Hardening machine learning denial of service (DoS) defences against adversarial attacks in IoT smart home networks
Machine learning based Intrusion Detection Systems (IDS) allow flexible and efficient automated detection of cyberattacks in Internet of Things (IoT) networks. However, this has also created an additional attack vector; the machine learning models which support the IDS’s decisions may also be subjec...
Saved in:
Published in | Computers & security Vol. 108; p. 102352 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier Ltd
01.09.2021
Elsevier Sequoia S.A |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Machine learning based Intrusion Detection Systems (IDS) allow flexible and efficient automated detection of cyberattacks in Internet of Things (IoT) networks. However, this has also created an additional attack vector; the machine learning models which support the IDS’s decisions may also be subject to cyberattacks known as Adversarial Machine Learning (AML). In the context of IoT, AML can be used to manipulate data and network traffic that traverse through such devices. These perturbations increase the confusion in the decision boundaries of the machine learning classifier, where malicious network packets are often miss-classified as being benign. Consequently, such errors are bypassed by machine learning based detectors, which increases the potential of significantly delaying attack detection and further consequences such as personal information leakage, damaged hardware, and financial loss. Given the impact that these attacks may have, this paper proposes a rule-based approach towards generating AML attack samples and explores how they can be used to target a range of supervised machine learning classifiers used for detecting Denial of Service attacks in an IoT smart home network. The analysis explores which DoS packet features to perturb and how such adversarial samples can support increasing the robustness of supervised models using adversarial training. The results demonstrated that the performance of all the top performing classifiers were affected, decreasing a maximum of 47.2 percentage points when adversarial samples were present. Their performances improved following adversarial training, demonstrating their robustness towards such attacks. |
---|---|
AbstractList | Machine learning based Intrusion Detection Systems (IDS) allow flexible and efficient automated detection of cyberattacks in Internet of Things (IoT) networks. However, this has also created an additional attack vector; the machine learning models which support the IDS's decisions may also be subject to cyberattacks known as Adversarial Machine Learning (AML). In the context of IoT, AML can be used to manipulate data and network traffic that traverse through such devices. These perturbations increase the confusion in the decision boundaries of the machine learning classifier, where malicious network packets are often miss-classified as being benign. Consequently, such errors are bypassed by machine learning based detectors, which increases the potential of significantly delaying attack detection and further consequences such as personal information leakage, damaged hardware, and financial loss. Given the impact that these attacks may have, this paper proposes a rule-based approach towards generating AML attack samples and explores how they can be used to target a range of supervised machine learning classifiers used for detecting Denial of Service attacks in an IoT smart home network. The analysis explores which DoS packet features to perturb and how such adversarial samples can support increasing the robustness of supervised models using adversarial training. The results demonstrated that the performance of all the top performing classifiers were affected, decreasing a maximum of 47.2 percentage points when adversarial samples were present. Their performances improved following adversarial training, demonstrating their robustness towards such attacks. |
ArticleNumber | 102352 |
Author | Javed, Amir Burnap, Pete Anthi, Eirini Williams, Lowri |
Author_xml | – sequence: 1 givenname: Eirini orcidid: 0000-0002-5274-0727 surname: Anthi fullname: Anthi, Eirini email: anthies@cardiff.ac.uk – sequence: 2 givenname: Lowri orcidid: 0000-0002-3794-6145 surname: Williams fullname: Williams, Lowri – sequence: 3 givenname: Amir orcidid: 0000-0001-9761-0945 surname: Javed fullname: Javed, Amir – sequence: 4 givenname: Pete surname: Burnap fullname: Burnap, Pete |
BookMark | eNp9kE1LAzEQhoNUsK3-AU8BL3rYmmTT3RW8iF8VCh6s55BOZmtqm9QkrfjvzVpPHrxk4OV9JswzID3nHRJyytmIM15dLkfgI44EEzwHohyLA9LnTS2KSrCmR_q5VBeSyeaIDGJcMsbrqmn6JEx0MOisW9C1hjfrkK5Qh5-gy_WK-pZGDDsLSM_v_MtFzlt0gJHqhbYuJqrNDkPUoWvrlDS8R2odffIzGtc6JPrm10gdpk8f3uMxOWz1KuLJ7xyS14f72e2kmD4_Pt3eTAsoa5EKweGqLcv86nnLBcqqYtyMa2GQtyW0opJyjkIAzo0EOS8BAKVphKlkdmLKITnb790E_7HFmNTSb4PLXyoxrviY1w2vc6vZtyD4GAO2CmzSyXqXgrYrxZnqDKul6gyrzrDaG86o-INugs33fv0PXe8hzKfvLAYVwXY6jQ0ISRlv_8O_AenSl-8 |
CitedBy_id | crossref_primary_10_3390_fi16010032 crossref_primary_10_1016_j_ins_2024_120618 crossref_primary_10_1016_j_jisa_2022_103341 crossref_primary_10_3390_s23146379 crossref_primary_10_1016_j_future_2023_01_021 crossref_primary_10_1109_ACCESS_2022_3224806 crossref_primary_10_1016_j_cose_2022_103007 crossref_primary_10_1109_ACCESS_2022_3197299 crossref_primary_10_1016_j_jisa_2023_103647 crossref_primary_10_1111_exsy_13552 crossref_primary_10_1109_LNET_2025_3525901 crossref_primary_10_3390_fi15110371 crossref_primary_10_32604_cmes_2023_044169 crossref_primary_10_3390_fi15120405 crossref_primary_10_1016_j_jnca_2022_103332 crossref_primary_10_1007_s11042_023_15030_8 crossref_primary_10_1016_j_iot_2023_101021 crossref_primary_10_1016_j_iot_2023_100773 crossref_primary_10_1109_ACCESS_2024_3502250 crossref_primary_10_1142_S0218126622300100 crossref_primary_10_3390_info12100394 crossref_primary_10_1109_COMST_2024_3382470 crossref_primary_10_1145_3548691 crossref_primary_10_1186_s13635_024_00158_3 crossref_primary_10_3390_s24165150 crossref_primary_10_1016_j_cosrev_2023_100573 crossref_primary_10_1002_spy2_454 crossref_primary_10_1016_j_chb_2023_107770 crossref_primary_10_1155_2022_3784756 crossref_primary_10_1016_j_future_2022_02_019 crossref_primary_10_3390_s23084117 crossref_primary_10_3390_app13106001 crossref_primary_10_1016_j_cose_2022_102783 crossref_primary_10_1016_j_cose_2024_103750 crossref_primary_10_1109_JIOT_2024_3407587 crossref_primary_10_1093_comjnl_bxad014 crossref_primary_10_1109_COMST_2023_3344808 crossref_primary_10_1016_j_iot_2023_100684 crossref_primary_10_2139_ssrn_4200536 crossref_primary_10_4316_AECE_2023_04009 crossref_primary_10_1109_TCSII_2023_3334273 crossref_primary_10_1016_j_infsof_2023_107287 crossref_primary_10_35784_iapgos_6388 crossref_primary_10_3390_s24082626 crossref_primary_10_1016_j_comnet_2022_109073 crossref_primary_10_1016_j_inffus_2023_02_030 |
Cites_doi | 10.3390/info11090452 10.1007/978-0-387-39940-9_565 10.1016/j.eswa.2021.114765 10.1109/MPRV.2018.03367731 10.1016/j.knosys.2018.12.019 10.1016/j.future.2013.01.010 10.1016/j.comnet.2019.01.023 10.1109/SPW.2018.00013 10.1145/3427228.3427660 10.1007/978-3-642-04342-0 |
ContentType | Journal Article |
Copyright | 2021 Copyright Elsevier Sequoia S.A. Sep 2021 |
Copyright_xml | – notice: 2021 – notice: Copyright Elsevier Sequoia S.A. Sep 2021 |
DBID | 6I. AAFTH AAYXX CITATION 7SC 8FD JQ2 K7. L7M L~C L~D |
DOI | 10.1016/j.cose.2021.102352 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection ProQuest Criminal Justice (Alumni) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef ProQuest Criminal Justice (Alumni) Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | ProQuest Criminal Justice (Alumni) |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-6208 |
ExternalDocumentID | 10_1016_j_cose_2021_102352 S0167404821001760 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFSI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADHUB ADJOM ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BKOJK BKOMP BLXMC CS3 DU5 E.L EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLX HLZ HVGLF HZ~ IHE J1W KOM LG8 LG9 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ RXW SBC SBM SDF SDG SDP SES SEW SPC SPCBC SSV SSZ T5K TAE TN5 TWZ WH7 WUQ XJE XPP XSW YK3 ZMT ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SC 8FD EFKBS JQ2 K7. L7M L~C L~D |
ID | FETCH-LOGICAL-c372t-21c9f331c9abf12e46601d572de1f3cf2644be22cebd4c4b3ccce4d82d64101d3 |
IEDL.DBID | .~1 |
ISSN | 0167-4048 |
IngestDate | Fri Jul 25 05:58:54 EDT 2025 Tue Jul 01 03:48:20 EDT 2025 Thu Apr 24 23:09:25 EDT 2025 Fri Feb 23 02:41:54 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Supervised machine learning Networking Attack detection Internet of things (IoT) Smart homes Adversarial machine learning Intrusion detection systems |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-21c9f331c9abf12e46601d572de1f3cf2644be22cebd4c4b3ccce4d82d64101d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5274-0727 0000-0002-3794-6145 0000-0001-9761-0945 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0167404821001760 |
PQID | 2561517817 |
PQPubID | 46289 |
ParticipantIDs | proquest_journals_2561517817 crossref_citationtrail_10_1016_j_cose_2021_102352 crossref_primary_10_1016_j_cose_2021_102352 elsevier_sciencedirect_doi_10_1016_j_cose_2021_102352 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2021 2021-09-00 20210901 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 09 year: 2021 text: September 2021 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Computers & security |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier Sequoia S.A |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Sequoia S.A |
References | Vanhoef, Piessens (bib0042) 2016 (bib0044) 2020 da Costa, Papa, Lisboa, Munoz, de Albuquerque (bib0010) 2019; 151 Omuya, Okeyo, Kimwele (bib0027) 2021; 174 Refaeilzadeh, Tang, Liu (bib0030) 2009; 5 Dhanjani (bib0011) 2013 Ronen, Shamir (bib0032) 2016 Zhou, Kantarcioglu, Thuraisingham, Xi (bib0047) 2012 Notra, Siddiqi, Gharakheili, Sivaraman, Boreli (bib0025) 2014 Erba, A., Taormina, R., Galelli, S., Pogliani, M., Carminati, M., Zanero, S., Tippenhauer, N. O., 2019. Real-time evasion attacks with physical constraints on deep learning-based anomaly detectors in industrial control systems. Syed, Baig, Ibrahim, Valli (bib0037) 2020; 4 Goodfellow, I. J., Shlens, J., Szegedy, C., 2014b. Explaining and harnessing adversarial examples. Chen, Chen, Cai, Zhang, Huang (bib0009) 2018 Yaghoubi, Fainekos (bib0046) 2019 Abusnaina, Khormali, Alasmary, Park, Anwar, Mohaisen (bib0002) 2019 Sharma, Dey (bib0034) 2012; 3 Alazab, Hobbs, Abawajy, Alazab (bib0003) 2012 Quinlan (bib0029) 2014 Zizzo, Hankin, Maffeis, Jones (bib0048) 2019 (bib0033) 2020 Gubbi, Buyya, Marusic, Palaniswami (bib0018) 2013; 29 Vaccari, Aiello, Cambiaso (bib0039) 2020; 11 Rigaki (bib0031) 2017 (bib0045) 2018 Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (bib0015) 2014 Kirda, Trachtenberg (bib0021) 2009; 5758 Tang, Alelyani, Liu (bib0038) 2014 Hu, W., Tan, Y., 2017. Generating adversarial malware examples for black-box attacks based on GAN. Baracaldo, Chen, Ludwig, Safavi, Zhang (bib0008) 2018 McDermott, Majdani, Petrovski (bib0022) 2018 Sivaraman, Gharakheili, Vishwanath, Boreli, Mehani (bib0036) 2015 Shukla (bib0035) 2017 Anthi, Williams, Rhode, Burnap, Wedgbury (bib0006) 2021; 58 Grosse, Papernot, Manoharan, Backes, McDaniel (bib0017) 2017 Vanhoef, Piessens (bib0041) 2015 Doshi, R., Apthorpe, N., Feamster, N., 2018. Machine learning DDoS detection for consumer internet of things devices. Verma, Ranga (bib0043) 2019 . Effendy, Kusrini, Sudarmawan (bib0013) 2017 Papernot, McDaniel, Jha, Fredrikson, Celik, Swami (bib0028) 2016 Nelson, Barreno, Chi, Joseph, Rubinstein, Saini, Sutton, Tygar, Xia (bib0024) 2008; 8 Anthi, Williams, Malgortzata, Theodorakopoulos, Burnap (bib0005) 2018; 78 Meidan, Bohadana, Mathov, Mirsky, Shabtai, Breitenbacher, Elovici (bib0023) 2018; 17 Vanhoef, Piessens (bib0040) 2014 Athalye, A., Carlini, N., Wagner, D., 2018. Obfuscated gradients give a false sense of security: circumventing defenses to adversarial examples. Han, Liu, Yang, Jiang (bib0019) 2019; 165 OConnor, Enck, Reaves (bib0026) 2019 Amouri, Alaparthy, Morgera (bib0004) 2018 Baracaldo (10.1016/j.cose.2021.102352_bib0008) 2018 Ronen (10.1016/j.cose.2021.102352_bib0032) 2016 Syed (10.1016/j.cose.2021.102352_bib0037) 2020; 4 Omuya (10.1016/j.cose.2021.102352_bib0027) 2021; 174 Han (10.1016/j.cose.2021.102352_bib0019) 2019; 165 McDermott (10.1016/j.cose.2021.102352_bib0022) 2018 (10.1016/j.cose.2021.102352_sbref0044) 2020 Quinlan (10.1016/j.cose.2021.102352_bib0029) 2014 10.1016/j.cose.2021.102352_bib0007 Zhou (10.1016/j.cose.2021.102352_bib0047) 2012 (10.1016/j.cose.2021.102352_sbref0045) 2018 Grosse (10.1016/j.cose.2021.102352_bib0017) 2017 Meidan (10.1016/j.cose.2021.102352_bib0023) 2018; 17 OConnor (10.1016/j.cose.2021.102352_bib0026) 2019 Effendy (10.1016/j.cose.2021.102352_bib0013) 2017 Notra (10.1016/j.cose.2021.102352_bib0025) 2014 Vaccari (10.1016/j.cose.2021.102352_bib0039) 2020; 11 Anthi (10.1016/j.cose.2021.102352_bib0005) 2018; 78 Anthi (10.1016/j.cose.2021.102352_bib0006) 2021; 58 10.1016/j.cose.2021.102352_bib0016 Chen (10.1016/j.cose.2021.102352_bib0009) 2018 Vanhoef (10.1016/j.cose.2021.102352_bib0040) 2014 10.1016/j.cose.2021.102352_bib0014 Yaghoubi (10.1016/j.cose.2021.102352_bib0046) 2019 Verma (10.1016/j.cose.2021.102352_bib0043) 2019 10.1016/j.cose.2021.102352_bib0012 Tang (10.1016/j.cose.2021.102352_bib0038) 2014 Vanhoef (10.1016/j.cose.2021.102352_bib0042) 2016 Rigaki (10.1016/j.cose.2021.102352_bib0031) 2017 Kirda (10.1016/j.cose.2021.102352_bib0021) 2009; 5758 Abusnaina (10.1016/j.cose.2021.102352_bib0002) 2019 Refaeilzadeh (10.1016/j.cose.2021.102352_bib0030) 2009; 5 Goodfellow (10.1016/j.cose.2021.102352_bib0015) 2014 Dhanjani (10.1016/j.cose.2021.102352_bib0011) 2013 (10.1016/j.cose.2021.102352_sbref0033) 2020 Zizzo (10.1016/j.cose.2021.102352_bib0048) 2019 Papernot (10.1016/j.cose.2021.102352_bib0028) 2016 Sharma (10.1016/j.cose.2021.102352_bib0034) 2012; 3 Alazab (10.1016/j.cose.2021.102352_bib0003) 2012 Gubbi (10.1016/j.cose.2021.102352_bib0018) 2013; 29 Sivaraman (10.1016/j.cose.2021.102352_bib0036) 2015 da Costa (10.1016/j.cose.2021.102352_bib0010) 2019; 151 Shukla (10.1016/j.cose.2021.102352_bib0035) 2017 Amouri (10.1016/j.cose.2021.102352_bib0004) 2018 Vanhoef (10.1016/j.cose.2021.102352_bib0041) 2015 10.1016/j.cose.2021.102352_bib0020 Nelson (10.1016/j.cose.2021.102352_bib0024) 2008; 8 |
References_xml | – year: 2020 ident: bib0033 article-title: Scapy: Packet encapsulation – reference: Erba, A., Taormina, R., Galelli, S., Pogliani, M., Carminati, M., Zanero, S., Tippenhauer, N. O., 2019. Real-time evasion attacks with physical constraints on deep learning-based anomaly detectors in industrial control systems. – start-page: 1 year: 2018 end-page: 8 ident: bib0022 article-title: Botnet detection in the internet of things using deep learning approaches publication-title: 2018 International Joint Conference on Neural Networks (IJCNN) – start-page: 673 year: 2016 end-page: 688 ident: bib0042 article-title: Predicting, decrypting, and abusing WPA2/802.11 group keys publication-title: 25th – start-page: 256 year: 2014 end-page: 265 ident: bib0040 article-title: Advanced Wi-Fi attacks using commodity hardware publication-title: Proceedings of the 30th Annual Computer Security Applications Conference – start-page: 179 year: 2019 end-page: 184 ident: bib0046 article-title: Gray-box adversarial testing for control systems with machine learning components publication-title: Proceedings of the 22nd ACM International Conference on Hybrid Systems: Computation and Control – start-page: 1296 year: 2019 end-page: 1305 ident: bib0002 article-title: Adversarial learning attacks on graph-based IoT malware detection systems publication-title: 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS) – reference: Doshi, R., Apthorpe, N., Feamster, N., 2018. Machine learning DDoS detection for consumer internet of things devices. – year: 2020 ident: bib0044 article-title: Weka 3 - data mining with open source machine learning software in java – year: 2018 ident: bib0045 article-title: Wireshark – start-page: 1059 year: 2012 end-page: 1067 ident: bib0047 article-title: Adversarial support vector machine learning publication-title: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – start-page: 234 year: 2017 end-page: 240 ident: bib0035 article-title: ML-IDS: a machine learning approach to detect wormhole attacks in internet of things publication-title: Intelligent Systems Conference (IntelliSys), 2017 – volume: 151 start-page: 147 year: 2019 end-page: 157 ident: bib0010 article-title: Internet of things: a survey on machine learning-based intrusion detection approaches publication-title: Comput. Netw. – start-page: 163 year: 2015 end-page: 167 ident: bib0036 article-title: Network-level security and privacy control for smart-home IoT devices publication-title: 2015 IEEE 11th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob) – reference: Hu, W., Tan, Y., 2017. Generating adversarial malware examples for black-box attacks based on GAN. – year: 2014 ident: bib0029 article-title: C4.5: Programs for Machine Learning – start-page: 372 year: 2016 end-page: 387 ident: bib0028 article-title: The limitations of deep learning in adversarial settings publication-title: 2016 IEEE European Symposium on Security and Privacy (EuroS&P) – volume: 11 start-page: 452 year: 2020 ident: bib0039 article-title: SlowTT: a slow denial of service against IoT networks publication-title: Information – start-page: 296 year: 2012 end-page: 301 ident: bib0003 article-title: Using feature selection for intrusion detection system publication-title: 2012 International Symposium on Communications and Information Technologies (ISCIT) – volume: 5758 year: 2009 ident: bib0021 article-title: Recent advances in intrusion detection publication-title: Lect. Notes Comput. Sci. – start-page: 1 year: 2019 end-page: 24 ident: bib0043 article-title: Machine learning based intrusion detection systems for IoT applications publication-title: Wirel. Pers. Commun. – reference: Athalye, A., Carlini, N., Wagner, D., 2018. Obfuscated gradients give a false sense of security: circumventing defenses to adversarial examples. – start-page: 90 year: 2017 end-page: 94 ident: bib0013 article-title: Classification of intrusion detection system (IDS) based on computer network publication-title: 2017 2nd International conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE) – volume: 29 start-page: 1645 year: 2013 end-page: 1660 ident: bib0018 article-title: Internet of things (IoT): a vision, architectural elements, and future directions publication-title: Future Gener. Comput. Syst. – volume: 165 start-page: 474 year: 2019 end-page: 487 ident: bib0019 article-title: A novel adversarial learning framework in deep convolutional neural network for intelligent diagnosis of mechanical faults publication-title: Knowl.-Based Syst. – start-page: 1 year: 2019 end-page: 4 ident: bib0048 article-title: Adversarial machine learning beyond the image domain publication-title: 2019 56th ACM/IEEE Design Automation Conference (DAC) – volume: 58 start-page: 102717 year: 2021 ident: bib0006 article-title: Adversarial attacks on machine learning cybersecurity defences in industrial control systems publication-title: J. Inf. Secur. Appl. – volume: 3 start-page: 15 year: 2012 end-page: 20 ident: bib0034 article-title: Performance investigation of feature selection methods and sentiment lexicons for sentiment analysis publication-title: IJCA Special Issue Adv. Comput.Commun. Technol. HPC Appl. – start-page: 62 year: 2017 end-page: 79 ident: bib0017 article-title: Adversarial examples for malware detection publication-title: European Symposium on Research in Computer Security – start-page: 57 year: 2018 end-page: 64 ident: bib0008 article-title: Detecting poisoning attacks on machine learning in IoT environments publication-title: 2018 IEEE International Congress on Internet of Things (ICIOT) – volume: 4 start-page: 482 year: 2020 end-page: 503 ident: bib0037 article-title: Denial of service attack detection through machine learning for the IoT publication-title: J. Inf. Telecommun. – reference: . – start-page: 79 year: 2014 end-page: 84 ident: bib0025 article-title: An experimental study of security and privacy risks with emerging household appliances publication-title: 2014 IEEE Conference on Communications and Network Security – volume: 174 start-page: 114765 year: 2021 ident: bib0027 article-title: Feature selection for classification using principal component analysis and information gain publication-title: Expert Syst. Appl. – year: 2017 ident: bib0031 article-title: Adversarial deep learning against intrusion detection classifiers – start-page: 755 year: 2018 end-page: 758 ident: bib0009 article-title: Denial of service attack on IoT system publication-title: 2018 9th International Conference on Information Technology in Medicine and Education (ITME) – reference: Goodfellow, I. J., Shlens, J., Szegedy, C., 2014b. Explaining and harnessing adversarial examples. – volume: 78 start-page: 477 year: 2018 end-page: 490 ident: bib0005 article-title: A supervised intrusion detection system for smart home IoT publication-title: IEEE Internet Things J. – volume: 8 start-page: 1 year: 2008 end-page: 9 ident: bib0024 article-title: Exploiting machine learning to subvert your spam filter. publication-title: LEET – start-page: 140 year: 2019 end-page: 150 ident: bib0026 article-title: Blinded and confused: uncovering systemic flaws in device telemetry for smart-home internet of things publication-title: Proceedings of the 12th Conference on Security and Privacy in Wireless and Mobile Networks – start-page: 97 year: 2015 end-page: 112 ident: bib0041 article-title: All your biases belong to us: Breaking RC4 in WPA-TKIP and publication-title: 24th – year: 2013 ident: bib0011 article-title: Hacking lightbulbs: Security evaluation of the Philips hue personal wireless lighting system publication-title: Internet Things Secur. Eval. Series – start-page: 2672 year: 2014 end-page: 2680 ident: bib0015 article-title: Generative adversarial nets publication-title: Advances in Neural Information Processing Systems – volume: 5 start-page: 532 year: 2009 end-page: 538 ident: bib0030 article-title: Cross-validation. publication-title: Encyclopedia Database Syst. – start-page: 37 year: 2014 ident: bib0038 article-title: Feature selection for classification: a review publication-title: Data Classification: Algorithms and Applications – volume: 17 start-page: 12 year: 2018 end-page: 22 ident: bib0023 article-title: N-BaIoT-network-based detection of IoT botnet attacks using deep autoencoders publication-title: IEEE Pervasive Comput. – start-page: 1 year: 2018 end-page: 4 ident: bib0004 article-title: Cross layer-based intrusion detection based on network behavior for IoT publication-title: Wireless and Microwave Technology Conference (WAMICON), 2018 IEEE 19th – start-page: 3 year: 2016 end-page: 12 ident: bib0032 article-title: Extended functionality attacks on IoT devices: the case of smart lights publication-title: 2016 IEEE European Symposium on Security and Privacy (EuroS&P) – volume: 11 start-page: 452 issue: 9 year: 2020 ident: 10.1016/j.cose.2021.102352_bib0039 article-title: SlowTT: a slow denial of service against IoT networks publication-title: Information doi: 10.3390/info11090452 – volume: 58 start-page: 102717 year: 2021 ident: 10.1016/j.cose.2021.102352_bib0006 article-title: Adversarial attacks on machine learning cybersecurity defences in industrial control systems publication-title: J. Inf. Secur. Appl. – year: 2017 ident: 10.1016/j.cose.2021.102352_bib0031 – start-page: 97 year: 2015 ident: 10.1016/j.cose.2021.102352_bib0041 article-title: All your biases belong to us: Breaking RC4 in WPA-TKIP and {TLS} – start-page: 163 year: 2015 ident: 10.1016/j.cose.2021.102352_bib0036 article-title: Network-level security and privacy control for smart-home IoT devices – year: 2014 ident: 10.1016/j.cose.2021.102352_bib0029 – start-page: 179 year: 2019 ident: 10.1016/j.cose.2021.102352_bib0046 article-title: Gray-box adversarial testing for control systems with machine learning components – start-page: 37 year: 2014 ident: 10.1016/j.cose.2021.102352_bib0038 article-title: Feature selection for classification: a review – ident: 10.1016/j.cose.2021.102352_bib0007 – volume: 5 start-page: 532 year: 2009 ident: 10.1016/j.cose.2021.102352_bib0030 article-title: Cross-validation. publication-title: Encyclopedia Database Syst. doi: 10.1007/978-0-387-39940-9_565 – start-page: 372 year: 2016 ident: 10.1016/j.cose.2021.102352_bib0028 article-title: The limitations of deep learning in adversarial settings – start-page: 296 year: 2012 ident: 10.1016/j.cose.2021.102352_bib0003 article-title: Using feature selection for intrusion detection system – start-page: 2672 year: 2014 ident: 10.1016/j.cose.2021.102352_bib0015 article-title: Generative adversarial nets – volume: 3 start-page: 15 year: 2012 ident: 10.1016/j.cose.2021.102352_bib0034 article-title: Performance investigation of feature selection methods and sentiment lexicons for sentiment analysis publication-title: IJCA Special Issue Adv. Comput.Commun. Technol. HPC Appl. – year: 2013 ident: 10.1016/j.cose.2021.102352_bib0011 article-title: Hacking lightbulbs: Security evaluation of the Philips hue personal wireless lighting system publication-title: Internet Things Secur. Eval. Series – volume: 174 start-page: 114765 year: 2021 ident: 10.1016/j.cose.2021.102352_bib0027 article-title: Feature selection for classification using principal component analysis and information gain publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.114765 – volume: 17 start-page: 12 issue: 3 year: 2018 ident: 10.1016/j.cose.2021.102352_bib0023 article-title: N-BaIoT-network-based detection of IoT botnet attacks using deep autoencoders publication-title: IEEE Pervasive Comput. doi: 10.1109/MPRV.2018.03367731 – year: 2018 ident: 10.1016/j.cose.2021.102352_sbref0045 – start-page: 140 year: 2019 ident: 10.1016/j.cose.2021.102352_bib0026 article-title: Blinded and confused: uncovering systemic flaws in device telemetry for smart-home internet of things – volume: 165 start-page: 474 year: 2019 ident: 10.1016/j.cose.2021.102352_bib0019 article-title: A novel adversarial learning framework in deep convolutional neural network for intelligent diagnosis of mechanical faults publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2018.12.019 – start-page: 755 year: 2018 ident: 10.1016/j.cose.2021.102352_bib0009 article-title: Denial of service attack on IoT system – start-page: 79 year: 2014 ident: 10.1016/j.cose.2021.102352_bib0025 article-title: An experimental study of security and privacy risks with emerging household appliances – start-page: 90 year: 2017 ident: 10.1016/j.cose.2021.102352_bib0013 article-title: Classification of intrusion detection system (IDS) based on computer network – start-page: 673 year: 2016 ident: 10.1016/j.cose.2021.102352_bib0042 article-title: Predicting, decrypting, and abusing WPA2/802.11 group keys – year: 2020 ident: 10.1016/j.cose.2021.102352_sbref0033 – start-page: 62 year: 2017 ident: 10.1016/j.cose.2021.102352_bib0017 article-title: Adversarial examples for malware detection – year: 2020 ident: 10.1016/j.cose.2021.102352_sbref0044 – start-page: 1 year: 2019 ident: 10.1016/j.cose.2021.102352_bib0048 article-title: Adversarial machine learning beyond the image domain – volume: 4 start-page: 482 issue: 4 year: 2020 ident: 10.1016/j.cose.2021.102352_bib0037 article-title: Denial of service attack detection through machine learning for the IoT publication-title: J. Inf. Telecommun. – start-page: 234 year: 2017 ident: 10.1016/j.cose.2021.102352_bib0035 article-title: ML-IDS: a machine learning approach to detect wormhole attacks in internet of things – start-page: 1 year: 2018 ident: 10.1016/j.cose.2021.102352_bib0022 article-title: Botnet detection in the internet of things using deep learning approaches – volume: 29 start-page: 1645 issue: 7 year: 2013 ident: 10.1016/j.cose.2021.102352_bib0018 article-title: Internet of things (IoT): a vision, architectural elements, and future directions publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2013.01.010 – ident: 10.1016/j.cose.2021.102352_bib0020 – start-page: 3 year: 2016 ident: 10.1016/j.cose.2021.102352_bib0032 article-title: Extended functionality attacks on IoT devices: the case of smart lights – start-page: 57 year: 2018 ident: 10.1016/j.cose.2021.102352_bib0008 article-title: Detecting poisoning attacks on machine learning in IoT environments – volume: 151 start-page: 147 year: 2019 ident: 10.1016/j.cose.2021.102352_bib0010 article-title: Internet of things: a survey on machine learning-based intrusion detection approaches publication-title: Comput. Netw. doi: 10.1016/j.comnet.2019.01.023 – start-page: 1 year: 2019 ident: 10.1016/j.cose.2021.102352_bib0043 article-title: Machine learning based intrusion detection systems for IoT applications publication-title: Wirel. Pers. Commun. – volume: 78 start-page: 477 year: 2018 ident: 10.1016/j.cose.2021.102352_bib0005 article-title: A supervised intrusion detection system for smart home IoT publication-title: IEEE Internet Things J. – volume: 8 start-page: 1 year: 2008 ident: 10.1016/j.cose.2021.102352_bib0024 article-title: Exploiting machine learning to subvert your spam filter. publication-title: LEET – start-page: 1059 year: 2012 ident: 10.1016/j.cose.2021.102352_bib0047 article-title: Adversarial support vector machine learning – start-page: 1296 year: 2019 ident: 10.1016/j.cose.2021.102352_bib0002 article-title: Adversarial learning attacks on graph-based IoT malware detection systems – ident: 10.1016/j.cose.2021.102352_bib0012 doi: 10.1109/SPW.2018.00013 – start-page: 256 year: 2014 ident: 10.1016/j.cose.2021.102352_bib0040 article-title: Advanced Wi-Fi attacks using commodity hardware – ident: 10.1016/j.cose.2021.102352_bib0014 doi: 10.1145/3427228.3427660 – ident: 10.1016/j.cose.2021.102352_bib0016 – start-page: 1 year: 2018 ident: 10.1016/j.cose.2021.102352_bib0004 article-title: Cross layer-based intrusion detection based on network behavior for IoT – volume: 5758 year: 2009 ident: 10.1016/j.cose.2021.102352_bib0021 article-title: Recent advances in intrusion detection publication-title: Lect. Notes Comput. Sci. doi: 10.1007/978-3-642-04342-0 |
SSID | ssj0017688 |
Score | 2.513465 |
Snippet | Machine learning based Intrusion Detection Systems (IDS) allow flexible and efficient automated detection of cyberattacks in Internet of Things (IoT) networks.... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 102352 |
SubjectTerms | Adversarial machine learning Attack detection Classifiers Communications traffic Denial of service attacks Impact damage Internet of Things Internet of things (IoT) Intrusion detection systems Machine learning Networking Packets (communication) Perturbation Robustness Smart buildings Smart homes Smart houses Supervised machine learning Training |
Title | Hardening machine learning denial of service (DoS) defences against adversarial attacks in IoT smart home networks |
URI | https://dx.doi.org/10.1016/j.cose.2021.102352 https://www.proquest.com/docview/2561517817 |
Volume | 108 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6LXrz4Ft_k4EGRuubR7XoUH-wq7mUVvIUkTXTFbRdbr_52Z5pUUNCDl0LTJJTMZPJN8mWGkAOBsAEci8SCWUykcHnS51oneCTkz05T7j3ud9yNeoMHefOYPnbIRXsXBmmV0fYHm95Y61jSjaPZnU0m3XFDoAcF5BhGKOuh3y5lhlp-8vFF84APTe7JEN8baseLM4HjhZxw8BE5ayIYpPy3xemHmW7WnutlshhBIz0P_7VCOq5YJUttQgYa5-caecNzeIc7HXTakCQdjVkhniiWQx-lp1UwD_TwshwfQblvqNRUP-kJYEWqMUVzpVExqa5rvINPJwUdlve0msLQ0Ody6mgR6OPVOnm4vrq_GCQxqUJiRcbrhDN75oWApzaecSd74JLlacZzx7ywHgGScZxbZ3JppRHWWifzPs97EkYtFxtkrigLt0noaQ7OoQGPzPUZ4ABttMmggWZMZEZys0VYO5rKxojjmPjiVbXUsheFElAoARUksEWOv9rMQryNP2unrZDUN61RsCD82W63laiKc7ZSAP4A_mR9lm3_s9sdsoBvgYK2S-bqt3e3B5ilNvuNUu6T-fPh7WD0CQR16mM |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQGWDhjShPDwwgFBXbSRNGxEMtjy60EptlOzYU0aRqwv_nLnEqgUQHlgxObEV35_N39uc7Qk4FwgYILAIDbjEIhU2DhCsV4JGQu7qMuHO43_E86PZG4cNr9LpEbpq7MEir9L6_9umVt_YtHS_NznQ87rxUBHowQI5phOIuxO3LmJ0qapHl6_5jbzA_TABEncxTfEMHf3empnkhLRzCRM6qJAYR_2t9-uWpq-XnfoOsedxIr-tf2yRLNtsi601NBuqn6DaZ4VG8xc0OOql4kpb6whBvFNthjNzRovYQ9Ow2fzmHdlexqal6U2OAi1RhleZCoW1SVZZ4DZ-OM9rPh7SYgHToez6xNKsZ5MUOGd3fDW96ga-rEBgR8zLgzFw5IeCptGPchl2IytIo5qllThiHGElbzo3VaWhCLYwxNkwTnnZDkFoqdkkryzO7R-hlCvGhhqDMJgyggNJKx9BBMSZiHXLdJqyRpjQ-6TjWvviUDbvsQ6IGJGpA1hpok4t5n2mdcmPh11GjJPnDcCSsCQv7HTYalX7aFhLwHyCgOGHx_j-HPSErveHzk3zqDx4PyCq-qRlph6RVzr7sEUCYUh97E_0GEX_tFA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hardening+machine+learning+denial+of+service+%28DoS%29+defences+against+adversarial+attacks+in+IoT+smart+home+networks&rft.jtitle=Computers+%26+security&rft.au=Anthi%2C+Eirini&rft.au=Williams%2C+Lowri&rft.au=Javed%2C+Amir&rft.au=Burnap%2C+Pete&rft.date=2021-09-01&rft.pub=Elsevier+Ltd&rft.issn=0167-4048&rft.eissn=1872-6208&rft.volume=108&rft_id=info:doi/10.1016%2Fj.cose.2021.102352&rft.externalDocID=S0167404821001760 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-4048&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-4048&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-4048&client=summon |