Computational and numerical analysis of AC optimal power flow formulations on large-scale power grids

•An in-depth comparison of the AC-OPF model for three formulations: power balance polar, power balance Cartesian and current balance Cartesian presenting their characteristic differences.•Comparison of structural differences in terms of number of variables, constraints and non-zeros in Jacobian and...

Full description

Saved in:
Bibliographic Details
Published inElectric power systems research Vol. 202; p. 107594
Main Authors Nair, Arun Sukumaran, Abhyankar, Shrirang, Peles, Slaven, Ranganathan, Prakash
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.01.2022
Elsevier Science Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •An in-depth comparison of the AC-OPF model for three formulations: power balance polar, power balance Cartesian and current balance Cartesian presenting their characteristic differences.•Comparison of structural differences in terms of number of variables, constraints and non-zeros in Jacobian and hessian matrix.•Numerical and computational performance evaluation for the AC-OPF formulations on nine different test cases including large-scale synthetic U.S. networks. Alternating current optimal power flow (AC-OPF) is a fundamental tool in electric utilities to determine optimal operation of the various resources. Typically, the AC-OPF problem uses power balance formulation containing voltages and power equations. Yet, there is no comprehensive comparison of the different AC-OPF formulations, especially for large-scale networks. This paper presents a detailed comparative evaluation of different formulations of the AC-OPF problem on networks ranging from 9-bus to 25,000 buses. Three different formulations: 1) power balance with polar voltages, 2) power balance with Cartesian voltages, and 3) current balance with Cartesian voltages are discussed in detail by comparing their characteristics, and numerical and computational performance. We compare the performance of the three methods in terms of computational speed, number of iterations, and number of non-zeros in Jacobian and Hessian matrix. The numerical results show that power balance polar formulation had the best performance on small number of bus system but on a large-scale test grid current balance cartesian outperformed the other two formulations.
AbstractList Alternating current optimal power flow (AC-OPF) is a fundamental tool in electric utilities to determine optimal operation of the various resources. Typically, the AC-OPF problem uses power balance formulation containing voltages and power equations. Yet, there is no comprehensive comparison of the different AC-OPF formulations, especially for large-scale networks. This paper presents a detailed comparative evaluation of different formulations of the AC-OPF problem on networks ranging from 9-bus to 25,000 buses. Three different formulations: 1) power balance with polar voltages, 2) power balance with Cartesian voltages, and 3) current balance with Cartesian voltages are discussed in detail by comparing their characteristics, and numerical and computational performance. We compare the performance of the three methods in terms of computational speed, number of iterations, and number of non-zeros in Jacobian and Hessian matrix. The numerical results show that power balance polar formulation had the best performance on small number of bus system but on a large-scale test grid current balance cartesian outperformed the other two formulations.
•An in-depth comparison of the AC-OPF model for three formulations: power balance polar, power balance Cartesian and current balance Cartesian presenting their characteristic differences.•Comparison of structural differences in terms of number of variables, constraints and non-zeros in Jacobian and hessian matrix.•Numerical and computational performance evaluation for the AC-OPF formulations on nine different test cases including large-scale synthetic U.S. networks. Alternating current optimal power flow (AC-OPF) is a fundamental tool in electric utilities to determine optimal operation of the various resources. Typically, the AC-OPF problem uses power balance formulation containing voltages and power equations. Yet, there is no comprehensive comparison of the different AC-OPF formulations, especially for large-scale networks. This paper presents a detailed comparative evaluation of different formulations of the AC-OPF problem on networks ranging from 9-bus to 25,000 buses. Three different formulations: 1) power balance with polar voltages, 2) power balance with Cartesian voltages, and 3) current balance with Cartesian voltages are discussed in detail by comparing their characteristics, and numerical and computational performance. We compare the performance of the three methods in terms of computational speed, number of iterations, and number of non-zeros in Jacobian and Hessian matrix. The numerical results show that power balance polar formulation had the best performance on small number of bus system but on a large-scale test grid current balance cartesian outperformed the other two formulations.
ArticleNumber 107594
Author Peles, Slaven
Ranganathan, Prakash
Abhyankar, Shrirang
Nair, Arun Sukumaran
Author_xml – sequence: 1
  givenname: Arun Sukumaran
  surname: Nair
  fullname: Nair, Arun Sukumaran
  email: arun.sukumarannair@und.edu
  organization: School of Electrical Engineering & Computer Science, University of North Dakota, Grand Forks, ND, USA
– sequence: 2
  givenname: Shrirang
  surname: Abhyankar
  fullname: Abhyankar, Shrirang
  organization: Pacific Northwest National Laboratory, Richland, WA, USA
– sequence: 3
  givenname: Slaven
  surname: Peles
  fullname: Peles, Slaven
  organization: Pacific Northwest National Laboratory, Richland, WA, USA
– sequence: 4
  givenname: Prakash
  surname: Ranganathan
  fullname: Ranganathan, Prakash
  organization: School of Electrical Engineering & Computer Science, University of North Dakota, Grand Forks, ND, USA
BookMark eNp9kM1qwzAQhEVJoWnaF-jJ0LNTWbIlC3oJoX8Q6KU9C1leBRnbciW7IW9fJc65p2WH-ZaduUWL3vWA0EOG1xnO2FOzhiH4NcEkiwIvRH6FllnJaUpwzhZoiSkvU84Fu0G3ITQYYyZ4sUSwdd0wjWq0rldtovo66acOvNXnTbXHYEPiTLLZJm4YbRflwR3AJ6Z1h8Q4303tmY6uPmmV30MaIgwX297bOtyha6PaAPeXuULfry9f2_d09_n2sd3sUk05GdOMC8UEYxUTmpZ1SePvrC6VqATQEgQ3WrEqzwtW5rkxFS2xYroQDBsNODd0hR7nu4N3PxOEUTZu8jFFkIRljJCCUBJdZHZp70LwYOTgYzB_lBmWpzplI091ylOdcq4zQs8zBPH_XwteBm2h11BbD3qUtbP_4X__eYDa
CitedBy_id crossref_primary_10_1007_s11081_024_09891_7
crossref_primary_10_29166_ingenio_v7i1_5491
crossref_primary_10_1016_j_epsr_2022_108190
crossref_primary_10_1109_TPWRS_2023_3289334
crossref_primary_10_3389_fenrg_2024_1361809
crossref_primary_10_1016_j_egyr_2022_11_185
crossref_primary_10_1016_j_egyr_2024_04_016
Cites_doi 10.1109/TPWRS.2016.2616385
10.1109/TSG.2017.2707065
10.1016/0142-0615(79)90026-7
10.1109/TPWRD.2013.2261095
10.1049/iet-gtd.2015.0388
10.1109/TSG.2013.2281001
10.1109/TPWRS.2018.2886344
10.1109/TPWRS.2015.2463111
10.1016/j.segan.2019.100226
10.1109/TPWRS.2013.2255317
10.1109/TPWRS.2018.2874173
10.1007/s10107-004-0559-y
10.1109/TPWRS.2017.2760699
10.1109/TPWRS.2007.913301
10.1109/TPWRS.2016.2635683
10.1109/TPAS.1968.292150
10.1109/TPWRS.2018.2888907
10.1109/TPWRS.2015.2487042
10.1109/TSG.2017.2704922
10.1109/TPWRS.2016.2626142
10.1109/TPWRS.2014.2322051
10.1007/s40866-018-0052-y
10.1109/TPWRS.2007.901301
10.1016/j.segan.2019.100284
10.1109/TPWRS.2010.2051168
10.1109/TPWRS.2014.2326980
10.1109/TPAS.1979.319407
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright Elsevier Science Ltd. Jan 2022
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Jan 2022
DBID AAYXX
CITATION
7SP
8FD
FR3
KR7
L7M
DOI 10.1016/j.epsr.2021.107594
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-2046
ExternalDocumentID 10_1016_j_epsr_2021_107594
S0378779621005757
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADHUB
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
E.L
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSR
SST
SSW
SSZ
T5K
VH1
WUQ
ZMT
~G-
AAXKI
AAYXX
AKRWK
CITATION
7SP
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c372t-179a6966b69c38d830466d8a9b9e38e97fca6b4456844ffb380a6c5960fce04f3
IEDL.DBID .~1
ISSN 0378-7796
IngestDate Fri Sep 13 07:42:32 EDT 2024
Thu Sep 12 17:06:30 EDT 2024
Fri Feb 23 02:42:29 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords AC optimal power flow
Grid operation
Large-scale power grids
Formulation
Optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-179a6966b69c38d830466d8a9b9e38e97fca6b4456844ffb380a6c5960fce04f3
OpenAccessLink http://manuscript.elsevier.com/S0378779621005757/pdf/S0378779621005757.pdf
PQID 2616225232
PQPubID 2047565
ParticipantIDs proquest_journals_2616225232
crossref_primary_10_1016_j_epsr_2021_107594
elsevier_sciencedirect_doi_10_1016_j_epsr_2021_107594
PublicationCentury 2000
PublicationDate January 2022
2022-01-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: January 2022
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Electric power systems research
PublicationYear 2022
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Chatzivasileiadis (bib0012) 2018
Venzke, Chatzivasileiadis, Molzahn (bib0043) 2019
Murillo-Sánchez, Zimmerman, Lindsay Anderson, Thomas (bib0030) 2013; 4
Worighi, Maach, Hafid, Hegazy, Van Mierlo (bib0048) 2019; 18
Eaton, Batema, Hauberg, Wehbring (bib0018) 2019
Balay, Abhyankar, Adams, Brown, Brune, Buschelman, Dalcin, Dener, Eijkhout, Gropp, Karpeyev, Kaushik, Knepley, May, McInnes, Mills, Munson, Rupp, Sanan, Smith, Zampini, Zhang, Zhang (bib0004) 2020
Chow (bib0013) 1982
Cvijic, Feldmann, Hie (bib0015) 2012
Baradar, Hesamzadeh (bib0006) 2015; 30
Zimmerman, Murillo-Sánchez, Thomas (bib0049) 2011; 26
Park, Tang, Ferris, Demarco (bib0035) 2017; 32
Jereminov, Pandey, Pileggi (bib0022) 2019; 34
Tinney (bib0042) 1968; PAS-87
Castillo, Lipka, Watson, Oren, O’Neill (bib0011) 2016; 31
Kardos, Kourounis, Schenk, Zimmerman (bib0023) 2018
Mhanna, Verbic, Chapman (bib0027) 2019; 34
Farivar, Low (bib0019) 2013; 28
Frank, Rebennack (bib0021) 2012
Shchetinin, De Rubira, Hug (bib0037) 2017
.
Vovos, Bialek (bib0045) 2006
Wang, Murillo-Sánchez, Zimmerman, Thomas (bib0047) 2007; 22
Tang, Dvijotham, Low (bib0041) 2017; 8
Shoults, Sun (bib0039) 1982; PAS-101
Wachter, On (bib0046) 2006; 106
Nair, Hossen, Campion, Selvaraj, Goveas, Kaabouch, Ranganathan (bib0032) 2018; 3
Birchfield, Xu, Gegner, Shetye, Overbye (bib0007) 2017; 32
Araujo, Penido, Carneiro, Pereira (bib0002) 2013; 28
Dkhili, Eynard, Thil, Grieu (bib0017) 2020; 21
Moreno, Obando, Gonzalez (bib0028) 2019; 9
Athay, Podmore, Virmani (bib0003) 1979; PAS-98
Ochoa, Harrison (bib0033) 2010
Liu, Qu, Xin, Gan (bib0025) 2017; 32
Akbari, Bina (bib0001) 2016; 10
Carpentier (bib0009) 1979; 1
Lin, Huang, Zhan (bib0024) 2008; 23
O’Neill, Castillo, Cain (bib0034) 2012
Cain, O’neill, Castillo (bib0008) 2012
S. Balay, S. Abhyankar, M.F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, A. Dener, V. Eijkhout, W.D. Gropp, D. Karpeyev, D. Kaushik, M.G. Knepley, D.A. May, L.C. McInnes, R.T. Mills, T. Munson, K. Rupp, P. Sanan, B.F. Smith, S. Zampini, H. Zhang, H. Zhang, PETSc Web page, 2019
Venzke, Halilbasic, Markovic, Hug, Chatzivasileiadis (bib0044) 2018; 33
Da Costa, Rosa (bib0016) 2008
Madani, Sojoudi, Lavaei (bib0026) 2015; 30
Nair, Hossen, Campion, Ranganathan (bib0031) 2018
Shchetinin, De Rubira, Hug (bib0038) 2019; 34
Fioretto, Mak, Van Hentenryck (bib0020) 2019
Sereeter, Vuik, Witteveen, Palensky (bib0036) 2019
Coffrin, Hijazi, Van Hentenryck (bib0014) 2016; 31
Soares, Bessa, Pinson, Morais (bib0040) 2018; 9
Castillo (bib0010) 2016
Birchfield (10.1016/j.epsr.2021.107594_bib0007) 2017; 32
Park (10.1016/j.epsr.2021.107594_bib0035) 2017; 32
Worighi (10.1016/j.epsr.2021.107594_bib0048) 2019; 18
Vovos (10.1016/j.epsr.2021.107594_bib0045) 2006
Lin (10.1016/j.epsr.2021.107594_bib0024) 2008; 23
Castillo (10.1016/j.epsr.2021.107594_bib0010) 2016
Mhanna (10.1016/j.epsr.2021.107594_bib0027) 2019; 34
Tinney (10.1016/j.epsr.2021.107594_bib0042) 1968; PAS-87
Tang (10.1016/j.epsr.2021.107594_bib0041) 2017; 8
Cain (10.1016/j.epsr.2021.107594_bib0008) 2012
Farivar (10.1016/j.epsr.2021.107594_bib0019) 2013; 28
Akbari (10.1016/j.epsr.2021.107594_bib0001) 2016; 10
Chow (10.1016/j.epsr.2021.107594_bib0013) 1982
Murillo-Sánchez (10.1016/j.epsr.2021.107594_bib0030) 2013; 4
Dkhili (10.1016/j.epsr.2021.107594_bib0017) 2020; 21
10.1016/j.epsr.2021.107594_bib0005
Shoults (10.1016/j.epsr.2021.107594_sbref0039) 1982; PAS-101
Moreno (10.1016/j.epsr.2021.107594_bib0028) 2019; 9
Liu (10.1016/j.epsr.2021.107594_bib0025) 2017; 32
Baradar (10.1016/j.epsr.2021.107594_bib0006) 2015; 30
Jereminov (10.1016/j.epsr.2021.107594_bib0022) 2019; 34
Carpentier (10.1016/j.epsr.2021.107594_bib0009) 1979; 1
Coffrin (10.1016/j.epsr.2021.107594_bib0014) 2016; 31
Venzke (10.1016/j.epsr.2021.107594_bib0044) 2018; 33
Nair (10.1016/j.epsr.2021.107594_bib0032) 2018; 3
Balay (10.1016/j.epsr.2021.107594_bib0004) 2020
O’Neill (10.1016/j.epsr.2021.107594_bib0034) 2012
Kardos (10.1016/j.epsr.2021.107594_bib0023) 2018
Ochoa (10.1016/j.epsr.2021.107594_bib0033) 2010
Eaton (10.1016/j.epsr.2021.107594_bib0018) 2019
Shchetinin (10.1016/j.epsr.2021.107594_bib0037) 2017
Fioretto (10.1016/j.epsr.2021.107594_bib0020) 2019
Cvijic (10.1016/j.epsr.2021.107594_bib0015) 2012
Madani (10.1016/j.epsr.2021.107594_bib0026) 2015; 30
Shchetinin (10.1016/j.epsr.2021.107594_bib0038) 2019; 34
Da Costa (10.1016/j.epsr.2021.107594_bib0016) 2008
Araujo (10.1016/j.epsr.2021.107594_bib0002) 2013; 28
Chatzivasileiadis (10.1016/j.epsr.2021.107594_bib0012) 2018
Zimmerman (10.1016/j.epsr.2021.107594_bib0049) 2011; 26
Venzke (10.1016/j.epsr.2021.107594_bib0043) 2019
Wang (10.1016/j.epsr.2021.107594_bib0047) 2007; 22
Athay (10.1016/j.epsr.2021.107594_bib0003) 1979; PAS-98
Nair (10.1016/j.epsr.2021.107594_bib0031) 2018
Soares (10.1016/j.epsr.2021.107594_bib0040) 2018; 9
Wachter (10.1016/j.epsr.2021.107594_bib0046) 2006; 106
Castillo (10.1016/j.epsr.2021.107594_bib0011) 2016; 31
Sereeter (10.1016/j.epsr.2021.107594_bib0036) 2019
Frank (10.1016/j.epsr.2021.107594_bib0021) 2012
References_xml – volume: 8
  start-page: 2963
  year: 2017
  end-page: 2973
  ident: bib0041
  article-title: Real-time optimal power flow
  publication-title: IEEE Trans Smart Grid
  contributor:
    fullname: Low
– volume: 32
  start-page: 3258
  year: 2017
  end-page: 3265
  ident: bib0007
  article-title: Grid structural characteristics as validation criteria for synthetic networks
  publication-title: IEEE Trans. Power Syst.
  contributor:
    fullname: Overbye
– year: 2018
  ident: bib0023
  article-title: Complete results for a numerical evaluation of interior point solvers for large-scale optimal power flow problems
  publication-title: Technical Report
  contributor:
    fullname: Zimmerman
– volume: 9
  start-page: 2794
  year: 2019
  end-page: 2802
  ident: bib0028
  article-title: An integrated OPF dispatching model with wind power and demand response for day-ahead markets
  publication-title: International Journal of Electrical and Computer Engineering
  contributor:
    fullname: Gonzalez
– volume: 34
  start-page: 2354
  year: 2019
  end-page: 2365
  ident: bib0022
  article-title: Equivalent circuit formulation for solving ac optimal power flow
  publication-title: IEEE Trans. Power Syst.
  contributor:
    fullname: Pileggi
– volume: 34
  start-page: 2025
  year: 2019
  end-page: 2035
  ident: bib0027
  article-title: Adaptive ADMM for distributed ac optimal power flow
  publication-title: IEEE Trans. Power Syst.
  contributor:
    fullname: Chapman
– start-page: 1
  year: 2019
  end-page: 11
  ident: bib0043
  article-title: Inexact convex relaxations for AC optimal power flow: towards AC feasibility
  publication-title: arXiv:1902.04815
  contributor:
    fullname: Molzahn
– year: 2020
  ident: bib0004
  article-title: PETSc Users Manual
  publication-title: Technical Report ANL-95/11 - Revision 3.13
  contributor:
    fullname: Zhang
– year: 2019
  ident: bib0018
  article-title: GNU Octave version 5.1.0 manual: a high-level interactive language for numerical computations
  publication-title: Technical Report
  contributor:
    fullname: Wehbring
– volume: 31
  start-page: 2752
  year: 2016
  end-page: 2763
  ident: bib0011
  article-title: A successive linear programming approach to solving the IV-ACOPF
  publication-title: IEEE Trans. Power Syst.
  contributor:
    fullname: O’Neill
– volume: 32
  start-page: 2913
  year: 2017
  end-page: 2923
  ident: bib0035
  article-title: Examination of three different ACOPF formulations with generator capability curves
  publication-title: IEEE Trans. Power Syst.
  contributor:
    fullname: Demarco
– start-page: 1
  year: 2012
  end-page: 18
  ident: bib0034
  article-title: The IV formulation and linear approximations of the AC optimal power flow problem (OPF paper 2)
  publication-title: FERC Staff Technical Paper
  contributor:
    fullname: Cain
– start-page: 1
  year: 2010
  end-page: 7
  ident: bib0033
  article-title: Using AC optimal power flow for DG planning and optimisation
  publication-title: IEEE PES General Meeting, PES 2010
  contributor:
    fullname: Harrison
– year: 1982
  ident: bib0013
  article-title: Time-scale Modeling of Dynamic Networks with Applications to Power Systems
  contributor:
    fullname: Chow
– volume: 21
  start-page: 100284
  year: 2020
  ident: bib0017
  article-title: A survey of modelling and smart management tools for power grids with prolific distributed generation
  publication-title: Sustainable Energy Grids Networks
  contributor:
    fullname: Grieu
– volume: 28
  start-page: 2554
  year: 2013
  end-page: 2564
  ident: bib0019
  article-title: Branch flow model: relaxations and convexification-part i
  publication-title: IEEE Trans. Power Syst.
  contributor:
    fullname: Low
– start-page: 1
  year: 2018
  end-page: 6
  ident: bib0031
  article-title: Optimal operation of residential EVs using DNN and clustering based energy forecast
  publication-title: 2018 North American Power Symposium, NAPS 2018
  contributor:
    fullname: Ranganathan
– volume: PAS-101
  year: 1982
  ident: bib0039
  article-title: Optimal power flow based on P-Q decomposition
  publication-title: IEEE Trans Power Appar Syst
  contributor:
    fullname: Sun
– year: 2006
  ident: bib0045
  article-title: Optimal power flow as a generation expansion and network reinforcement planning tool
  publication-title: 2006 IEEE Power Engineering Society General Meeting, PES
  contributor:
    fullname: Bialek
– year: 2012
  ident: bib0008
  article-title: History of Optimal Power Flow and Formulations
  publication-title: Technical Report
  contributor:
    fullname: Castillo
– volume: 18
  year: 2019
  ident: bib0048
  article-title: Integrating renewable energy in smart grid system: architecture, virtualization and analysis
  publication-title: Sustainable Energy Grids Networks
  contributor:
    fullname: Van Mierlo
– volume: PAS-87
  start-page: 1866
  year: 1968
  end-page: 1876
  ident: bib0042
  article-title: Optimal power flow solutions
  publication-title: IEEE Transactions on Power Apparatus and Systems
  contributor:
    fullname: Tinney
– volume: 31
  start-page: 3008
  year: 2016
  end-page: 3018
  ident: bib0014
  article-title: The QC relaxation: A Theoretical and computational study on optimal power flow
  publication-title: IEEE Trans. Power Syst.
  contributor:
    fullname: Van Hentenryck
– year: 2019
  ident: bib0036
  article-title: Optimal power flow formulations and their impacts on the performance of solution methods
  publication-title: IEEE Power and Energy Society General Meeting
  contributor:
    fullname: Palensky
– volume: 28
  start-page: 2394
  year: 2013
  end-page: 2402
  ident: bib0002
  article-title: A three-phase optimal power-flow algorithm to mitigate voltage unbalance
  publication-title: IEEE Trans. Power Delivery
  contributor:
    fullname: Pereira
– volume: 30
  start-page: 546
  year: 2015
  end-page: 547
  ident: bib0006
  article-title: AC power flow representation in conic format
  publication-title: IEEE Trans. Power Syst.
  contributor:
    fullname: Hesamzadeh
– year: 2016
  ident: bib0010
  publication-title: Essays on the ACOPF problem: formulations, approximations, and applications in the electricity markets
  contributor:
    fullname: Castillo
– volume: PAS-98
  start-page: 573
  year: 1979
  end-page: 584
  ident: bib0003
  article-title: A practical method for the direct analysis of transient stability
  publication-title: IEEE Transactions on Power Apparatus and Systems
  contributor:
    fullname: Virmani
– volume: 3
  year: 2018
  ident: bib0032
  article-title: Multi-Agent systems for resource allocation and scheduling in a smart grid
  publication-title: Technology and Economics of Smart Grids and Sustainable Energy
  contributor:
    fullname: Ranganathan
– year: 2012
  ident: bib0021
  article-title: A Primer on Optimal Power Flow : Theory, Formulation, and Practical Examples
  publication-title: Technical Report
  contributor:
    fullname: Rebennack
– volume: 26
  start-page: 12
  year: 2011
  end-page: 19
  ident: bib0049
  article-title: MATPOWER: Steady-state operations, planning, and analysis tools for power systems research and education
  publication-title: IEEE Trans. Power Syst.
  contributor:
    fullname: Thomas
– volume: 32
  start-page: 3403
  year: 2017
  end-page: 3414
  ident: bib0025
  article-title: Distributed real-Time optimal power flow control in smart grid
  publication-title: IEEE Trans. Power Syst.
  contributor:
    fullname: Gan
– volume: 4
  start-page: 2220
  year: 2013
  end-page: 2229
  ident: bib0030
  article-title: Secure planning and operations of systems with stochastic sources, energy storage, and active demand
  publication-title: IEEE Trans Smart Grid
  contributor:
    fullname: Thomas
– volume: 106
  start-page: 25
  year: 2006
  end-page: 57
  ident: bib0046
  article-title: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming
  publication-title: Math Program
  contributor:
    fullname: On
– volume: 1
  start-page: 3
  year: 1979
  end-page: 15
  ident: bib0009
  article-title: Optimal power flows
  publication-title: International Journal of Electrical Power and Energy Systems
  contributor:
    fullname: Carpentier
– volume: 33
  start-page: 2829
  year: 2018
  end-page: 2841
  ident: bib0044
  article-title: Convex relaxations of chance constrained AC optimal power flow
  publication-title: IEEE Trans. Power Syst.
  contributor:
    fullname: Chatzivasileiadis
– start-page: 1
  year: 2008
  end-page: 7
  ident: bib0016
  article-title: A comparative analysis of different power flow methodologies
  publication-title: 2008 IEEE/PES Transmission and Distribution Conference and Exposition: Latin America
  contributor:
    fullname: Rosa
– start-page: 1
  year: 2017
  end-page: 6
  ident: bib0037
  article-title: Conservative linear line flow constraints for AC optimal power flow
  publication-title: 2017 IEEE Manchester PowerTech, Powertech 2017
  contributor:
    fullname: Hug
– volume: 23
  start-page: 177
  year: 2008
  end-page: 185
  ident: bib0024
  article-title: A hybrid current-power optimal power flow technique
  publication-title: IEEE Trans. Power Syst.
  contributor:
    fullname: Zhan
– volume: 34
  start-page: 1182
  year: 2019
  end-page: 1192
  ident: bib0038
  article-title: On the construction of linear approximations of line flow constraints for AC optimal power flow
  publication-title: IEEE Trans. Power Syst.
  contributor:
    fullname: Hug
– volume: 10
  start-page: 1117
  year: 2016
  end-page: 1123
  ident: bib0001
  article-title: Linear approximated formulation of AC optimal power flow using binary discretisation
  publication-title: IET Gener. Transm. Distrib.
  contributor:
    fullname: Bina
– volume: 9
  start-page: 6229
  year: 2018
  end-page: 6241
  ident: bib0040
  article-title: Active distribution grid management based on robust AC optimal power flow
  publication-title: IEEE Trans Smart Grid
  contributor:
    fullname: Morais
– volume: 30
  start-page: 199
  year: 2015
  end-page: 211
  ident: bib0026
  article-title: Convex relaxation for optimal power flow problem: mesh networks
  publication-title: IEEE Trans. Power Syst.
  contributor:
    fullname: Lavaei
– year: 2019
  ident: bib0020
  article-title: Predicting AC optimal power flows: combining deep learning and lagrangian dual methods
  publication-title: arXiv:1909.10461
  contributor:
    fullname: Van Hentenryck
– year: 2012
  ident: bib0015
  article-title: Applications of homotopy for solving AC power flow and AC optimal power flow
  publication-title: IEEE Power and Energy Society General Meeting
  contributor:
    fullname: Hie
– year: 2018
  ident: bib0012
  article-title: Optimization in Modern Power Systems
  publication-title: Technical Report September
  contributor:
    fullname: Chatzivasileiadis
– volume: 22
  start-page: 1185
  year: 2007
  end-page: 1193
  ident: bib0047
  article-title: On computational issues of market-based optimal power flow
  publication-title: IEEE Trans. Power Syst.
  contributor:
    fullname: Thomas
– year: 2012
  ident: 10.1016/j.epsr.2021.107594_bib0015
  article-title: Applications of homotopy for solving AC power flow and AC optimal power flow
  contributor:
    fullname: Cvijic
– volume: 32
  start-page: 3258
  issue: 4
  year: 2017
  ident: 10.1016/j.epsr.2021.107594_bib0007
  article-title: Grid structural characteristics as validation criteria for synthetic networks
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2016.2616385
  contributor:
    fullname: Birchfield
– volume: 9
  start-page: 2794
  issue: 4
  year: 2019
  ident: 10.1016/j.epsr.2021.107594_bib0028
  article-title: An integrated OPF dispatching model with wind power and demand response for day-ahead markets
  publication-title: International Journal of Electrical and Computer Engineering
  contributor:
    fullname: Moreno
– year: 1982
  ident: 10.1016/j.epsr.2021.107594_bib0013
  contributor:
    fullname: Chow
– volume: 9
  start-page: 6229
  issue: 6
  year: 2018
  ident: 10.1016/j.epsr.2021.107594_bib0040
  article-title: Active distribution grid management based on robust AC optimal power flow
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2017.2707065
  contributor:
    fullname: Soares
– volume: 1
  start-page: 3
  issue: 1
  year: 1979
  ident: 10.1016/j.epsr.2021.107594_bib0009
  article-title: Optimal power flows
  publication-title: International Journal of Electrical Power and Energy Systems
  doi: 10.1016/0142-0615(79)90026-7
  contributor:
    fullname: Carpentier
– volume: 28
  start-page: 2394
  issue: 4
  year: 2013
  ident: 10.1016/j.epsr.2021.107594_bib0002
  article-title: A three-phase optimal power-flow algorithm to mitigate voltage unbalance
  publication-title: IEEE Trans. Power Delivery
  doi: 10.1109/TPWRD.2013.2261095
  contributor:
    fullname: Araujo
– year: 2018
  ident: 10.1016/j.epsr.2021.107594_bib0012
  article-title: Optimization in Modern Power Systems
  contributor:
    fullname: Chatzivasileiadis
– ident: 10.1016/j.epsr.2021.107594_bib0005
– year: 2006
  ident: 10.1016/j.epsr.2021.107594_bib0045
  article-title: Optimal power flow as a generation expansion and network reinforcement planning tool
  contributor:
    fullname: Vovos
– year: 2012
  ident: 10.1016/j.epsr.2021.107594_bib0021
  article-title: A Primer on Optimal Power Flow : Theory, Formulation, and Practical Examples
  contributor:
    fullname: Frank
– volume: 10
  start-page: 1117
  issue: 5
  year: 2016
  ident: 10.1016/j.epsr.2021.107594_bib0001
  article-title: Linear approximated formulation of AC optimal power flow using binary discretisation
  publication-title: IET Gener. Transm. Distrib.
  doi: 10.1049/iet-gtd.2015.0388
  contributor:
    fullname: Akbari
– year: 2019
  ident: 10.1016/j.epsr.2021.107594_bib0036
  article-title: Optimal power flow formulations and their impacts on the performance of solution methods
  contributor:
    fullname: Sereeter
– volume: 4
  start-page: 2220
  issue: 4
  year: 2013
  ident: 10.1016/j.epsr.2021.107594_bib0030
  article-title: Secure planning and operations of systems with stochastic sources, energy storage, and active demand
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2013.2281001
  contributor:
    fullname: Murillo-Sánchez
– volume: 34
  start-page: 2025
  issue: 3
  year: 2019
  ident: 10.1016/j.epsr.2021.107594_bib0027
  article-title: Adaptive ADMM for distributed ac optimal power flow
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2018.2886344
  contributor:
    fullname: Mhanna
– volume: 31
  start-page: 3008
  issue: 4
  year: 2016
  ident: 10.1016/j.epsr.2021.107594_bib0014
  article-title: The QC relaxation: A Theoretical and computational study on optimal power flow
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2015.2463111
  contributor:
    fullname: Coffrin
– volume: 18
  year: 2019
  ident: 10.1016/j.epsr.2021.107594_bib0048
  article-title: Integrating renewable energy in smart grid system: architecture, virtualization and analysis
  publication-title: Sustainable Energy Grids Networks
  doi: 10.1016/j.segan.2019.100226
  contributor:
    fullname: Worighi
– volume: PAS-101
  issue: 1
  year: 1982
  ident: 10.1016/j.epsr.2021.107594_sbref0039
  article-title: Optimal power flow based on P-Q decomposition
  publication-title: IEEE Trans Power Appar Syst
  contributor:
    fullname: Shoults
– year: 2012
  ident: 10.1016/j.epsr.2021.107594_bib0008
  article-title: History of Optimal Power Flow and Formulations
  contributor:
    fullname: Cain
– volume: 28
  start-page: 2554
  issue: 3
  year: 2013
  ident: 10.1016/j.epsr.2021.107594_bib0019
  article-title: Branch flow model: relaxations and convexification-part i
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2013.2255317
  contributor:
    fullname: Farivar
– start-page: 1
  issue: 6154
  year: 2019
  ident: 10.1016/j.epsr.2021.107594_bib0043
  article-title: Inexact convex relaxations for AC optimal power flow: towards AC feasibility
  publication-title: arXiv:1902.04815
  contributor:
    fullname: Venzke
– volume: 34
  start-page: 1182
  issue: 2
  year: 2019
  ident: 10.1016/j.epsr.2021.107594_bib0038
  article-title: On the construction of linear approximations of line flow constraints for AC optimal power flow
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2018.2874173
  contributor:
    fullname: Shchetinin
– volume: 106
  start-page: 25
  issue: 1
  year: 2006
  ident: 10.1016/j.epsr.2021.107594_bib0046
  article-title: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming
  publication-title: Math Program
  doi: 10.1007/s10107-004-0559-y
  contributor:
    fullname: Wachter
– start-page: 1
  year: 2018
  ident: 10.1016/j.epsr.2021.107594_bib0031
  article-title: Optimal operation of residential EVs using DNN and clustering based energy forecast
  contributor:
    fullname: Nair
– volume: 33
  start-page: 2829
  issue: 3
  year: 2018
  ident: 10.1016/j.epsr.2021.107594_bib0044
  article-title: Convex relaxations of chance constrained AC optimal power flow
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2017.2760699
  contributor:
    fullname: Venzke
– year: 2020
  ident: 10.1016/j.epsr.2021.107594_bib0004
  article-title: PETSc Users Manual
  contributor:
    fullname: Balay
– volume: 23
  start-page: 177
  issue: 1
  year: 2008
  ident: 10.1016/j.epsr.2021.107594_bib0024
  article-title: A hybrid current-power optimal power flow technique
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2007.913301
  contributor:
    fullname: Lin
– volume: 32
  start-page: 3403
  issue: 5
  year: 2017
  ident: 10.1016/j.epsr.2021.107594_bib0025
  article-title: Distributed real-Time optimal power flow control in smart grid
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2016.2635683
  contributor:
    fullname: Liu
– volume: PAS-87
  start-page: 1866
  issue: 10
  year: 1968
  ident: 10.1016/j.epsr.2021.107594_bib0042
  article-title: Optimal power flow solutions
  publication-title: IEEE Transactions on Power Apparatus and Systems
  doi: 10.1109/TPAS.1968.292150
  contributor:
    fullname: Tinney
– year: 2016
  ident: 10.1016/j.epsr.2021.107594_bib0010
  contributor:
    fullname: Castillo
– volume: 34
  start-page: 2354
  issue: 3
  year: 2019
  ident: 10.1016/j.epsr.2021.107594_bib0022
  article-title: Equivalent circuit formulation for solving ac optimal power flow
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2018.2888907
  contributor:
    fullname: Jereminov
– start-page: 1
  year: 2017
  ident: 10.1016/j.epsr.2021.107594_bib0037
  article-title: Conservative linear line flow constraints for AC optimal power flow
  contributor:
    fullname: Shchetinin
– start-page: 1
  year: 2008
  ident: 10.1016/j.epsr.2021.107594_bib0016
  article-title: A comparative analysis of different power flow methodologies
  contributor:
    fullname: Da Costa
– start-page: 1
  year: 2010
  ident: 10.1016/j.epsr.2021.107594_bib0033
  article-title: Using AC optimal power flow for DG planning and optimisation
  contributor:
    fullname: Ochoa
– issue: 1
  year: 2019
  ident: 10.1016/j.epsr.2021.107594_bib0020
  article-title: Predicting AC optimal power flows: combining deep learning and lagrangian dual methods
  publication-title: arXiv:1909.10461
  contributor:
    fullname: Fioretto
– volume: 31
  start-page: 2752
  issue: 4
  year: 2016
  ident: 10.1016/j.epsr.2021.107594_bib0011
  article-title: A successive linear programming approach to solving the IV-ACOPF
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2015.2487042
  contributor:
    fullname: Castillo
– year: 2018
  ident: 10.1016/j.epsr.2021.107594_bib0023
  article-title: Complete results for a numerical evaluation of interior point solvers for large-scale optimal power flow problems
  contributor:
    fullname: Kardos
– volume: 8
  start-page: 2963
  issue: 6
  year: 2017
  ident: 10.1016/j.epsr.2021.107594_bib0041
  article-title: Real-time optimal power flow
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2017.2704922
  contributor:
    fullname: Tang
– volume: 32
  start-page: 2913
  issue: 4
  year: 2017
  ident: 10.1016/j.epsr.2021.107594_bib0035
  article-title: Examination of three different ACOPF formulations with generator capability curves
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2016.2626142
  contributor:
    fullname: Park
– volume: 30
  start-page: 199
  issue: 1
  year: 2015
  ident: 10.1016/j.epsr.2021.107594_bib0026
  article-title: Convex relaxation for optimal power flow problem: mesh networks
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2014.2322051
  contributor:
    fullname: Madani
– volume: 3
  issue: 1
  year: 2018
  ident: 10.1016/j.epsr.2021.107594_bib0032
  article-title: Multi-Agent systems for resource allocation and scheduling in a smart grid
  publication-title: Technology and Economics of Smart Grids and Sustainable Energy
  doi: 10.1007/s40866-018-0052-y
  contributor:
    fullname: Nair
– start-page: 1
  issue: December
  year: 2012
  ident: 10.1016/j.epsr.2021.107594_bib0034
  article-title: The IV formulation and linear approximations of the AC optimal power flow problem (OPF paper 2)
  publication-title: FERC Staff Technical Paper
  contributor:
    fullname: O’Neill
– volume: 22
  start-page: 1185
  issue: 3
  year: 2007
  ident: 10.1016/j.epsr.2021.107594_bib0047
  article-title: On computational issues of market-based optimal power flow
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2007.901301
  contributor:
    fullname: Wang
– volume: 21
  start-page: 100284
  year: 2020
  ident: 10.1016/j.epsr.2021.107594_bib0017
  article-title: A survey of modelling and smart management tools for power grids with prolific distributed generation
  publication-title: Sustainable Energy Grids Networks
  doi: 10.1016/j.segan.2019.100284
  contributor:
    fullname: Dkhili
– volume: 26
  start-page: 12
  issue: 1
  year: 2011
  ident: 10.1016/j.epsr.2021.107594_bib0049
  article-title: MATPOWER: Steady-state operations, planning, and analysis tools for power systems research and education
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2010.2051168
  contributor:
    fullname: Zimmerman
– volume: 30
  start-page: 546
  issue: 1
  year: 2015
  ident: 10.1016/j.epsr.2021.107594_bib0006
  article-title: AC power flow representation in conic format
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2014.2326980
  contributor:
    fullname: Baradar
– year: 2019
  ident: 10.1016/j.epsr.2021.107594_bib0018
  article-title: GNU Octave version 5.1.0 manual: a high-level interactive language for numerical computations
  contributor:
    fullname: Eaton
– volume: PAS-98
  start-page: 573
  issue: 2
  year: 1979
  ident: 10.1016/j.epsr.2021.107594_bib0003
  article-title: A practical method for the direct analysis of transient stability
  publication-title: IEEE Transactions on Power Apparatus and Systems
  doi: 10.1109/TPAS.1979.319407
  contributor:
    fullname: Athay
SSID ssj0006975
Score 2.4361491
Snippet •An in-depth comparison of the AC-OPF model for three formulations: power balance polar, power balance Cartesian and current balance Cartesian presenting their...
Alternating current optimal power flow (AC-OPF) is a fundamental tool in electric utilities to determine optimal operation of the various resources. Typically,...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 107594
SubjectTerms AC optimal power flow
Alternating current
Cartesian coordinates
Electric power grids
Electric utilities
Electricity
Formulation
Grid operation
Hessian matrices
Large-scale power grids
Mathematical models
Numerical analysis
Optimization
Power flow
Title Computational and numerical analysis of AC optimal power flow formulations on large-scale power grids
URI https://dx.doi.org/10.1016/j.epsr.2021.107594
https://www.proquest.com/docview/2616225232/abstract/
Volume 202
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIpCqTywodDQOI49VhVVAdEFKnWznMRGRSWJmlZs_HbuEkc8JBgYY52j6Hz5_J19D0IuUi5DpLae9a3xmA2Np8PI93RgGBiQ0ayqpfcw5ZMZu5uH8xYZNbkwGFbpsL_G9Aqt3UjfabNfLBb9Rz8AY4skB6cFSQdmlDPYjMCmr94_wzy4rIrtorCH0i5xpo7xMkWJNUEH1zAQhZL9tjn9gOlq7xnvkV1HGumw_q590jLZAdn5UkrwkLj2DO5oj-ospdmmvo3Bp7ryCM0tHY5oDjDxCsMFdkijdpm_UaSurpEXSGV0iQHiXgmTjRN7Xi3S8ojMxjdPo4nnWih4SRAN1lh8VHPwaGIuk0CkAu9BeSq0jKUJhJGRTTSPGbAowZi1cSB8zZMQ3BqbGJ_Z4Ji0szwzJ4RKnVrgLoCeQjKTag3EJIZljrSIfRHJDrlsdKeKulKGakLIXhRqWqGmVa3pDgkb9apv660Ayv-c123WQrm_rVTgBXLAJSCHp_987RnZHmBeQ3W20iXt9WpjzoFtrONeZU49sjW8vZ9MPwDPTtQc
link.rule.ids 315,786,790,4521,24144,27957,27958,45620,45714
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGYAB8RSFAh7YUGhoHMceq4qqQNuFVupmOYmNikpa9SE2fjt3iSMeEgyMsc5R9Nn5_J19viPkKuUyRGnrWd8aj9nQeDqMfE8HhsEEMprlufT6A94dsYdxOK6QdnkXBsMqHfcXnJ6ztWtpODQb88mk8eQHMNkiycFpQdERbZBNlPNYv-Hm_TPOg8s82y5ae2jubs4UQV5mvsSkoM1baIhCyX5bnX7wdL74dPbIrlONtFV82D6pmOyA7HzJJXhIXH0Gt7dHdZbSbF0cx-BTkXqEzixttekMeOIVmudYIo3a6eyNonZ1lbzAKqNTjBD3ltDZOLPnxSRdHpFR527Y7nquhoKXBFFzhdlHNQeXJuYyCUQq8CCUp0LLWJpAGBnZRPOYAXCCMWvjQPiaJyH4NTYxPrPBMalms8ycECp1akG8AH0KyUyqNSiTGMY50iL2RSRr5LrETs2LVBmqjCF7UYi0QqRVgXSNhCW86tuAK-DyP_vVy7FQ7ndbKnADORATqMPTf772kmx1h_2e6t0PHs_IdhMvOeQbLXVSXS3W5hykxyq-yKfWB9pC1a4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+and+numerical+analysis+of+AC+optimal+power+flow+formulations+on+large-scale+power+grids&rft.jtitle=Electric+power+systems+research&rft.au=Nair%2C+Arun+Sukumaran&rft.au=Abhyankar%2C+Shrirang&rft.au=Peles%2C+Slaven&rft.au=Ranganathan%2C+Prakash&rft.date=2022-01-01&rft.issn=0378-7796&rft.volume=202&rft.spage=107594&rft_id=info:doi/10.1016%2Fj.epsr.2021.107594&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_epsr_2021_107594
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7796&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7796&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7796&client=summon