Hardening machine learning denial of service (DoS) defences against adversarial attacks in IoT smart home networks

Machine learning based Intrusion Detection Systems (IDS) allow flexible and efficient automated detection of cyberattacks in Internet of Things (IoT) networks. However, this has also created an additional attack vector; the machine learning models which support the IDS’s decisions may also be subjec...

Full description

Saved in:
Bibliographic Details
Published inComputers & security Vol. 108; p. 102352
Main Authors Anthi, Eirini, Williams, Lowri, Javed, Amir, Burnap, Pete
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Ltd 01.09.2021
Elsevier Sequoia S.A
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Machine learning based Intrusion Detection Systems (IDS) allow flexible and efficient automated detection of cyberattacks in Internet of Things (IoT) networks. However, this has also created an additional attack vector; the machine learning models which support the IDS’s decisions may also be subject to cyberattacks known as Adversarial Machine Learning (AML). In the context of IoT, AML can be used to manipulate data and network traffic that traverse through such devices. These perturbations increase the confusion in the decision boundaries of the machine learning classifier, where malicious network packets are often miss-classified as being benign. Consequently, such errors are bypassed by machine learning based detectors, which increases the potential of significantly delaying attack detection and further consequences such as personal information leakage, damaged hardware, and financial loss. Given the impact that these attacks may have, this paper proposes a rule-based approach towards generating AML attack samples and explores how they can be used to target a range of supervised machine learning classifiers used for detecting Denial of Service attacks in an IoT smart home network. The analysis explores which DoS packet features to perturb and how such adversarial samples can support increasing the robustness of supervised models using adversarial training. The results demonstrated that the performance of all the top performing classifiers were affected, decreasing a maximum of 47.2 percentage points when adversarial samples were present. Their performances improved following adversarial training, demonstrating their robustness towards such attacks.
AbstractList Machine learning based Intrusion Detection Systems (IDS) allow flexible and efficient automated detection of cyberattacks in Internet of Things (IoT) networks. However, this has also created an additional attack vector; the machine learning models which support the IDS's decisions may also be subject to cyberattacks known as Adversarial Machine Learning (AML). In the context of IoT, AML can be used to manipulate data and network traffic that traverse through such devices. These perturbations increase the confusion in the decision boundaries of the machine learning classifier, where malicious network packets are often miss-classified as being benign. Consequently, such errors are bypassed by machine learning based detectors, which increases the potential of significantly delaying attack detection and further consequences such as personal information leakage, damaged hardware, and financial loss. Given the impact that these attacks may have, this paper proposes a rule-based approach towards generating AML attack samples and explores how they can be used to target a range of supervised machine learning classifiers used for detecting Denial of Service attacks in an IoT smart home network. The analysis explores which DoS packet features to perturb and how such adversarial samples can support increasing the robustness of supervised models using adversarial training. The results demonstrated that the performance of all the top performing classifiers were affected, decreasing a maximum of 47.2 percentage points when adversarial samples were present. Their performances improved following adversarial training, demonstrating their robustness towards such attacks.
ArticleNumber 102352
Author Javed, Amir
Burnap, Pete
Anthi, Eirini
Williams, Lowri
Author_xml – sequence: 1
  givenname: Eirini
  orcidid: 0000-0002-5274-0727
  surname: Anthi
  fullname: Anthi, Eirini
  email: anthies@cardiff.ac.uk
– sequence: 2
  givenname: Lowri
  orcidid: 0000-0002-3794-6145
  surname: Williams
  fullname: Williams, Lowri
– sequence: 3
  givenname: Amir
  orcidid: 0000-0001-9761-0945
  surname: Javed
  fullname: Javed, Amir
– sequence: 4
  givenname: Pete
  surname: Burnap
  fullname: Burnap, Pete
BookMark eNp9kE1LAzEQhoNUsK3-AU8BL3rYmmTT3RW8iF8VCh6s55BOZmtqm9QkrfjvzVpPHrxk4OV9JswzID3nHRJyytmIM15dLkfgI44EEzwHohyLA9LnTS2KSrCmR_q5VBeSyeaIDGJcMsbrqmn6JEx0MOisW9C1hjfrkK5Qh5-gy_WK-pZGDDsLSM_v_MtFzlt0gJHqhbYuJqrNDkPUoWvrlDS8R2odffIzGtc6JPrm10gdpk8f3uMxOWz1KuLJ7xyS14f72e2kmD4_Pt3eTAsoa5EKweGqLcv86nnLBcqqYtyMa2GQtyW0opJyjkIAzo0EOS8BAKVphKlkdmLKITnb790E_7HFmNTSb4PLXyoxrviY1w2vc6vZtyD4GAO2CmzSyXqXgrYrxZnqDKul6gyrzrDaG86o-INugs33fv0PXe8hzKfvLAYVwXY6jQ0ISRlv_8O_AenSl-8
CitedBy_id crossref_primary_10_3390_fi16010032
crossref_primary_10_1016_j_ins_2024_120618
crossref_primary_10_1016_j_jisa_2022_103341
crossref_primary_10_3390_s23146379
crossref_primary_10_1016_j_future_2023_01_021
crossref_primary_10_1109_ACCESS_2022_3224806
crossref_primary_10_1016_j_cose_2022_103007
crossref_primary_10_1109_ACCESS_2022_3197299
crossref_primary_10_1016_j_jisa_2023_103647
crossref_primary_10_1111_exsy_13552
crossref_primary_10_1109_LNET_2025_3525901
crossref_primary_10_3390_fi15110371
crossref_primary_10_32604_cmes_2023_044169
crossref_primary_10_3390_fi15120405
crossref_primary_10_1016_j_jnca_2022_103332
crossref_primary_10_1007_s11042_023_15030_8
crossref_primary_10_1016_j_iot_2023_101021
crossref_primary_10_1016_j_iot_2023_100773
crossref_primary_10_1109_ACCESS_2024_3502250
crossref_primary_10_1142_S0218126622300100
crossref_primary_10_3390_info12100394
crossref_primary_10_1109_COMST_2024_3382470
crossref_primary_10_1145_3548691
crossref_primary_10_1186_s13635_024_00158_3
crossref_primary_10_3390_s24165150
crossref_primary_10_1016_j_cosrev_2023_100573
crossref_primary_10_1002_spy2_454
crossref_primary_10_1016_j_chb_2023_107770
crossref_primary_10_1155_2022_3784756
crossref_primary_10_1016_j_future_2022_02_019
crossref_primary_10_3390_s23084117
crossref_primary_10_3390_app13106001
crossref_primary_10_1016_j_cose_2022_102783
crossref_primary_10_1016_j_cose_2024_103750
crossref_primary_10_1109_JIOT_2024_3407587
crossref_primary_10_1093_comjnl_bxad014
crossref_primary_10_1109_COMST_2023_3344808
crossref_primary_10_1016_j_iot_2023_100684
crossref_primary_10_2139_ssrn_4200536
crossref_primary_10_4316_AECE_2023_04009
crossref_primary_10_1109_TCSII_2023_3334273
crossref_primary_10_1016_j_infsof_2023_107287
crossref_primary_10_35784_iapgos_6388
crossref_primary_10_3390_s24082626
crossref_primary_10_1016_j_comnet_2022_109073
crossref_primary_10_1016_j_inffus_2023_02_030
Cites_doi 10.3390/info11090452
10.1007/978-0-387-39940-9_565
10.1016/j.eswa.2021.114765
10.1109/MPRV.2018.03367731
10.1016/j.knosys.2018.12.019
10.1016/j.future.2013.01.010
10.1016/j.comnet.2019.01.023
10.1109/SPW.2018.00013
10.1145/3427228.3427660
10.1007/978-3-642-04342-0
ContentType Journal Article
Copyright 2021
Copyright Elsevier Sequoia S.A. Sep 2021
Copyright_xml – notice: 2021
– notice: Copyright Elsevier Sequoia S.A. Sep 2021
DBID 6I.
AAFTH
AAYXX
CITATION
7SC
8FD
JQ2
K7.
L7M
L~C
L~D
DOI 10.1016/j.cose.2021.102352
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
ProQuest Criminal Justice (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
ProQuest Criminal Justice (Alumni)
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList ProQuest Criminal Justice (Alumni)

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-6208
ExternalDocumentID 10_1016_j_cose_2021_102352
S0167404821001760
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFSI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADHUB
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BKOMP
BLXMC
CS3
DU5
E.L
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLX
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LG8
LG9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SBM
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSV
SSZ
T5K
TAE
TN5
TWZ
WH7
WUQ
XJE
XPP
XSW
YK3
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SC
8FD
EFKBS
JQ2
K7.
L7M
L~C
L~D
ID FETCH-LOGICAL-c372t-21c9f331c9abf12e46601d572de1f3cf2644be22cebd4c4b3ccce4d82d64101d3
IEDL.DBID .~1
ISSN 0167-4048
IngestDate Fri Jul 25 05:58:54 EDT 2025
Tue Jul 01 03:48:20 EDT 2025
Thu Apr 24 23:09:25 EDT 2025
Fri Feb 23 02:41:54 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Supervised machine learning
Networking
Attack detection
Internet of things (IoT)
Smart homes
Adversarial machine learning
Intrusion detection systems
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-21c9f331c9abf12e46601d572de1f3cf2644be22cebd4c4b3ccce4d82d64101d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5274-0727
0000-0002-3794-6145
0000-0001-9761-0945
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0167404821001760
PQID 2561517817
PQPubID 46289
ParticipantIDs proquest_journals_2561517817
crossref_citationtrail_10_1016_j_cose_2021_102352
crossref_primary_10_1016_j_cose_2021_102352
elsevier_sciencedirect_doi_10_1016_j_cose_2021_102352
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2021
2021-09-00
20210901
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: September 2021
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computers & security
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier Sequoia S.A
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Sequoia S.A
References Vanhoef, Piessens (bib0042) 2016
(bib0044) 2020
da Costa, Papa, Lisboa, Munoz, de Albuquerque (bib0010) 2019; 151
Omuya, Okeyo, Kimwele (bib0027) 2021; 174
Refaeilzadeh, Tang, Liu (bib0030) 2009; 5
Dhanjani (bib0011) 2013
Ronen, Shamir (bib0032) 2016
Zhou, Kantarcioglu, Thuraisingham, Xi (bib0047) 2012
Notra, Siddiqi, Gharakheili, Sivaraman, Boreli (bib0025) 2014
Erba, A., Taormina, R., Galelli, S., Pogliani, M., Carminati, M., Zanero, S., Tippenhauer, N. O., 2019. Real-time evasion attacks with physical constraints on deep learning-based anomaly detectors in industrial control systems.
Syed, Baig, Ibrahim, Valli (bib0037) 2020; 4
Goodfellow, I. J., Shlens, J., Szegedy, C., 2014b. Explaining and harnessing adversarial examples.
Chen, Chen, Cai, Zhang, Huang (bib0009) 2018
Yaghoubi, Fainekos (bib0046) 2019
Abusnaina, Khormali, Alasmary, Park, Anwar, Mohaisen (bib0002) 2019
Sharma, Dey (bib0034) 2012; 3
Alazab, Hobbs, Abawajy, Alazab (bib0003) 2012
Quinlan (bib0029) 2014
Zizzo, Hankin, Maffeis, Jones (bib0048) 2019
(bib0033) 2020
Gubbi, Buyya, Marusic, Palaniswami (bib0018) 2013; 29
Vaccari, Aiello, Cambiaso (bib0039) 2020; 11
Rigaki (bib0031) 2017
(bib0045) 2018
Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (bib0015) 2014
Kirda, Trachtenberg (bib0021) 2009; 5758
Tang, Alelyani, Liu (bib0038) 2014
Hu, W., Tan, Y., 2017. Generating adversarial malware examples for black-box attacks based on GAN.
Baracaldo, Chen, Ludwig, Safavi, Zhang (bib0008) 2018
McDermott, Majdani, Petrovski (bib0022) 2018
Sivaraman, Gharakheili, Vishwanath, Boreli, Mehani (bib0036) 2015
Shukla (bib0035) 2017
Anthi, Williams, Rhode, Burnap, Wedgbury (bib0006) 2021; 58
Grosse, Papernot, Manoharan, Backes, McDaniel (bib0017) 2017
Vanhoef, Piessens (bib0041) 2015
Doshi, R., Apthorpe, N., Feamster, N., 2018. Machine learning DDoS detection for consumer internet of things devices.
Verma, Ranga (bib0043) 2019
.
Effendy, Kusrini, Sudarmawan (bib0013) 2017
Papernot, McDaniel, Jha, Fredrikson, Celik, Swami (bib0028) 2016
Nelson, Barreno, Chi, Joseph, Rubinstein, Saini, Sutton, Tygar, Xia (bib0024) 2008; 8
Anthi, Williams, Malgortzata, Theodorakopoulos, Burnap (bib0005) 2018; 78
Meidan, Bohadana, Mathov, Mirsky, Shabtai, Breitenbacher, Elovici (bib0023) 2018; 17
Vanhoef, Piessens (bib0040) 2014
Athalye, A., Carlini, N., Wagner, D., 2018. Obfuscated gradients give a false sense of security: circumventing defenses to adversarial examples.
Han, Liu, Yang, Jiang (bib0019) 2019; 165
OConnor, Enck, Reaves (bib0026) 2019
Amouri, Alaparthy, Morgera (bib0004) 2018
Baracaldo (10.1016/j.cose.2021.102352_bib0008) 2018
Ronen (10.1016/j.cose.2021.102352_bib0032) 2016
Syed (10.1016/j.cose.2021.102352_bib0037) 2020; 4
Omuya (10.1016/j.cose.2021.102352_bib0027) 2021; 174
Han (10.1016/j.cose.2021.102352_bib0019) 2019; 165
McDermott (10.1016/j.cose.2021.102352_bib0022) 2018
(10.1016/j.cose.2021.102352_sbref0044) 2020
Quinlan (10.1016/j.cose.2021.102352_bib0029) 2014
10.1016/j.cose.2021.102352_bib0007
Zhou (10.1016/j.cose.2021.102352_bib0047) 2012
(10.1016/j.cose.2021.102352_sbref0045) 2018
Grosse (10.1016/j.cose.2021.102352_bib0017) 2017
Meidan (10.1016/j.cose.2021.102352_bib0023) 2018; 17
OConnor (10.1016/j.cose.2021.102352_bib0026) 2019
Effendy (10.1016/j.cose.2021.102352_bib0013) 2017
Notra (10.1016/j.cose.2021.102352_bib0025) 2014
Vaccari (10.1016/j.cose.2021.102352_bib0039) 2020; 11
Anthi (10.1016/j.cose.2021.102352_bib0005) 2018; 78
Anthi (10.1016/j.cose.2021.102352_bib0006) 2021; 58
10.1016/j.cose.2021.102352_bib0016
Chen (10.1016/j.cose.2021.102352_bib0009) 2018
Vanhoef (10.1016/j.cose.2021.102352_bib0040) 2014
10.1016/j.cose.2021.102352_bib0014
Yaghoubi (10.1016/j.cose.2021.102352_bib0046) 2019
Verma (10.1016/j.cose.2021.102352_bib0043) 2019
10.1016/j.cose.2021.102352_bib0012
Tang (10.1016/j.cose.2021.102352_bib0038) 2014
Vanhoef (10.1016/j.cose.2021.102352_bib0042) 2016
Rigaki (10.1016/j.cose.2021.102352_bib0031) 2017
Kirda (10.1016/j.cose.2021.102352_bib0021) 2009; 5758
Abusnaina (10.1016/j.cose.2021.102352_bib0002) 2019
Refaeilzadeh (10.1016/j.cose.2021.102352_bib0030) 2009; 5
Goodfellow (10.1016/j.cose.2021.102352_bib0015) 2014
Dhanjani (10.1016/j.cose.2021.102352_bib0011) 2013
(10.1016/j.cose.2021.102352_sbref0033) 2020
Zizzo (10.1016/j.cose.2021.102352_bib0048) 2019
Papernot (10.1016/j.cose.2021.102352_bib0028) 2016
Sharma (10.1016/j.cose.2021.102352_bib0034) 2012; 3
Alazab (10.1016/j.cose.2021.102352_bib0003) 2012
Gubbi (10.1016/j.cose.2021.102352_bib0018) 2013; 29
Sivaraman (10.1016/j.cose.2021.102352_bib0036) 2015
da Costa (10.1016/j.cose.2021.102352_bib0010) 2019; 151
Shukla (10.1016/j.cose.2021.102352_bib0035) 2017
Amouri (10.1016/j.cose.2021.102352_bib0004) 2018
Vanhoef (10.1016/j.cose.2021.102352_bib0041) 2015
10.1016/j.cose.2021.102352_bib0020
Nelson (10.1016/j.cose.2021.102352_bib0024) 2008; 8
References_xml – year: 2020
  ident: bib0033
  article-title: Scapy: Packet encapsulation
– reference: Erba, A., Taormina, R., Galelli, S., Pogliani, M., Carminati, M., Zanero, S., Tippenhauer, N. O., 2019. Real-time evasion attacks with physical constraints on deep learning-based anomaly detectors in industrial control systems.
– start-page: 1
  year: 2018
  end-page: 8
  ident: bib0022
  article-title: Botnet detection in the internet of things using deep learning approaches
  publication-title: 2018 International Joint Conference on Neural Networks (IJCNN)
– start-page: 673
  year: 2016
  end-page: 688
  ident: bib0042
  article-title: Predicting, decrypting, and abusing WPA2/802.11 group keys
  publication-title: 25th
– start-page: 256
  year: 2014
  end-page: 265
  ident: bib0040
  article-title: Advanced Wi-Fi attacks using commodity hardware
  publication-title: Proceedings of the 30th Annual Computer Security Applications Conference
– start-page: 179
  year: 2019
  end-page: 184
  ident: bib0046
  article-title: Gray-box adversarial testing for control systems with machine learning components
  publication-title: Proceedings of the 22nd ACM International Conference on Hybrid Systems: Computation and Control
– start-page: 1296
  year: 2019
  end-page: 1305
  ident: bib0002
  article-title: Adversarial learning attacks on graph-based IoT malware detection systems
  publication-title: 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS)
– reference: Doshi, R., Apthorpe, N., Feamster, N., 2018. Machine learning DDoS detection for consumer internet of things devices.
– year: 2020
  ident: bib0044
  article-title: Weka 3 - data mining with open source machine learning software in java
– year: 2018
  ident: bib0045
  article-title: Wireshark
– start-page: 1059
  year: 2012
  end-page: 1067
  ident: bib0047
  article-title: Adversarial support vector machine learning
  publication-title: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– start-page: 234
  year: 2017
  end-page: 240
  ident: bib0035
  article-title: ML-IDS: a machine learning approach to detect wormhole attacks in internet of things
  publication-title: Intelligent Systems Conference (IntelliSys), 2017
– volume: 151
  start-page: 147
  year: 2019
  end-page: 157
  ident: bib0010
  article-title: Internet of things: a survey on machine learning-based intrusion detection approaches
  publication-title: Comput. Netw.
– start-page: 163
  year: 2015
  end-page: 167
  ident: bib0036
  article-title: Network-level security and privacy control for smart-home IoT devices
  publication-title: 2015 IEEE 11th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob)
– reference: Hu, W., Tan, Y., 2017. Generating adversarial malware examples for black-box attacks based on GAN.
– year: 2014
  ident: bib0029
  article-title: C4.5: Programs for Machine Learning
– start-page: 372
  year: 2016
  end-page: 387
  ident: bib0028
  article-title: The limitations of deep learning in adversarial settings
  publication-title: 2016 IEEE European Symposium on Security and Privacy (EuroS&P)
– volume: 11
  start-page: 452
  year: 2020
  ident: bib0039
  article-title: SlowTT: a slow denial of service against IoT networks
  publication-title: Information
– start-page: 296
  year: 2012
  end-page: 301
  ident: bib0003
  article-title: Using feature selection for intrusion detection system
  publication-title: 2012 International Symposium on Communications and Information Technologies (ISCIT)
– volume: 5758
  year: 2009
  ident: bib0021
  article-title: Recent advances in intrusion detection
  publication-title: Lect. Notes Comput. Sci.
– start-page: 1
  year: 2019
  end-page: 24
  ident: bib0043
  article-title: Machine learning based intrusion detection systems for IoT applications
  publication-title: Wirel. Pers. Commun.
– reference: Athalye, A., Carlini, N., Wagner, D., 2018. Obfuscated gradients give a false sense of security: circumventing defenses to adversarial examples.
– start-page: 90
  year: 2017
  end-page: 94
  ident: bib0013
  article-title: Classification of intrusion detection system (IDS) based on computer network
  publication-title: 2017 2nd International conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE)
– volume: 29
  start-page: 1645
  year: 2013
  end-page: 1660
  ident: bib0018
  article-title: Internet of things (IoT): a vision, architectural elements, and future directions
  publication-title: Future Gener. Comput. Syst.
– volume: 165
  start-page: 474
  year: 2019
  end-page: 487
  ident: bib0019
  article-title: A novel adversarial learning framework in deep convolutional neural network for intelligent diagnosis of mechanical faults
  publication-title: Knowl.-Based Syst.
– start-page: 1
  year: 2019
  end-page: 4
  ident: bib0048
  article-title: Adversarial machine learning beyond the image domain
  publication-title: 2019 56th ACM/IEEE Design Automation Conference (DAC)
– volume: 58
  start-page: 102717
  year: 2021
  ident: bib0006
  article-title: Adversarial attacks on machine learning cybersecurity defences in industrial control systems
  publication-title: J. Inf. Secur. Appl.
– volume: 3
  start-page: 15
  year: 2012
  end-page: 20
  ident: bib0034
  article-title: Performance investigation of feature selection methods and sentiment lexicons for sentiment analysis
  publication-title: IJCA Special Issue Adv. Comput.Commun. Technol. HPC Appl.
– start-page: 62
  year: 2017
  end-page: 79
  ident: bib0017
  article-title: Adversarial examples for malware detection
  publication-title: European Symposium on Research in Computer Security
– start-page: 57
  year: 2018
  end-page: 64
  ident: bib0008
  article-title: Detecting poisoning attacks on machine learning in IoT environments
  publication-title: 2018 IEEE International Congress on Internet of Things (ICIOT)
– volume: 4
  start-page: 482
  year: 2020
  end-page: 503
  ident: bib0037
  article-title: Denial of service attack detection through machine learning for the IoT
  publication-title: J. Inf. Telecommun.
– reference: .
– start-page: 79
  year: 2014
  end-page: 84
  ident: bib0025
  article-title: An experimental study of security and privacy risks with emerging household appliances
  publication-title: 2014 IEEE Conference on Communications and Network Security
– volume: 174
  start-page: 114765
  year: 2021
  ident: bib0027
  article-title: Feature selection for classification using principal component analysis and information gain
  publication-title: Expert Syst. Appl.
– year: 2017
  ident: bib0031
  article-title: Adversarial deep learning against intrusion detection classifiers
– start-page: 755
  year: 2018
  end-page: 758
  ident: bib0009
  article-title: Denial of service attack on IoT system
  publication-title: 2018 9th International Conference on Information Technology in Medicine and Education (ITME)
– reference: Goodfellow, I. J., Shlens, J., Szegedy, C., 2014b. Explaining and harnessing adversarial examples.
– volume: 78
  start-page: 477
  year: 2018
  end-page: 490
  ident: bib0005
  article-title: A supervised intrusion detection system for smart home IoT
  publication-title: IEEE Internet Things J.
– volume: 8
  start-page: 1
  year: 2008
  end-page: 9
  ident: bib0024
  article-title: Exploiting machine learning to subvert your spam filter.
  publication-title: LEET
– start-page: 140
  year: 2019
  end-page: 150
  ident: bib0026
  article-title: Blinded and confused: uncovering systemic flaws in device telemetry for smart-home internet of things
  publication-title: Proceedings of the 12th Conference on Security and Privacy in Wireless and Mobile Networks
– start-page: 97
  year: 2015
  end-page: 112
  ident: bib0041
  article-title: All your biases belong to us: Breaking RC4 in WPA-TKIP and
  publication-title: 24th
– year: 2013
  ident: bib0011
  article-title: Hacking lightbulbs: Security evaluation of the Philips hue personal wireless lighting system
  publication-title: Internet Things Secur. Eval. Series
– start-page: 2672
  year: 2014
  end-page: 2680
  ident: bib0015
  article-title: Generative adversarial nets
  publication-title: Advances in Neural Information Processing Systems
– volume: 5
  start-page: 532
  year: 2009
  end-page: 538
  ident: bib0030
  article-title: Cross-validation.
  publication-title: Encyclopedia Database Syst.
– start-page: 37
  year: 2014
  ident: bib0038
  article-title: Feature selection for classification: a review
  publication-title: Data Classification: Algorithms and Applications
– volume: 17
  start-page: 12
  year: 2018
  end-page: 22
  ident: bib0023
  article-title: N-BaIoT-network-based detection of IoT botnet attacks using deep autoencoders
  publication-title: IEEE Pervasive Comput.
– start-page: 1
  year: 2018
  end-page: 4
  ident: bib0004
  article-title: Cross layer-based intrusion detection based on network behavior for IoT
  publication-title: Wireless and Microwave Technology Conference (WAMICON), 2018 IEEE 19th
– start-page: 3
  year: 2016
  end-page: 12
  ident: bib0032
  article-title: Extended functionality attacks on IoT devices: the case of smart lights
  publication-title: 2016 IEEE European Symposium on Security and Privacy (EuroS&P)
– volume: 11
  start-page: 452
  issue: 9
  year: 2020
  ident: 10.1016/j.cose.2021.102352_bib0039
  article-title: SlowTT: a slow denial of service against IoT networks
  publication-title: Information
  doi: 10.3390/info11090452
– volume: 58
  start-page: 102717
  year: 2021
  ident: 10.1016/j.cose.2021.102352_bib0006
  article-title: Adversarial attacks on machine learning cybersecurity defences in industrial control systems
  publication-title: J. Inf. Secur. Appl.
– year: 2017
  ident: 10.1016/j.cose.2021.102352_bib0031
– start-page: 97
  year: 2015
  ident: 10.1016/j.cose.2021.102352_bib0041
  article-title: All your biases belong to us: Breaking RC4 in WPA-TKIP and {TLS}
– start-page: 163
  year: 2015
  ident: 10.1016/j.cose.2021.102352_bib0036
  article-title: Network-level security and privacy control for smart-home IoT devices
– year: 2014
  ident: 10.1016/j.cose.2021.102352_bib0029
– start-page: 179
  year: 2019
  ident: 10.1016/j.cose.2021.102352_bib0046
  article-title: Gray-box adversarial testing for control systems with machine learning components
– start-page: 37
  year: 2014
  ident: 10.1016/j.cose.2021.102352_bib0038
  article-title: Feature selection for classification: a review
– ident: 10.1016/j.cose.2021.102352_bib0007
– volume: 5
  start-page: 532
  year: 2009
  ident: 10.1016/j.cose.2021.102352_bib0030
  article-title: Cross-validation.
  publication-title: Encyclopedia Database Syst.
  doi: 10.1007/978-0-387-39940-9_565
– start-page: 372
  year: 2016
  ident: 10.1016/j.cose.2021.102352_bib0028
  article-title: The limitations of deep learning in adversarial settings
– start-page: 296
  year: 2012
  ident: 10.1016/j.cose.2021.102352_bib0003
  article-title: Using feature selection for intrusion detection system
– start-page: 2672
  year: 2014
  ident: 10.1016/j.cose.2021.102352_bib0015
  article-title: Generative adversarial nets
– volume: 3
  start-page: 15
  year: 2012
  ident: 10.1016/j.cose.2021.102352_bib0034
  article-title: Performance investigation of feature selection methods and sentiment lexicons for sentiment analysis
  publication-title: IJCA Special Issue Adv. Comput.Commun. Technol. HPC Appl.
– year: 2013
  ident: 10.1016/j.cose.2021.102352_bib0011
  article-title: Hacking lightbulbs: Security evaluation of the Philips hue personal wireless lighting system
  publication-title: Internet Things Secur. Eval. Series
– volume: 174
  start-page: 114765
  year: 2021
  ident: 10.1016/j.cose.2021.102352_bib0027
  article-title: Feature selection for classification using principal component analysis and information gain
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.114765
– volume: 17
  start-page: 12
  issue: 3
  year: 2018
  ident: 10.1016/j.cose.2021.102352_bib0023
  article-title: N-BaIoT-network-based detection of IoT botnet attacks using deep autoencoders
  publication-title: IEEE Pervasive Comput.
  doi: 10.1109/MPRV.2018.03367731
– year: 2018
  ident: 10.1016/j.cose.2021.102352_sbref0045
– start-page: 140
  year: 2019
  ident: 10.1016/j.cose.2021.102352_bib0026
  article-title: Blinded and confused: uncovering systemic flaws in device telemetry for smart-home internet of things
– volume: 165
  start-page: 474
  year: 2019
  ident: 10.1016/j.cose.2021.102352_bib0019
  article-title: A novel adversarial learning framework in deep convolutional neural network for intelligent diagnosis of mechanical faults
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.12.019
– start-page: 755
  year: 2018
  ident: 10.1016/j.cose.2021.102352_bib0009
  article-title: Denial of service attack on IoT system
– start-page: 79
  year: 2014
  ident: 10.1016/j.cose.2021.102352_bib0025
  article-title: An experimental study of security and privacy risks with emerging household appliances
– start-page: 90
  year: 2017
  ident: 10.1016/j.cose.2021.102352_bib0013
  article-title: Classification of intrusion detection system (IDS) based on computer network
– start-page: 673
  year: 2016
  ident: 10.1016/j.cose.2021.102352_bib0042
  article-title: Predicting, decrypting, and abusing WPA2/802.11 group keys
– year: 2020
  ident: 10.1016/j.cose.2021.102352_sbref0033
– start-page: 62
  year: 2017
  ident: 10.1016/j.cose.2021.102352_bib0017
  article-title: Adversarial examples for malware detection
– year: 2020
  ident: 10.1016/j.cose.2021.102352_sbref0044
– start-page: 1
  year: 2019
  ident: 10.1016/j.cose.2021.102352_bib0048
  article-title: Adversarial machine learning beyond the image domain
– volume: 4
  start-page: 482
  issue: 4
  year: 2020
  ident: 10.1016/j.cose.2021.102352_bib0037
  article-title: Denial of service attack detection through machine learning for the IoT
  publication-title: J. Inf. Telecommun.
– start-page: 234
  year: 2017
  ident: 10.1016/j.cose.2021.102352_bib0035
  article-title: ML-IDS: a machine learning approach to detect wormhole attacks in internet of things
– start-page: 1
  year: 2018
  ident: 10.1016/j.cose.2021.102352_bib0022
  article-title: Botnet detection in the internet of things using deep learning approaches
– volume: 29
  start-page: 1645
  issue: 7
  year: 2013
  ident: 10.1016/j.cose.2021.102352_bib0018
  article-title: Internet of things (IoT): a vision, architectural elements, and future directions
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2013.01.010
– ident: 10.1016/j.cose.2021.102352_bib0020
– start-page: 3
  year: 2016
  ident: 10.1016/j.cose.2021.102352_bib0032
  article-title: Extended functionality attacks on IoT devices: the case of smart lights
– start-page: 57
  year: 2018
  ident: 10.1016/j.cose.2021.102352_bib0008
  article-title: Detecting poisoning attacks on machine learning in IoT environments
– volume: 151
  start-page: 147
  year: 2019
  ident: 10.1016/j.cose.2021.102352_bib0010
  article-title: Internet of things: a survey on machine learning-based intrusion detection approaches
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2019.01.023
– start-page: 1
  year: 2019
  ident: 10.1016/j.cose.2021.102352_bib0043
  article-title: Machine learning based intrusion detection systems for IoT applications
  publication-title: Wirel. Pers. Commun.
– volume: 78
  start-page: 477
  year: 2018
  ident: 10.1016/j.cose.2021.102352_bib0005
  article-title: A supervised intrusion detection system for smart home IoT
  publication-title: IEEE Internet Things J.
– volume: 8
  start-page: 1
  year: 2008
  ident: 10.1016/j.cose.2021.102352_bib0024
  article-title: Exploiting machine learning to subvert your spam filter.
  publication-title: LEET
– start-page: 1059
  year: 2012
  ident: 10.1016/j.cose.2021.102352_bib0047
  article-title: Adversarial support vector machine learning
– start-page: 1296
  year: 2019
  ident: 10.1016/j.cose.2021.102352_bib0002
  article-title: Adversarial learning attacks on graph-based IoT malware detection systems
– ident: 10.1016/j.cose.2021.102352_bib0012
  doi: 10.1109/SPW.2018.00013
– start-page: 256
  year: 2014
  ident: 10.1016/j.cose.2021.102352_bib0040
  article-title: Advanced Wi-Fi attacks using commodity hardware
– ident: 10.1016/j.cose.2021.102352_bib0014
  doi: 10.1145/3427228.3427660
– ident: 10.1016/j.cose.2021.102352_bib0016
– start-page: 1
  year: 2018
  ident: 10.1016/j.cose.2021.102352_bib0004
  article-title: Cross layer-based intrusion detection based on network behavior for IoT
– volume: 5758
  year: 2009
  ident: 10.1016/j.cose.2021.102352_bib0021
  article-title: Recent advances in intrusion detection
  publication-title: Lect. Notes Comput. Sci.
  doi: 10.1007/978-3-642-04342-0
SSID ssj0017688
Score 2.513465
Snippet Machine learning based Intrusion Detection Systems (IDS) allow flexible and efficient automated detection of cyberattacks in Internet of Things (IoT) networks....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 102352
SubjectTerms Adversarial machine learning
Attack detection
Classifiers
Communications traffic
Denial of service attacks
Impact damage
Internet of Things
Internet of things (IoT)
Intrusion detection systems
Machine learning
Networking
Packets (communication)
Perturbation
Robustness
Smart buildings
Smart homes
Smart houses
Supervised machine learning
Training
Title Hardening machine learning denial of service (DoS) defences against adversarial attacks in IoT smart home networks
URI https://dx.doi.org/10.1016/j.cose.2021.102352
https://www.proquest.com/docview/2561517817
Volume 108
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6LXrz4Ft_k4EGRuubR7XoUH-wq7mUVvIUkTXTFbRdbr_52Z5pUUNCDl0LTJJTMZPJN8mWGkAOBsAEci8SCWUykcHnS51oneCTkz05T7j3ud9yNeoMHefOYPnbIRXsXBmmV0fYHm95Y61jSjaPZnU0m3XFDoAcF5BhGKOuh3y5lhlp-8vFF84APTe7JEN8baseLM4HjhZxw8BE5ayIYpPy3xemHmW7WnutlshhBIz0P_7VCOq5YJUttQgYa5-caecNzeIc7HXTakCQdjVkhniiWQx-lp1UwD_TwshwfQblvqNRUP-kJYEWqMUVzpVExqa5rvINPJwUdlve0msLQ0Ody6mgR6OPVOnm4vrq_GCQxqUJiRcbrhDN75oWApzaecSd74JLlacZzx7ywHgGScZxbZ3JppRHWWifzPs97EkYtFxtkrigLt0noaQ7OoQGPzPUZ4ABttMmggWZMZEZys0VYO5rKxojjmPjiVbXUsheFElAoARUksEWOv9rMQryNP2unrZDUN61RsCD82W63laiKc7ZSAP4A_mR9lm3_s9sdsoBvgYK2S-bqt3e3B5ilNvuNUu6T-fPh7WD0CQR16mM
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQGWDhjShPDwwgFBXbSRNGxEMtjy60EptlOzYU0aRqwv_nLnEqgUQHlgxObEV35_N39uc7Qk4FwgYILAIDbjEIhU2DhCsV4JGQu7qMuHO43_E86PZG4cNr9LpEbpq7MEir9L6_9umVt_YtHS_NznQ87rxUBHowQI5phOIuxO3LmJ0qapHl6_5jbzA_TABEncxTfEMHf3empnkhLRzCRM6qJAYR_2t9-uWpq-XnfoOsedxIr-tf2yRLNtsi601NBuqn6DaZ4VG8xc0OOql4kpb6whBvFNthjNzRovYQ9Ow2fzmHdlexqal6U2OAi1RhleZCoW1SVZZ4DZ-OM9rPh7SYgHToez6xNKsZ5MUOGd3fDW96ga-rEBgR8zLgzFw5IeCptGPchl2IytIo5qllThiHGElbzo3VaWhCLYwxNkwTnnZDkFoqdkkryzO7R-hlCvGhhqDMJgyggNJKx9BBMSZiHXLdJqyRpjQ-6TjWvviUDbvsQ6IGJGpA1hpok4t5n2mdcmPh11GjJPnDcCSsCQv7HTYalX7aFhLwHyCgOGHx_j-HPSErveHzk3zqDx4PyCq-qRlph6RVzr7sEUCYUh97E_0GEX_tFA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hardening+machine+learning+denial+of+service+%28DoS%29+defences+against+adversarial+attacks+in+IoT+smart+home+networks&rft.jtitle=Computers+%26+security&rft.au=Anthi%2C+Eirini&rft.au=Williams%2C+Lowri&rft.au=Javed%2C+Amir&rft.au=Burnap%2C+Pete&rft.date=2021-09-01&rft.pub=Elsevier+Ltd&rft.issn=0167-4048&rft.eissn=1872-6208&rft.volume=108&rft_id=info:doi/10.1016%2Fj.cose.2021.102352&rft.externalDocID=S0167404821001760
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-4048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-4048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-4048&client=summon