Machine learning modeling of fluorescence spectral data for prediction of trace organic contaminant removal during UV/H2O2 treatment of wastewater
•Machine learning of EEM is effective in predicting TrOCs removal during AOP.•Machine learning model outperforms traditional linear regression model in accuracy.•Simultaneous prediction of multiple TrOCs removal was achieved using MORF model.•Fluorescence spectral regions of high importance were ide...
Saved in:
Published in | Water research (Oxford) Vol. 255; p. 121484 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.05.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Machine learning of EEM is effective in predicting TrOCs removal during AOP.•Machine learning model outperforms traditional linear regression model in accuracy.•Simultaneous prediction of multiple TrOCs removal was achieved using MORF model.•Fluorescence spectral regions of high importance were identified for various TrOCs.•Simplified scanning regions are proposed to reduce time cost of data acquisition.
Dynamic feedback of the removal performance of trace organic contaminants (TrOCs) is essential towards economical advanced oxidation processes (AOPs), whereas the corresponding quick-response feedback methods have long been desired. Herein, machine learning (ML) multi-target regression random forest (MORF) models were developed based on the fluorescence spectra to predict the removal of TrOCs during UV/H2O2 treatment of municipal secondary effluent as a typical AOP. The predictive performance of the developed MORF model (R2 = 0.83-0.95) exhibited higher accuracy over the traditional linear regression models with R2 increased by ∼0.15. Furthermore, through feature importance analysis, the spectral regions of high importance were identified for different groups of TrOCs, thus enabling faster data acquisition due to remarkably reduced size of required fluorescence spectral scanning region. Specifically, the fluorescence regions Ex(235-275 nm)/Em(325-400 nm) and Ex(240-360 nm)/Em(325-450 nm) were found highly correlated with the removal of the TrOCs susceptible to both photodegradation and •OH degradation and those primarily subject to •OH degradation, respectively. In addition, the spectral regions of high importance were also individually identified for the investigated TrOCs during the AOP. Through providing an efficient ML-based feedback method to monitor TrOC removal during AOP, this study sheds light on the development of dynamic feedback-based strategies for precise and economical advanced treatment of wastewater.
[Display omitted] |
---|---|
AbstractList | Dynamic feedback of the removal performance of trace organic contaminants (TrOCs) is essential towards economical advanced oxidation processes (AOPs), whereas the corresponding quick-response feedback methods have long been desired. Herein, machine learning (ML) multi-target regression random forest (MORF) models were developed based on the fluorescence spectra to predict the removal of TrOCs during UV/H2O2 treatment of municipal secondary effluent as a typical AOP. The predictive performance of the developed MORF model (R2 = 0.83-0.95) exhibited higher accuracy over the traditional linear regression models with R2 increased by ∼0.15. Furthermore, through feature importance analysis, the spectral regions of high importance were identified for different groups of TrOCs, thus enabling faster data acquisition due to remarkably reduced size of required fluorescence spectral scanning region. Specifically, the fluorescence regions Ex(235-275 nm)/Em(325-400 nm) and Ex(240-360 nm)/Em(325-450 nm) were found highly correlated with the removal of the TrOCs susceptible to both photodegradation and •OH degradation and those primarily subject to •OH degradation, respectively. In addition, the spectral regions of high importance were also individually identified for the investigated TrOCs during the AOP. Through providing an efficient ML-based feedback method to monitor TrOC removal during AOP, this study sheds light on the development of dynamic feedback-based strategies for precise and economical advanced treatment of wastewater.Dynamic feedback of the removal performance of trace organic contaminants (TrOCs) is essential towards economical advanced oxidation processes (AOPs), whereas the corresponding quick-response feedback methods have long been desired. Herein, machine learning (ML) multi-target regression random forest (MORF) models were developed based on the fluorescence spectra to predict the removal of TrOCs during UV/H2O2 treatment of municipal secondary effluent as a typical AOP. The predictive performance of the developed MORF model (R2 = 0.83-0.95) exhibited higher accuracy over the traditional linear regression models with R2 increased by ∼0.15. Furthermore, through feature importance analysis, the spectral regions of high importance were identified for different groups of TrOCs, thus enabling faster data acquisition due to remarkably reduced size of required fluorescence spectral scanning region. Specifically, the fluorescence regions Ex(235-275 nm)/Em(325-400 nm) and Ex(240-360 nm)/Em(325-450 nm) were found highly correlated with the removal of the TrOCs susceptible to both photodegradation and •OH degradation and those primarily subject to •OH degradation, respectively. In addition, the spectral regions of high importance were also individually identified for the investigated TrOCs during the AOP. Through providing an efficient ML-based feedback method to monitor TrOC removal during AOP, this study sheds light on the development of dynamic feedback-based strategies for precise and economical advanced treatment of wastewater. Dynamic feedback of the removal performance of trace organic contaminants (TrOCs) is essential towards economical advanced oxidation processes (AOPs), whereas the corresponding quick-response feedback methods have long been desired. Herein, machine learning (ML) multi-target regression random forest (MORF) models were developed based on the fluorescence spectra to predict the removal of TrOCs during UV/H₂O₂ treatment of municipal secondary effluent as a typical AOP. The predictive performance of the developed MORF model (R² = 0.83-0.95) exhibited higher accuracy over the traditional linear regression models with R² increased by ∼0.15. Furthermore, through feature importance analysis, the spectral regions of high importance were identified for different groups of TrOCs, thus enabling faster data acquisition due to remarkably reduced size of required fluorescence spectral scanning region. Specifically, the fluorescence regions Ex(235-275 nm)/Em(325-400 nm) and Ex(240-360 nm)/Em(325-450 nm) were found highly correlated with the removal of the TrOCs susceptible to both photodegradation and •OH degradation and those primarily subject to •OH degradation, respectively. In addition, the spectral regions of high importance were also individually identified for the investigated TrOCs during the AOP. Through providing an efficient ML-based feedback method to monitor TrOC removal during AOP, this study sheds light on the development of dynamic feedback-based strategies for precise and economical advanced treatment of wastewater. •Machine learning of EEM is effective in predicting TrOCs removal during AOP.•Machine learning model outperforms traditional linear regression model in accuracy.•Simultaneous prediction of multiple TrOCs removal was achieved using MORF model.•Fluorescence spectral regions of high importance were identified for various TrOCs.•Simplified scanning regions are proposed to reduce time cost of data acquisition. Dynamic feedback of the removal performance of trace organic contaminants (TrOCs) is essential towards economical advanced oxidation processes (AOPs), whereas the corresponding quick-response feedback methods have long been desired. Herein, machine learning (ML) multi-target regression random forest (MORF) models were developed based on the fluorescence spectra to predict the removal of TrOCs during UV/H2O2 treatment of municipal secondary effluent as a typical AOP. The predictive performance of the developed MORF model (R2 = 0.83-0.95) exhibited higher accuracy over the traditional linear regression models with R2 increased by ∼0.15. Furthermore, through feature importance analysis, the spectral regions of high importance were identified for different groups of TrOCs, thus enabling faster data acquisition due to remarkably reduced size of required fluorescence spectral scanning region. Specifically, the fluorescence regions Ex(235-275 nm)/Em(325-400 nm) and Ex(240-360 nm)/Em(325-450 nm) were found highly correlated with the removal of the TrOCs susceptible to both photodegradation and •OH degradation and those primarily subject to •OH degradation, respectively. In addition, the spectral regions of high importance were also individually identified for the investigated TrOCs during the AOP. Through providing an efficient ML-based feedback method to monitor TrOC removal during AOP, this study sheds light on the development of dynamic feedback-based strategies for precise and economical advanced treatment of wastewater. [Display omitted] |
ArticleNumber | 121484 |
Author | Shan, Chao Pan, Bingcai Yang, Yi |
Author_xml | – sequence: 1 givenname: Yi surname: Yang fullname: Yang, Yi organization: State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China – sequence: 2 givenname: Chao orcidid: 0000-0003-4732-1015 surname: Shan fullname: Shan, Chao email: shanchao@nju.edu.cn organization: State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China – sequence: 3 givenname: Bingcai surname: Pan fullname: Pan, Bingcai organization: State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China |
BookMark | eNqFkb9uFDEYxC2USFxC3iCFS5q9-O95lwIJRYQgBaUhaS2v93Pwadc-bF8iXoMnxtZSUZDKn-T5jTQzZ-gkxAAIXVKypYTurvbbF1MS5C0jTGwpo6IXb9CG9mromBD9CdoQInhHuRRv0VnOe0IIY3zYoN_fjP3hA-AZTAo-POElTjC3Izrs5mOsvhaCBZwPYEsyM55MMdjFhA8JJm-Lj6GJ619VxfRkgrfYxlDM4oMJBSdY4nMDj6kZPzxe3bJ7VgEwZYEqqPSLyQVqDEjv0Kkzc4aLv-85erj5_P36tru7__L1-tNdZ7lipaPWMTcSzoxytGWeRrFTcjcqS6gSivJ-EEJZJ4Xs6chqJ5YzTnduZMDFwM_R-9X3kOLPI-SiF1-jzrMJEI9Zcyq5orKX_atSNihBSC-JrNIPq9SmmHMCp60vpnVU-_GzpkS3zfRer5vptpleN6uw-Ac-JL-Y9Os17OOKQa3r2UPS2fq22eRT3UxP0f_f4A9J5LY_ |
CitedBy_id | crossref_primary_10_1016_j_jece_2025_115774 crossref_primary_10_1016_j_watres_2024_122488 crossref_primary_10_1016_j_scitotenv_2024_176301 crossref_primary_10_1016_j_watres_2024_122398 crossref_primary_10_1016_j_jwpe_2024_106022 crossref_primary_10_1016_j_jwpe_2025_107411 crossref_primary_10_1016_j_jhazmat_2024_136075 crossref_primary_10_1016_j_watres_2024_122616 crossref_primary_10_1016_j_cej_2024_157226 crossref_primary_10_1016_j_watres_2025_123281 crossref_primary_10_1016_j_jfp_2024_100396 crossref_primary_10_1016_j_apcatb_2024_124754 crossref_primary_10_1016_j_apcatb_2025_125124 crossref_primary_10_1016_j_jwpe_2024_106909 crossref_primary_10_1016_j_trac_2024_118045 crossref_primary_10_3390_su162310458 |
Cites_doi | 10.1016/j.scitotenv.2020.142720 10.1016/j.watres.2011.07.026 10.4319/lom.2008.6.572 10.1016/j.watres.2015.05.064 10.1021/acs.est.2c09724 10.1016/j.scitotenv.2013.01.032 10.1016/j.chemosphere.2020.127460 10.1016/j.watres.2015.06.037 10.1021/es3008535 10.1016/j.watres.2016.08.010 10.1016/j.watres.2022.119521 10.1016/j.jphotochem.2011.05.017 10.1016/j.cej.2019.01.041 10.1021/es034354c 10.1021/acs.est.1c01849 10.1021/acs.est.1c08302 10.1016/j.chemosphere.2023.140978 10.1016/j.watres.2020.116733 10.1002/widm.1157 10.1016/j.envint.2017.05.004 10.1039/C6EW00051G 10.1021/es803524a 10.1016/j.petrol.2020.107801 10.1016/j.eti.2023.103179 10.1016/j.apenergy.2020.115166 10.1016/j.chemosphere.2013.04.039 10.4319/lo.2008.53.5.1900 10.1021/acs.est.7b04905 10.1016/j.watres.2019.114901 10.1039/c3ay41160e 10.1016/j.envpol.2023.122982 10.1016/j.scitotenv.2013.12.065 10.1016/j.chemosphere.2019.125292 10.1021/es500907n 10.1016/j.ecolmodel.2009.01.037 10.1016/j.jhazmat.2016.05.035 10.1007/s40726-017-0072-6 10.1016/j.biosystemseng.2018.04.023 10.1016/j.watres.2009.04.039 10.1016/j.jhazmat.2014.09.008 10.1109/LGRS.2011.2109934 10.1016/j.cej.2021.132893 10.1016/j.chemosphere.2017.11.069 10.1021/es0613198 10.1016/j.chemosphere.2021.129824 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Ltd Copyright © 2024 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2024 Elsevier Ltd – notice: Copyright © 2024 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.watres.2024.121484 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-2448 |
ExternalDocumentID | 10_1016_j_watres_2024_121484 S0043135424003865 |
GroupedDBID | --- --K --M -DZ -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABQEM ABQYD ACDAQ ACGFO ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFJKZ AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SCU SDF SDG SDP SES SEW SPC SPCBC SSE SSJ SSZ T5K TAE TN5 TWZ WH7 XPP ZCA ZMT ~02 ~G- ~KM .55 186 29R 6TJ AAQXK AATTM AAYWO AAYXX ABEFU ABWVN ABXDB ACKIV ACRPL ACVFH ADCNI ADMUD ADNMO AEGFY AEIPS AEUPX AFFNX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HMA HMC HVGLF HZ~ H~9 MVM OHT R2- SEN SEP SSH WUQ X7M XOL YHZ YV5 ZXP ZY4 ~A~ 7X8 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c372t-1cf2fb032a7f11214db46756b7c017471389447cf54581b2484c32316fb2e3493 |
IEDL.DBID | .~1 |
ISSN | 0043-1354 1879-2448 |
IngestDate | Fri Aug 22 20:38:50 EDT 2025 Thu Jul 10 19:19:40 EDT 2025 Thu Apr 24 22:56:41 EDT 2025 Tue Jul 01 01:21:27 EDT 2025 Sat Nov 09 15:59:55 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Micropollutant removal Multi-target regression random forest model Advanced oxidation Excitation-emission matrix Machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-1cf2fb032a7f11214db46756b7c017471389447cf54581b2484c32316fb2e3493 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-4732-1015 |
PQID | 2974008505 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3153715858 proquest_miscellaneous_2974008505 crossref_citationtrail_10_1016_j_watres_2024_121484 crossref_primary_10_1016_j_watres_2024_121484 elsevier_sciencedirect_doi_10_1016_j_watres_2024_121484 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-05-15 |
PublicationDateYYYYMMDD | 2024-05-15 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Water research (Oxford) |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Gerrity, Lee, Gamage, Lee, Pisarenko, Trenholm, Gunten, Snyder (bib0010) 2016; 2 Park, Snyder (bib0024) 2018; 193 Miklos, Wang, Linden, Drewes, Hübner (bib0020) 2019; 362 Tuia, Verrelst, Alonso, Perez-Cruz, Camps-Valls (bib0035) 2011; 8 Yu, Anumol, Park, Pepper, Scheideler, Snyder (bib0047) 2015; 81 Xu, Cao, Feng, Luo, Feng, Ni, Fang (bib0039) 2022; 430 Rizzo, Manaia, Merlin, Schwartz, Dagot, Ploy, Michael, Fatta-Kassinos (bib0025) 2013; 447 Nguyen, Seo, Park, Begum, Lee, Hur (bib0022) 2023; 31 Sgroi, Anumol, Vagliasindi, Snyder, Roccaro (bib0032) 2021; 765 Palansooriya, Li, Dissanayake, Suvarna, Li, Yuan, Sarkar, Tsang, Rinklebe, Wang, Ok (bib0023) 2022; 56 Chys, Audenaert, Deniere, Mortier, Langenhove, Nopens, Demeestere, Hulle (bib0007) 2017; 51 Yang, Chen, Zhuang, Zhu (bib0044) 2024; 341 Yusup, Maysaroh, Diva, Sagita, Anggreini, Desmiarti, Deng, Li (bib0046) 2023; 337 Luo, Guo, Ngo, Nghiem, Hai, Zhang, Liang, Wang (bib0018) 2014; 473-474 Hambly, Arvin, Pedersen, Pedersen, Seredynska-Sobecka, Stedmon (bib0011) 2015; 83 Yamashita, Kojima, Yoshida, Shibata (bib0042) 2021; 271 Zhong, Zhang, Bagheri, Burken, Gu, Li, Ma, Marrone, Ren, Schrier, Shi, Tan, Wang, Wang, Wong, Xiao, Yu, Zhu, Zhang (bib0049) 2021; 55 Murphy, Stedmon, Graeber, Bro (bib0021) 2013; 5 Li, Ma, Liu, Fang, Yue, Guan, Chen, Liu (bib0017) 2012; 46 Wert, Rosario-Ortiz, Snyder (bib0038) 2009; 43 Li, Pan, Suvarna, Tong, Wang (bib0016) 2020; 269 Wee, Aris (bib0037) 2017; 106 Yang, Pan, Lei, Tong, Shi, Chen (bib0045) 2023; 31 Stapf, Miehe, Jekel (bib0029) 2016; 104 Sgroi, Gagliano, Vagliasindi, Roccaro (bib0031) 2020; 243 Kocev, Dzeroski, White, Newell, Griffioen (bib0014) 2009; 220 Kocev, Vens, Struyf, Dzeroski (bib0015) 2007 Merel, Anumol, Park, Snyder (bib0019) 2015; 282 He, Xi, Li, Pan, An, Bai, Li, Cui (bib0012) 2013; 93 Santana, Geronimo, Mastelini, Carvalho, Barbin, Ida, Barbon (bib0026) 2018; 171 Alharbi, Price (bib0001) 2017; 3 Batista-Andrade, Diaz, Vega, Hain, Rose, Blaney (bib0002) 2023; 229 Yamashita, Jaffe, Maie, Tanoue (bib0041) 2008; 53 Yuan, Suvarna, Low, Dissanayake, Lee, Li, Wang, Ok (bib0048) 2021; 55 Borchani, Varando, Bielza, Larrañaga (bib0004) 2015; 5 Eggen, Hollender, Joss, Scharer, Stamm (bib0008) 2014; 48 Tufail, Price, Hai (bib0034) 2020; 260 Song, Xu, Liang, Peng, Zhang, Du, Lu, Li, Wu, Guan (bib0028) 2021; 190 Vanderford, Snyder (bib0036) 2006; 40 Gao, Zhong, Zhang, Zhang (bib0009) 2023; 57 Borisover, Laor, Parparov, Bukhanovsky, Lado (bib0005) 2009; 43 Chen, Westerhoff, Leenheer, Booksh (bib0006) 2003; 37 Stedmon, Bro (bib0030) 2008; 6 Sgroi, Roccaro, Korshin, Greco, Sciuto, Anumol, Snyder, Vagliasindi (bib0027) 2017; 323 Tufail, Al-Rifai, Price, Leusch, Hai (bib0033) 2024; 350 Yang, Flowers, Weinberg, Singer (bib0043) 2011; 45 Kida, Kojima, Tanabe, Hayashi, Kudoh, Maie, Fujitake (bib0013) 2019; 163 Xue, Liu, Xiong, Liu, Cui, Lei (bib0040) 2021; 196 Bolton, Stefan, Shaw, Lykke (bib0003) 2011; 222 Yang (10.1016/j.watres.2024.121484_bib0045) 2023; 31 Borchani (10.1016/j.watres.2024.121484_bib0004) 2015; 5 Gerrity (10.1016/j.watres.2024.121484_bib0010) 2016; 2 Sgroi (10.1016/j.watres.2024.121484_bib0032) 2021; 765 Yuan (10.1016/j.watres.2024.121484_bib0048) 2021; 55 Sgroi (10.1016/j.watres.2024.121484_bib0027) 2017; 323 Hambly (10.1016/j.watres.2024.121484_bib0011) 2015; 83 Park (10.1016/j.watres.2024.121484_bib0024) 2018; 193 Li (10.1016/j.watres.2024.121484_bib0016) 2020; 269 Gao (10.1016/j.watres.2024.121484_bib0009) 2023; 57 Sgroi (10.1016/j.watres.2024.121484_bib0031) 2020; 243 Borisover (10.1016/j.watres.2024.121484_bib0005) 2009; 43 Batista-Andrade (10.1016/j.watres.2024.121484_bib0002) 2023; 229 Song (10.1016/j.watres.2024.121484_bib0028) 2021; 190 Miklos (10.1016/j.watres.2024.121484_bib0020) 2019; 362 Rizzo (10.1016/j.watres.2024.121484_bib0025) 2013; 447 Chen (10.1016/j.watres.2024.121484_bib0006) 2003; 37 Xue (10.1016/j.watres.2024.121484_bib0040) 2021; 196 Tuia (10.1016/j.watres.2024.121484_bib0035) 2011; 8 Yang (10.1016/j.watres.2024.121484_bib0043) 2011; 45 Kocev (10.1016/j.watres.2024.121484_bib0014) 2009; 220 Yamashita (10.1016/j.watres.2024.121484_bib0041) 2008; 53 Yusup (10.1016/j.watres.2024.121484_bib0046) 2023; 337 Bolton (10.1016/j.watres.2024.121484_bib0003) 2011; 222 Vanderford (10.1016/j.watres.2024.121484_bib0036) 2006; 40 Luo (10.1016/j.watres.2024.121484_bib0018) 2014; 473-474 Nguyen (10.1016/j.watres.2024.121484_bib0022) 2023; 31 Palansooriya (10.1016/j.watres.2024.121484_bib0023) 2022; 56 Yang (10.1016/j.watres.2024.121484_bib0044) 2024; 341 Kocev (10.1016/j.watres.2024.121484_bib0015) 2007 Merel (10.1016/j.watres.2024.121484_bib0019) 2015; 282 He (10.1016/j.watres.2024.121484_bib0012) 2013; 93 Murphy (10.1016/j.watres.2024.121484_bib0021) 2013; 5 Eggen (10.1016/j.watres.2024.121484_bib0008) 2014; 48 Tufail (10.1016/j.watres.2024.121484_bib0033) 2024; 350 Santana (10.1016/j.watres.2024.121484_bib0026) 2018; 171 Zhong (10.1016/j.watres.2024.121484_bib0049) 2021; 55 Wert (10.1016/j.watres.2024.121484_bib0038) 2009; 43 Yamashita (10.1016/j.watres.2024.121484_bib0042) 2021; 271 Kida (10.1016/j.watres.2024.121484_bib0013) 2019; 163 Yu (10.1016/j.watres.2024.121484_bib0047) 2015; 81 Xu (10.1016/j.watres.2024.121484_bib0039) 2022; 430 Chys (10.1016/j.watres.2024.121484_bib0007) 2017; 51 Alharbi (10.1016/j.watres.2024.121484_bib0001) 2017; 3 Li (10.1016/j.watres.2024.121484_bib0017) 2012; 46 Stapf (10.1016/j.watres.2024.121484_bib0029) 2016; 104 Stedmon (10.1016/j.watres.2024.121484_bib0030) 2008; 6 Wee (10.1016/j.watres.2024.121484_bib0037) 2017; 106 Tufail (10.1016/j.watres.2024.121484_bib0034) 2020; 260 |
References_xml | – volume: 282 start-page: 75 year: 2015 end-page: 85 ident: bib0019 article-title: Application of surrogates, indicators, and high-resolution mass spectrometry to evaluate the efficacy of UV processes for attenuation of emerging contaminants in water publication-title: J. Hazard. Mater. – volume: 56 start-page: 4187 year: 2022 end-page: 4198 ident: bib0023 article-title: Prediction of soil heavy metal immobilization by biochar using machine learning publication-title: Environ. Sci. Technol. – volume: 51 start-page: 14233 year: 2017 end-page: 14243 ident: bib0007 article-title: Surrogate-based correlation models in view of real-time control of ozonation of secondary treated municipal wastewater-model development and dynamic validation publication-title: Environ. Sci. Technol. – volume: 2 start-page: 460 year: 2016 end-page: 473 ident: bib0010 article-title: Emerging investigators series: prediction of trace organic contaminant abatement with UV/H publication-title: Environ. Sci. Water Res. Technol. – volume: 196 year: 2021 ident: bib0040 article-title: A data-driven shale gas production forecasting method based on the multi-objective random forest regression publication-title: J. Pet. Sci. Eng. – volume: 104 start-page: 111 year: 2016 end-page: 118 ident: bib0029 article-title: Application of online UV absorption measurements for ozone process control in secondary effluent with variable nitrite concentration publication-title: Water Res. – volume: 31 year: 2023 ident: bib0045 article-title: Dissolved organic matter evolution and straw decomposition rate characterization under different water and fertilizer conditions based on three-dimensional fluorescence spectrum and deep learning publication-title: J. Environ. Manage. – volume: 3 start-page: 268 year: 2017 end-page: 280 ident: bib0001 article-title: Degradation and fate of pharmaceutically active contaminants by advanced oxidation processes publication-title: Curr. Pollut. Rep. – volume: 55 start-page: 12741 year: 2021 end-page: 12754 ident: bib0049 article-title: Machine learning: new ideas and tools in environmental science and engineering publication-title: Environ. Sci. Technol. – volume: 269 year: 2020 ident: bib0016 article-title: Fuel properties of hydrochar and pyrochar: prediction and exploration with machine learning publication-title: Appl. Energy – volume: 473-474 start-page: 619 year: 2014 end-page: 641 ident: bib0018 article-title: A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment publication-title: Sci. Total Environ. – volume: 106 start-page: 207 year: 2017 end-page: 233 ident: bib0037 article-title: Endocrine disrupting compounds in drinking water supply system and human health risk implication publication-title: Environ. Int. – volume: 83 start-page: 112 year: 2015 end-page: 120 ident: bib0011 article-title: Characterising organic matter in recirculating aquaculture systems with fluorescence EEM spectroscopy publication-title: Water Res. – volume: 765 year: 2021 ident: bib0032 article-title: Comparison of the new Cl publication-title: Sci. Total Environ. – volume: 43 start-page: 3104 year: 2009 end-page: 3116 ident: bib0005 article-title: Spatial and seasonal patterns of fluorescent organic matter in Lake Kinneret (Sea of Galilee) and its catchment basin publication-title: Water Res. – volume: 190 year: 2021 ident: bib0028 article-title: Surrogates for on-line monitoring of the attenuation of trace organic contaminants during advanced oxidation processes for water reuse publication-title: Water Res. – volume: 323 start-page: 367 year: 2017 end-page: 376 ident: bib0027 article-title: Use of fluorescence EEM to monitor the removal of emerging contaminants in full scale wastewater treatment plants publication-title: J. Hazard. Mater. – volume: 430 year: 2022 ident: bib0039 article-title: Fast identification of fluorescent components in three-dimensional excitation-emission matrix fluorescence spectra via deep learning publication-title: Chem. Eng. J. – volume: 37 start-page: 5701 year: 2003 end-page: 5710 ident: bib0006 article-title: Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter publication-title: Environ. Sci. Technol. – volume: 163 year: 2019 ident: bib0013 article-title: Origin, distributions, and environmental significance of ubiquitous humic-like fluorophores in Antarctic lakes and streams publication-title: Water Res. – volume: 53 start-page: 1900 year: 2008 end-page: 1908 ident: bib0041 article-title: Assessing the dynamics of dissolved organic matter (DOM) in coastal environments by excitation emission matrix fluorescence and parallel factor analysis (EEM-PARAFAC) publication-title: Limnol. Oceanogr. – volume: 43 start-page: 4858 year: 2009 end-page: 4863 ident: bib0038 article-title: Using ultraviolet absorbance and color to assess pharmaceutical oxidation during ozonation of wastewater publication-title: Environ. Sci. Technol. – volume: 260 year: 2020 ident: bib0034 article-title: A critical review on advanced oxidation processes for the removal of trace organic contaminants: a voyage from individual to integrated processes publication-title: Chemosphere – volume: 193 start-page: 530 year: 2018 end-page: 537 ident: bib0024 article-title: Sample handling and data processing for fluorescent excitation-emission matrix (EEM) of dissolved organic matter (DOM) publication-title: Chemosphere – volume: 229 year: 2023 ident: bib0002 article-title: Spatiotemporal analysis of fluorescent dissolved organic matter to identify the impacts of failing sewer infrastructure in urban streams publication-title: Water Res. – volume: 243 year: 2020 ident: bib0031 article-title: Absorbance and EEM fluorescence of wastewater: effects of filters, storage conditions, and chlorination publication-title: Chemosphere – volume: 55 start-page: 11925 year: 2021 end-page: 11936 ident: bib0048 article-title: Applied machine learning for prediction of CO publication-title: Environ. Sci. Technol. – volume: 337 year: 2023 ident: bib0046 article-title: Fluorescence-based indicators predict the performance of conventional drinking water treatment processes: evaluation based on the changes in the compositions of dissolved organic matter publication-title: Chemosphere – volume: 8 start-page: 804 year: 2011 end-page: 808 ident: bib0035 article-title: Multioutput support vector regression for remote sensing biophysical parameter estimation publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 341 year: 2024 ident: bib0044 article-title: Unveiling changes in the complexation of dissolved organic matter with Pb(II) by photochemical and microbial degradation using fluorescence EEMs-PARAFAC publication-title: Environ. Pollut. – volume: 81 start-page: 250 year: 2015 end-page: 260 ident: bib0047 article-title: On-line sensor monitoring for chemical contaminant attenuation during UV/H publication-title: Water Res. – volume: 31 year: 2023 ident: bib0022 article-title: Tracking the sources of dissolved organic matter under bio- and photo-transformation conditions using fluorescence spectrum-based machine learning techniques publication-title: Environ. Technol. Innov. – volume: 40 start-page: 7312 year: 2006 end-page: 7320 ident: bib0036 article-title: Analysis of pharmaceuticals in water by isotope dilution liquid chromatography/tandem mass spectrometry publication-title: Environ. Sci. Technol. – volume: 222 start-page: 166 year: 2011 end-page: 169 ident: bib0003 article-title: Determination of the quantum yields of the potassium ferrioxalate and potassium iodide-iodate actinometers and a method for the calibration of radiometer detectors publication-title: J. Photochem. Photobiol. A-Chem. – volume: 6 start-page: 572 year: 2008 end-page: 579 ident: bib0030 article-title: Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial publication-title: Limnol. Oceanogr. Meth. – volume: 5 start-page: 216 year: 2015 end-page: 233 ident: bib0004 article-title: A survey on multi-output regression publication-title: Wiley Interdiscip. Rev. Data Mining Knowl. Discov. – volume: 362 start-page: 537 year: 2019 end-page: 547 ident: bib0020 article-title: Comparison of UV-AOPs (UV/H publication-title: Chem. Eng. J. – volume: 5 start-page: 6557 year: 2013 end-page: 6566 ident: bib0021 article-title: Fluorescence spectroscopy and multi-way techniques publication-title: PARAFAC Anal. Methods – volume: 271 year: 2021 ident: bib0042 article-title: Relationships between dissolved black carbon and dissolved organic matter in streams publication-title: Chemosphere – start-page: 624 year: 2007 end-page: 631 ident: bib0015 article-title: Ensembles of multi-objective decision trees publication-title: Mach. Learn. ECML – volume: 93 start-page: 2208 year: 2013 end-page: 2215 ident: bib0012 article-title: Fluorescence excitation-emission matrix spectra coupled with parallel factor and regional integration analysis to characterize organic matter humification publication-title: Chemosphere – volume: 45 start-page: 5218 year: 2011 end-page: 5228 ident: bib0043 article-title: Occurrence and removal of pharmaceuticals and personal care products (PPCPs) in an advanced wastewater reclamation plant publication-title: Water Res. – volume: 48 start-page: 7683 year: 2014 end-page: 7689 ident: bib0008 article-title: Reducing the discharge of micropollutants in the aquatic environment: The benefits of upgrading wastewater treatment plants publication-title: Environ. Sci. Technol. – volume: 350 year: 2024 ident: bib0033 article-title: Elucidating the performance of UV-based photochemical processes for the removal of trace organic contaminants: degradation and toxicity evaluation publication-title: Chemosphere – volume: 57 start-page: 18026 year: 2023 end-page: 18037 ident: bib0009 article-title: Abiotic reduction of organic and inorganic compounds by Fe(II)-associated reductants: Comprehensive data sets and machine learning modeling publication-title: Environ. Sci. Technol. – volume: 171 start-page: 193 year: 2018 end-page: 204 ident: bib0026 article-title: Predicting poultry meat characteristics using an enhanced multi-target regression method publication-title: Biosyst. Eng. – volume: 447 start-page: 345 year: 2013 end-page: 360 ident: bib0025 article-title: Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: a review publication-title: Sci. Total Environ. – volume: 220 start-page: 1159 year: 2009 end-page: 1168 ident: bib0014 article-title: Using single- and multi-target regression trees and ensembles to model a compound index of vegetation condition publication-title: Ecol. Model. – volume: 46 start-page: 7342 year: 2012 end-page: 7349 ident: bib0017 article-title: Efficient reductive dechlorination of monochloroacetic acid by sulfite/UV process publication-title: Environ. Sci. Technol. – start-page: 624 year: 2007 ident: 10.1016/j.watres.2024.121484_bib0015 article-title: Ensembles of multi-objective decision trees publication-title: Mach. Learn. ECML – volume: 765 year: 2021 ident: 10.1016/j.watres.2024.121484_bib0032 article-title: Comparison of the new Cl2/O3/UV process with different ozone- and UV-based AOPs for wastewater treatment at pilot scale: removal of pharmaceuticals and changes in fluorescing organic matter publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.142720 – volume: 45 start-page: 5218 issue: 16 year: 2011 ident: 10.1016/j.watres.2024.121484_bib0043 article-title: Occurrence and removal of pharmaceuticals and personal care products (PPCPs) in an advanced wastewater reclamation plant publication-title: Water Res. doi: 10.1016/j.watres.2011.07.026 – volume: 6 start-page: 572 year: 2008 ident: 10.1016/j.watres.2024.121484_bib0030 article-title: Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial publication-title: Limnol. Oceanogr. Meth. doi: 10.4319/lom.2008.6.572 – volume: 81 start-page: 250 year: 2015 ident: 10.1016/j.watres.2024.121484_bib0047 article-title: On-line sensor monitoring for chemical contaminant attenuation during UV/H2O2 advanced oxidation process publication-title: Water Res. doi: 10.1016/j.watres.2015.05.064 – volume: 57 start-page: 18026 issue: 46 year: 2023 ident: 10.1016/j.watres.2024.121484_bib0009 article-title: Abiotic reduction of organic and inorganic compounds by Fe(II)-associated reductants: Comprehensive data sets and machine learning modeling publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.2c09724 – volume: 447 start-page: 345 year: 2013 ident: 10.1016/j.watres.2024.121484_bib0025 article-title: Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: a review publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2013.01.032 – volume: 337 year: 2023 ident: 10.1016/j.watres.2024.121484_bib0046 article-title: Fluorescence-based indicators predict the performance of conventional drinking water treatment processes: evaluation based on the changes in the compositions of dissolved organic matter publication-title: Chemosphere – volume: 260 year: 2020 ident: 10.1016/j.watres.2024.121484_bib0034 article-title: A critical review on advanced oxidation processes for the removal of trace organic contaminants: a voyage from individual to integrated processes publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.127460 – volume: 83 start-page: 112 year: 2015 ident: 10.1016/j.watres.2024.121484_bib0011 article-title: Characterising organic matter in recirculating aquaculture systems with fluorescence EEM spectroscopy publication-title: Water Res. doi: 10.1016/j.watres.2015.06.037 – volume: 46 start-page: 7342 issue: 13 year: 2012 ident: 10.1016/j.watres.2024.121484_bib0017 article-title: Efficient reductive dechlorination of monochloroacetic acid by sulfite/UV process publication-title: Environ. Sci. Technol. doi: 10.1021/es3008535 – volume: 104 start-page: 111 year: 2016 ident: 10.1016/j.watres.2024.121484_bib0029 article-title: Application of online UV absorption measurements for ozone process control in secondary effluent with variable nitrite concentration publication-title: Water Res. doi: 10.1016/j.watres.2016.08.010 – volume: 229 year: 2023 ident: 10.1016/j.watres.2024.121484_bib0002 article-title: Spatiotemporal analysis of fluorescent dissolved organic matter to identify the impacts of failing sewer infrastructure in urban streams publication-title: Water Res. doi: 10.1016/j.watres.2022.119521 – volume: 222 start-page: 166 year: 2011 ident: 10.1016/j.watres.2024.121484_bib0003 article-title: Determination of the quantum yields of the potassium ferrioxalate and potassium iodide-iodate actinometers and a method for the calibration of radiometer detectors publication-title: J. Photochem. Photobiol. A-Chem. doi: 10.1016/j.jphotochem.2011.05.017 – volume: 362 start-page: 537 year: 2019 ident: 10.1016/j.watres.2024.121484_bib0020 article-title: Comparison of UV-AOPs (UV/H2O2, UV/PDS and UV/Chlorine) for TOrC removal from municipal wastewater effluent and optical surrogate model evaluation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.01.041 – volume: 37 start-page: 5701 issue: 24 year: 2003 ident: 10.1016/j.watres.2024.121484_bib0006 article-title: Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter publication-title: Environ. Sci. Technol. doi: 10.1021/es034354c – volume: 55 start-page: 11925 issue: 17 year: 2021 ident: 10.1016/j.watres.2024.121484_bib0048 article-title: Applied machine learning for prediction of CO2 adsorption on biomass waste-derived porous carbons publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.1c01849 – volume: 56 start-page: 4187 issue: 7 year: 2022 ident: 10.1016/j.watres.2024.121484_bib0023 article-title: Prediction of soil heavy metal immobilization by biochar using machine learning publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.1c08302 – volume: 350 year: 2024 ident: 10.1016/j.watres.2024.121484_bib0033 article-title: Elucidating the performance of UV-based photochemical processes for the removal of trace organic contaminants: degradation and toxicity evaluation publication-title: Chemosphere doi: 10.1016/j.chemosphere.2023.140978 – volume: 190 year: 2021 ident: 10.1016/j.watres.2024.121484_bib0028 article-title: Surrogates for on-line monitoring of the attenuation of trace organic contaminants during advanced oxidation processes for water reuse publication-title: Water Res. doi: 10.1016/j.watres.2020.116733 – volume: 5 start-page: 216 issue: 5 year: 2015 ident: 10.1016/j.watres.2024.121484_bib0004 article-title: A survey on multi-output regression publication-title: Wiley Interdiscip. Rev. Data Mining Knowl. Discov. doi: 10.1002/widm.1157 – volume: 31 year: 2023 ident: 10.1016/j.watres.2024.121484_bib0045 article-title: Dissolved organic matter evolution and straw decomposition rate characterization under different water and fertilizer conditions based on three-dimensional fluorescence spectrum and deep learning publication-title: J. Environ. Manage. – volume: 106 start-page: 207 year: 2017 ident: 10.1016/j.watres.2024.121484_bib0037 article-title: Endocrine disrupting compounds in drinking water supply system and human health risk implication publication-title: Environ. Int. doi: 10.1016/j.envint.2017.05.004 – volume: 2 start-page: 460 issue: 3 year: 2016 ident: 10.1016/j.watres.2024.121484_bib0010 article-title: Emerging investigators series: prediction of trace organic contaminant abatement with UV/H2O2: Development and validation of semi-empirical models for municipal wastewater effluents publication-title: Environ. Sci. Water Res. Technol. doi: 10.1039/C6EW00051G – volume: 43 start-page: 4858 issue: 13 year: 2009 ident: 10.1016/j.watres.2024.121484_bib0038 article-title: Using ultraviolet absorbance and color to assess pharmaceutical oxidation during ozonation of wastewater publication-title: Environ. Sci. Technol. doi: 10.1021/es803524a – volume: 196 year: 2021 ident: 10.1016/j.watres.2024.121484_bib0040 article-title: A data-driven shale gas production forecasting method based on the multi-objective random forest regression publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2020.107801 – volume: 31 year: 2023 ident: 10.1016/j.watres.2024.121484_bib0022 article-title: Tracking the sources of dissolved organic matter under bio- and photo-transformation conditions using fluorescence spectrum-based machine learning techniques publication-title: Environ. Technol. Innov. doi: 10.1016/j.eti.2023.103179 – volume: 269 year: 2020 ident: 10.1016/j.watres.2024.121484_bib0016 article-title: Fuel properties of hydrochar and pyrochar: prediction and exploration with machine learning publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.115166 – volume: 93 start-page: 2208 issue: 9 year: 2013 ident: 10.1016/j.watres.2024.121484_bib0012 article-title: Fluorescence excitation-emission matrix spectra coupled with parallel factor and regional integration analysis to characterize organic matter humification publication-title: Chemosphere doi: 10.1016/j.chemosphere.2013.04.039 – volume: 53 start-page: 1900 issue: 5 year: 2008 ident: 10.1016/j.watres.2024.121484_bib0041 article-title: Assessing the dynamics of dissolved organic matter (DOM) in coastal environments by excitation emission matrix fluorescence and parallel factor analysis (EEM-PARAFAC) publication-title: Limnol. Oceanogr. doi: 10.4319/lo.2008.53.5.1900 – volume: 51 start-page: 14233 issue: 24 year: 2017 ident: 10.1016/j.watres.2024.121484_bib0007 article-title: Surrogate-based correlation models in view of real-time control of ozonation of secondary treated municipal wastewater-model development and dynamic validation publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b04905 – volume: 163 year: 2019 ident: 10.1016/j.watres.2024.121484_bib0013 article-title: Origin, distributions, and environmental significance of ubiquitous humic-like fluorophores in Antarctic lakes and streams publication-title: Water Res. doi: 10.1016/j.watres.2019.114901 – volume: 5 start-page: 6557 issue: 23 year: 2013 ident: 10.1016/j.watres.2024.121484_bib0021 article-title: Fluorescence spectroscopy and multi-way techniques publication-title: PARAFAC Anal. Methods doi: 10.1039/c3ay41160e – volume: 341 year: 2024 ident: 10.1016/j.watres.2024.121484_bib0044 article-title: Unveiling changes in the complexation of dissolved organic matter with Pb(II) by photochemical and microbial degradation using fluorescence EEMs-PARAFAC publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2023.122982 – volume: 473-474 start-page: 619 year: 2014 ident: 10.1016/j.watres.2024.121484_bib0018 article-title: A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2013.12.065 – volume: 55 start-page: 12741 issue: 19 year: 2021 ident: 10.1016/j.watres.2024.121484_bib0049 article-title: Machine learning: new ideas and tools in environmental science and engineering publication-title: Environ. Sci. Technol. – volume: 243 year: 2020 ident: 10.1016/j.watres.2024.121484_bib0031 article-title: Absorbance and EEM fluorescence of wastewater: effects of filters, storage conditions, and chlorination publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.125292 – volume: 48 start-page: 7683 issue: 14 year: 2014 ident: 10.1016/j.watres.2024.121484_bib0008 article-title: Reducing the discharge of micropollutants in the aquatic environment: The benefits of upgrading wastewater treatment plants publication-title: Environ. Sci. Technol. doi: 10.1021/es500907n – volume: 220 start-page: 1159 issue: 8 year: 2009 ident: 10.1016/j.watres.2024.121484_bib0014 article-title: Using single- and multi-target regression trees and ensembles to model a compound index of vegetation condition publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2009.01.037 – volume: 323 start-page: 367 year: 2017 ident: 10.1016/j.watres.2024.121484_bib0027 article-title: Use of fluorescence EEM to monitor the removal of emerging contaminants in full scale wastewater treatment plants publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2016.05.035 – volume: 3 start-page: 268 issue: 4 year: 2017 ident: 10.1016/j.watres.2024.121484_bib0001 article-title: Degradation and fate of pharmaceutically active contaminants by advanced oxidation processes publication-title: Curr. Pollut. Rep. doi: 10.1007/s40726-017-0072-6 – volume: 171 start-page: 193 year: 2018 ident: 10.1016/j.watres.2024.121484_bib0026 article-title: Predicting poultry meat characteristics using an enhanced multi-target regression method publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2018.04.023 – volume: 43 start-page: 3104 issue: 12 year: 2009 ident: 10.1016/j.watres.2024.121484_bib0005 article-title: Spatial and seasonal patterns of fluorescent organic matter in Lake Kinneret (Sea of Galilee) and its catchment basin publication-title: Water Res. doi: 10.1016/j.watres.2009.04.039 – volume: 282 start-page: 75 year: 2015 ident: 10.1016/j.watres.2024.121484_bib0019 article-title: Application of surrogates, indicators, and high-resolution mass spectrometry to evaluate the efficacy of UV processes for attenuation of emerging contaminants in water publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2014.09.008 – volume: 8 start-page: 804 issue: 4 year: 2011 ident: 10.1016/j.watres.2024.121484_bib0035 article-title: Multioutput support vector regression for remote sensing biophysical parameter estimation publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2011.2109934 – volume: 430 year: 2022 ident: 10.1016/j.watres.2024.121484_bib0039 article-title: Fast identification of fluorescent components in three-dimensional excitation-emission matrix fluorescence spectra via deep learning publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.132893 – volume: 193 start-page: 530 year: 2018 ident: 10.1016/j.watres.2024.121484_bib0024 article-title: Sample handling and data processing for fluorescent excitation-emission matrix (EEM) of dissolved organic matter (DOM) publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.11.069 – volume: 40 start-page: 7312 issue: 23 year: 2006 ident: 10.1016/j.watres.2024.121484_bib0036 article-title: Analysis of pharmaceuticals in water by isotope dilution liquid chromatography/tandem mass spectrometry publication-title: Environ. Sci. Technol. doi: 10.1021/es0613198 – volume: 271 year: 2021 ident: 10.1016/j.watres.2024.121484_bib0042 article-title: Relationships between dissolved black carbon and dissolved organic matter in streams publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.129824 |
SSID | ssj0002239 |
Score | 2.5573814 |
Snippet | •Machine learning of EEM is effective in predicting TrOCs removal during AOP.•Machine learning model outperforms traditional linear regression model in... Dynamic feedback of the removal performance of trace organic contaminants (TrOCs) is essential towards economical advanced oxidation processes (AOPs), whereas... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 121484 |
SubjectTerms | Advanced oxidation data collection Excitation-emission matrix fluorescence Machine learning Micropollutant removal Multi-target regression random forest model oxidation photolysis prediction regression analysis spectral analysis wastewater treatment water |
Title | Machine learning modeling of fluorescence spectral data for prediction of trace organic contaminant removal during UV/H2O2 treatment of wastewater |
URI | https://dx.doi.org/10.1016/j.watres.2024.121484 https://www.proquest.com/docview/2974008505 https://www.proquest.com/docview/3153715858 |
Volume | 255 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QvOjB-Iz4IGvitUJ3tw-OhEiqBryI4dZ0t1uDwZZUkJs_wl_szLbFR0JIvPUx22xntvPofjNDyJXr8AgcaWWxJJaWcJRvQRjErLZU3AcLpiOOCc6DoRuMxN3YGddIr8qFQVhlqfsLnW60dXmlVXKzNZtMMMcXjB93BKIgsXMlZrALD1f59cc3zAPMX6faZUbqKn3OYLyWESZkQJTIBJZZEL5YZ57-KGpjffp7ZLd0G2m3mNk-qen0gOz8KCZ4SD4HBhepadkI4pmaLjd4kCU0mS6y3JRuUpqa9Mocnof4UApuK53luGGDQkJiuAdURcMnRRHNHhWIGZrr1-wdB5rsRjp6agXsgdEVXB1HL6M3_CMHAjsio_7NYy-wyo4LlgIBzS1bJSyRbc4iL7GRIbEEReq40lPw5YIdA_cGeKwS3G6zJQOGKQ4eoptIprno8GNST7NUnxDKHS1U3NGcQcTShnXiso4d-6DUJOdS6gbhFaNDVZYjx64Y07DCnb2EhXhCFE9YiKdBrNWoWVGOYwO9V8kw_LWsQrAYG0ZeViIP4YvDbZQo1dkCiPCFsNKfs56GgyHxbAjF_NN_z-CMbOMZQhVs55zU5_lCX4AHNJdNs8SbZKt7ex8MvwC-YAck |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60HtSD-MS3K3gNbfaRpMdSlPhovVjxtmS3G1FqU2Kr_8Nf7EweRQURvIXsTEh2dueR_WYG4CxQIkFH2no8HRpPKht5GAZxr2WsiNCCuURQgnOvH8QDefWgHhagW-fCEKyy0v2lTi-0dXWnWc1mc_L0RDm-aPyEkoSCpM6Vi7BE1alUA5Y6l9dxf66Q0QK264NmYqgz6AqY13tCORkYKHJJlRZkJH-zUD90dWGALtZhrfIcWad8uQ1YcONNWP1ST3ALPnoFNNKxqhfEIysa3dBFlrJ0NMvyonqTdazIsMzxeQQRZei5sklOZzYkJyLGMaQqez5ZRoD2pATNsNy9ZG_EWCQ4ssF9M-a3nM0R68T9nrzSTzmU2TYMLs7vurFXNV3wLMpo6vk25alpCZ6EqU8TMjSoS1VgQoubF00ZejhShjalEzffcJwwK9BJDFLDnZBtsQONcTZ2u8CEctIO205wDFpauFQC3vaHEeo1I4Qxbg9EPdHaVhXJqTHGSNfQs2ddikeTeHQpnj3w5lyTsiLHH_RhLUP9bWVpNBp_cJ7WIte46egkJRm7bIZE9EFU7E_9TiPQloQ-RmPR_r_f4ASW47vejb657F8fwAqNEHLBV4fQmOYzd4QO0dQcVwv-E7VeCdU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+modeling+of+fluorescence+spectral+data+for+prediction+of+trace+organic+contaminant+removal+during+UV%2FH2O2+treatment+of+wastewater&rft.jtitle=Water+research+%28Oxford%29&rft.au=Yang%2C+Yi&rft.au=Shan%2C+Chao&rft.au=Pan%2C+Bingcai&rft.date=2024-05-15&rft.issn=0043-1354&rft_id=info:doi/10.1016%2Fj.watres.2024.121484&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1354&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1354&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1354&client=summon |