Constructing highly tribopositive elastic yarn through interfacial design and assembly for efficient energy harvesting and human-interactive sensing

Fibers/yarns with superior triboelectrification and robust stretchability are considered indispensable building blocks for booming fiber-shaped wearable electronics. Here, a new class of highly tribopositive elastic yarn is developed through an interfacial design and assembly using polyethylene oxid...

Full description

Saved in:
Bibliographic Details
Published inNano energy Vol. 94; p. 106956
Main Authors Bai, Zhiqing, He, Tianyiyi, Zhang, Zixuan, Xu, Yunlong, Zhang, Zhi, Shi, Qiongfeng, Yang, Yanqin, Zhou, Buguang, Zhu, Minglu, Guo, Jiansheng, Lee, Chengkuo
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.04.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Fibers/yarns with superior triboelectrification and robust stretchability are considered indispensable building blocks for booming fiber-shaped wearable electronics. Here, a new class of highly tribopositive elastic yarn is developed through an interfacial design and assembly using polyethylene oxide/waterborne polyurethane/alliin composite as stretchable tribomaterial and polyethyleneimine/multiwalled carbon nanotubes/phytic acid polyionic nanomaterial as electrode. The contact triboelectrification and mechanical stretch behaviors of yarn are separately modulated by multiple functional groups coordination and hydrogen bond crosslinking/electrostatic interactions, realizing efficient charge transfer/accumulation capability and stretchable robustness. The optimized yarn TENG with single-electrode mode can deliver a high voltage of 137 V and power density of 2.25 mW/m by varying content of alliin and controlling the thickness of tribocomposite, which is superior to fiber-shaped TENGs reported thus far. Importantly, the device exhibits good electrical output stability and durability in multiple dynamic deformations or long-term service. The yarn can be easily integrated into the stretchable fabric for motion energy harvesting and can also be used as pressure/strain sensor to realize whole-body physiological signals detection and human-interactive sensing in virtual reality space. This work provides feasible proposal for the design of stretchable high-performance fiber TENGs and greatly promotes the advancement in wearable energy/sensing/interactive systems. A highly tribopositive elastic yarn with efficient charge transfer and accumulation is developed through interfacial design and assembly technology. The cooperation of multiple functional groups and multilayered interface interaction realize high positive triboelectrification and robust extensibility. This yarn can be used for collecting biomechanical energy, detecting physiological signals, and realizing human-interactive sensing, exhibiting promising applications in intelligent wearable systems. [Display omitted] •Highly tribopositive elastic yarn with charge transfer/accumulation capability is proposed via interfacial design/assembly.•Functional groups and hydrogen bonding/electrostatic interactions modulate triboelectrification and mechanical behavior.•Yarn TENG is optimized by investigating the effect of alliin content and thickness of tribolayer on electrical performance.•The yarn can collect biomechanical energy, detect whole-body physiological signals, and realize VR human-interactive sensing.
AbstractList Fibers/yarns with superior triboelectrification and robust stretchability are considered indispensable building blocks for booming fiber-shaped wearable electronics. Here, a new class of highly tribopositive elastic yarn is developed through an interfacial design and assembly using polyethylene oxide/waterborne polyurethane/alliin composite as stretchable tribomaterial and polyethyleneimine/multiwalled carbon nanotubes/phytic acid polyionic nanomaterial as electrode. The contact triboelectrification and mechanical stretch behaviors of yarn are separately modulated by multiple functional groups coordination and hydrogen bond crosslinking/electrostatic interactions, realizing efficient charge transfer/accumulation capability and stretchable robustness. The optimized yarn TENG with single-electrode mode can deliver a high voltage of 137 V and power density of 2.25 mW/m by varying content of alliin and controlling the thickness of tribocomposite, which is superior to fiber-shaped TENGs reported thus far. Importantly, the device exhibits good electrical output stability and durability in multiple dynamic deformations or long-term service. The yarn can be easily integrated into the stretchable fabric for motion energy harvesting and can also be used as pressure/strain sensor to realize whole-body physiological signals detection and human-interactive sensing in virtual reality space. This work provides feasible proposal for the design of stretchable high-performance fiber TENGs and greatly promotes the advancement in wearable energy/sensing/interactive systems. A highly tribopositive elastic yarn with efficient charge transfer and accumulation is developed through interfacial design and assembly technology. The cooperation of multiple functional groups and multilayered interface interaction realize high positive triboelectrification and robust extensibility. This yarn can be used for collecting biomechanical energy, detecting physiological signals, and realizing human-interactive sensing, exhibiting promising applications in intelligent wearable systems. [Display omitted] •Highly tribopositive elastic yarn with charge transfer/accumulation capability is proposed via interfacial design/assembly.•Functional groups and hydrogen bonding/electrostatic interactions modulate triboelectrification and mechanical behavior.•Yarn TENG is optimized by investigating the effect of alliin content and thickness of tribolayer on electrical performance.•The yarn can collect biomechanical energy, detect whole-body physiological signals, and realize VR human-interactive sensing.
ArticleNumber 106956
Author Zhang, Zixuan
Shi, Qiongfeng
Yang, Yanqin
Zhou, Buguang
Xu, Yunlong
Zhang, Zhi
Zhu, Minglu
Guo, Jiansheng
Lee, Chengkuo
Bai, Zhiqing
He, Tianyiyi
Author_xml – sequence: 1
  givenname: Zhiqing
  surname: Bai
  fullname: Bai, Zhiqing
  organization: Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
– sequence: 2
  givenname: Tianyiyi
  surname: He
  fullname: He, Tianyiyi
  organization: Department of Electrical and Computer Engineering and Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117583, Singapore
– sequence: 3
  givenname: Zixuan
  surname: Zhang
  fullname: Zhang, Zixuan
  organization: Department of Electrical and Computer Engineering and Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117583, Singapore
– sequence: 4
  givenname: Yunlong
  surname: Xu
  fullname: Xu, Yunlong
  organization: Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
– sequence: 5
  givenname: Zhi
  surname: Zhang
  fullname: Zhang, Zhi
  organization: Key Laboratory of Polymer Chemistry and Physics (MOE), Department of Materials Science and Engineering, Peking University, Beijing 100871, China
– sequence: 6
  givenname: Qiongfeng
  surname: Shi
  fullname: Shi, Qiongfeng
  organization: Department of Electrical and Computer Engineering and Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117583, Singapore
– sequence: 7
  givenname: Yanqin
  surname: Yang
  fullname: Yang, Yanqin
  organization: Department of Electrical and Computer Engineering and Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117583, Singapore
– sequence: 8
  givenname: Buguang
  surname: Zhou
  fullname: Zhou, Buguang
  organization: Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
– sequence: 9
  givenname: Minglu
  surname: Zhu
  fullname: Zhu, Minglu
  organization: Department of Electrical and Computer Engineering and Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117583, Singapore
– sequence: 10
  givenname: Jiansheng
  surname: Guo
  fullname: Guo, Jiansheng
  email: jsguo@dhu.edu.cn
  organization: Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
– sequence: 11
  givenname: Chengkuo
  surname: Lee
  fullname: Lee, Chengkuo
  email: elelc@nus.edu.sg
  organization: Department of Electrical and Computer Engineering and Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117583, Singapore
BookMark eNqFkE1OAzEMhbMAib_egEUuMCXJtNOWBRKq-JOQ2MA68nicGVfTBCVppd6DAzNtWbEAbyzZfu_J34U48cGTENdajbXS1c1q7MEH8mOjjBlG1WJanYhzY7QuzHw6PROjlFZqqGqqZ9qci69l8CnHDWb2rey47fqdzJHr8BkSZ96SpB5SZpQ7iF7mLoZN20n2maIDZOhlQ4lbL8E3ElKidT1YuBAlOcfI5LMkT7HdyQ7iltIhaX_cbdbgi4MT4CEqkU_D9kqcOugTjX76pfh4fHhfPhevb08vy_vXAsuZyYUxqAGaua4WNTZzMyFUpADmJVLl0NSTajaBAUW5QFeTQTRVqTSZ0mkF2pWXYnL0xRhSiuTsZ-Q1xJ3Vyu6B2pU9ArV7oPYIdJDd_pIhZ8gcfI7A_X_iu6OYhse2TNGmPSOkhiNhtk3gvw2-AT8Bnbk
CitedBy_id crossref_primary_10_1002_adsu_202300583
crossref_primary_10_1002_cnl2_39
crossref_primary_10_1007_s10854_022_09640_5
crossref_primary_10_1016_j_compositesa_2024_108043
crossref_primary_10_1021_acsami_4c15137
crossref_primary_10_1002_admt_202400844
crossref_primary_10_1002_marc_202300033
crossref_primary_10_1007_s40843_023_2619_7
crossref_primary_10_1016_j_cej_2022_139209
crossref_primary_10_1002_adma_202403905
crossref_primary_10_1002_adfm_202313824
crossref_primary_10_1002_admt_202201294
crossref_primary_10_1002_adfm_202301589
crossref_primary_10_1007_s12274_022_4564_3
crossref_primary_10_1016_j_snb_2022_132775
crossref_primary_10_1016_j_cej_2024_148994
crossref_primary_10_1016_j_cej_2025_161794
crossref_primary_10_1039_D2NH00323F
crossref_primary_10_1016_j_xcrp_2022_101191
crossref_primary_10_1021_acsami_3c14156
crossref_primary_10_1016_j_mattod_2022_11_005
crossref_primary_10_1063_5_0221553
crossref_primary_10_1016_j_nanoen_2022_108043
crossref_primary_10_1021_acssuschemeng_3c03309
crossref_primary_10_1002_adfm_202205275
crossref_primary_10_1007_s42765_024_00381_0
crossref_primary_10_1002_aesr_202400127
crossref_primary_10_1063_5_0219633
crossref_primary_10_34133_research_0154
crossref_primary_10_1021_acsami_3c07589
crossref_primary_10_1186_s11671_023_03888_4
crossref_primary_10_1038_s41378_023_00509_z
crossref_primary_10_1002_aenm_202201288
crossref_primary_10_1038_s41467_023_38269_z
crossref_primary_10_3390_nano12081366
crossref_primary_10_1016_j_nanoen_2022_107737
crossref_primary_10_1021_acsanm_3c04869
crossref_primary_10_1186_s42234_023_00118_1
crossref_primary_10_1002_inf2_12360
crossref_primary_10_1016_j_nanoen_2022_107634
crossref_primary_10_1039_D2NA00608A
crossref_primary_10_3390_polym14132695
crossref_primary_10_1016_j_nanoen_2023_108324
crossref_primary_10_1016_j_nanoen_2023_108224
Cites_doi 10.1021/acsnano.0c09146
10.1002/aenm.201801114
10.1016/j.mattod.2020.11.012
10.1021/ma200318k
10.1002/adfm.201604462
10.1002/adfm.202008347
10.1021/acsnano.8b00147
10.1016/j.chemosphere.2020.128395
10.1039/C7TA00248C
10.1016/j.ensm.2019.03.009
10.1002/adfm.201604378
10.1016/j.nanoen.2020.104973
10.1016/j.nanoen.2018.10.075
10.1038/s41467-020-17345-8
10.1002/aenm.202100411
10.1016/j.cej.2019.123723
10.1021/la00014a042
10.1126/sciadv.1600097
10.34133/2020/3405826
10.1002/aenm.202002969
10.1016/j.nanoen.2021.105867
10.1002/adma.201904882
10.1039/D0EE03911J
10.1016/j.nanoen.2018.01.034
10.1016/j.nanoen.2019.104012
10.1002/adma.201901958
10.1016/j.isci.2020.101360
10.1016/j.ces.2020.115488
10.1016/j.nanoen.2021.106058
10.1016/j.nanoen.2020.104884
10.1016/j.nanoen.2021.105954
10.1002/adfm.202006679
10.1016/j.nanoen.2020.105389
10.1038/s41528-020-0064-2
10.1016/j.nanoen.2016.01.017
10.1002/aenm.202101631
10.1002/adma.201902549
10.1016/j.tibtech.2017.04.005
10.1002/advs.201900617
10.1016/j.nanoen.2020.104863
10.1002/aenm.201804005
10.1039/C5EE01532D
10.1007/s40544-020-0390-3
10.1002/aenm.201600665
10.1038/s41528-017-0001-1
10.1038/s41467-020-17842-w
10.1021/ma0626362
10.1038/s41467-019-08846-2
10.1039/C9NJ00826H
10.17660/ActaHortic.2016.1143.19
10.1126/science.1218829
10.1016/j.nanoen.2013.07.012
10.1016/j.nanoen.2018.05.041
10.1002/adfm.202104701
10.1021/acs.macromol.9b01725
10.1002/adfm.202104365
10.1039/C7RA10285B
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.nanoen.2022.106956
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_nanoen_2022_106956
S2211285522000416
GroupedDBID --K
--M
.~1
0R~
1~.
1~5
4.4
457
4G.
5VS
7-5
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FNPLU
FYGXN
GBLVA
HZ~
JARJE
KOM
M41
MAGPM
MO0
O-L
O9-
OAUVE
P-8
P-9
PC.
Q38
RIG
ROL
SDF
SPC
SPCBC
SSM
SSR
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c372t-22c1aad8169bcd824ec0e0aa83ce6fc2b4674a20239cfbe2cc26301e23f10a1f3
IEDL.DBID .~1
ISSN 2211-2855
IngestDate Tue Jul 01 00:56:52 EDT 2025
Thu Apr 24 23:04:17 EDT 2025
Fri Feb 23 02:40:19 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Interfacial design/assembly
Stretchable robustness
Dual charge transfer
Tribopositive yarn
Versatility
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-22c1aad8169bcd824ec0e0aa83ce6fc2b4674a20239cfbe2cc26301e23f10a1f3
ParticipantIDs crossref_primary_10_1016_j_nanoen_2022_106956
crossref_citationtrail_10_1016_j_nanoen_2022_106956
elsevier_sciencedirect_doi_10_1016_j_nanoen_2022_106956
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2022
2022-04-00
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: April 2022
PublicationDecade 2020
PublicationTitle Nano energy
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wang, Yap, Gong, Wang, Wang, Cheng (bib7) 2021; 31
Zhang, Ding, Ocko, Lhermitte, Strzalka, Choi, Fisher, Yager, Black (bib38) 2020; 53
Pei, Malho, Ruokolainen, Zhou, Berglund (bib57) 2011; 44
Ning, Dong, Cheng, Yi, Ye, Peng, Sheng, Jiang, Wang (bib23) 2021; 31
Kim, Lee, You, Kim, Jeong (bib61) 2018; 50
Li, Liang, Cheng, Li, Zhao, Kong (bib42) 2019; 9
Tasci, Kutuk, Koca (bib59) 2016; 19
Roy, Ko, Maji, Van Hai, Kim (bib40) 2020; 385
Gao, Wang, Jiang, Wang, Yao, Liu, Chu, Cheng, Lu (bib4) 2021; 14
Dong, Leber, Das, Chandran, Volpi, Qu, Nguyen-Dang, Bartolomei, Yan, Sorin (bib32) 2020; 11
Bai, Han, Sun, An, Wei, Liu, Xu, Sun, Sun, Yu, Zhang, Wei, Xu, Yang, Qin, Xie, Lin, Huang (bib44) 2020; 2020
Tong, Feng, Kim, Robertson, Jia, Johnson (bib35) 2020; 75
Halakoo, Feng (bib37) 2020; 216
Kwon, Nam, Lee, Kim, Yeom, Moon, Lee, Ko (bib41) 2021; 11
Zhou, Fuentes-Hernandez, Shim, Meyer, Giordano, Li, Winget, Papadopoulos, Cheun, Kim, Fenoll, Dindar, Haske, Najafabadi, Khan, Sojoudi, Barlow, Graham, Bredas, Marder, Kahn, Kippelen (bib55) 2012; 336
Zahirović, Žilić, Pavelić, Hukić, Muratović, Harej, Kahrović (bib58) 2019; 43
Ko, Lee, Kwon, Lee (bib47) 2021; 11
Dong, Deng, Ding, Wang, Wang, Cheng, Wang, Jin, Gu, Sun, Wang (bib26) 2018; 8
Shuai, Guo, Zhang, Wan, Pu, Wang (bib33) 2020; 78
Lai, Lu, Wu, Zhang, Yang, Ma, Shamsi, Vallem, Dickey (bib20) 2021; 11
Chen, Wen, Shi, Jian, Li, Yeow, Sun (bib9) 2020; 11
Nguyen, Yang (bib60) 2013; 2
Bai, Xu, Zhang, Zhu, Gao, Zhang, Jia, Guo (bib48) 2020; 75
Cao, Jie, Wang, Wang (bib11) 2016; 6
Chen, Yusuf, Del Rio, Wang (bib53) 2021; 81
Zhou, Liu, Wang, Wang (bib49) 2020; 8
Ding, Chen, Farooq, Zhao, Soin, Yu, Jin, Wang, Dong, Luo (bib54) 2018; 46
Gunawardhana, Wanasekara, Dharmasena (bib16) 2020; 23
Park, Choi, Lee, Kim, Kim (bib34) 2017; 7
Han, Xu, Zhang, Xu, Xiong, Cao, Liang, Zheng, Sun, Zhai, Sun, Wang (bib17) 2021; 15
An, Wang, Li, Zhang, Lu, Sun (bib45) 2019; 31
Proto, Penhaker, Conforto, Schmid (bib10) 2017; 35
Wang, Yang, Wang (bib13) 2017; 1
Feng, Zhang, Zheng, Wang, Zhou, Liu (bib39) 2019; 55
Chang, Peng, Chen, Chang, Wu, Hwang, Gan, Lin (bib52) 2016; 21
Zeng, Lin, Cai, Lu, Fu, Li, Yan, Wen, Zhou, Zhang (bib36) 2021; 264
Bai, Xu, Lee, Guo (bib43) 2021; 31
He, Zi, Guo, Zheng, Xi, Wu, Wang, Zhang, Lu, Wang (bib22) 2017; 27
Wang, Chen, Lin (bib1) 2015; 8
Shi, Liu, Zhang, Yang, Shu, Yang, Ren, Wang, Chen, Chen, Chai, Tao (bib3) 2019; 32
Chen, Deng, Ouyang, Zheng, Jiang, Bai, Xue (bib29) 2021; 84
Gong, Hou, Zhou, Guo, Zhang, Li, Zhang, Wang (bib19) 2019; 10
Lai, Deng, Zhang, Niu, Guo, Wang (bib21) 2017; 27
Zixuan, Tianyiyi, Minglu, Zhongda, Qiongfeng, Jianxiong, Bowei, Rasit, Chengkuo (bib2) 2020; 4
He, Du, Feng, Li, Wang, Zhang, Yu, Wan, Zhai (bib25) 2021; 86
Lan, Jiang, Yao, Ping, Ying (bib28) 2021; 84
Shi, Lee (bib5) 2019; 6
Bai, Zhang, Li, Guo (bib8) 2019; 65
Yang, Sun, Wen, Cheng, Zheng, Shao, Xia, Chen, Lan, Xie, Zhou, Zhong, Sun, Lee (bib30) 2018; 12
Mattia, Painter (bib56) 2007; 40
Luo, Wang (bib50) 2019; 23
Jing, Xu, Yang (bib24) 2021; 84
Li, Hao, Yang, Sun, Bai, Ding, Wang, Zhang (bib6) 2020; 72
Liu, Wang, Hu (bib12) 2021; 45
Bai, Jia, Liu, Wang, Lin, Huang, Liu, Liu (bib46) 2021
Dong, Peng, Wang (bib15) 2020; 32
Chen, Wang, Zhang, Wang, Liu, Chen, Wei (bib31) 2021; 12
Yu, Pan, Zhang, Sun, He, Qiu, Lou, Sun, Peng (bib18) 2017; 5
Jiang, Li, Ying, Ping (bib27) 2020; 74
Wen, Yeh, Guo, Wang, Zi, Xu, Deng, Zhu, Wang, Hu, Zhu, Sun, Wang (bib14) 2016; 2
Pence, Novotny, Diaz (bib51) 1994; 10
An (10.1016/j.nanoen.2022.106956_bib45) 2019; 31
Yang (10.1016/j.nanoen.2022.106956_bib30) 2018; 12
Zhang (10.1016/j.nanoen.2022.106956_bib38) 2020; 53
Li (10.1016/j.nanoen.2022.106956_bib6) 2020; 72
Chen (10.1016/j.nanoen.2022.106956_bib9) 2020; 11
Zhou (10.1016/j.nanoen.2022.106956_bib49) 2020; 8
Zahirović (10.1016/j.nanoen.2022.106956_bib58) 2019; 43
Chen (10.1016/j.nanoen.2022.106956_bib53) 2021; 81
Chen (10.1016/j.nanoen.2022.106956_bib31) 2021; 12
Dong (10.1016/j.nanoen.2022.106956_bib32) 2020; 11
Gunawardhana (10.1016/j.nanoen.2022.106956_bib16) 2020; 23
Nguyen (10.1016/j.nanoen.2022.106956_bib60) 2013; 2
Mattia (10.1016/j.nanoen.2022.106956_bib56) 2007; 40
Proto (10.1016/j.nanoen.2022.106956_bib10) 2017; 35
Lai (10.1016/j.nanoen.2022.106956_bib20) 2021; 11
Dong (10.1016/j.nanoen.2022.106956_bib15) 2020; 32
He (10.1016/j.nanoen.2022.106956_bib22) 2017; 27
Dong (10.1016/j.nanoen.2022.106956_bib26) 2018; 8
Park (10.1016/j.nanoen.2022.106956_bib34) 2017; 7
Tong (10.1016/j.nanoen.2022.106956_bib35) 2020; 75
Roy (10.1016/j.nanoen.2022.106956_bib40) 2020; 385
Tasci (10.1016/j.nanoen.2022.106956_bib59) 2016; 19
Han (10.1016/j.nanoen.2022.106956_bib17) 2021; 15
He (10.1016/j.nanoen.2022.106956_bib25) 2021; 86
Gao (10.1016/j.nanoen.2022.106956_bib4) 2021; 14
Ko (10.1016/j.nanoen.2022.106956_bib47) 2021; 11
Zixuan (10.1016/j.nanoen.2022.106956_bib2) 2020; 4
Bai (10.1016/j.nanoen.2022.106956_bib44) 2020; 2020
Zeng (10.1016/j.nanoen.2022.106956_bib36) 2021; 264
Bai (10.1016/j.nanoen.2022.106956_bib43) 2021; 31
Ding (10.1016/j.nanoen.2022.106956_bib54) 2018; 46
Jing (10.1016/j.nanoen.2022.106956_bib24) 2021; 84
Bai (10.1016/j.nanoen.2022.106956_bib46) 2021
Wen (10.1016/j.nanoen.2022.106956_bib14) 2016; 2
Li (10.1016/j.nanoen.2022.106956_bib42) 2019; 9
Pei (10.1016/j.nanoen.2022.106956_bib57) 2011; 44
Bai (10.1016/j.nanoen.2022.106956_bib8) 2019; 65
Wang (10.1016/j.nanoen.2022.106956_bib7) 2021; 31
Lai (10.1016/j.nanoen.2022.106956_bib21) 2017; 27
Jiang (10.1016/j.nanoen.2022.106956_bib27) 2020; 74
Chang (10.1016/j.nanoen.2022.106956_bib52) 2016; 21
Kwon (10.1016/j.nanoen.2022.106956_bib41) 2021; 11
Wang (10.1016/j.nanoen.2022.106956_bib1) 2015; 8
Shi (10.1016/j.nanoen.2022.106956_bib3) 2019; 32
Gong (10.1016/j.nanoen.2022.106956_bib19) 2019; 10
Ning (10.1016/j.nanoen.2022.106956_bib23) 2021; 31
Chen (10.1016/j.nanoen.2022.106956_bib29) 2021; 84
Luo (10.1016/j.nanoen.2022.106956_bib50) 2019; 23
Pence (10.1016/j.nanoen.2022.106956_bib51) 1994; 10
Lan (10.1016/j.nanoen.2022.106956_bib28) 2021; 84
Feng (10.1016/j.nanoen.2022.106956_bib39) 2019; 55
Liu (10.1016/j.nanoen.2022.106956_bib12) 2021; 45
Shuai (10.1016/j.nanoen.2022.106956_bib33) 2020; 78
Bai (10.1016/j.nanoen.2022.106956_bib48) 2020; 75
Wang (10.1016/j.nanoen.2022.106956_bib13) 2017; 1
Zhou (10.1016/j.nanoen.2022.106956_bib55) 2012; 336
Kim (10.1016/j.nanoen.2022.106956_bib61) 2018; 50
Halakoo (10.1016/j.nanoen.2022.106956_bib37) 2020; 216
Yu (10.1016/j.nanoen.2022.106956_bib18) 2017; 5
Shi (10.1016/j.nanoen.2022.106956_bib5) 2019; 6
Cao (10.1016/j.nanoen.2022.106956_bib11) 2016; 6
References_xml – volume: 86
  year: 2021
  ident: bib25
  publication-title: Nano Energy
– volume: 81
  year: 2021
  ident: bib53
  publication-title: Nano Energy
– volume: 11
  start-page: 2002969
  year: 2021
  ident: bib47
  publication-title: J. Cho Adv. Energy Mater.
– volume: 2020
  start-page: 1
  year: 2020
  end-page: 15
  ident: bib44
  publication-title: Research
– volume: 31
  start-page: 2104365
  year: 2021
  ident: bib43
  publication-title: Adv. Funct. Mater.
– volume: 84
  year: 2021
  ident: bib29
  publication-title: Nano Energy
– volume: 75
  year: 2020
  ident: bib35
  publication-title: Nano Energy
– volume: 385
  year: 2020
  ident: bib40
  publication-title: Chem. Eng. J.
– volume: 336
  start-page: 327
  year: 2012
  end-page: 332
  ident: bib55
  publication-title: Sci. (80-. ).
– volume: 27
  start-page: 1604378
  year: 2017
  ident: bib22
  publication-title: Adv. Funct. Mater.
– volume: 6
  start-page: 1600665
  year: 2016
  ident: bib11
  publication-title: Adv. Energy Mater.
– volume: 14
  start-page: 2114
  year: 2021
  ident: bib4
  publication-title: Energy Environ. Sci.
– volume: 27
  start-page: 1604462
  year: 2017
  ident: bib21
  publication-title: Adv. Funct. Mater.
– volume: 8
  start-page: 2250
  year: 2015
  end-page: 2282
  ident: bib1
  publication-title: Energy Environ. Sci.
– volume: 74
  year: 2020
  ident: bib27
  publication-title: Nano Energy
– volume: 32
  start-page: 1902549
  year: 2020
  ident: bib15
  publication-title: Adv. Mater.
– volume: 11
  start-page: 4143
  year: 2020
  ident: bib9
  publication-title: Nat. Commun.
– volume: 12
  year: 2021
  ident: bib31
  publication-title: Nat. Commun.
– volume: 55
  start-page: 260
  year: 2019
  end-page: 268
  ident: bib39
  publication-title: Nano Energy
– start-page: 2104701
  year: 2021
  ident: bib46
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 592
  year: 1994
  end-page: 596
  ident: bib51
  publication-title: Langmuir
– volume: 46
  start-page: 63
  year: 2018
  end-page: 72
  ident: bib54
  publication-title: Nano Energy
– volume: 32
  start-page: 1901958
  year: 2019
  ident: bib3
  publication-title: Adv. Mater.
– volume: 2
  start-page: 1600097
  year: 2016
  ident: bib14
  publication-title: Sci. Adv.
– volume: 40
  start-page: 1546
  year: 2007
  end-page: 1554
  ident: bib56
  publication-title: Macromolecules
– volume: 84
  year: 2021
  ident: bib24
  publication-title: Nano Energy
– volume: 11
  start-page: 2100411
  year: 2021
  ident: bib20
  publication-title: Adv. Energy Mater.
– volume: 23
  start-page: 617
  year: 2019
  end-page: 628
  ident: bib50
  publication-title: Energy Storage Mater.
– volume: 11
  start-page: 3537
  year: 2020
  ident: bib32
  publication-title: Nat. Commun.
– volume: 21
  start-page: 238
  year: 2016
  end-page: 246
  ident: bib52
  publication-title: Nano Energy
– volume: 78
  year: 2020
  ident: bib33
  publication-title: Nano Energy
– volume: 6
  start-page: 1900617
  year: 2019
  ident: bib5
  publication-title: Adv. Sci.
– volume: 4
  start-page: 1
  year: 2020
  end-page: 12
  ident: bib2
  publication-title: Npj Flex. Electron
– volume: 45
  start-page: 93
  year: 2021
  end-page: 119
  ident: bib12
  publication-title: Mater. Today
– volume: 35
  start-page: 610
  year: 2017
  end-page: 624
  ident: bib10
  publication-title: Trends Biotechnol.
– volume: 75
  year: 2020
  ident: bib48
  publication-title: Nano Energy
– volume: 23
  year: 2020
  ident: bib16
  publication-title: IScience
– volume: 8
  start-page: 481
  year: 2020
  end-page: 506
  ident: bib49
  publication-title: Friction
– volume: 15
  start-page: 1597
  year: 2021
  end-page: 1607
  ident: bib17
  publication-title: ACS Nano
– volume: 44
  start-page: 4422
  year: 2011
  end-page: 4427
  ident: bib57
  publication-title: Macromolecules
– volume: 11
  start-page: 2101631
  year: 2021
  ident: bib41
  publication-title: J. Cho, Adv. Energy Mater.
– volume: 65
  year: 2019
  ident: bib8
  publication-title: Nano Energy
– volume: 31
  start-page: 2008347
  year: 2021
  ident: bib7
  publication-title: Adv. Funct. Mater.
– volume: 19
  start-page: 133
  year: 2016
  end-page: 138
  ident: bib59
  publication-title: Acta Hortic.
– volume: 84
  year: 2021
  ident: bib28
  publication-title: Nano Energy
– volume: 72
  year: 2020
  ident: bib6
  publication-title: Nano Energy
– volume: 264
  year: 2021
  ident: bib36
  publication-title: Chemosphere
– volume: 43
  start-page: 5791
  year: 2019
  end-page: 5804
  ident: bib58
  publication-title: N. J. Chem.
– volume: 1
  start-page: 1
  year: 2017
  end-page: 10
  ident: bib13
  publication-title: Npj Flex. Electron
– volume: 7
  start-page: 54829
  year: 2017
  end-page: 54834
  ident: bib34
  publication-title: RSC Adv.
– volume: 50
  start-page: 192
  year: 2018
  end-page: 200
  ident: bib61
  publication-title: Nano Energy
– volume: 9
  start-page: 1804005
  year: 2019
  ident: bib42
  publication-title: Adv. Energy Mater.
– volume: 53
  start-page: 1494
  year: 2020
  end-page: 1501
  ident: bib38
  publication-title: Macromolecules
– volume: 5
  start-page: 6032
  year: 2017
  end-page: 6037
  ident: bib18
  publication-title: J. Mater. Chem. A. Mater. Energy Sustain.
– volume: 10
  start-page: 868
  year: 2019
  ident: bib19
  publication-title: Nat. Commun.
– volume: 8
  start-page: 1801114
  year: 2018
  ident: bib26
  publication-title: Adv. Energy Mater.
– volume: 31
  start-page: 1904882
  year: 2019
  ident: bib45
  publication-title: Adv. Mater.
– volume: 31
  start-page: 2006679
  year: 2021
  ident: bib23
  publication-title: Adv. Funct. Mater.
– volume: 2
  start-page: 604
  year: 2013
  end-page: 608
  ident: bib60
  publication-title: Nano Energy
– volume: 216
  year: 2020
  ident: bib37
  publication-title: Chem. Eng. Sci.
– volume: 12
  start-page: 2027
  year: 2018
  end-page: 2034
  ident: bib30
  publication-title: ACS Nano.
– volume: 15
  start-page: 1597
  year: 2021
  ident: 10.1016/j.nanoen.2022.106956_bib17
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c09146
– volume: 8
  start-page: 1801114
  year: 2018
  ident: 10.1016/j.nanoen.2022.106956_bib26
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201801114
– volume: 45
  start-page: 93
  year: 2021
  ident: 10.1016/j.nanoen.2022.106956_bib12
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2020.11.012
– volume: 44
  start-page: 4422
  year: 2011
  ident: 10.1016/j.nanoen.2022.106956_bib57
  publication-title: Macromolecules
  doi: 10.1021/ma200318k
– volume: 27
  start-page: 1604462
  year: 2017
  ident: 10.1016/j.nanoen.2022.106956_bib21
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201604462
– volume: 31
  start-page: 2008347
  year: 2021
  ident: 10.1016/j.nanoen.2022.106956_bib7
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202008347
– volume: 81
  year: 2021
  ident: 10.1016/j.nanoen.2022.106956_bib53
  publication-title: Nano Energy
– volume: 12
  start-page: 2027
  year: 2018
  ident: 10.1016/j.nanoen.2022.106956_bib30
  publication-title: ACS Nano.
  doi: 10.1021/acsnano.8b00147
– volume: 264
  year: 2021
  ident: 10.1016/j.nanoen.2022.106956_bib36
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.128395
– volume: 5
  start-page: 6032
  year: 2017
  ident: 10.1016/j.nanoen.2022.106956_bib18
  publication-title: J. Mater. Chem. A. Mater. Energy Sustain.
  doi: 10.1039/C7TA00248C
– volume: 23
  start-page: 617
  year: 2019
  ident: 10.1016/j.nanoen.2022.106956_bib50
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2019.03.009
– volume: 27
  start-page: 1604378
  year: 2017
  ident: 10.1016/j.nanoen.2022.106956_bib22
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201604378
– volume: 75
  year: 2020
  ident: 10.1016/j.nanoen.2022.106956_bib35
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104973
– volume: 12
  year: 2021
  ident: 10.1016/j.nanoen.2022.106956_bib31
  publication-title: Nat. Commun.
– volume: 55
  start-page: 260
  year: 2019
  ident: 10.1016/j.nanoen.2022.106956_bib39
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.10.075
– volume: 11
  start-page: 3537
  year: 2020
  ident: 10.1016/j.nanoen.2022.106956_bib32
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17345-8
– volume: 11
  start-page: 2100411
  year: 2021
  ident: 10.1016/j.nanoen.2022.106956_bib20
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202100411
– volume: 385
  year: 2020
  ident: 10.1016/j.nanoen.2022.106956_bib40
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123723
– volume: 10
  start-page: 592
  year: 1994
  ident: 10.1016/j.nanoen.2022.106956_bib51
  publication-title: Langmuir
  doi: 10.1021/la00014a042
– volume: 2
  start-page: 1600097
  year: 2016
  ident: 10.1016/j.nanoen.2022.106956_bib14
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1600097
– volume: 2020
  start-page: 1
  year: 2020
  ident: 10.1016/j.nanoen.2022.106956_bib44
  publication-title: Research
  doi: 10.34133/2020/3405826
– volume: 11
  start-page: 2002969
  year: 2021
  ident: 10.1016/j.nanoen.2022.106956_bib47
  publication-title: J. Cho Adv. Energy Mater.
  doi: 10.1002/aenm.202002969
– volume: 84
  year: 2021
  ident: 10.1016/j.nanoen.2022.106956_bib24
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.105867
– volume: 31
  start-page: 1904882
  year: 2019
  ident: 10.1016/j.nanoen.2022.106956_bib45
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201904882
– volume: 14
  start-page: 2114
  year: 2021
  ident: 10.1016/j.nanoen.2022.106956_bib4
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE03911J
– volume: 46
  start-page: 63
  year: 2018
  ident: 10.1016/j.nanoen.2022.106956_bib54
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.01.034
– volume: 65
  year: 2019
  ident: 10.1016/j.nanoen.2022.106956_bib8
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104012
– volume: 32
  start-page: 1901958
  year: 2019
  ident: 10.1016/j.nanoen.2022.106956_bib3
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201901958
– volume: 23
  year: 2020
  ident: 10.1016/j.nanoen.2022.106956_bib16
  publication-title: IScience
  doi: 10.1016/j.isci.2020.101360
– volume: 216
  year: 2020
  ident: 10.1016/j.nanoen.2022.106956_bib37
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2020.115488
– volume: 86
  year: 2021
  ident: 10.1016/j.nanoen.2022.106956_bib25
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106058
– volume: 75
  year: 2020
  ident: 10.1016/j.nanoen.2022.106956_bib48
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104884
– volume: 84
  year: 2021
  ident: 10.1016/j.nanoen.2022.106956_bib28
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.105954
– volume: 72
  year: 2020
  ident: 10.1016/j.nanoen.2022.106956_bib6
  publication-title: Nano Energy
– volume: 31
  start-page: 2006679
  year: 2021
  ident: 10.1016/j.nanoen.2022.106956_bib23
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202006679
– volume: 78
  year: 2020
  ident: 10.1016/j.nanoen.2022.106956_bib33
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105389
– volume: 4
  start-page: 1
  year: 2020
  ident: 10.1016/j.nanoen.2022.106956_bib2
  publication-title: Npj Flex. Electron
  doi: 10.1038/s41528-020-0064-2
– volume: 21
  start-page: 238
  year: 2016
  ident: 10.1016/j.nanoen.2022.106956_bib52
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.01.017
– volume: 11
  start-page: 2101631
  year: 2021
  ident: 10.1016/j.nanoen.2022.106956_bib41
  publication-title: J. Cho, Adv. Energy Mater.
  doi: 10.1002/aenm.202101631
– volume: 32
  start-page: 1902549
  year: 2020
  ident: 10.1016/j.nanoen.2022.106956_bib15
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201902549
– volume: 35
  start-page: 610
  year: 2017
  ident: 10.1016/j.nanoen.2022.106956_bib10
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2017.04.005
– volume: 6
  start-page: 1900617
  year: 2019
  ident: 10.1016/j.nanoen.2022.106956_bib5
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201900617
– volume: 74
  year: 2020
  ident: 10.1016/j.nanoen.2022.106956_bib27
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104863
– volume: 9
  start-page: 1804005
  year: 2019
  ident: 10.1016/j.nanoen.2022.106956_bib42
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201804005
– volume: 8
  start-page: 2250
  year: 2015
  ident: 10.1016/j.nanoen.2022.106956_bib1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE01532D
– volume: 84
  year: 2021
  ident: 10.1016/j.nanoen.2022.106956_bib29
  publication-title: Nano Energy
– volume: 8
  start-page: 481
  year: 2020
  ident: 10.1016/j.nanoen.2022.106956_bib49
  publication-title: Friction
  doi: 10.1007/s40544-020-0390-3
– volume: 6
  start-page: 1600665
  year: 2016
  ident: 10.1016/j.nanoen.2022.106956_bib11
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201600665
– volume: 1
  start-page: 1
  year: 2017
  ident: 10.1016/j.nanoen.2022.106956_bib13
  publication-title: Npj Flex. Electron
  doi: 10.1038/s41528-017-0001-1
– volume: 11
  start-page: 4143
  year: 2020
  ident: 10.1016/j.nanoen.2022.106956_bib9
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17842-w
– volume: 40
  start-page: 1546
  year: 2007
  ident: 10.1016/j.nanoen.2022.106956_bib56
  publication-title: Macromolecules
  doi: 10.1021/ma0626362
– volume: 10
  start-page: 868
  year: 2019
  ident: 10.1016/j.nanoen.2022.106956_bib19
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-08846-2
– volume: 43
  start-page: 5791
  year: 2019
  ident: 10.1016/j.nanoen.2022.106956_bib58
  publication-title: N. J. Chem.
  doi: 10.1039/C9NJ00826H
– volume: 19
  start-page: 133
  year: 2016
  ident: 10.1016/j.nanoen.2022.106956_bib59
  publication-title: Acta Hortic.
  doi: 10.17660/ActaHortic.2016.1143.19
– volume: 336
  start-page: 327
  year: 2012
  ident: 10.1016/j.nanoen.2022.106956_bib55
  publication-title: Sci. (80-. ).
  doi: 10.1126/science.1218829
– volume: 2
  start-page: 604
  year: 2013
  ident: 10.1016/j.nanoen.2022.106956_bib60
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2013.07.012
– volume: 50
  start-page: 192
  year: 2018
  ident: 10.1016/j.nanoen.2022.106956_bib61
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.05.041
– start-page: 2104701
  year: 2021
  ident: 10.1016/j.nanoen.2022.106956_bib46
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202104701
– volume: 53
  start-page: 1494
  year: 2020
  ident: 10.1016/j.nanoen.2022.106956_bib38
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.9b01725
– volume: 31
  start-page: 2104365
  year: 2021
  ident: 10.1016/j.nanoen.2022.106956_bib43
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202104365
– volume: 7
  start-page: 54829
  year: 2017
  ident: 10.1016/j.nanoen.2022.106956_bib34
  publication-title: RSC Adv.
  doi: 10.1039/C7RA10285B
SSID ssj0000651712
Score 2.5065513
Snippet Fibers/yarns with superior triboelectrification and robust stretchability are considered indispensable building blocks for booming fiber-shaped wearable...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106956
SubjectTerms Dual charge transfer
Interfacial design/assembly
Stretchable robustness
Tribopositive yarn
Versatility
Title Constructing highly tribopositive elastic yarn through interfacial design and assembly for efficient energy harvesting and human-interactive sensing
URI https://dx.doi.org/10.1016/j.nanoen.2022.106956
Volume 94
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BTtwwELUQXOihggIq0K584Go2dpzEOSJUtKWCS4u0t8h2xpSKetGCkLjwFXxwZ-wEgVS1EsdYHifyWDOT5M17jB0Y1-rWAAjrq0poVTjhtLfCB9ODxAAYFDUnn53Xswt9Oq_mK-x47IUhWOUQ-3NMT9F6GJkOuzm9ubqaflf47qJMhQUEFSaSaLe1buiUHz7K5-8smGJlk3560nxBBmMHXYJ5RRsXQESoSuFQ3ZKS9d8y1Iusc7LB3g_lIj_KT7TJViB-YO9ekAhusSfS3MwssPGSE_3w9QMnHatFBmTdAwcskXEB_mCXkQ_KPJyIIpbB0idz3iccB7ex51hMw2-HS2A1yyERTGBe4pB6BPlPu0y8HHgnmpwU_kRayabAyW8JEB8vt9nFyZcfxzMxaC0IXzbqTijlpbW9kXXrfG-UBl9AYa0pPdTBK0eqJJa01lsfHCjvVY2xAVQZZGFlKHfYalxE-Mi4Dz0pWhurjdYQqJXVQNHUwRXofel2WTnub-cHInLSw7juRsTZry57pSOvdNkru0w8W91kIo7_zG9G13WvDlSHueKflntvttxn63SVgT2f2Cr6Hj5jzXLnJulQTtja0ddvs_M_cuTwzw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELXocqAcEPRD0ELxoVd3Y8ebdY7VCrRtgQusxC2ynfF2K-pFywppL_0V_GBmnAQtEmqlXh2PE3kmMxNn5j3GPhtX6tIACOsHA6FV5oTT3gofTA0SHWBQ1Jx8flGMJ_r79eB6g426Xhgqq2x9f-PTk7duR_rtbvZvZ7P-pcJvF2UGmEBQYiKLV2xT4-tLNAZf_singxaMsXKY_nqSgCCJroUu1XlFG-dASKhK4VBREpX1SyFqLeyc7rKdNl_kX5tH2mMbEN-w7TUUwbfsgUg3GxjYOOWEP3yz4kRkNW8qsu6BA-bIuABf2UXkLTUPJ6SIRbB0Zs7rVMjBbaw5ZtPw2-ESmM5ySAgTGJg4pCZB_tMuEjAH3okmJ4o_kVayyXPyO6qIj9N3bHJ6cjUai5ZsQfh8qJZCKS-trY0sSudrozT4DDJrTe6hCF45oiWxRLZe-uBAea8KdA6g8iAzK0P-nvXiPMI-4z7URGltrDZaQ6BeVgPZsAguQ_VLd8Dybn8r3yKREyHGTdWVnP2qGq1UpJWq0coBE09Stw0Sxz_mDzvVVc8sqsJg8VfJD_8tecy2xlfnZ9XZt4sfH9lrutJU-RyyHtoBHGECs3SfkoE-AvVH8l0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constructing+highly+tribopositive+elastic+yarn+through+interfacial+design+and+assembly+for+efficient+energy+harvesting+and+human-interactive+sensing&rft.jtitle=Nano+energy&rft.au=Bai%2C+Zhiqing&rft.au=He%2C+Tianyiyi&rft.au=Zhang%2C+Zixuan&rft.au=Xu%2C+Yunlong&rft.date=2022-04-01&rft.issn=2211-2855&rft.volume=94&rft.spage=106956&rft_id=info:doi/10.1016%2Fj.nanoen.2022.106956&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_nanoen_2022_106956
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-2855&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-2855&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-2855&client=summon