Machine learning modeling of fluorescence spectral data for prediction of trace organic contaminant removal during UV/H2O2 treatment of wastewater

•Machine learning of EEM is effective in predicting TrOCs removal during AOP.•Machine learning model outperforms traditional linear regression model in accuracy.•Simultaneous prediction of multiple TrOCs removal was achieved using MORF model.•Fluorescence spectral regions of high importance were ide...

Full description

Saved in:
Bibliographic Details
Published inWater research (Oxford) Vol. 255; p. 121484
Main Authors Yang, Yi, Shan, Chao, Pan, Bingcai
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.05.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Machine learning of EEM is effective in predicting TrOCs removal during AOP.•Machine learning model outperforms traditional linear regression model in accuracy.•Simultaneous prediction of multiple TrOCs removal was achieved using MORF model.•Fluorescence spectral regions of high importance were identified for various TrOCs.•Simplified scanning regions are proposed to reduce time cost of data acquisition. Dynamic feedback of the removal performance of trace organic contaminants (TrOCs) is essential towards economical advanced oxidation processes (AOPs), whereas the corresponding quick-response feedback methods have long been desired. Herein, machine learning (ML) multi-target regression random forest (MORF) models were developed based on the fluorescence spectra to predict the removal of TrOCs during UV/H2O2 treatment of municipal secondary effluent as a typical AOP. The predictive performance of the developed MORF model (R2 = 0.83-0.95) exhibited higher accuracy over the traditional linear regression models with R2 increased by ∼0.15. Furthermore, through feature importance analysis, the spectral regions of high importance were identified for different groups of TrOCs, thus enabling faster data acquisition due to remarkably reduced size of required fluorescence spectral scanning region. Specifically, the fluorescence regions Ex(235-275 nm)/Em(325-400 nm) and Ex(240-360 nm)/Em(325-450 nm) were found highly correlated with the removal of the TrOCs susceptible to both photodegradation and •OH degradation and those primarily subject to •OH degradation, respectively. In addition, the spectral regions of high importance were also individually identified for the investigated TrOCs during the AOP. Through providing an efficient ML-based feedback method to monitor TrOC removal during AOP, this study sheds light on the development of dynamic feedback-based strategies for precise and economical advanced treatment of wastewater. [Display omitted]
AbstractList Dynamic feedback of the removal performance of trace organic contaminants (TrOCs) is essential towards economical advanced oxidation processes (AOPs), whereas the corresponding quick-response feedback methods have long been desired. Herein, machine learning (ML) multi-target regression random forest (MORF) models were developed based on the fluorescence spectra to predict the removal of TrOCs during UV/H2O2 treatment of municipal secondary effluent as a typical AOP. The predictive performance of the developed MORF model (R2 = 0.83-0.95) exhibited higher accuracy over the traditional linear regression models with R2 increased by ∼0.15. Furthermore, through feature importance analysis, the spectral regions of high importance were identified for different groups of TrOCs, thus enabling faster data acquisition due to remarkably reduced size of required fluorescence spectral scanning region. Specifically, the fluorescence regions Ex(235-275 nm)/Em(325-400 nm) and Ex(240-360 nm)/Em(325-450 nm) were found highly correlated with the removal of the TrOCs susceptible to both photodegradation and •OH degradation and those primarily subject to •OH degradation, respectively. In addition, the spectral regions of high importance were also individually identified for the investigated TrOCs during the AOP. Through providing an efficient ML-based feedback method to monitor TrOC removal during AOP, this study sheds light on the development of dynamic feedback-based strategies for precise and economical advanced treatment of wastewater.Dynamic feedback of the removal performance of trace organic contaminants (TrOCs) is essential towards economical advanced oxidation processes (AOPs), whereas the corresponding quick-response feedback methods have long been desired. Herein, machine learning (ML) multi-target regression random forest (MORF) models were developed based on the fluorescence spectra to predict the removal of TrOCs during UV/H2O2 treatment of municipal secondary effluent as a typical AOP. The predictive performance of the developed MORF model (R2 = 0.83-0.95) exhibited higher accuracy over the traditional linear regression models with R2 increased by ∼0.15. Furthermore, through feature importance analysis, the spectral regions of high importance were identified for different groups of TrOCs, thus enabling faster data acquisition due to remarkably reduced size of required fluorescence spectral scanning region. Specifically, the fluorescence regions Ex(235-275 nm)/Em(325-400 nm) and Ex(240-360 nm)/Em(325-450 nm) were found highly correlated with the removal of the TrOCs susceptible to both photodegradation and •OH degradation and those primarily subject to •OH degradation, respectively. In addition, the spectral regions of high importance were also individually identified for the investigated TrOCs during the AOP. Through providing an efficient ML-based feedback method to monitor TrOC removal during AOP, this study sheds light on the development of dynamic feedback-based strategies for precise and economical advanced treatment of wastewater.
Dynamic feedback of the removal performance of trace organic contaminants (TrOCs) is essential towards economical advanced oxidation processes (AOPs), whereas the corresponding quick-response feedback methods have long been desired. Herein, machine learning (ML) multi-target regression random forest (MORF) models were developed based on the fluorescence spectra to predict the removal of TrOCs during UV/H₂O₂ treatment of municipal secondary effluent as a typical AOP. The predictive performance of the developed MORF model (R² = 0.83-0.95) exhibited higher accuracy over the traditional linear regression models with R² increased by ∼0.15. Furthermore, through feature importance analysis, the spectral regions of high importance were identified for different groups of TrOCs, thus enabling faster data acquisition due to remarkably reduced size of required fluorescence spectral scanning region. Specifically, the fluorescence regions Ex(235-275 nm)/Em(325-400 nm) and Ex(240-360 nm)/Em(325-450 nm) were found highly correlated with the removal of the TrOCs susceptible to both photodegradation and •OH degradation and those primarily subject to •OH degradation, respectively. In addition, the spectral regions of high importance were also individually identified for the investigated TrOCs during the AOP. Through providing an efficient ML-based feedback method to monitor TrOC removal during AOP, this study sheds light on the development of dynamic feedback-based strategies for precise and economical advanced treatment of wastewater.
•Machine learning of EEM is effective in predicting TrOCs removal during AOP.•Machine learning model outperforms traditional linear regression model in accuracy.•Simultaneous prediction of multiple TrOCs removal was achieved using MORF model.•Fluorescence spectral regions of high importance were identified for various TrOCs.•Simplified scanning regions are proposed to reduce time cost of data acquisition. Dynamic feedback of the removal performance of trace organic contaminants (TrOCs) is essential towards economical advanced oxidation processes (AOPs), whereas the corresponding quick-response feedback methods have long been desired. Herein, machine learning (ML) multi-target regression random forest (MORF) models were developed based on the fluorescence spectra to predict the removal of TrOCs during UV/H2O2 treatment of municipal secondary effluent as a typical AOP. The predictive performance of the developed MORF model (R2 = 0.83-0.95) exhibited higher accuracy over the traditional linear regression models with R2 increased by ∼0.15. Furthermore, through feature importance analysis, the spectral regions of high importance were identified for different groups of TrOCs, thus enabling faster data acquisition due to remarkably reduced size of required fluorescence spectral scanning region. Specifically, the fluorescence regions Ex(235-275 nm)/Em(325-400 nm) and Ex(240-360 nm)/Em(325-450 nm) were found highly correlated with the removal of the TrOCs susceptible to both photodegradation and •OH degradation and those primarily subject to •OH degradation, respectively. In addition, the spectral regions of high importance were also individually identified for the investigated TrOCs during the AOP. Through providing an efficient ML-based feedback method to monitor TrOC removal during AOP, this study sheds light on the development of dynamic feedback-based strategies for precise and economical advanced treatment of wastewater. [Display omitted]
ArticleNumber 121484
Author Shan, Chao
Pan, Bingcai
Yang, Yi
Author_xml – sequence: 1
  givenname: Yi
  surname: Yang
  fullname: Yang, Yi
  organization: State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
– sequence: 2
  givenname: Chao
  orcidid: 0000-0003-4732-1015
  surname: Shan
  fullname: Shan, Chao
  email: shanchao@nju.edu.cn
  organization: State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
– sequence: 3
  givenname: Bingcai
  surname: Pan
  fullname: Pan, Bingcai
  organization: State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
BookMark eNqFkb9uFDEYxC2USFxC3iCFS5q9-O95lwIJRYQgBaUhaS2v93Pwadc-bF8iXoMnxtZSUZDKn-T5jTQzZ-gkxAAIXVKypYTurvbbF1MS5C0jTGwpo6IXb9CG9mromBD9CdoQInhHuRRv0VnOe0IIY3zYoN_fjP3hA-AZTAo-POElTjC3Izrs5mOsvhaCBZwPYEsyM55MMdjFhA8JJm-Lj6GJ619VxfRkgrfYxlDM4oMJBSdY4nMDj6kZPzxe3bJ7VgEwZYEqqPSLyQVqDEjv0Kkzc4aLv-85erj5_P36tru7__L1-tNdZ7lipaPWMTcSzoxytGWeRrFTcjcqS6gSivJ-EEJZJ4Xs6chqJ5YzTnduZMDFwM_R-9X3kOLPI-SiF1-jzrMJEI9Zcyq5orKX_atSNihBSC-JrNIPq9SmmHMCp60vpnVU-_GzpkS3zfRer5vptpleN6uw-Ac-JL-Y9Os17OOKQa3r2UPS2fq22eRT3UxP0f_f4A9J5LY_
CitedBy_id crossref_primary_10_1016_j_jece_2025_115774
crossref_primary_10_1016_j_watres_2024_122488
crossref_primary_10_1016_j_scitotenv_2024_176301
crossref_primary_10_1016_j_watres_2024_122398
crossref_primary_10_1016_j_jwpe_2024_106022
crossref_primary_10_1016_j_jwpe_2025_107411
crossref_primary_10_1016_j_jhazmat_2024_136075
crossref_primary_10_1016_j_watres_2024_122616
crossref_primary_10_1016_j_cej_2024_157226
crossref_primary_10_1016_j_watres_2025_123281
crossref_primary_10_1016_j_jfp_2024_100396
crossref_primary_10_1016_j_apcatb_2024_124754
crossref_primary_10_1016_j_apcatb_2025_125124
crossref_primary_10_1016_j_jwpe_2024_106909
crossref_primary_10_1016_j_trac_2024_118045
crossref_primary_10_3390_su162310458
Cites_doi 10.1016/j.scitotenv.2020.142720
10.1016/j.watres.2011.07.026
10.4319/lom.2008.6.572
10.1016/j.watres.2015.05.064
10.1021/acs.est.2c09724
10.1016/j.scitotenv.2013.01.032
10.1016/j.chemosphere.2020.127460
10.1016/j.watres.2015.06.037
10.1021/es3008535
10.1016/j.watres.2016.08.010
10.1016/j.watres.2022.119521
10.1016/j.jphotochem.2011.05.017
10.1016/j.cej.2019.01.041
10.1021/es034354c
10.1021/acs.est.1c01849
10.1021/acs.est.1c08302
10.1016/j.chemosphere.2023.140978
10.1016/j.watres.2020.116733
10.1002/widm.1157
10.1016/j.envint.2017.05.004
10.1039/C6EW00051G
10.1021/es803524a
10.1016/j.petrol.2020.107801
10.1016/j.eti.2023.103179
10.1016/j.apenergy.2020.115166
10.1016/j.chemosphere.2013.04.039
10.4319/lo.2008.53.5.1900
10.1021/acs.est.7b04905
10.1016/j.watres.2019.114901
10.1039/c3ay41160e
10.1016/j.envpol.2023.122982
10.1016/j.scitotenv.2013.12.065
10.1016/j.chemosphere.2019.125292
10.1021/es500907n
10.1016/j.ecolmodel.2009.01.037
10.1016/j.jhazmat.2016.05.035
10.1007/s40726-017-0072-6
10.1016/j.biosystemseng.2018.04.023
10.1016/j.watres.2009.04.039
10.1016/j.jhazmat.2014.09.008
10.1109/LGRS.2011.2109934
10.1016/j.cej.2021.132893
10.1016/j.chemosphere.2017.11.069
10.1021/es0613198
10.1016/j.chemosphere.2021.129824
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright © 2024 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2024 Elsevier Ltd
– notice: Copyright © 2024 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.watres.2024.121484
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2448
ExternalDocumentID 10_1016_j_watres_2024_121484
S0043135424003865
GroupedDBID ---
--K
--M
-DZ
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABQEM
ABQYD
ACDAQ
ACGFO
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TAE
TN5
TWZ
WH7
XPP
ZCA
ZMT
~02
~G-
~KM
.55
186
29R
6TJ
AAQXK
AATTM
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACKIV
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFFNX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMA
HMC
HVGLF
HZ~
H~9
MVM
OHT
R2-
SEN
SEP
SSH
WUQ
X7M
XOL
YHZ
YV5
ZXP
ZY4
~A~
7X8
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c372t-1cf2fb032a7f11214db46756b7c017471389447cf54581b2484c32316fb2e3493
IEDL.DBID .~1
ISSN 0043-1354
1879-2448
IngestDate Fri Aug 22 20:38:50 EDT 2025
Thu Jul 10 19:19:40 EDT 2025
Thu Apr 24 22:56:41 EDT 2025
Tue Jul 01 01:21:27 EDT 2025
Sat Nov 09 15:59:55 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Micropollutant removal
Multi-target regression random forest model
Advanced oxidation
Excitation-emission matrix
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-1cf2fb032a7f11214db46756b7c017471389447cf54581b2484c32316fb2e3493
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4732-1015
PQID 2974008505
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3153715858
proquest_miscellaneous_2974008505
crossref_citationtrail_10_1016_j_watres_2024_121484
crossref_primary_10_1016_j_watres_2024_121484
elsevier_sciencedirect_doi_10_1016_j_watres_2024_121484
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-05-15
PublicationDateYYYYMMDD 2024-05-15
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-15
  day: 15
PublicationDecade 2020
PublicationTitle Water research (Oxford)
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Gerrity, Lee, Gamage, Lee, Pisarenko, Trenholm, Gunten, Snyder (bib0010) 2016; 2
Park, Snyder (bib0024) 2018; 193
Miklos, Wang, Linden, Drewes, Hübner (bib0020) 2019; 362
Tuia, Verrelst, Alonso, Perez-Cruz, Camps-Valls (bib0035) 2011; 8
Yu, Anumol, Park, Pepper, Scheideler, Snyder (bib0047) 2015; 81
Xu, Cao, Feng, Luo, Feng, Ni, Fang (bib0039) 2022; 430
Rizzo, Manaia, Merlin, Schwartz, Dagot, Ploy, Michael, Fatta-Kassinos (bib0025) 2013; 447
Nguyen, Seo, Park, Begum, Lee, Hur (bib0022) 2023; 31
Sgroi, Anumol, Vagliasindi, Snyder, Roccaro (bib0032) 2021; 765
Palansooriya, Li, Dissanayake, Suvarna, Li, Yuan, Sarkar, Tsang, Rinklebe, Wang, Ok (bib0023) 2022; 56
Chys, Audenaert, Deniere, Mortier, Langenhove, Nopens, Demeestere, Hulle (bib0007) 2017; 51
Yang, Chen, Zhuang, Zhu (bib0044) 2024; 341
Yusup, Maysaroh, Diva, Sagita, Anggreini, Desmiarti, Deng, Li (bib0046) 2023; 337
Luo, Guo, Ngo, Nghiem, Hai, Zhang, Liang, Wang (bib0018) 2014; 473-474
Hambly, Arvin, Pedersen, Pedersen, Seredynska-Sobecka, Stedmon (bib0011) 2015; 83
Yamashita, Kojima, Yoshida, Shibata (bib0042) 2021; 271
Zhong, Zhang, Bagheri, Burken, Gu, Li, Ma, Marrone, Ren, Schrier, Shi, Tan, Wang, Wang, Wong, Xiao, Yu, Zhu, Zhang (bib0049) 2021; 55
Murphy, Stedmon, Graeber, Bro (bib0021) 2013; 5
Li, Ma, Liu, Fang, Yue, Guan, Chen, Liu (bib0017) 2012; 46
Wert, Rosario-Ortiz, Snyder (bib0038) 2009; 43
Li, Pan, Suvarna, Tong, Wang (bib0016) 2020; 269
Wee, Aris (bib0037) 2017; 106
Yang, Pan, Lei, Tong, Shi, Chen (bib0045) 2023; 31
Stapf, Miehe, Jekel (bib0029) 2016; 104
Sgroi, Gagliano, Vagliasindi, Roccaro (bib0031) 2020; 243
Kocev, Dzeroski, White, Newell, Griffioen (bib0014) 2009; 220
Kocev, Vens, Struyf, Dzeroski (bib0015) 2007
Merel, Anumol, Park, Snyder (bib0019) 2015; 282
He, Xi, Li, Pan, An, Bai, Li, Cui (bib0012) 2013; 93
Santana, Geronimo, Mastelini, Carvalho, Barbin, Ida, Barbon (bib0026) 2018; 171
Alharbi, Price (bib0001) 2017; 3
Batista-Andrade, Diaz, Vega, Hain, Rose, Blaney (bib0002) 2023; 229
Yamashita, Jaffe, Maie, Tanoue (bib0041) 2008; 53
Yuan, Suvarna, Low, Dissanayake, Lee, Li, Wang, Ok (bib0048) 2021; 55
Borchani, Varando, Bielza, Larrañaga (bib0004) 2015; 5
Eggen, Hollender, Joss, Scharer, Stamm (bib0008) 2014; 48
Tufail, Price, Hai (bib0034) 2020; 260
Song, Xu, Liang, Peng, Zhang, Du, Lu, Li, Wu, Guan (bib0028) 2021; 190
Vanderford, Snyder (bib0036) 2006; 40
Gao, Zhong, Zhang, Zhang (bib0009) 2023; 57
Borisover, Laor, Parparov, Bukhanovsky, Lado (bib0005) 2009; 43
Chen, Westerhoff, Leenheer, Booksh (bib0006) 2003; 37
Stedmon, Bro (bib0030) 2008; 6
Sgroi, Roccaro, Korshin, Greco, Sciuto, Anumol, Snyder, Vagliasindi (bib0027) 2017; 323
Tufail, Al-Rifai, Price, Leusch, Hai (bib0033) 2024; 350
Yang, Flowers, Weinberg, Singer (bib0043) 2011; 45
Kida, Kojima, Tanabe, Hayashi, Kudoh, Maie, Fujitake (bib0013) 2019; 163
Xue, Liu, Xiong, Liu, Cui, Lei (bib0040) 2021; 196
Bolton, Stefan, Shaw, Lykke (bib0003) 2011; 222
Yang (10.1016/j.watres.2024.121484_bib0045) 2023; 31
Borchani (10.1016/j.watres.2024.121484_bib0004) 2015; 5
Gerrity (10.1016/j.watres.2024.121484_bib0010) 2016; 2
Sgroi (10.1016/j.watres.2024.121484_bib0032) 2021; 765
Yuan (10.1016/j.watres.2024.121484_bib0048) 2021; 55
Sgroi (10.1016/j.watres.2024.121484_bib0027) 2017; 323
Hambly (10.1016/j.watres.2024.121484_bib0011) 2015; 83
Park (10.1016/j.watres.2024.121484_bib0024) 2018; 193
Li (10.1016/j.watres.2024.121484_bib0016) 2020; 269
Gao (10.1016/j.watres.2024.121484_bib0009) 2023; 57
Sgroi (10.1016/j.watres.2024.121484_bib0031) 2020; 243
Borisover (10.1016/j.watres.2024.121484_bib0005) 2009; 43
Batista-Andrade (10.1016/j.watres.2024.121484_bib0002) 2023; 229
Song (10.1016/j.watres.2024.121484_bib0028) 2021; 190
Miklos (10.1016/j.watres.2024.121484_bib0020) 2019; 362
Rizzo (10.1016/j.watres.2024.121484_bib0025) 2013; 447
Chen (10.1016/j.watres.2024.121484_bib0006) 2003; 37
Xue (10.1016/j.watres.2024.121484_bib0040) 2021; 196
Tuia (10.1016/j.watres.2024.121484_bib0035) 2011; 8
Yang (10.1016/j.watres.2024.121484_bib0043) 2011; 45
Kocev (10.1016/j.watres.2024.121484_bib0014) 2009; 220
Yamashita (10.1016/j.watres.2024.121484_bib0041) 2008; 53
Yusup (10.1016/j.watres.2024.121484_bib0046) 2023; 337
Bolton (10.1016/j.watres.2024.121484_bib0003) 2011; 222
Vanderford (10.1016/j.watres.2024.121484_bib0036) 2006; 40
Luo (10.1016/j.watres.2024.121484_bib0018) 2014; 473-474
Nguyen (10.1016/j.watres.2024.121484_bib0022) 2023; 31
Palansooriya (10.1016/j.watres.2024.121484_bib0023) 2022; 56
Yang (10.1016/j.watres.2024.121484_bib0044) 2024; 341
Kocev (10.1016/j.watres.2024.121484_bib0015) 2007
Merel (10.1016/j.watres.2024.121484_bib0019) 2015; 282
He (10.1016/j.watres.2024.121484_bib0012) 2013; 93
Murphy (10.1016/j.watres.2024.121484_bib0021) 2013; 5
Eggen (10.1016/j.watres.2024.121484_bib0008) 2014; 48
Tufail (10.1016/j.watres.2024.121484_bib0033) 2024; 350
Santana (10.1016/j.watres.2024.121484_bib0026) 2018; 171
Zhong (10.1016/j.watres.2024.121484_bib0049) 2021; 55
Wert (10.1016/j.watres.2024.121484_bib0038) 2009; 43
Yamashita (10.1016/j.watres.2024.121484_bib0042) 2021; 271
Kida (10.1016/j.watres.2024.121484_bib0013) 2019; 163
Yu (10.1016/j.watres.2024.121484_bib0047) 2015; 81
Xu (10.1016/j.watres.2024.121484_bib0039) 2022; 430
Chys (10.1016/j.watres.2024.121484_bib0007) 2017; 51
Alharbi (10.1016/j.watres.2024.121484_bib0001) 2017; 3
Li (10.1016/j.watres.2024.121484_bib0017) 2012; 46
Stapf (10.1016/j.watres.2024.121484_bib0029) 2016; 104
Stedmon (10.1016/j.watres.2024.121484_bib0030) 2008; 6
Wee (10.1016/j.watres.2024.121484_bib0037) 2017; 106
Tufail (10.1016/j.watres.2024.121484_bib0034) 2020; 260
References_xml – volume: 282
  start-page: 75
  year: 2015
  end-page: 85
  ident: bib0019
  article-title: Application of surrogates, indicators, and high-resolution mass spectrometry to evaluate the efficacy of UV processes for attenuation of emerging contaminants in water
  publication-title: J. Hazard. Mater.
– volume: 56
  start-page: 4187
  year: 2022
  end-page: 4198
  ident: bib0023
  article-title: Prediction of soil heavy metal immobilization by biochar using machine learning
  publication-title: Environ. Sci. Technol.
– volume: 51
  start-page: 14233
  year: 2017
  end-page: 14243
  ident: bib0007
  article-title: Surrogate-based correlation models in view of real-time control of ozonation of secondary treated municipal wastewater-model development and dynamic validation
  publication-title: Environ. Sci. Technol.
– volume: 2
  start-page: 460
  year: 2016
  end-page: 473
  ident: bib0010
  article-title: Emerging investigators series: prediction of trace organic contaminant abatement with UV/H
  publication-title: Environ. Sci. Water Res. Technol.
– volume: 196
  year: 2021
  ident: bib0040
  article-title: A data-driven shale gas production forecasting method based on the multi-objective random forest regression
  publication-title: J. Pet. Sci. Eng.
– volume: 104
  start-page: 111
  year: 2016
  end-page: 118
  ident: bib0029
  article-title: Application of online UV absorption measurements for ozone process control in secondary effluent with variable nitrite concentration
  publication-title: Water Res.
– volume: 31
  year: 2023
  ident: bib0045
  article-title: Dissolved organic matter evolution and straw decomposition rate characterization under different water and fertilizer conditions based on three-dimensional fluorescence spectrum and deep learning
  publication-title: J. Environ. Manage.
– volume: 3
  start-page: 268
  year: 2017
  end-page: 280
  ident: bib0001
  article-title: Degradation and fate of pharmaceutically active contaminants by advanced oxidation processes
  publication-title: Curr. Pollut. Rep.
– volume: 55
  start-page: 12741
  year: 2021
  end-page: 12754
  ident: bib0049
  article-title: Machine learning: new ideas and tools in environmental science and engineering
  publication-title: Environ. Sci. Technol.
– volume: 269
  year: 2020
  ident: bib0016
  article-title: Fuel properties of hydrochar and pyrochar: prediction and exploration with machine learning
  publication-title: Appl. Energy
– volume: 473-474
  start-page: 619
  year: 2014
  end-page: 641
  ident: bib0018
  article-title: A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment
  publication-title: Sci. Total Environ.
– volume: 106
  start-page: 207
  year: 2017
  end-page: 233
  ident: bib0037
  article-title: Endocrine disrupting compounds in drinking water supply system and human health risk implication
  publication-title: Environ. Int.
– volume: 83
  start-page: 112
  year: 2015
  end-page: 120
  ident: bib0011
  article-title: Characterising organic matter in recirculating aquaculture systems with fluorescence EEM spectroscopy
  publication-title: Water Res.
– volume: 765
  year: 2021
  ident: bib0032
  article-title: Comparison of the new Cl
  publication-title: Sci. Total Environ.
– volume: 43
  start-page: 3104
  year: 2009
  end-page: 3116
  ident: bib0005
  article-title: Spatial and seasonal patterns of fluorescent organic matter in Lake Kinneret (Sea of Galilee) and its catchment basin
  publication-title: Water Res.
– volume: 190
  year: 2021
  ident: bib0028
  article-title: Surrogates for on-line monitoring of the attenuation of trace organic contaminants during advanced oxidation processes for water reuse
  publication-title: Water Res.
– volume: 323
  start-page: 367
  year: 2017
  end-page: 376
  ident: bib0027
  article-title: Use of fluorescence EEM to monitor the removal of emerging contaminants in full scale wastewater treatment plants
  publication-title: J. Hazard. Mater.
– volume: 430
  year: 2022
  ident: bib0039
  article-title: Fast identification of fluorescent components in three-dimensional excitation-emission matrix fluorescence spectra via deep learning
  publication-title: Chem. Eng. J.
– volume: 37
  start-page: 5701
  year: 2003
  end-page: 5710
  ident: bib0006
  article-title: Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter
  publication-title: Environ. Sci. Technol.
– volume: 163
  year: 2019
  ident: bib0013
  article-title: Origin, distributions, and environmental significance of ubiquitous humic-like fluorophores in Antarctic lakes and streams
  publication-title: Water Res.
– volume: 53
  start-page: 1900
  year: 2008
  end-page: 1908
  ident: bib0041
  article-title: Assessing the dynamics of dissolved organic matter (DOM) in coastal environments by excitation emission matrix fluorescence and parallel factor analysis (EEM-PARAFAC)
  publication-title: Limnol. Oceanogr.
– volume: 43
  start-page: 4858
  year: 2009
  end-page: 4863
  ident: bib0038
  article-title: Using ultraviolet absorbance and color to assess pharmaceutical oxidation during ozonation of wastewater
  publication-title: Environ. Sci. Technol.
– volume: 260
  year: 2020
  ident: bib0034
  article-title: A critical review on advanced oxidation processes for the removal of trace organic contaminants: a voyage from individual to integrated processes
  publication-title: Chemosphere
– volume: 193
  start-page: 530
  year: 2018
  end-page: 537
  ident: bib0024
  article-title: Sample handling and data processing for fluorescent excitation-emission matrix (EEM) of dissolved organic matter (DOM)
  publication-title: Chemosphere
– volume: 229
  year: 2023
  ident: bib0002
  article-title: Spatiotemporal analysis of fluorescent dissolved organic matter to identify the impacts of failing sewer infrastructure in urban streams
  publication-title: Water Res.
– volume: 243
  year: 2020
  ident: bib0031
  article-title: Absorbance and EEM fluorescence of wastewater: effects of filters, storage conditions, and chlorination
  publication-title: Chemosphere
– volume: 55
  start-page: 11925
  year: 2021
  end-page: 11936
  ident: bib0048
  article-title: Applied machine learning for prediction of CO
  publication-title: Environ. Sci. Technol.
– volume: 337
  year: 2023
  ident: bib0046
  article-title: Fluorescence-based indicators predict the performance of conventional drinking water treatment processes: evaluation based on the changes in the compositions of dissolved organic matter
  publication-title: Chemosphere
– volume: 8
  start-page: 804
  year: 2011
  end-page: 808
  ident: bib0035
  article-title: Multioutput support vector regression for remote sensing biophysical parameter estimation
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 341
  year: 2024
  ident: bib0044
  article-title: Unveiling changes in the complexation of dissolved organic matter with Pb(II) by photochemical and microbial degradation using fluorescence EEMs-PARAFAC
  publication-title: Environ. Pollut.
– volume: 81
  start-page: 250
  year: 2015
  end-page: 260
  ident: bib0047
  article-title: On-line sensor monitoring for chemical contaminant attenuation during UV/H
  publication-title: Water Res.
– volume: 31
  year: 2023
  ident: bib0022
  article-title: Tracking the sources of dissolved organic matter under bio- and photo-transformation conditions using fluorescence spectrum-based machine learning techniques
  publication-title: Environ. Technol. Innov.
– volume: 40
  start-page: 7312
  year: 2006
  end-page: 7320
  ident: bib0036
  article-title: Analysis of pharmaceuticals in water by isotope dilution liquid chromatography/tandem mass spectrometry
  publication-title: Environ. Sci. Technol.
– volume: 222
  start-page: 166
  year: 2011
  end-page: 169
  ident: bib0003
  article-title: Determination of the quantum yields of the potassium ferrioxalate and potassium iodide-iodate actinometers and a method for the calibration of radiometer detectors
  publication-title: J. Photochem. Photobiol. A-Chem.
– volume: 6
  start-page: 572
  year: 2008
  end-page: 579
  ident: bib0030
  article-title: Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial
  publication-title: Limnol. Oceanogr. Meth.
– volume: 5
  start-page: 216
  year: 2015
  end-page: 233
  ident: bib0004
  article-title: A survey on multi-output regression
  publication-title: Wiley Interdiscip. Rev. Data Mining Knowl. Discov.
– volume: 362
  start-page: 537
  year: 2019
  end-page: 547
  ident: bib0020
  article-title: Comparison of UV-AOPs (UV/H
  publication-title: Chem. Eng. J.
– volume: 5
  start-page: 6557
  year: 2013
  end-page: 6566
  ident: bib0021
  article-title: Fluorescence spectroscopy and multi-way techniques
  publication-title: PARAFAC Anal. Methods
– volume: 271
  year: 2021
  ident: bib0042
  article-title: Relationships between dissolved black carbon and dissolved organic matter in streams
  publication-title: Chemosphere
– start-page: 624
  year: 2007
  end-page: 631
  ident: bib0015
  article-title: Ensembles of multi-objective decision trees
  publication-title: Mach. Learn. ECML
– volume: 93
  start-page: 2208
  year: 2013
  end-page: 2215
  ident: bib0012
  article-title: Fluorescence excitation-emission matrix spectra coupled with parallel factor and regional integration analysis to characterize organic matter humification
  publication-title: Chemosphere
– volume: 45
  start-page: 5218
  year: 2011
  end-page: 5228
  ident: bib0043
  article-title: Occurrence and removal of pharmaceuticals and personal care products (PPCPs) in an advanced wastewater reclamation plant
  publication-title: Water Res.
– volume: 48
  start-page: 7683
  year: 2014
  end-page: 7689
  ident: bib0008
  article-title: Reducing the discharge of micropollutants in the aquatic environment: The benefits of upgrading wastewater treatment plants
  publication-title: Environ. Sci. Technol.
– volume: 350
  year: 2024
  ident: bib0033
  article-title: Elucidating the performance of UV-based photochemical processes for the removal of trace organic contaminants: degradation and toxicity evaluation
  publication-title: Chemosphere
– volume: 57
  start-page: 18026
  year: 2023
  end-page: 18037
  ident: bib0009
  article-title: Abiotic reduction of organic and inorganic compounds by Fe(II)-associated reductants: Comprehensive data sets and machine learning modeling
  publication-title: Environ. Sci. Technol.
– volume: 171
  start-page: 193
  year: 2018
  end-page: 204
  ident: bib0026
  article-title: Predicting poultry meat characteristics using an enhanced multi-target regression method
  publication-title: Biosyst. Eng.
– volume: 447
  start-page: 345
  year: 2013
  end-page: 360
  ident: bib0025
  article-title: Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: a review
  publication-title: Sci. Total Environ.
– volume: 220
  start-page: 1159
  year: 2009
  end-page: 1168
  ident: bib0014
  article-title: Using single- and multi-target regression trees and ensembles to model a compound index of vegetation condition
  publication-title: Ecol. Model.
– volume: 46
  start-page: 7342
  year: 2012
  end-page: 7349
  ident: bib0017
  article-title: Efficient reductive dechlorination of monochloroacetic acid by sulfite/UV process
  publication-title: Environ. Sci. Technol.
– start-page: 624
  year: 2007
  ident: 10.1016/j.watres.2024.121484_bib0015
  article-title: Ensembles of multi-objective decision trees
  publication-title: Mach. Learn. ECML
– volume: 765
  year: 2021
  ident: 10.1016/j.watres.2024.121484_bib0032
  article-title: Comparison of the new Cl2/O3/UV process with different ozone- and UV-based AOPs for wastewater treatment at pilot scale: removal of pharmaceuticals and changes in fluorescing organic matter
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.142720
– volume: 45
  start-page: 5218
  issue: 16
  year: 2011
  ident: 10.1016/j.watres.2024.121484_bib0043
  article-title: Occurrence and removal of pharmaceuticals and personal care products (PPCPs) in an advanced wastewater reclamation plant
  publication-title: Water Res.
  doi: 10.1016/j.watres.2011.07.026
– volume: 6
  start-page: 572
  year: 2008
  ident: 10.1016/j.watres.2024.121484_bib0030
  article-title: Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial
  publication-title: Limnol. Oceanogr. Meth.
  doi: 10.4319/lom.2008.6.572
– volume: 81
  start-page: 250
  year: 2015
  ident: 10.1016/j.watres.2024.121484_bib0047
  article-title: On-line sensor monitoring for chemical contaminant attenuation during UV/H2O2 advanced oxidation process
  publication-title: Water Res.
  doi: 10.1016/j.watres.2015.05.064
– volume: 57
  start-page: 18026
  issue: 46
  year: 2023
  ident: 10.1016/j.watres.2024.121484_bib0009
  article-title: Abiotic reduction of organic and inorganic compounds by Fe(II)-associated reductants: Comprehensive data sets and machine learning modeling
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.2c09724
– volume: 447
  start-page: 345
  year: 2013
  ident: 10.1016/j.watres.2024.121484_bib0025
  article-title: Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: a review
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2013.01.032
– volume: 337
  year: 2023
  ident: 10.1016/j.watres.2024.121484_bib0046
  article-title: Fluorescence-based indicators predict the performance of conventional drinking water treatment processes: evaluation based on the changes in the compositions of dissolved organic matter
  publication-title: Chemosphere
– volume: 260
  year: 2020
  ident: 10.1016/j.watres.2024.121484_bib0034
  article-title: A critical review on advanced oxidation processes for the removal of trace organic contaminants: a voyage from individual to integrated processes
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.127460
– volume: 83
  start-page: 112
  year: 2015
  ident: 10.1016/j.watres.2024.121484_bib0011
  article-title: Characterising organic matter in recirculating aquaculture systems with fluorescence EEM spectroscopy
  publication-title: Water Res.
  doi: 10.1016/j.watres.2015.06.037
– volume: 46
  start-page: 7342
  issue: 13
  year: 2012
  ident: 10.1016/j.watres.2024.121484_bib0017
  article-title: Efficient reductive dechlorination of monochloroacetic acid by sulfite/UV process
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es3008535
– volume: 104
  start-page: 111
  year: 2016
  ident: 10.1016/j.watres.2024.121484_bib0029
  article-title: Application of online UV absorption measurements for ozone process control in secondary effluent with variable nitrite concentration
  publication-title: Water Res.
  doi: 10.1016/j.watres.2016.08.010
– volume: 229
  year: 2023
  ident: 10.1016/j.watres.2024.121484_bib0002
  article-title: Spatiotemporal analysis of fluorescent dissolved organic matter to identify the impacts of failing sewer infrastructure in urban streams
  publication-title: Water Res.
  doi: 10.1016/j.watres.2022.119521
– volume: 222
  start-page: 166
  year: 2011
  ident: 10.1016/j.watres.2024.121484_bib0003
  article-title: Determination of the quantum yields of the potassium ferrioxalate and potassium iodide-iodate actinometers and a method for the calibration of radiometer detectors
  publication-title: J. Photochem. Photobiol. A-Chem.
  doi: 10.1016/j.jphotochem.2011.05.017
– volume: 362
  start-page: 537
  year: 2019
  ident: 10.1016/j.watres.2024.121484_bib0020
  article-title: Comparison of UV-AOPs (UV/H2O2, UV/PDS and UV/Chlorine) for TOrC removal from municipal wastewater effluent and optical surrogate model evaluation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.01.041
– volume: 37
  start-page: 5701
  issue: 24
  year: 2003
  ident: 10.1016/j.watres.2024.121484_bib0006
  article-title: Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es034354c
– volume: 55
  start-page: 11925
  issue: 17
  year: 2021
  ident: 10.1016/j.watres.2024.121484_bib0048
  article-title: Applied machine learning for prediction of CO2 adsorption on biomass waste-derived porous carbons
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.1c01849
– volume: 56
  start-page: 4187
  issue: 7
  year: 2022
  ident: 10.1016/j.watres.2024.121484_bib0023
  article-title: Prediction of soil heavy metal immobilization by biochar using machine learning
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.1c08302
– volume: 350
  year: 2024
  ident: 10.1016/j.watres.2024.121484_bib0033
  article-title: Elucidating the performance of UV-based photochemical processes for the removal of trace organic contaminants: degradation and toxicity evaluation
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2023.140978
– volume: 190
  year: 2021
  ident: 10.1016/j.watres.2024.121484_bib0028
  article-title: Surrogates for on-line monitoring of the attenuation of trace organic contaminants during advanced oxidation processes for water reuse
  publication-title: Water Res.
  doi: 10.1016/j.watres.2020.116733
– volume: 5
  start-page: 216
  issue: 5
  year: 2015
  ident: 10.1016/j.watres.2024.121484_bib0004
  article-title: A survey on multi-output regression
  publication-title: Wiley Interdiscip. Rev. Data Mining Knowl. Discov.
  doi: 10.1002/widm.1157
– volume: 31
  year: 2023
  ident: 10.1016/j.watres.2024.121484_bib0045
  article-title: Dissolved organic matter evolution and straw decomposition rate characterization under different water and fertilizer conditions based on three-dimensional fluorescence spectrum and deep learning
  publication-title: J. Environ. Manage.
– volume: 106
  start-page: 207
  year: 2017
  ident: 10.1016/j.watres.2024.121484_bib0037
  article-title: Endocrine disrupting compounds in drinking water supply system and human health risk implication
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2017.05.004
– volume: 2
  start-page: 460
  issue: 3
  year: 2016
  ident: 10.1016/j.watres.2024.121484_bib0010
  article-title: Emerging investigators series: prediction of trace organic contaminant abatement with UV/H2O2: Development and validation of semi-empirical models for municipal wastewater effluents
  publication-title: Environ. Sci. Water Res. Technol.
  doi: 10.1039/C6EW00051G
– volume: 43
  start-page: 4858
  issue: 13
  year: 2009
  ident: 10.1016/j.watres.2024.121484_bib0038
  article-title: Using ultraviolet absorbance and color to assess pharmaceutical oxidation during ozonation of wastewater
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es803524a
– volume: 196
  year: 2021
  ident: 10.1016/j.watres.2024.121484_bib0040
  article-title: A data-driven shale gas production forecasting method based on the multi-objective random forest regression
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2020.107801
– volume: 31
  year: 2023
  ident: 10.1016/j.watres.2024.121484_bib0022
  article-title: Tracking the sources of dissolved organic matter under bio- and photo-transformation conditions using fluorescence spectrum-based machine learning techniques
  publication-title: Environ. Technol. Innov.
  doi: 10.1016/j.eti.2023.103179
– volume: 269
  year: 2020
  ident: 10.1016/j.watres.2024.121484_bib0016
  article-title: Fuel properties of hydrochar and pyrochar: prediction and exploration with machine learning
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.115166
– volume: 93
  start-page: 2208
  issue: 9
  year: 2013
  ident: 10.1016/j.watres.2024.121484_bib0012
  article-title: Fluorescence excitation-emission matrix spectra coupled with parallel factor and regional integration analysis to characterize organic matter humification
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2013.04.039
– volume: 53
  start-page: 1900
  issue: 5
  year: 2008
  ident: 10.1016/j.watres.2024.121484_bib0041
  article-title: Assessing the dynamics of dissolved organic matter (DOM) in coastal environments by excitation emission matrix fluorescence and parallel factor analysis (EEM-PARAFAC)
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.2008.53.5.1900
– volume: 51
  start-page: 14233
  issue: 24
  year: 2017
  ident: 10.1016/j.watres.2024.121484_bib0007
  article-title: Surrogate-based correlation models in view of real-time control of ozonation of secondary treated municipal wastewater-model development and dynamic validation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b04905
– volume: 163
  year: 2019
  ident: 10.1016/j.watres.2024.121484_bib0013
  article-title: Origin, distributions, and environmental significance of ubiquitous humic-like fluorophores in Antarctic lakes and streams
  publication-title: Water Res.
  doi: 10.1016/j.watres.2019.114901
– volume: 5
  start-page: 6557
  issue: 23
  year: 2013
  ident: 10.1016/j.watres.2024.121484_bib0021
  article-title: Fluorescence spectroscopy and multi-way techniques
  publication-title: PARAFAC Anal. Methods
  doi: 10.1039/c3ay41160e
– volume: 341
  year: 2024
  ident: 10.1016/j.watres.2024.121484_bib0044
  article-title: Unveiling changes in the complexation of dissolved organic matter with Pb(II) by photochemical and microbial degradation using fluorescence EEMs-PARAFAC
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2023.122982
– volume: 473-474
  start-page: 619
  year: 2014
  ident: 10.1016/j.watres.2024.121484_bib0018
  article-title: A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2013.12.065
– volume: 55
  start-page: 12741
  issue: 19
  year: 2021
  ident: 10.1016/j.watres.2024.121484_bib0049
  article-title: Machine learning: new ideas and tools in environmental science and engineering
  publication-title: Environ. Sci. Technol.
– volume: 243
  year: 2020
  ident: 10.1016/j.watres.2024.121484_bib0031
  article-title: Absorbance and EEM fluorescence of wastewater: effects of filters, storage conditions, and chlorination
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.125292
– volume: 48
  start-page: 7683
  issue: 14
  year: 2014
  ident: 10.1016/j.watres.2024.121484_bib0008
  article-title: Reducing the discharge of micropollutants in the aquatic environment: The benefits of upgrading wastewater treatment plants
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es500907n
– volume: 220
  start-page: 1159
  issue: 8
  year: 2009
  ident: 10.1016/j.watres.2024.121484_bib0014
  article-title: Using single- and multi-target regression trees and ensembles to model a compound index of vegetation condition
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2009.01.037
– volume: 323
  start-page: 367
  year: 2017
  ident: 10.1016/j.watres.2024.121484_bib0027
  article-title: Use of fluorescence EEM to monitor the removal of emerging contaminants in full scale wastewater treatment plants
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2016.05.035
– volume: 3
  start-page: 268
  issue: 4
  year: 2017
  ident: 10.1016/j.watres.2024.121484_bib0001
  article-title: Degradation and fate of pharmaceutically active contaminants by advanced oxidation processes
  publication-title: Curr. Pollut. Rep.
  doi: 10.1007/s40726-017-0072-6
– volume: 171
  start-page: 193
  year: 2018
  ident: 10.1016/j.watres.2024.121484_bib0026
  article-title: Predicting poultry meat characteristics using an enhanced multi-target regression method
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2018.04.023
– volume: 43
  start-page: 3104
  issue: 12
  year: 2009
  ident: 10.1016/j.watres.2024.121484_bib0005
  article-title: Spatial and seasonal patterns of fluorescent organic matter in Lake Kinneret (Sea of Galilee) and its catchment basin
  publication-title: Water Res.
  doi: 10.1016/j.watres.2009.04.039
– volume: 282
  start-page: 75
  year: 2015
  ident: 10.1016/j.watres.2024.121484_bib0019
  article-title: Application of surrogates, indicators, and high-resolution mass spectrometry to evaluate the efficacy of UV processes for attenuation of emerging contaminants in water
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2014.09.008
– volume: 8
  start-page: 804
  issue: 4
  year: 2011
  ident: 10.1016/j.watres.2024.121484_bib0035
  article-title: Multioutput support vector regression for remote sensing biophysical parameter estimation
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2011.2109934
– volume: 430
  year: 2022
  ident: 10.1016/j.watres.2024.121484_bib0039
  article-title: Fast identification of fluorescent components in three-dimensional excitation-emission matrix fluorescence spectra via deep learning
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.132893
– volume: 193
  start-page: 530
  year: 2018
  ident: 10.1016/j.watres.2024.121484_bib0024
  article-title: Sample handling and data processing for fluorescent excitation-emission matrix (EEM) of dissolved organic matter (DOM)
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.11.069
– volume: 40
  start-page: 7312
  issue: 23
  year: 2006
  ident: 10.1016/j.watres.2024.121484_bib0036
  article-title: Analysis of pharmaceuticals in water by isotope dilution liquid chromatography/tandem mass spectrometry
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0613198
– volume: 271
  year: 2021
  ident: 10.1016/j.watres.2024.121484_bib0042
  article-title: Relationships between dissolved black carbon and dissolved organic matter in streams
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.129824
SSID ssj0002239
Score 2.5573814
Snippet •Machine learning of EEM is effective in predicting TrOCs removal during AOP.•Machine learning model outperforms traditional linear regression model in...
Dynamic feedback of the removal performance of trace organic contaminants (TrOCs) is essential towards economical advanced oxidation processes (AOPs), whereas...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 121484
SubjectTerms Advanced oxidation
data collection
Excitation-emission matrix
fluorescence
Machine learning
Micropollutant removal
Multi-target regression random forest model
oxidation
photolysis
prediction
regression analysis
spectral analysis
wastewater treatment
water
Title Machine learning modeling of fluorescence spectral data for prediction of trace organic contaminant removal during UV/H2O2 treatment of wastewater
URI https://dx.doi.org/10.1016/j.watres.2024.121484
https://www.proquest.com/docview/2974008505
https://www.proquest.com/docview/3153715858
Volume 255
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QvOjB-Iz4IGvitUJ3tw-OhEiqBryI4dZ0t1uDwZZUkJs_wl_szLbFR0JIvPUx22xntvPofjNDyJXr8AgcaWWxJJaWcJRvQRjErLZU3AcLpiOOCc6DoRuMxN3YGddIr8qFQVhlqfsLnW60dXmlVXKzNZtMMMcXjB93BKIgsXMlZrALD1f59cc3zAPMX6faZUbqKn3OYLyWESZkQJTIBJZZEL5YZ57-KGpjffp7ZLd0G2m3mNk-qen0gOz8KCZ4SD4HBhepadkI4pmaLjd4kCU0mS6y3JRuUpqa9Mocnof4UApuK53luGGDQkJiuAdURcMnRRHNHhWIGZrr1-wdB5rsRjp6agXsgdEVXB1HL6M3_CMHAjsio_7NYy-wyo4LlgIBzS1bJSyRbc4iL7GRIbEEReq40lPw5YIdA_cGeKwS3G6zJQOGKQ4eoptIprno8GNST7NUnxDKHS1U3NGcQcTShnXiso4d-6DUJOdS6gbhFaNDVZYjx64Y07DCnb2EhXhCFE9YiKdBrNWoWVGOYwO9V8kw_LWsQrAYG0ZeViIP4YvDbZQo1dkCiPCFsNKfs56GgyHxbAjF_NN_z-CMbOMZQhVs55zU5_lCX4AHNJdNs8SbZKt7ex8MvwC-YAck
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60HtSD-MS3K3gNbfaRpMdSlPhovVjxtmS3G1FqU2Kr_8Nf7EweRQURvIXsTEh2dueR_WYG4CxQIkFH2no8HRpPKht5GAZxr2WsiNCCuURQgnOvH8QDefWgHhagW-fCEKyy0v2lTi-0dXWnWc1mc_L0RDm-aPyEkoSCpM6Vi7BE1alUA5Y6l9dxf66Q0QK264NmYqgz6AqY13tCORkYKHJJlRZkJH-zUD90dWGALtZhrfIcWad8uQ1YcONNWP1ST3ALPnoFNNKxqhfEIysa3dBFlrJ0NMvyonqTdazIsMzxeQQRZei5sklOZzYkJyLGMaQqez5ZRoD2pATNsNy9ZG_EWCQ4ssF9M-a3nM0R68T9nrzSTzmU2TYMLs7vurFXNV3wLMpo6vk25alpCZ6EqU8TMjSoS1VgQoubF00ZejhShjalEzffcJwwK9BJDFLDnZBtsQONcTZ2u8CEctIO205wDFpauFQC3vaHEeo1I4Qxbg9EPdHaVhXJqTHGSNfQs2ddikeTeHQpnj3w5lyTsiLHH_RhLUP9bWVpNBp_cJ7WIte46egkJRm7bIZE9EFU7E_9TiPQloQ-RmPR_r_f4ASW47vejb657F8fwAqNEHLBV4fQmOYzd4QO0dQcVwv-E7VeCdU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+modeling+of+fluorescence+spectral+data+for+prediction+of+trace+organic+contaminant+removal+during+UV%2FH2O2+treatment+of+wastewater&rft.jtitle=Water+research+%28Oxford%29&rft.au=Yang%2C+Yi&rft.au=Shan%2C+Chao&rft.au=Pan%2C+Bingcai&rft.date=2024-05-15&rft.issn=0043-1354&rft_id=info:doi/10.1016%2Fj.watres.2024.121484&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1354&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1354&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1354&client=summon