energy – volume: 72 year: 2020 ident: bib6 publication-title: Nano Energy – volume: 264 year: 2021 ident: bib36 publication-title: Chemosphere – volume: 43 start-page: 5791 year: 2019 end-page: 5804 ident: bib58 publication-title: N. J. Chem. – volume: 1 start-page: 1 year: 2017 end-page: 10 ident: bib13 publication-title: Npj Flex. Electron – volume: 7 start-page: 54829 year: 2017 end-page: 54834 ident: bib34 publication-title: RSC Adv. – volume: 50 start-page: 192 year: 2018 end-page: 200 ident: bib61 publication-title: Nano Energy – volume: 9 start-page: 1804005 year: 2019 ident: bib42 publication-title: Adv. Energy Mater. – volume: 53 start-page: 1494 year: 2020 end-page: 1501 ident: bib38 publication-title: Macromolecules – volume: 5 start-page: 6032 year: 2017 end-page: 6037 ident: bib18 publication-title: J. Mater. Chem. A. Mater. Energy Sustain. – volume: 10 start-page: 868 year: 2019 ident: bib19 publication-title: Nat. Commun. – volume: 8 start-page: 1801114 year: 2018 ident: bib26 publication-title: Adv. Energy Mater. – volume: 31 start-page: 1904882 year: 2019 ident: bib45 publication-title: Adv. Mater. – volume: 31 start-page: 2006679 year: 2021 ident: bib23 publication-title: Adv. Funct. Mater. – volume: 2 start-page: 604 year: 2013 end-page: 608 ident: bib60 publication-title: Nano Energy – volume: 216 year: 2020 ident: bib37 publication-title: Chem. Eng. Sci. – volume: 12 start-page: 2027 year: 2018 end-page: 2034 ident: bib30 publication-title: ACS Nano. – volume: 15 start-page: 1597 year: 2021 ident: 10.1016/j.nanoen.2022.106956_bib17 publication-title: ACS Nano doi: 10.1021/acsnano.0c09146 – volume: 8 start-page: 1801114 year: 2018 ident: 10.1016/j.nanoen.2022.106956_bib26 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201801114 – volume: 45 start-page: 93 year: 2021 ident: 10.1016/j.nanoen.2022.106956_bib12 publication-title: Mater. Today doi: 10.1016/j.mattod.2020.11.012 – volume: 44 start-page: 4422 year: 2011 ident: 10.1016/j.nanoen.2022.106956_bib57 publication-title: Macromolecules doi: 10.1021/ma200318k – volume: 27 start-page: 1604462 year: 2017 ident: 10.1016/j.nanoen.2022.106956_bib21 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201604462 – volume: 31 start-page: 2008347 year: 2021 ident: 10.1016/j.nanoen.2022.106956_bib7 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202008347 – volume: 81 year: 2021 ident: 10.1016/j.nanoen.2022.106956_bib53 publication-title: Nano Energy – volume: 12 start-page: 2027 year: 2018 ident: 10.1016/j.nanoen.2022.106956_bib30 publication-title: ACS Nano. doi: 10.1021/acsnano.8b00147 – volume: 264 year: 2021 ident: 10.1016/j.nanoen.2022.106956_bib36 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.128395 – volume: 5 start-page: 6032 year: 2017 ident: 10.1016/j.nanoen.2022.106956_bib18 publication-title: J. Mater. Chem. A. Mater. Energy Sustain. doi: 10.1039/C7TA00248C – volume: 23 start-page: 617 year: 2019 ident: 10.1016/j.nanoen.2022.106956_bib50 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2019.03.009 – volume: 27 start-page: 1604378 year: 2017 ident: 10.1016/j.nanoen.2022.106956_bib22 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201604378 – volume: 75 year: 2020 ident: 10.1016/j.nanoen.2022.106956_bib35 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104973 – volume: 12 year: 2021 ident: 10.1016/j.nanoen.2022.106956_bib31 publication-title: Nat. Commun. – volume: 55 start-page: 260 year: 2019 ident: 10.1016/j.nanoen.2022.106956_bib39 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.10.075 – volume: 11 start-page: 3537 year: 2020 ident: 10.1016/j.nanoen.2022.106956_bib32 publication-title: Nat. Commun. doi: 10.1038/s41467-020-17345-8 – volume: 11 start-page: 2100411 year: 2021 ident: 10.1016/j.nanoen.2022.106956_bib20 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202100411 – volume: 385 year: 2020 ident: 10.1016/j.nanoen.2022.106956_bib40 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123723 – volume: 10 start-page: 592 year: 1994 ident: 10.1016/j.nanoen.2022.106956_bib51 publication-title: Langmuir doi: 10.1021/la00014a042 – volume: 2 start-page: 1600097 year: 2016 ident: 10.1016/j.nanoen.2022.106956_bib14 publication-title: Sci. Adv. doi: 10.1126/sciadv.1600097 – volume: 2020 start-page: 1 year: 2020 ident: 10.1016/j.nanoen.2022.106956_bib44 publication-title: Research doi: 10.34133/2020/3405826 – volume: 11 start-page: 2002969 year: 2021 ident: 10.1016/j.nanoen.2022.106956_bib47 publication-title: J. Cho Adv. Energy Mater. doi: 10.1002/aenm.202002969 – volume: 84 year: 2021 ident: 10.1016/j.nanoen.2022.106956_bib24 publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.105867 – volume: 31 start-page: 1904882 year: 2019 ident: 10.1016/j.nanoen.2022.106956_bib45 publication-title: Adv. Mater. doi: 10.1002/adma.201904882 – volume: 14 start-page: 2114 year: 2021 ident: 10.1016/j.nanoen.2022.106956_bib4 publication-title: Energy Environ. Sci. doi: 10.1039/D0EE03911J – volume: 46 start-page: 63 year: 2018 ident: 10.1016/j.nanoen.2022.106956_bib54 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.01.034 – volume: 65 year: 2019 ident: 10.1016/j.nanoen.2022.106956_bib8 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104012 – volume: 32 start-page: 1901958 year: 2019 ident: 10.1016/j.nanoen.2022.106956_bib3 publication-title: Adv. Mater. doi: 10.1002/adma.201901958 – volume: 23 year: 2020 ident: 10.1016/j.nanoen.2022.106956_bib16 publication-title: IScience doi: 10.1016/j.isci.2020.101360 – volume: 216 year: 2020 ident: 10.1016/j.nanoen.2022.106956_bib37 publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2020.115488 – volume: 86 year: 2021 ident: 10.1016/j.nanoen.2022.106956_bib25 publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106058 – volume: 75 year: 2020 ident: 10.1016/j.nanoen.2022.106956_bib48 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104884 – volume: 84 year: 2021 ident: 10.1016/j.nanoen.2022.106956_bib28 publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.105954 – volume: 72 year: 2020 ident: 10.1016/j.nanoen.2022.106956_bib6 publication-title: Nano Energy – volume: 31 start-page: 2006679 year: 2021 ident: 10.1016/j.nanoen.2022.106956_bib23 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202006679 – volume: 78 year: 2020 ident: 10.1016/j.nanoen.2022.106956_bib33 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105389 – volume: 4 start-page: 1 year: 2020 ident: 10.1016/j.nanoen.2022.106956_bib2 publication-title: Npj Flex. Electron doi: 10.1038/s41528-020-0064-2 – volume: 21 start-page: 238 year: 2016 ident: 10.1016/j.nanoen.2022.106956_bib52 publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.01.017 – volume: 11 start-page: 2101631 year: 2021 ident: 10.1016/j.nanoen.2022.106956_bib41 publication-title: J. Cho, Adv. Energy Mater. doi: 10.1002/aenm.202101631 – volume: 32 start-page: 1902549 year: 2020 ident: 10.1016/j.nanoen.2022.106956_bib15 publication-title: Adv. Mater. doi: 10.1002/adma.201902549 – volume: 35 start-page: 610 year: 2017 ident: 10.1016/j.nanoen.2022.106956_bib10 publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2017.04.005 – volume: 6 start-page: 1900617 year: 2019 ident: 10.1016/j.nanoen.2022.106956_bib5 publication-title: Adv. Sci. doi: 10.1002/advs.201900617 – volume: 74 year: 2020 ident: 10.1016/j.nanoen.2022.106956_bib27 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104863 – volume: 9 start-page: 1804005 year: 2019 ident: 10.1016/j.nanoen.2022.106956_bib42 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201804005 – volume: 8 start-page: 2250 year: 2015 ident: 10.1016/j.nanoen.2022.106956_bib1 publication-title: Energy Environ. Sci. doi: 10.1039/C5EE01532D – volume: 84 year: 2021 ident: 10.1016/j.nanoen.2022.106956_bib29 publication-title: Nano Energy – volume: 8 start-page: 481 year: 2020 ident: 10.1016/j.nanoen.2022.106956_bib49 publication-title: Friction doi: 10.1007/s40544-020-0390-3 – volume: 6 start-page: 1600665 year: 2016 ident: 10.1016/j.nanoen.2022.106956_bib11 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201600665 – volume: 1 start-page: 1 year: 2017 ident: 10.1016/j.nanoen.2022.106956_bib13 publication-title: Npj Flex. Electron doi: 10.1038/s41528-017-0001-1 – volume: 11 start-page: 4143 year: 2020 ident: 10.1016/j.nanoen.2022.106956_bib9 publication-title: Nat. Commun. doi: 10.1038/s41467-020-17842-w – volume: 40 start-page: 1546 year: 2007 ident: 10.1016/j.nanoen.2022.106956_bib56 publication-title: Macromolecules doi: 10.1021/ma0626362 – volume: 10 start-page: 868 year: 2019 ident: 10.1016/j.nanoen.2022.106956_bib19 publication-title: Nat. Commun. doi: 10.1038/s41467-019-08846-2 – volume: 43 start-page: 5791 year: 2019 ident: 10.1016/j.nanoen.2022.106956_bib58 publication-title: N. J. Chem. doi: 10.1039/C9NJ00826H – volume: 19 start-page: 133 year: 2016 ident: 10.1016/j.nanoen.2022.106956_bib59 publication-title: Acta Hortic. doi: 10.17660/ActaHortic.2016.1143.19 – volume: 336 start-page: 327 year: 2012 ident: 10.1016/j.nanoen.2022.106956_bib55 publication-title: Sci. (80-. ). doi: 10.1126/science.1218829 – volume: 2 start-page: 604 year: 2013 ident: 10.1016/j.nanoen.2022.106956_bib60 publication-title: Nano Energy doi: 10.1016/j.nanoen.2013.07.012 – volume: 50 start-page: 192 year: 2018 ident: 10.1016/j.nanoen.2022.106956_bib61 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.05.041 – start-page: 2104701 year: 2021 ident: 10.1016/j.nanoen.2022.106956_bib46 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202104701 – volume: 53 start-page: 1494 year: 2020 ident: 10.1016/j.nanoen.2022.106956_bib38 publication-title: Macromolecules doi: 10.1021/acs.macromol.9b01725 – volume: 31 start-page: 2104365 year: 2021 ident: 10.1016/j.nanoen.2022.106956_bib43 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202104365 – volume: 7 start-page: 54829 year: 2017 ident: 10.1016/j.nanoen.2022.106956_bib34 publication-title: RSC Adv. doi: 10.1039/C7RA10285B |
SSID | ssj0000651712 |
Score | 2.5065513 |
Snippet | Fibers/yarns with superior triboelectrification and robust stretchability are considered indispensable building blocks for booming fiber-shaped wearable... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 106956 |
SubjectTerms | Dual charge transfer Interfacial design/assembly Stretchable robustness Tribopositive yarn Versatility |
Title | Constructing highly tribopositive elastic yarn through interfacial design and assembly for efficient energy harvesting and human-interactive sensing |
URI | https://dx.doi.org/10.1016/j.nanoen.2022.106956 |
Volume | 94 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BTtwwELUQXOihggIq0K584Go2dpzEOSJUtKWCS4u0t8h2xpSKetGCkLjwFXxwZ-wEgVS1EsdYHifyWDOT5M17jB0Y1-rWAAjrq0poVTjhtLfCB9ODxAAYFDUnn53Xswt9Oq_mK-x47IUhWOUQ-3NMT9F6GJkOuzm9ubqaflf47qJMhQUEFSaSaLe1buiUHz7K5-8smGJlk3560nxBBmMHXYJ5RRsXQESoSuFQ3ZKS9d8y1Iusc7LB3g_lIj_KT7TJViB-YO9ekAhusSfS3MwssPGSE_3w9QMnHatFBmTdAwcskXEB_mCXkQ_KPJyIIpbB0idz3iccB7ex51hMw2-HS2A1yyERTGBe4pB6BPlPu0y8HHgnmpwU_kRayabAyW8JEB8vt9nFyZcfxzMxaC0IXzbqTijlpbW9kXXrfG-UBl9AYa0pPdTBK0eqJJa01lsfHCjvVY2xAVQZZGFlKHfYalxE-Mi4Dz0pWhurjdYQqJXVQNHUwRXofel2WTnub-cHInLSw7juRsTZry57pSOvdNkru0w8W91kIo7_zG9G13WvDlSHueKflntvttxn63SVgT2f2Cr6Hj5jzXLnJulQTtja0ddvs_M_cuTwzw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELXocqAcEPRD0ELxoVd3Y8ebdY7VCrRtgQusxC2ynfF2K-pFywppL_0V_GBmnAQtEmqlXh2PE3kmMxNn5j3GPhtX6tIACOsHA6FV5oTT3gofTA0SHWBQ1Jx8flGMJ_r79eB6g426Xhgqq2x9f-PTk7duR_rtbvZvZ7P-pcJvF2UGmEBQYiKLV2xT4-tLNAZf_singxaMsXKY_nqSgCCJroUu1XlFG-dASKhK4VBREpX1SyFqLeyc7rKdNl_kX5tH2mMbEN-w7TUUwbfsgUg3GxjYOOWEP3yz4kRkNW8qsu6BA-bIuABf2UXkLTUPJ6SIRbB0Zs7rVMjBbaw5ZtPw2-ESmM5ySAgTGJg4pCZB_tMuEjAH3okmJ4o_kVayyXPyO6qIj9N3bHJ6cjUai5ZsQfh8qJZCKS-trY0sSudrozT4DDJrTe6hCF45oiWxRLZe-uBAea8KdA6g8iAzK0P-nvXiPMI-4z7URGltrDZaQ6BeVgPZsAguQ_VLd8Dybn8r3yKREyHGTdWVnP2qGq1UpJWq0coBE09Stw0Sxz_mDzvVVc8sqsJg8VfJD_8tecy2xlfnZ9XZt4sfH9lrutJU-RyyHtoBHGECs3SfkoE-AvVH8l0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constructing+highly+tribopositive+elastic+yarn+through+interfacial+design+and+assembly+for+efficient+energy+harvesting+and+human-interactive+sensing&rft.jtitle=Nano+energy&rft.au=Bai%2C+Zhiqing&rft.au=He%2C+Tianyiyi&rft.au=Zhang%2C+Zixuan&rft.au=Xu%2C+Yunlong&rft.date=2022-04-01&rft.issn=2211-2855&rft.volume=94&rft.spage=106956&rft_id=info:doi/10.1016%2Fj.nanoen.2022.106956&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_nanoen_2022_106956 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-2855&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-2855&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-2855&client=summon |