Microstructural evolution, nanoprecipitation behavior and mechanical properties of selective laser melted high-performance grade 300 maraging steel

High-performance grade 300 maraging steels were fabricated by selective laser melting (SLM) and different heat treatments were applied for improving their mechanical properties. The microstructural evolutions, nanoprecipitation behaviors and mechanical properties of the as-fabricated and heat-treate...

Full description

Saved in:
Bibliographic Details
Published inMaterials & design Vol. 134; pp. 23 - 34
Main Authors Tan, Chaolin, Zhou, Kesong, Ma, Wenyou, Zhang, Panpan, Liu, Min, Kuang, Tongchun
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.11.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract High-performance grade 300 maraging steels were fabricated by selective laser melting (SLM) and different heat treatments were applied for improving their mechanical properties. The microstructural evolutions, nanoprecipitation behaviors and mechanical properties of the as-fabricated and heat-treated SLM parts were carefully characterized and analysed. The evolutions of the massive submicron sized cellular and elongated acicular microstructures are illustrated and theoretically explained. Nanoprecipitates triggered by intrinsic heat treatment and amorphous phases in as-fabricated specimens are observed by TEM. High-resolution TEM (HRTEM) images of the age hardened specimens clearly exhibit massive nanosized needle-shaped nanoprecipitates Ni3X (X=Ti, Al, Mo) and 50–60nm sized spherical core-shell structural nanoparticles embedded in amorphous matrix. XRD analyses reveal austenite reversion and probable phase transformations during heat treatments. The hardness and tensile strength of the as-fabricated and age-treated SLM specimens absolutely meet the standard wrought requirements. Furthermore, the lost ductility after aging can be compensated by preposed solution treatments. Relationships between massive nanoprecipitates and dramatically improved mechanical performances of age hardened specimens are elaborately analysed and perfectly explained by Orowan mechanism. This study demonstrates that high-performance grade 300 maraging steels, which is comparable to the standard wrought levels, can be produced by SLM additive manufacturing. [Display omitted] •Evolutions of the typical SLMed microstructures are illustrated and theoretically explained.•Precipitation behavior and phase transformation of SLMed maraging steel are characterized by TEM and XRD.•Significant improvement of strength after solution and aging treatment was evaluated and explained.•Relationships between massive nanoprecipitates and improved mechanical performances are elucidated.
AbstractList High-performance grade 300 maraging steels were fabricated by selective laser melting (SLM) and different heat treatments were applied for improving their mechanical properties. The microstructural evolutions, nanoprecipitation behaviors and mechanical properties of the as-fabricated and heat-treated SLM parts were carefully characterized and analysed. The evolutions of the massive submicron sized cellular and elongated acicular microstructures are illustrated and theoretically explained. Nanoprecipitates triggered by intrinsic heat treatment and amorphous phases in as-fabricated specimens are observed by TEM. High-resolution TEM (HRTEM) images of the age hardened specimens clearly exhibit massive nanosized needle-shaped nanoprecipitates Ni3X (X=Ti, Al, Mo) and 50–60nm sized spherical core-shell structural nanoparticles embedded in amorphous matrix. XRD analyses reveal austenite reversion and probable phase transformations during heat treatments. The hardness and tensile strength of the as-fabricated and age-treated SLM specimens absolutely meet the standard wrought requirements. Furthermore, the lost ductility after aging can be compensated by preposed solution treatments. Relationships between massive nanoprecipitates and dramatically improved mechanical performances of age hardened specimens are elaborately analysed and perfectly explained by Orowan mechanism. This study demonstrates that high-performance grade 300 maraging steels, which is comparable to the standard wrought levels, can be produced by SLM additive manufacturing. [Display omitted] •Evolutions of the typical SLMed microstructures are illustrated and theoretically explained.•Precipitation behavior and phase transformation of SLMed maraging steel are characterized by TEM and XRD.•Significant improvement of strength after solution and aging treatment was evaluated and explained.•Relationships between massive nanoprecipitates and improved mechanical performances are elucidated.
Author Zhou, Kesong
Kuang, Tongchun
Zhang, Panpan
Tan, Chaolin
Liu, Min
Ma, Wenyou
Author_xml – sequence: 1
  givenname: Chaolin
  orcidid: 0000-0003-2029-4600
  surname: Tan
  fullname: Tan, Chaolin
  organization: School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
– sequence: 2
  givenname: Kesong
  surname: Zhou
  fullname: Zhou, Kesong
  email: kszhou2004@163.com
  organization: School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
– sequence: 3
  givenname: Wenyou
  surname: Ma
  fullname: Ma, Wenyou
  organization: Guangdong Institute of New Materials, National Engineering Laboratory for Modern Materials Surface Engineering Technology, Key Lab of Guangdong for Modern Surface Engineering Technology, Guangzhou 510651, China
– sequence: 4
  givenname: Panpan
  surname: Zhang
  fullname: Zhang, Panpan
  organization: Guangdong Institute of New Materials, National Engineering Laboratory for Modern Materials Surface Engineering Technology, Key Lab of Guangdong for Modern Surface Engineering Technology, Guangzhou 510651, China
– sequence: 5
  givenname: Min
  surname: Liu
  fullname: Liu, Min
  organization: Guangdong Institute of New Materials, National Engineering Laboratory for Modern Materials Surface Engineering Technology, Key Lab of Guangdong for Modern Surface Engineering Technology, Guangzhou 510651, China
– sequence: 6
  givenname: Tongchun
  surname: Kuang
  fullname: Kuang, Tongchun
  organization: School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
BookMark eNqFkMFq3DAURUVJoZM0f5CFPqB2JMu25C4KJbRNIKGbdi3eSE8zGjySkTQD_Y7-cGUmqy7a1YPHPRfuuSZXIQYk5I6zljM-3h_aIxSLue0Yly1TLevGN2TDlRRNzyd5RTb10ze8k8M7cp3zgbGuk6LfkN8v3qSYSzqZckowUzzH-VR8DB9ogBCXhMYvvsD6olvcw9nHRCFYekSzh-BNhZYUF0zFY6bR0YwzmuLPSGfImGpwLmjp3u_2TY25mI4QDNJdAotUMEaPkGDnw47mgji_J28dzBlvX-8N-fn1y4-Hx-b5-7enh8_PjRGyKw0XkomxG5WyMHK15XKCYXIG-2kYhetB2qlnDoRTYlhDyCerBtwKI1G5TtyQj5fe1UBO6LR5HVoS-Flzple9-qAvevWqVzOlq8wK93_BS_J1x6__YZ8uGNZhZ49JZ-Ox2rC-mi7aRv_vgj-ZSJ1W
CitedBy_id crossref_primary_10_1016_j_msea_2019_05_115
crossref_primary_10_1051_e3sconf_202337601088
crossref_primary_10_1007_s11837_020_04435_7
crossref_primary_10_1051_e3sconf_202337601087
crossref_primary_10_1016_j_matdes_2020_108689
crossref_primary_10_1016_j_matdes_2021_109813
crossref_primary_10_1016_j_jmrt_2023_09_117
crossref_primary_10_1007_s10853_021_05841_1
crossref_primary_10_1007_s00170_022_09004_7
crossref_primary_10_1016_j_jmrt_2024_12_014
crossref_primary_10_1002_srin_202000195
crossref_primary_10_1016_j_wear_2021_203962
crossref_primary_10_1080_17452759_2021_1964268
crossref_primary_10_1016_j_ijfatigue_2021_106468
crossref_primary_10_1016_j_addma_2022_103262
crossref_primary_10_1016_j_vacuum_2020_109557
crossref_primary_10_1016_j_matdes_2024_112938
crossref_primary_10_1016_j_matchar_2022_112065
crossref_primary_10_1007_s00170_020_05298_7
crossref_primary_10_3390_mi15040494
crossref_primary_10_17073_1997_308X_2022_4_84_92
crossref_primary_10_3390_met13101700
crossref_primary_10_1134_S0031918X23602056
crossref_primary_10_1016_j_msea_2022_143099
crossref_primary_10_3390_ma16134749
crossref_primary_10_1016_j_mtcomm_2024_109152
crossref_primary_10_1016_j_jmatprotec_2020_116906
crossref_primary_10_1016_j_matdes_2018_02_018
crossref_primary_10_1016_j_prostr_2022_12_104
crossref_primary_10_3390_ma16134610
crossref_primary_10_1016_j_msea_2017_11_084
crossref_primary_10_1007_s12540_023_01462_2
crossref_primary_10_1016_j_jmrt_2023_01_104
crossref_primary_10_1002_mawe_202000139
crossref_primary_10_1007_s11665_021_06102_7
crossref_primary_10_1016_j_mtcomm_2024_111259
crossref_primary_10_1016_j_msea_2021_141740
crossref_primary_10_1016_j_vacuum_2020_109216
crossref_primary_10_1016_j_msea_2020_140130
crossref_primary_10_1016_j_matdes_2023_112561
crossref_primary_10_1016_j_msea_2023_145744
crossref_primary_10_1007_s00170_023_12686_2
crossref_primary_10_1016_j_msea_2023_145622
crossref_primary_10_1016_j_msea_2023_145747
crossref_primary_10_1080_14686996_2024_2346071
crossref_primary_10_2139_ssrn_4100229
crossref_primary_10_1016_j_jmatprotec_2021_117358
crossref_primary_10_1016_j_jmst_2023_10_032
crossref_primary_10_1016_j_ijmachtools_2019_04_002
crossref_primary_10_1016_j_msea_2018_12_114
crossref_primary_10_1134_S0031918X19130118
crossref_primary_10_1051_e3sconf_202337603028
crossref_primary_10_1016_j_matdes_2018_09_021
crossref_primary_10_1590_1517_7076_rmat_2024_0279
crossref_primary_10_1080_17452759_2024_2364222
crossref_primary_10_1016_j_msea_2023_145336
crossref_primary_10_17073_0021_3438_2024_1_70_80
crossref_primary_10_1016_j_corsci_2022_110273
crossref_primary_10_1016_j_matdes_2020_108762
crossref_primary_10_1016_j_mtcomm_2023_105825
crossref_primary_10_1016_j_mtcomm_2022_104332
crossref_primary_10_1016_j_mtcomm_2022_103243
crossref_primary_10_1007_s40964_022_00306_6
crossref_primary_10_1016_j_surfcoat_2019_125279
crossref_primary_10_3390_ma13040956
crossref_primary_10_1016_j_msea_2022_143167
crossref_primary_10_1364_AO_409565
crossref_primary_10_1016_j_compositesb_2022_109820
crossref_primary_10_1016_j_addma_2020_101827
crossref_primary_10_1016_j_msea_2019_138512
crossref_primary_10_1016_j_msea_2019_138633
crossref_primary_10_1016_j_ijfatigue_2024_108319
crossref_primary_10_1177_20414196211035486
crossref_primary_10_1016_j_matdes_2020_108637
crossref_primary_10_1016_j_msea_2017_10_045
crossref_primary_10_3389_fmats_2022_797226
crossref_primary_10_1016_j_matchar_2023_113522
crossref_primary_10_1007_s11665_021_05927_6
crossref_primary_10_1016_j_prostr_2020_01_002
crossref_primary_10_1016_j_msea_2024_146804
crossref_primary_10_1016_j_jmatprotec_2019_116253
crossref_primary_10_1016_j_matdes_2022_111279
crossref_primary_10_1016_j_jmapro_2018_08_015
crossref_primary_10_1016_j_scriptamat_2022_114896
crossref_primary_10_1007_s12540_022_01218_4
crossref_primary_10_3390_coatings12030356
crossref_primary_10_1016_j_ijrmhm_2022_105988
crossref_primary_10_1016_j_ijimpeng_2025_105271
crossref_primary_10_1016_j_matchar_2021_111514
crossref_primary_10_1177_09544089221093994
crossref_primary_10_1007_s11665_021_05553_2
crossref_primary_10_1016_j_jmatprotec_2023_117886
crossref_primary_10_1016_j_jmst_2023_02_012
crossref_primary_10_1016_j_msea_2022_144032
crossref_primary_10_1016_j_addma_2018_10_032
crossref_primary_10_1016_j_msea_2022_144154
crossref_primary_10_1016_j_jmst_2024_05_062
crossref_primary_10_1088_2631_8695_acbd8a
crossref_primary_10_1038_s41586_020_2409_3
crossref_primary_10_1016_j_addma_2023_103647
crossref_primary_10_2139_ssrn_4021771
crossref_primary_10_3390_met10030400
crossref_primary_10_3390_met14101158
crossref_primary_10_3390_met8060440
crossref_primary_10_1007_s00170_018_1799_y
crossref_primary_10_1016_j_commatsci_2024_113045
crossref_primary_10_1007_s11661_021_06180_1
crossref_primary_10_1016_j_matchar_2021_111648
crossref_primary_10_1007_s00170_021_07527_z
crossref_primary_10_1051_e3sconf_202338301031
crossref_primary_10_1016_j_msea_2018_07_089
crossref_primary_10_3390_ma13194268
crossref_primary_10_1016_j_matdes_2020_108965
crossref_primary_10_1088_1757_899X_1178_1_012032
crossref_primary_10_1007_s11665_022_06849_7
crossref_primary_10_1016_j_msea_2019_138425
crossref_primary_10_1007_s00170_024_14755_6
crossref_primary_10_1088_1402_4896_ad3681
crossref_primary_10_1016_j_jmrt_2023_07_114
crossref_primary_10_1016_j_addma_2023_103825
crossref_primary_10_3390_ma17020440
crossref_primary_10_1007_s00170_021_07514_4
crossref_primary_10_1021_acs_jcim_0c01455
crossref_primary_10_1016_j_jallcom_2018_03_222
crossref_primary_10_1016_j_msea_2021_140801
crossref_primary_10_21062_mft_2022_030
crossref_primary_10_1016_j_matdes_2018_05_064
crossref_primary_10_1016_j_jallcom_2023_171031
crossref_primary_10_1016_j_mtcomm_2024_109793
crossref_primary_10_1016_j_jmrt_2022_02_126
crossref_primary_10_3390_met14050520
crossref_primary_10_1016_j_msea_2022_143018
crossref_primary_10_1177_09544089241295956
crossref_primary_10_3390_ma14092105
crossref_primary_10_1016_j_msea_2023_145917
crossref_primary_10_1007_s12613_024_2947_z
crossref_primary_10_2351_7_0001240
crossref_primary_10_3952_physics_2024_64_2_4
crossref_primary_10_3390_met13071214
crossref_primary_10_1080_14484846_2021_2007620
crossref_primary_10_1016_j_ijmachtools_2021_103804
crossref_primary_10_1002_srin_202400348
crossref_primary_10_1016_j_jallcom_2018_12_274
crossref_primary_10_1016_j_matchar_2024_114422
crossref_primary_10_1007_s11665_020_05414_4
crossref_primary_10_1016_j_ijfatigue_2021_106535
crossref_primary_10_21062_mft_2022_008
crossref_primary_10_1177_1478422X251314174
crossref_primary_10_1016_j_addma_2019_04_018
crossref_primary_10_1016_j_jmrt_2024_09_034
crossref_primary_10_1016_j_mtla_2025_102383
crossref_primary_10_1016_j_wear_2023_204883
crossref_primary_10_1016_j_msea_2018_12_070
crossref_primary_10_1016_j_matdes_2018_10_038
crossref_primary_10_1016_j_msea_2023_144646
crossref_primary_10_1016_j_msea_2023_145975
crossref_primary_10_3390_ma13235533
crossref_primary_10_4028_www_scientific_net_KEM_861_77
crossref_primary_10_1016_j_jmrt_2023_07_158
crossref_primary_10_1016_j_msea_2019_138341
crossref_primary_10_1016_j_mtcomm_2023_107287
crossref_primary_10_3390_app10041232
crossref_primary_10_1016_j_jallcom_2022_167524
crossref_primary_10_3390_ma13153408
crossref_primary_10_1108_RPJ_11_2020_0269
crossref_primary_10_1016_j_jmrt_2022_05_158
crossref_primary_10_1016_j_matchar_2018_08_010
crossref_primary_10_1002_srin_202400173
crossref_primary_10_2478_msp_2022_0031
crossref_primary_10_1016_j_matchar_2024_114711
crossref_primary_10_1088_2631_7990_ad88bc
crossref_primary_10_1108_RPJ_08_2018_0189
crossref_primary_10_1016_j_actamat_2021_117240
crossref_primary_10_1016_j_ijmecsci_2024_109055
crossref_primary_10_4150_jpm_2024_00171
crossref_primary_10_3390_met10081016
crossref_primary_10_3390_app122010340
crossref_primary_10_1016_j_scriptamat_2022_115224
crossref_primary_10_1557_jmr_2020_126
crossref_primary_10_1016_j_mfglet_2024_09_103
crossref_primary_10_46519_ij3dptdi_1024485
crossref_primary_10_1108_RPJ_03_2022_0089
crossref_primary_10_1016_j_heliyon_2023_e23202
crossref_primary_10_1016_j_vacuum_2024_113448
crossref_primary_10_1007_s00170_021_07635_w
crossref_primary_10_1134_S1029959922020072
crossref_primary_10_1016_j_matchar_2023_113335
crossref_primary_10_1016_j_msea_2022_143585
crossref_primary_10_1016_j_matdes_2021_110265
crossref_primary_10_1016_j_msea_2019_05_013
crossref_primary_10_1080_17445302_2020_1786232
crossref_primary_10_1016_j_addma_2022_102775
crossref_primary_10_4028_www_scientific_net_DDF_405_133
crossref_primary_10_1016_j_addma_2019_100914
crossref_primary_10_3390_met10091273
crossref_primary_10_1007_s40964_023_00530_8
crossref_primary_10_1016_j_surfcoat_2024_131451
crossref_primary_10_1007_s40516_022_00182_6
crossref_primary_10_1016_j_msea_2018_04_046
crossref_primary_10_1016_j_matchar_2024_113767
crossref_primary_10_5006_3972
crossref_primary_10_1016_j_addma_2021_102123
crossref_primary_10_3390_met11050748
crossref_primary_10_1016_j_addma_2021_102122
crossref_primary_10_1017_S1431927619013618
crossref_primary_10_1007_s11661_024_07644_w
crossref_primary_10_1557_s43577_021_00054_y
crossref_primary_10_1016_j_matchar_2024_114499
crossref_primary_10_1080_17452759_2024_2438899
crossref_primary_10_1016_j_jmrt_2024_10_097
crossref_primary_10_1016_j_surfcoat_2022_128089
crossref_primary_10_1016_j_jmrt_2023_06_276
crossref_primary_10_3390_ma16072866
crossref_primary_10_1016_j_jmrt_2025_02_139
crossref_primary_10_1557_jmr_2018_166
crossref_primary_10_1016_j_msea_2021_141183
crossref_primary_10_1016_j_addma_2022_102712
crossref_primary_10_1557_s43579_024_00679_5
crossref_primary_10_1016_j_jmrt_2024_01_050
crossref_primary_10_1016_j_surfcoat_2024_130984
crossref_primary_10_1016_j_matchar_2021_111266
crossref_primary_10_1016_j_ijmachtools_2023_104032
crossref_primary_10_1016_j_jmst_2019_12_020
crossref_primary_10_1007_s11661_018_4733_x
crossref_primary_10_1016_j_jallcom_2021_161033
crossref_primary_10_1016_j_optlastec_2020_106262
crossref_primary_10_1016_j_msea_2019_02_041
crossref_primary_10_1016_j_msea_2021_141195
crossref_primary_10_1007_s12613_023_2731_5
crossref_primary_10_1016_j_corsci_2023_111188
crossref_primary_10_4028_p_9Zguiw
crossref_primary_10_1016_j_triboint_2021_107112
crossref_primary_10_1016_j_matdes_2021_109479
crossref_primary_10_1080_09506608_2021_1983351
crossref_primary_10_3390_ma16217008
crossref_primary_10_1016_j_ijfatigue_2020_105796
crossref_primary_10_1016_j_addma_2019_100797
crossref_primary_10_1016_j_msea_2022_143306
crossref_primary_10_1016_j_matlet_2018_05_042
crossref_primary_10_3390_ma15062136
crossref_primary_10_3390_ma15155133
crossref_primary_10_1177_02670836241255257
crossref_primary_10_1016_j_jmapro_2020_03_019
crossref_primary_10_1016_j_ijfatigue_2023_107548
crossref_primary_10_1016_j_msea_2023_145074
crossref_primary_10_1115_1_4062727
crossref_primary_10_1007_s10853_020_05109_0
crossref_primary_10_1080_17452759_2023_2296127
crossref_primary_10_3390_ma17030661
crossref_primary_10_1016_j_surfcoat_2023_129688
crossref_primary_10_1016_j_addma_2021_102560
crossref_primary_10_1016_j_jmatprotec_2024_118425
crossref_primary_10_2355_isijinternational_ISIJINT_2023_045
crossref_primary_10_1016_j_msea_2023_144921
crossref_primary_10_1016_j_ijmachtools_2021_103817
crossref_primary_10_1016_j_jmrt_2021_12_054
crossref_primary_10_1007_s11665_018_3521_5
crossref_primary_10_3390_mi14020362
crossref_primary_10_1007_s10853_024_10102_y
crossref_primary_10_1088_1757_899X_1310_1_012037
crossref_primary_10_1002_advs_202206607
crossref_primary_10_1016_j_apsusc_2020_146393
crossref_primary_10_1016_j_wear_2021_204179
crossref_primary_10_1007_s40192_019_00166_z
crossref_primary_10_1007_s40195_022_01461_z
crossref_primary_10_1002_srin_202400687
crossref_primary_10_1016_j_optlastec_2019_105725
crossref_primary_10_1016_j_addma_2020_101389
crossref_primary_10_1016_j_engfailanal_2023_107713
crossref_primary_10_1016_j_matpr_2020_05_162
crossref_primary_10_1016_j_jmst_2021_10_056
crossref_primary_10_1016_j_matdes_2020_109289
crossref_primary_10_1016_j_matdes_2021_109469
crossref_primary_10_1016_j_pmatsci_2022_101051
crossref_primary_10_1007_s13632_020_00680_z
crossref_primary_10_1016_j_addma_2024_104264
crossref_primary_10_1007_s00170_021_08411_6
crossref_primary_10_3390_jmmp5040107
crossref_primary_10_1016_j_optlastec_2022_108914
crossref_primary_10_1557_s43578_023_01022_9
crossref_primary_10_1016_j_optlastec_2023_110493
crossref_primary_10_1080_17452759_2024_2372629
crossref_primary_10_1016_j_ijhydene_2025_02_240
crossref_primary_10_1080_02670836_2019_1668603
crossref_primary_10_1016_j_matchar_2023_113064
crossref_primary_10_1016_j_mtla_2021_101244
crossref_primary_10_1016_j_mtla_2023_101961
crossref_primary_10_1016_j_addma_2024_104494
crossref_primary_10_1016_j_ijleo_2019_163568
crossref_primary_10_3390_ma12244174
crossref_primary_10_1007_s40964_024_00591_3
crossref_primary_10_1007_s40194_024_01861_y
crossref_primary_10_1115_1_4053276
crossref_primary_10_1016_j_msea_2021_141266
crossref_primary_10_1016_j_tafmec_2022_103469
crossref_primary_10_1115_1_4053277
crossref_primary_10_1016_j_msea_2022_143983
crossref_primary_10_3390_met9101128
crossref_primary_10_1016_j_msea_2022_142653
crossref_primary_10_1016_j_addma_2020_101125
crossref_primary_10_1016_j_surfcoat_2020_126675
crossref_primary_10_1007_s00170_022_09972_w
crossref_primary_10_1016_j_matdes_2020_109147
crossref_primary_10_1007_s11661_023_06969_2
crossref_primary_10_1016_j_matlet_2018_11_115
crossref_primary_10_3390_jmmp8020052
crossref_primary_10_1016_j_procir_2022_02_194
crossref_primary_10_1016_j_prostr_2022_03_097
crossref_primary_10_1016_j_msea_2024_146269
crossref_primary_10_1111_ffe_12917
crossref_primary_10_3390_ma14102588
crossref_primary_10_2139_ssrn_3985314
crossref_primary_10_1016_j_powtec_2018_04_026
crossref_primary_10_3390_ma17153653
crossref_primary_10_1007_s11665_021_05948_1
crossref_primary_10_1016_j_corsci_2023_111440
crossref_primary_10_1051_e3sconf_202338901072
crossref_primary_10_1051_e3sconf_202338901073
crossref_primary_10_1051_e3sconf_202338901071
crossref_primary_10_1177_00325899241253271
crossref_primary_10_3390_met10030410
crossref_primary_10_1016_j_jmrt_2024_12_097
crossref_primary_10_1016_j_matchar_2021_111654
crossref_primary_10_3390_jmmp4040100
crossref_primary_10_1038_s41598_022_09977_1
crossref_primary_10_1016_j_jallcom_2024_176438
crossref_primary_10_3390_ma12142284
crossref_primary_10_1108_RPJ_03_2021_0069
crossref_primary_10_3390_ma15144757
crossref_primary_10_1016_j_optlastec_2022_108711
crossref_primary_10_1016_j_addma_2020_101108
crossref_primary_10_1016_j_corsci_2019_108427
crossref_primary_10_1016_j_jallcom_2023_171824
crossref_primary_10_1016_j_addma_2018_06_005
crossref_primary_10_1115_1_4065498
crossref_primary_10_1016_j_jallcom_2020_154773
crossref_primary_10_1016_j_vacuum_2018_04_044
crossref_primary_10_1016_j_jmst_2024_02_044
crossref_primary_10_1108_RPJ_03_2021_0055
crossref_primary_10_1016_j_matdes_2024_112771
crossref_primary_10_1016_j_addma_2021_101971
crossref_primary_10_1134_S0036029522040139
crossref_primary_10_1007_s11665_022_07166_9
crossref_primary_10_1016_j_msea_2022_143818
crossref_primary_10_3390_physchem1030016
crossref_primary_10_1007_s12210_021_00994_2
crossref_primary_10_2355_tetsutohagane_TETSU_2022_066
crossref_primary_10_3390_ma17174246
crossref_primary_10_1016_j_mtcomm_2024_111087
crossref_primary_10_1016_j_msea_2022_142852
crossref_primary_10_1007_s40436_021_00365_y
crossref_primary_10_1007_s10853_022_07197_6
crossref_primary_10_1007_s11661_020_05661_z
crossref_primary_10_1016_j_mtcomm_2023_106564
crossref_primary_10_1088_1757_899X_580_1_012047
crossref_primary_10_1016_j_msea_2021_141232
crossref_primary_10_1016_j_jmapro_2020_06_041
crossref_primary_10_1016_j_addma_2024_104429
crossref_primary_10_1038_s41598_021_82572_y
crossref_primary_10_1016_j_addma_2021_101954
crossref_primary_10_1016_j_applthermaleng_2019_114335
crossref_primary_10_1016_j_matlet_2019_07_087
crossref_primary_10_1016_j_matchar_2023_112705
crossref_primary_10_3390_ma14175073
crossref_primary_10_1016_j_msea_2023_146031
crossref_primary_10_1016_j_msea_2019_01_019
crossref_primary_10_1007_s11665_021_05913_y
crossref_primary_10_1016_j_addma_2020_101561
crossref_primary_10_1016_j_matchar_2022_112549
crossref_primary_10_1016_j_cossms_2023_101106
crossref_primary_10_1016_j_msea_2020_139041
crossref_primary_10_1016_j_matlet_2017_10_097
crossref_primary_10_1080_00325899_2023_2213006
crossref_primary_10_1007_s11837_020_04425_9
crossref_primary_10_1016_j_addma_2021_101847
crossref_primary_10_1016_j_matdes_2021_109503
crossref_primary_10_1016_j_msea_2020_139049
crossref_primary_10_3390_ma15134631
crossref_primary_10_1007_s10853_021_06447_3
crossref_primary_10_1016_j_surfcoat_2021_128055
crossref_primary_10_2139_ssrn_4192936
crossref_primary_10_1016_j_jmapro_2021_12_033
crossref_primary_10_1016_j_msea_2021_141894
crossref_primary_10_1016_j_wear_2024_205562
crossref_primary_10_3390_app13116572
crossref_primary_10_1016_j_matpr_2020_11_883
crossref_primary_10_1016_j_msea_2022_142926
crossref_primary_10_1016_j_jmapro_2021_07_063
crossref_primary_10_1007_s12540_020_00793_8
crossref_primary_10_1016_j_ceramint_2022_09_253
crossref_primary_10_1016_j_tafmec_2023_104207
crossref_primary_10_3390_met10020218
crossref_primary_10_1016_j_msea_2024_147504
crossref_primary_10_5006_4023
crossref_primary_10_2478_msp_2023_0028
crossref_primary_10_7791_jspmee_10_91
Cites_doi 10.1179/174328007X160308
10.1007/s11665-014-0958-z
10.1179/1743280411Y.0000000014
10.1016/j.icheatmasstransfer.2015.08.013
10.1557/jmr.2014.204
10.1007/BF02647188
10.1002/adem.201500419
10.1016/j.actamat.2016.11.018
10.1016/j.actamat.2010.03.010
10.1016/j.actamat.2016.03.037
10.3390/ma10010008
10.1016/j.actamat.2016.06.009
10.1016/j.actamat.2004.08.018
10.1016/j.optlastec.2014.07.021
10.1016/j.wear.2014.11.023
10.1016/j.surfcoat.2005.07.076
10.1016/j.matchar.2014.11.024
10.1016/S1359-6454(99)00370-5
10.1016/j.bushor.2011.11.003
10.1016/j.actamat.2010.02.028
10.1016/j.matdes.2015.05.042
10.1016/j.jallcom.2013.06.087
10.1016/0036-9748(72)90120-2
10.1007/s00339-009-5266-3
10.1016/j.actamat.2017.02.069
10.1007/s11661-009-9993-z
10.1016/j.matdes.2013.10.027
10.1007/BF02646061
10.1007/BF02668193
10.1016/j.pmatsci.2015.03.002
10.1016/j.matdes.2015.07.145
10.1007/s00170-012-4558-5
10.1016/j.actamat.2015.10.020
10.1016/j.actamat.2017.02.007
10.1016/j.matdes.2016.09.080
10.1016/j.matdes.2015.10.065
10.1016/j.phpro.2011.03.033
10.1016/j.matdes.2015.12.135
10.1038/nature22032
10.1016/j.actamat.2016.07.012
10.1016/j.actamat.2015.12.017
10.1016/j.addma.2015.07.001
10.1007/s11661-008-9566-6
10.1016/j.matdes.2015.05.041
10.3139/146.101418
10.1016/j.matdes.2016.05.018
10.1016/j.actamat.2016.07.019
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright_xml – notice: 2017 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.matdes.2017.08.026
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-4197
EndPage 34
ExternalDocumentID 10_1016_j_matdes_2017_08_026
S0264127517307724
GroupedDBID --K
--M
-~X
.~1
0SF
1B1
1~.
4.4
457
4G.
5GY
5VS
7-5
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAIAV
AAKOC
AAOAW
AAQFI
AAXUO
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GROUPED_DOAJ
IHE
J1W
KOM
M41
MO0
OAUVE
P2P
PC.
Q38
ROL
SDF
SDG
SDP
SPC
SSM
SST
SSZ
T5K
~G-
0R~
29M
AALRI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BCNDV
BNPGV
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
JJJVA
MAGPM
O9-
OK1
P-8
P-9
R2-
RIG
RNS
RPZ
SEW
SMS
SSH
WUQ
ID FETCH-LOGICAL-c372t-1370362688da618b179a59fce49563f4a7d940fa3f83588dae19d85eb3c7e8f23
IEDL.DBID AIKHN
ISSN 0264-1275
IngestDate Tue Jul 01 02:23:45 EDT 2025
Thu Apr 24 23:08:48 EDT 2025
Fri Feb 23 02:29:38 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Microstructural evolution
Orowan mechanism
Precipitate
Selective laser melting
Maraging steel
Age hardening
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-1370362688da618b179a59fce49563f4a7d940fa3f83588dae19d85eb3c7e8f23
ORCID 0000-0003-2029-4600
PageCount 12
ParticipantIDs crossref_citationtrail_10_1016_j_matdes_2017_08_026
crossref_primary_10_1016_j_matdes_2017_08_026
elsevier_sciencedirect_doi_10_1016_j_matdes_2017_08_026
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-11-15
PublicationDateYYYYMMDD 2017-11-15
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-11-15
  day: 15
PublicationDecade 2010
PublicationTitle Materials & design
PublicationYear 2017
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Tan, Zhou, Tong, Huang, Li, Ma, Li, Kuang (bb0055) 2016; 96
Pereloma, Shekhter, Miller, Ringer (bb0115) 2004; 52
SAE Standard (bb0265) 2012
ASTM Standard, E8/E8M-2013a (bb0190) 2013
Suryawanshi, Prashanth, Scudino, Eckert, Prakash, Ramamurty (bb0045) 2016; 115
Zhang, Attar (bb0050) 2016; 18
Jägle, Choi, Van Humbeeck, Raabe (bb0160) 2014; 29
Zhao, Li, Zhang, Liu, Sercombe, Wang, Hao, Yang, Murr (bb0070) 2016; 95
Jiang, Wang, Wu, Liu, Chen, Yao, Gault, Ponge, Raabe, Hirata, Chen, Wang, Lu (bb0150) 2017; 544
Wu, Wang, Wang, Attallah, Loretto (bb0075) 2016; 117
Kürnsteiner, Wilms, Weisheit, Barriobero-Vila, Jägle, Raabe (bb0110) 2017; 129
Schnitzer, Schober, Zinner, Leitner (bb0135) 2010; 58
Casalino, Campanelli, Contuzzi, Ludovico (bb0180) 2015; 65
Tan, Luo, Li, Yan, Duan, Huang (bb0220) 2015; 324
Zheng, Zhou, Smugeresky, Schoenung, Lavernia (bb0165) 2008; 39
Hozoorbakhsh, Ismail, Aziz (bb0215) 2015; 68
Ng, Jarfors, Bi, Zheng (bb0205) 2009; 97
Wang, Li, Yu, Ding, Tang, Li, Zhou (bb0230) 2005; 200
Liu, Sommer, Bos, Mittemeijer (bb0250) 2007; 52
Tewari, Mazumder, Batra, Dey, Banerjee (bb0145) 2000; 48
Xu, Rivera-Díaz-del-Castillo, Wang, Yang, Bliznuk, Kestens, van der Zwaag (bb0245) 2010; 58
Pereloma, Stohr, Miller, Ringer (bb0155) 2009; 40
Tan, Zhou, Tong, Huang, Li, Ma, Li, Kuang (bb0175) 2016
Shin, Jeong, Lee (bb0130) 2015; 99
Acharya, Sharon, Staroselsky (bb0225) 2017; 124
Yuan, Gu, Dai (bb0080) 2015; 82
Sha, Cerezo, Smith (bb0240) 1993; 24
Rao (bb0125) 2006; 97
Li, Yan, Cotton, Ryan, Shen, Wang, Shan, Yang (bb0140) 2015; 82
Huang, Liu, Mokasdar, Hou (bb0035) 2012; 67
Uhlmann, Bergmann, Gridin (bb0185) 2015
ASM International Handbook Committee (bb0260) 1991
Garibaldi, Ashcroft, Simonelli, Hague (bb0200) 2016; 110
Frazier (bb0005) 2014; 23
Jung, Choi, Prashanth, Stoica, Scudino, Yi, Kühn, Kim, Kim, Eckert (bb0255) 2015; 86
Kimura, Nakamoto (bb0210) 2016; 89
Gu, Meiners, Wissenbach, Poprawe (bb0030) 2013; 57
Olakanmi, Cochrane, Dalgarno (bb0025) 2015; 74
Kempen, Yasa, Thijs, Kruth, Van Humbeeck (bb0105) 2011; 12
Vasudevan, Kim, Wayman (bb0120) 1990; 21
Yan, Hao, Hussein, Young, Raymont (bb0060) 2014; 55
Qiu, Adkins, Attallah (bb0100) 2016; 103
Kelly (bb0270) 1972; 6
Song, Dong, Coddet, Zhou, Ouyang, Liao, Coddet (bb0195) 2013; 579
AlMangour, Grzesiak, Jenn (bb0095) 2016; 104
Herzog, Seyda, Wycisk, Emmelmann (bb0015) 2016; 117
Li, Hassanin, Attallah, Adkins, Essa (bb0065) 2016; 105
Wang, Zhang, Tan, Raghavan, Lim, Sun, Wei, Chi (bb0090) 2016; 112
Stampfl, Hatzenbichler (bb0020) 2014
Wang, Carter, Pang, Attallah, Loretto (bb0085) 2017; 128
Berman (bb0040) 2012; 55
Vanderwalker (bb0235) 1987; 18
Thompson, Bian, Shamsaei, Yadollahi (bb0010) 2015; 8
Jägle, Sheng, Kürnsteiner, Ocylok, Weisheit, Raabe (bb0170) 2016; 10
Uhlmann (10.1016/j.matdes.2017.08.026_bb0185) 2015
Yan (10.1016/j.matdes.2017.08.026_bb0060) 2014; 55
Qiu (10.1016/j.matdes.2017.08.026_bb0100) 2016; 103
Zhao (10.1016/j.matdes.2017.08.026_bb0070) 2016; 95
Pereloma (10.1016/j.matdes.2017.08.026_bb0115) 2004; 52
Zhang (10.1016/j.matdes.2017.08.026_bb0050) 2016; 18
Liu (10.1016/j.matdes.2017.08.026_bb0250) 2007; 52
Tewari (10.1016/j.matdes.2017.08.026_bb0145) 2000; 48
Song (10.1016/j.matdes.2017.08.026_bb0195) 2013; 579
ASM International Handbook Committee (10.1016/j.matdes.2017.08.026_bb0260) 1991
ASTM Standard, E8/E8M-2013a (10.1016/j.matdes.2017.08.026_bb0190) 2013
Pereloma (10.1016/j.matdes.2017.08.026_bb0155) 2009; 40
Tan (10.1016/j.matdes.2017.08.026_bb0175) 2016
Olakanmi (10.1016/j.matdes.2017.08.026_bb0025) 2015; 74
Wu (10.1016/j.matdes.2017.08.026_bb0075) 2016; 117
Casalino (10.1016/j.matdes.2017.08.026_bb0180) 2015; 65
Jung (10.1016/j.matdes.2017.08.026_bb0255) 2015; 86
Schnitzer (10.1016/j.matdes.2017.08.026_bb0135) 2010; 58
Rao (10.1016/j.matdes.2017.08.026_bb0125) 2006; 97
Li (10.1016/j.matdes.2017.08.026_bb0140) 2015; 82
Wang (10.1016/j.matdes.2017.08.026_bb0090) 2016; 112
Vanderwalker (10.1016/j.matdes.2017.08.026_bb0235) 1987; 18
Xu (10.1016/j.matdes.2017.08.026_bb0245) 2010; 58
Wang (10.1016/j.matdes.2017.08.026_bb0230) 2005; 200
Acharya (10.1016/j.matdes.2017.08.026_bb0225) 2017; 124
Tan (10.1016/j.matdes.2017.08.026_bb0220) 2015; 324
Stampfl (10.1016/j.matdes.2017.08.026_bb0020) 2014
Kimura (10.1016/j.matdes.2017.08.026_bb0210) 2016; 89
Frazier (10.1016/j.matdes.2017.08.026_bb0005) 2014; 23
Yuan (10.1016/j.matdes.2017.08.026_bb0080) 2015; 82
Tan (10.1016/j.matdes.2017.08.026_bb0055) 2016; 96
Suryawanshi (10.1016/j.matdes.2017.08.026_bb0045) 2016; 115
Kürnsteiner (10.1016/j.matdes.2017.08.026_bb0110) 2017; 129
Gu (10.1016/j.matdes.2017.08.026_bb0030) 2013; 57
Jägle (10.1016/j.matdes.2017.08.026_bb0160) 2014; 29
SAE Standard (10.1016/j.matdes.2017.08.026_bb0265) 2012
Thompson (10.1016/j.matdes.2017.08.026_bb0010) 2015; 8
Jägle (10.1016/j.matdes.2017.08.026_bb0170) 2016; 10
Li (10.1016/j.matdes.2017.08.026_bb0065) 2016; 105
Kelly (10.1016/j.matdes.2017.08.026_bb0270) 1972; 6
Zheng (10.1016/j.matdes.2017.08.026_bb0165) 2008; 39
AlMangour (10.1016/j.matdes.2017.08.026_bb0095) 2016; 104
Kempen (10.1016/j.matdes.2017.08.026_bb0105) 2011; 12
Berman (10.1016/j.matdes.2017.08.026_bb0040) 2012; 55
Sha (10.1016/j.matdes.2017.08.026_bb0240) 1993; 24
Jiang (10.1016/j.matdes.2017.08.026_bb0150) 2017; 544
Garibaldi (10.1016/j.matdes.2017.08.026_bb0200) 2016; 110
Hozoorbakhsh (10.1016/j.matdes.2017.08.026_bb0215) 2015; 68
Vasudevan (10.1016/j.matdes.2017.08.026_bb0120) 1990; 21
Herzog (10.1016/j.matdes.2017.08.026_bb0015) 2016; 117
Huang (10.1016/j.matdes.2017.08.026_bb0035) 2012; 67
Shin (10.1016/j.matdes.2017.08.026_bb0130) 2015; 99
Wang (10.1016/j.matdes.2017.08.026_bb0085) 2017; 128
Ng (10.1016/j.matdes.2017.08.026_bb0205) 2009; 97
References_xml – volume: 117
  start-page: 311
  year: 2016
  end-page: 320
  ident: bb0075
  article-title: Microstructure and strength of selectively laser melted AlSi10Mg
  publication-title: Acta Mater.
– volume: 68
  start-page: 178
  year: 2015
  end-page: 187
  ident: bb0215
  article-title: A computational analysis of heat transfer and fluid flow in high-speed scanning of laser micro-welding
  publication-title: Int. Commun. Heat Mass Transfer
– volume: 52
  start-page: 5589
  year: 2004
  end-page: 5602
  ident: bb0115
  article-title: Ageing behaviour of an Fe–20Ni–1.8Mn–1.6Ti–0.59Al (wt%) maraging alloy: clustering, precipitation and hardening
  publication-title: Acta Mater.
– start-page: 404
  year: 2016
  end-page: 410
  ident: bb0175
  article-title: Microstructure and mechanical properties of 18Ni-300 maraging steel fabricated by selective laser melting
  publication-title: Proceedings of the 2016 6th International Conference on Advanced Design and Manufacturing Engineering
– volume: 57
  start-page: 133
  year: 2013
  end-page: 164
  ident: bb0030
  article-title: Laser additive manufacturing of metallic components: materials, processes and mechanisms
  publication-title: Int. Mater. Rev.
– volume: 18
  start-page: 463
  year: 2016
  end-page: 475
  ident: bb0050
  article-title: Selective laser melting of titanium alloys and titanium matrix composites for biomedical applications: a review
  publication-title: Adv. Eng. Mater.
– start-page: 8
  year: 2015
  end-page: 15
  ident: bb0185
  article-title: Investigation on additive manufacturing of tungsten carbide-cobalt by selective laser melting
  publication-title: Mic2015 -15th Machining Innovations Conference for Aerospace Industry
– volume: 117
  start-page: 371
  year: 2016
  end-page: 392
  ident: bb0015
  article-title: Additive manufacturing of metals
  publication-title: Acta Mater.
– volume: 324
  start-page: 36
  year: 2015
  end-page: 44
  ident: bb0220
  article-title: Effect of strengthening particles on the dry sliding wear behavior of Al
  publication-title: Wear
– volume: 12
  start-page: 255
  year: 2011
  end-page: 263
  ident: bb0105
  article-title: Microstructure and mechanical properties of Selective Laser Melted 18Ni-300 steel
  publication-title: Phys. Procedia
– volume: 74
  start-page: 401
  year: 2015
  end-page: 477
  ident: bb0025
  article-title: A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: processing, microstructure, and properties
  publication-title: Prog. Mater. Sci.
– volume: 544
  start-page: 460
  year: 2017
  end-page: 464
  ident: bb0150
  article-title: Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation
  publication-title: Nature
– volume: 82
  start-page: 46
  year: 2015
  end-page: 55
  ident: bb0080
  article-title: Particulate migration behavior and its mechanism during selective laser melting of TiC reinforced Al matrix nanocomposites
  publication-title: Mater. Des.
– volume: 89
  start-page: 1294
  year: 2016
  end-page: 1301
  ident: bb0210
  article-title: Microstructures and mechanical properties of A356 (AlSi7Mg0.3) aluminum alloy fabricated by selective laser melting
  publication-title: Mater. Des.
– volume: 115
  start-page: 285
  year: 2016
  end-page: 294
  ident: bb0045
  article-title: Simultaneous enhancements of strength and toughness in an Al-12Si alloy synthesized using selective laser melting
  publication-title: Acta Mater.
– volume: 18
  start-page: 1191
  year: 1987
  end-page: 1194
  ident: bb0235
  article-title: The precipitation sequence of Ni3Ti in Co-free maraging steel
  publication-title: Metall. Trans. A.
– volume: 200
  start-page: 2080
  year: 2005
  end-page: 2084
  ident: bb0230
  article-title: In situ fabrication of bioceramic composite coatings by laser cladding
  publication-title: Surf. Coat. Technol.
– volume: 6
  start-page: 647
  year: 1972
  end-page: 656
  ident: bb0270
  article-title: The effect of particle shape on dispersion hardening
  publication-title: Scr. Metall.
– volume: 40
  start-page: 3069
  year: 2009
  ident: bb0155
  article-title: Observation of precipitation evolution in Fe-Ni-Mn-Ti-Al maraging steel by atom probe tomography
  publication-title: Metall. Mater. Trans. A
– volume: 579
  start-page: 415
  year: 2013
  end-page: 421
  ident: bb0195
  article-title: Microstructure and tensile behavior of hybrid nano-micro SiC reinforced iron matrix composites produced by selective laser melting
  publication-title: J. Alloys Compd.
– volume: 23
  start-page: 1917
  year: 2014
  end-page: 1928
  ident: bb0005
  article-title: Metal additive manufacturing: a review
  publication-title: J. Mater. Eng. Perform.
– volume: 96
  start-page: 404
  year: 2016
  end-page: 410
  ident: bb0055
  article-title: Microstructure and mechanical properties of 18Ni-300 maraging steel fabricated by selective laser melting
  publication-title: Proceedings of the 2016 6th International Conference on Advanced Design and Manufacturing Engineering
– volume: 112
  start-page: 290
  year: 2016
  end-page: 299
  ident: bb0090
  article-title: Microstructural characteristics and mechanical properties of carbon nanotube reinforced Inconel 625 parts fabricated by selective laser melting
  publication-title: Mater. Des.
– year: 2013
  ident: bb0190
  article-title: Standard Test Methods for Tension Test of Metallic Materials
– start-page: 8
  year: 2012
  ident: bb0265
  article-title: AMS 6514H
  publication-title: Steel, Maraging, Bars, Forgings, Tubing, and Rings 18.5Ni- 9.0Co- 4.9Mo- 0.65Ti- 0.10Al Consumable Electrode Vacuum Melted, Annealed
– volume: 21
  start-page: 2655
  year: 1990
  end-page: 2668
  ident: bb0120
  article-title: Precipitation reactions and strengthening behavior in 18 Wt Pct nickel maraging steels
  publication-title: Metall. Trans. A.
– volume: 39
  start-page: 2237
  year: 2008
  end-page: 2245
  ident: bb0165
  article-title: Thermal behavior and microstructure evolution during laser deposition with laser-engineered net shaping: part II. Experimental investigation and discussion
  publication-title: Metall. Mater. Trans. A
– volume: 128
  start-page: 87
  year: 2017
  end-page: 95
  ident: bb0085
  article-title: Microstructure and yield strength of SLM-fabricated CM247LC Ni-Superalloy
  publication-title: Acta Mater.
– volume: 95
  start-page: 21
  year: 2016
  end-page: 31
  ident: bb0070
  article-title: Comparison of the microstructures and mechanical properties of Ti–6Al–4V fabricated by selective laser melting and electron beam melting
  publication-title: Mater. Des.
– volume: 8
  start-page: 36
  year: 2015
  end-page: 62
  ident: bb0010
  article-title: An overview of Direct Laser Deposition for additive manufacturing; part I: transport phenomena, modeling and diagnostics
  publication-title: Addit. Manuf.
– volume: 55
  start-page: 533
  year: 2014
  end-page: 541
  ident: bb0060
  article-title: Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting
  publication-title: Mater. Des.
– volume: 104
  start-page: 141
  year: 2016
  end-page: 151
  ident: bb0095
  article-title: Selective laser melting of TiC reinforced 316L stainless steel matrix nanocomposites: influence of starting TiC particle size and volume content
  publication-title: Mater. Des.
– volume: 105
  start-page: 75
  year: 2016
  end-page: 83
  ident: bb0065
  article-title: The development of TiNi-based negative Poisson's ratio structure using selective laser melting
  publication-title: Acta Mater.
– volume: 55
  start-page: 155
  year: 2012
  end-page: 162
  ident: bb0040
  article-title: 3-D printing: the new industrial revolution
  publication-title: Bus. Horiz.
– volume: 67
  start-page: 1191
  year: 2012
  end-page: 1203
  ident: bb0035
  article-title: Additive manufacturing and its societal impact: a literature review
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 99
  start-page: 230
  year: 2015
  end-page: 237
  ident: bb0130
  article-title: Microstructural evolution and the variation of tensile behavior after aging heat treatment of precipitation hardened martensitic steel
  publication-title: Mater. Charact.
– volume: 48
  start-page: 1187
  year: 2000
  end-page: 1200
  ident: bb0145
  article-title: Precipitation in 18
  publication-title: Acta Mater.
– start-page: 1872
  year: 1991
  end-page: 1873
  ident: bb0260
  article-title: Properties and selection: irons steels and high performance alloys
  publication-title: ASM Handbook
– volume: 103
  start-page: 382
  year: 2016
  end-page: 395
  ident: bb0100
  article-title: Selective laser melting of Invar 36: microstructure and properties
  publication-title: Acta Mater.
– volume: 82
  start-page: 56
  year: 2015
  end-page: 63
  ident: bb0140
  article-title: A new 1.9
  publication-title: Mater. Des.
– volume: 110
  start-page: 207
  year: 2016
  end-page: 216
  ident: bb0200
  article-title: Metallurgy of high-silicon steel parts produced using Selective Laser Melting
  publication-title: Acta Mater.
– volume: 58
  start-page: 3582
  year: 2010
  end-page: 3593
  ident: bb0245
  article-title: Genetic design and characterization of novel ultra-high-strength stainless steels strengthened by Ni
  publication-title: Acta Mater.
– volume: 58
  start-page: 3733
  year: 2010
  end-page: 3741
  ident: bb0135
  article-title: Effect of Cu on the evolution of precipitation in an Fe–Cr–Ni–Al–Ti maraging steel
  publication-title: Acta Mater.
– volume: 86
  start-page: 703
  year: 2015
  end-page: 708
  ident: bb0255
  article-title: Fabrication of Fe-based bulk metallic glass by selective laser melting: a parameter study
  publication-title: Mater. Des.
– volume: 97
  start-page: 641
  year: 2009
  end-page: 649
  ident: bb0205
  article-title: Porosity formation and gas bubble retention in laser metal deposition
  publication-title: Appl. Phys. A Mater. Sci. Process.
– volume: 124
  start-page: 360
  year: 2017
  end-page: 371
  ident: bb0225
  article-title: Prediction of microstructure in laser powder bed fusion process
  publication-title: Acta Mater.
– start-page: 20
  year: 2014
  end-page: 27
  ident: bb0020
  article-title: Additive manufacturing technologies
  publication-title: CIRP Encyclopedia of Production Engineering
– volume: 129
  start-page: 52
  year: 2017
  end-page: 60
  ident: bb0110
  article-title: Massive nanoprecipitation in an Fe-19Ni-xAl maraging steel triggered by the intrinsic heat treatment during laser metal deposition
  publication-title: Acta Mater.
– volume: 29
  start-page: 2072
  year: 2014
  end-page: 2079
  ident: bb0160
  article-title: Precipitation and austenite reversion behavior of a maraging steel produced by selective laser melting
  publication-title: J. Mater. Res.
– volume: 52
  start-page: 193
  year: 2007
  end-page: 212
  ident: bb0250
  article-title: Analysis of solid state phase transformation kinetics: models and recipes
  publication-title: Int. Mater. Rev.
– volume: 10
  start-page: 8
  year: 2016
  ident: bb0170
  article-title: Comparison of maraging steel micro- and nanostructure produced conventionally and by laser additive manufacturing
  publication-title: Materials
– volume: 97
  start-page: 1594
  year: 2006
  end-page: 1607
  ident: bb0125
  article-title: Progress in understanding the metallurgy of 18% nickel maraging steels
  publication-title: Int. J. Mater. Res.
– volume: 65
  start-page: 151
  year: 2015
  end-page: 158
  ident: bb0180
  article-title: Experimental investigation and statistical optimisation of the selective laser melting process of a maraging steel
  publication-title: Opt. Laser Technol.
– volume: 24
  start-page: 1251
  year: 1993
  end-page: 1256
  ident: bb0240
  article-title: Phase chemistry and precipitation reactions in maraging steels: part IV. Discussion and conclusions
  publication-title: Metall. Mater. Trans. A
– start-page: 8
  year: 2012
  ident: 10.1016/j.matdes.2017.08.026_bb0265
  article-title: AMS 6514H
– volume: 52
  start-page: 193
  year: 2007
  ident: 10.1016/j.matdes.2017.08.026_bb0250
  article-title: Analysis of solid state phase transformation kinetics: models and recipes
  publication-title: Int. Mater. Rev.
  doi: 10.1179/174328007X160308
– volume: 23
  start-page: 1917
  year: 2014
  ident: 10.1016/j.matdes.2017.08.026_bb0005
  article-title: Metal additive manufacturing: a review
  publication-title: J. Mater. Eng. Perform.
  doi: 10.1007/s11665-014-0958-z
– volume: 57
  start-page: 133
  year: 2013
  ident: 10.1016/j.matdes.2017.08.026_bb0030
  article-title: Laser additive manufacturing of metallic components: materials, processes and mechanisms
  publication-title: Int. Mater. Rev.
  doi: 10.1179/1743280411Y.0000000014
– volume: 68
  start-page: 178
  year: 2015
  ident: 10.1016/j.matdes.2017.08.026_bb0215
  article-title: A computational analysis of heat transfer and fluid flow in high-speed scanning of laser micro-welding
  publication-title: Int. Commun. Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2015.08.013
– volume: 29
  start-page: 2072
  year: 2014
  ident: 10.1016/j.matdes.2017.08.026_bb0160
  article-title: Precipitation and austenite reversion behavior of a maraging steel produced by selective laser melting
  publication-title: J. Mater. Res.
  doi: 10.1557/jmr.2014.204
– year: 2013
  ident: 10.1016/j.matdes.2017.08.026_bb0190
– volume: 18
  start-page: 1191
  year: 1987
  ident: 10.1016/j.matdes.2017.08.026_bb0235
  article-title: The precipitation sequence of Ni3Ti in Co-free maraging steel
  publication-title: Metall. Trans. A.
  doi: 10.1007/BF02647188
– start-page: 1872
  year: 1991
  ident: 10.1016/j.matdes.2017.08.026_bb0260
  article-title: Properties and selection: irons steels and high performance alloys
– volume: 18
  start-page: 463
  year: 2016
  ident: 10.1016/j.matdes.2017.08.026_bb0050
  article-title: Selective laser melting of titanium alloys and titanium matrix composites for biomedical applications: a review
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.201500419
– start-page: 8
  year: 2015
  ident: 10.1016/j.matdes.2017.08.026_bb0185
  article-title: Investigation on additive manufacturing of tungsten carbide-cobalt by selective laser melting
– volume: 124
  start-page: 360
  year: 2017
  ident: 10.1016/j.matdes.2017.08.026_bb0225
  article-title: Prediction of microstructure in laser powder bed fusion process
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.11.018
– volume: 58
  start-page: 3733
  year: 2010
  ident: 10.1016/j.matdes.2017.08.026_bb0135
  article-title: Effect of Cu on the evolution of precipitation in an Fe–Cr–Ni–Al–Ti maraging steel
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2010.03.010
– volume: 110
  start-page: 207
  year: 2016
  ident: 10.1016/j.matdes.2017.08.026_bb0200
  article-title: Metallurgy of high-silicon steel parts produced using Selective Laser Melting
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.03.037
– volume: 96
  start-page: 404
  year: 2016
  ident: 10.1016/j.matdes.2017.08.026_bb0055
  article-title: Microstructure and mechanical properties of 18Ni-300 maraging steel fabricated by selective laser melting
– volume: 10
  start-page: 8
  year: 2016
  ident: 10.1016/j.matdes.2017.08.026_bb0170
  article-title: Comparison of maraging steel micro- and nanostructure produced conventionally and by laser additive manufacturing
  publication-title: Materials
  doi: 10.3390/ma10010008
– volume: 115
  start-page: 285
  year: 2016
  ident: 10.1016/j.matdes.2017.08.026_bb0045
  article-title: Simultaneous enhancements of strength and toughness in an Al-12Si alloy synthesized using selective laser melting
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.06.009
– volume: 52
  start-page: 5589
  year: 2004
  ident: 10.1016/j.matdes.2017.08.026_bb0115
  article-title: Ageing behaviour of an Fe–20Ni–1.8Mn–1.6Ti–0.59Al (wt%) maraging alloy: clustering, precipitation and hardening
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2004.08.018
– volume: 65
  start-page: 151
  year: 2015
  ident: 10.1016/j.matdes.2017.08.026_bb0180
  article-title: Experimental investigation and statistical optimisation of the selective laser melting process of a maraging steel
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2014.07.021
– volume: 324
  start-page: 36
  year: 2015
  ident: 10.1016/j.matdes.2017.08.026_bb0220
  article-title: Effect of strengthening particles on the dry sliding wear behavior of Al2O3-M7C3/Fe metal matrix composite coatings produced by laser cladding
  publication-title: Wear
  doi: 10.1016/j.wear.2014.11.023
– volume: 200
  start-page: 2080
  year: 2005
  ident: 10.1016/j.matdes.2017.08.026_bb0230
  article-title: In situ fabrication of bioceramic composite coatings by laser cladding
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2005.07.076
– volume: 99
  start-page: 230
  year: 2015
  ident: 10.1016/j.matdes.2017.08.026_bb0130
  article-title: Microstructural evolution and the variation of tensile behavior after aging heat treatment of precipitation hardened martensitic steel
  publication-title: Mater. Charact.
  doi: 10.1016/j.matchar.2014.11.024
– volume: 48
  start-page: 1187
  year: 2000
  ident: 10.1016/j.matdes.2017.08.026_bb0145
  article-title: Precipitation in 18wt% Ni maraging steel of grade 350
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(99)00370-5
– volume: 55
  start-page: 155
  year: 2012
  ident: 10.1016/j.matdes.2017.08.026_bb0040
  article-title: 3-D printing: the new industrial revolution
  publication-title: Bus. Horiz.
  doi: 10.1016/j.bushor.2011.11.003
– volume: 58
  start-page: 3582
  year: 2010
  ident: 10.1016/j.matdes.2017.08.026_bb0245
  article-title: Genetic design and characterization of novel ultra-high-strength stainless steels strengthened by Ni3Ti intermetallic nanoprecipitates
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2010.02.028
– volume: 82
  start-page: 56
  year: 2015
  ident: 10.1016/j.matdes.2017.08.026_bb0140
  article-title: A new 1.9GPa maraging stainless steel strengthened by multiple precipitating species
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2015.05.042
– volume: 579
  start-page: 415
  year: 2013
  ident: 10.1016/j.matdes.2017.08.026_bb0195
  article-title: Microstructure and tensile behavior of hybrid nano-micro SiC reinforced iron matrix composites produced by selective laser melting
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2013.06.087
– volume: 6
  start-page: 647
  year: 1972
  ident: 10.1016/j.matdes.2017.08.026_bb0270
  article-title: The effect of particle shape on dispersion hardening
  publication-title: Scr. Metall.
  doi: 10.1016/0036-9748(72)90120-2
– volume: 97
  start-page: 641
  year: 2009
  ident: 10.1016/j.matdes.2017.08.026_bb0205
  article-title: Porosity formation and gas bubble retention in laser metal deposition
  publication-title: Appl. Phys. A Mater. Sci. Process.
  doi: 10.1007/s00339-009-5266-3
– volume: 129
  start-page: 52
  year: 2017
  ident: 10.1016/j.matdes.2017.08.026_bb0110
  article-title: Massive nanoprecipitation in an Fe-19Ni-xAl maraging steel triggered by the intrinsic heat treatment during laser metal deposition
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2017.02.069
– volume: 40
  start-page: 3069
  year: 2009
  ident: 10.1016/j.matdes.2017.08.026_bb0155
  article-title: Observation of precipitation evolution in Fe-Ni-Mn-Ti-Al maraging steel by atom probe tomography
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-009-9993-z
– volume: 55
  start-page: 533
  year: 2014
  ident: 10.1016/j.matdes.2017.08.026_bb0060
  article-title: Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2013.10.027
– volume: 21
  start-page: 2655
  year: 1990
  ident: 10.1016/j.matdes.2017.08.026_bb0120
  article-title: Precipitation reactions and strengthening behavior in 18 Wt Pct nickel maraging steels
  publication-title: Metall. Trans. A.
  doi: 10.1007/BF02646061
– volume: 24
  start-page: 1251
  year: 1993
  ident: 10.1016/j.matdes.2017.08.026_bb0240
  article-title: Phase chemistry and precipitation reactions in maraging steels: part IV. Discussion and conclusions
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/BF02668193
– volume: 74
  start-page: 401
  year: 2015
  ident: 10.1016/j.matdes.2017.08.026_bb0025
  article-title: A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: processing, microstructure, and properties
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2015.03.002
– volume: 86
  start-page: 703
  year: 2015
  ident: 10.1016/j.matdes.2017.08.026_bb0255
  article-title: Fabrication of Fe-based bulk metallic glass by selective laser melting: a parameter study
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2015.07.145
– volume: 67
  start-page: 1191
  year: 2012
  ident: 10.1016/j.matdes.2017.08.026_bb0035
  article-title: Additive manufacturing and its societal impact: a literature review
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-012-4558-5
– volume: 103
  start-page: 382
  year: 2016
  ident: 10.1016/j.matdes.2017.08.026_bb0100
  article-title: Selective laser melting of Invar 36: microstructure and properties
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2015.10.020
– volume: 128
  start-page: 87
  year: 2017
  ident: 10.1016/j.matdes.2017.08.026_bb0085
  article-title: Microstructure and yield strength of SLM-fabricated CM247LC Ni-Superalloy
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2017.02.007
– volume: 112
  start-page: 290
  year: 2016
  ident: 10.1016/j.matdes.2017.08.026_bb0090
  article-title: Microstructural characteristics and mechanical properties of carbon nanotube reinforced Inconel 625 parts fabricated by selective laser melting
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2016.09.080
– volume: 89
  start-page: 1294
  year: 2016
  ident: 10.1016/j.matdes.2017.08.026_bb0210
  article-title: Microstructures and mechanical properties of A356 (AlSi7Mg0.3) aluminum alloy fabricated by selective laser melting
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2015.10.065
– volume: 12
  start-page: 255
  year: 2011
  ident: 10.1016/j.matdes.2017.08.026_bb0105
  article-title: Microstructure and mechanical properties of Selective Laser Melted 18Ni-300 steel
  publication-title: Phys. Procedia
  doi: 10.1016/j.phpro.2011.03.033
– volume: 95
  start-page: 21
  year: 2016
  ident: 10.1016/j.matdes.2017.08.026_bb0070
  article-title: Comparison of the microstructures and mechanical properties of Ti–6Al–4V fabricated by selective laser melting and electron beam melting
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2015.12.135
– volume: 544
  start-page: 460
  year: 2017
  ident: 10.1016/j.matdes.2017.08.026_bb0150
  article-title: Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation
  publication-title: Nature
  doi: 10.1038/nature22032
– volume: 117
  start-page: 311
  year: 2016
  ident: 10.1016/j.matdes.2017.08.026_bb0075
  article-title: Microstructure and strength of selectively laser melted AlSi10Mg
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.07.012
– volume: 105
  start-page: 75
  year: 2016
  ident: 10.1016/j.matdes.2017.08.026_bb0065
  article-title: The development of TiNi-based negative Poisson's ratio structure using selective laser melting
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2015.12.017
– start-page: 404
  year: 2016
  ident: 10.1016/j.matdes.2017.08.026_bb0175
  article-title: Microstructure and mechanical properties of 18Ni-300 maraging steel fabricated by selective laser melting
– volume: 8
  start-page: 36
  year: 2015
  ident: 10.1016/j.matdes.2017.08.026_bb0010
  article-title: An overview of Direct Laser Deposition for additive manufacturing; part I: transport phenomena, modeling and diagnostics
  publication-title: Addit. Manuf.
  doi: 10.1016/j.addma.2015.07.001
– volume: 39
  start-page: 2237
  year: 2008
  ident: 10.1016/j.matdes.2017.08.026_bb0165
  article-title: Thermal behavior and microstructure evolution during laser deposition with laser-engineered net shaping: part II. Experimental investigation and discussion
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-008-9566-6
– volume: 82
  start-page: 46
  year: 2015
  ident: 10.1016/j.matdes.2017.08.026_bb0080
  article-title: Particulate migration behavior and its mechanism during selective laser melting of TiC reinforced Al matrix nanocomposites
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2015.05.041
– volume: 97
  start-page: 1594
  year: 2006
  ident: 10.1016/j.matdes.2017.08.026_bb0125
  article-title: Progress in understanding the metallurgy of 18% nickel maraging steels
  publication-title: Int. J. Mater. Res.
  doi: 10.3139/146.101418
– start-page: 20
  year: 2014
  ident: 10.1016/j.matdes.2017.08.026_bb0020
  article-title: Additive manufacturing technologies
– volume: 104
  start-page: 141
  year: 2016
  ident: 10.1016/j.matdes.2017.08.026_bb0095
  article-title: Selective laser melting of TiC reinforced 316L stainless steel matrix nanocomposites: influence of starting TiC particle size and volume content
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2016.05.018
– volume: 117
  start-page: 371
  year: 2016
  ident: 10.1016/j.matdes.2017.08.026_bb0015
  article-title: Additive manufacturing of metals
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.07.019
SSID ssj0022734
Score 2.6515267
Snippet High-performance grade 300 maraging steels were fabricated by selective laser melting (SLM) and different heat treatments were applied for improving their...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 23
SubjectTerms Age hardening
Maraging steel
Microstructural evolution
Orowan mechanism
Precipitate
Selective laser melting
Title Microstructural evolution, nanoprecipitation behavior and mechanical properties of selective laser melted high-performance grade 300 maraging steel
URI https://dx.doi.org/10.1016/j.matdes.2017.08.026
Volume 134
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LS8NAEIAXbS96EJ9YH2UPHg3NY9PdHEux1EeLqIXewmazK5U2DVH8I_5hZ5JNrSAKHhN2IclM5rHMfEPIhWv8UHtCOuj7HKa468huGkKWksjEMxJcCiaKo3F3OGE303C6Qfp1LwyWVVrbX9n00lrbOx37NTv5bNZ5hOyBIZ7cAyWFGJFtkqYP3tVtkGbv-nY4XuVdSHCpjloQ0cfDuoOuLPOCuDDVyO32eMnyRMrCTx5qzesMdsmODRdpr3qiPbKhs32yvQYRPCAfI6ypqziwyNCg-t2q0yXNZIZTTtQstyhuWrflU5mldKGx7xfFRHM8lC-QrkqXhr6W03HAEFIIrnUBC-cQmVJkGzv5V6sBfS5kqmngunQhi3LeEQWt0fNDMhlcPfWHjh214KiA-ziQnpdgGiFS2fVEAr-pDCOjNOZPgWGSpxFzjQwMRGy4SHtRKkLIxBXXwvjBEWlky0wfE8olUz4zJjAJ0gWZcEFZhWFG-SqNlG6RoP68sbIvj-Mw5nFdcPYSV0KJUSgxTsn0uy3irHblFYfjj_W8llz8TZ9icBW_7jz5985TsoVX2KnohWekAYLX5xCyvCVtUMn-w91926rmJ_6D8Dw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ3JTsMwEECtCg7AAbGKnTnAjahZnDo9cEAsaulyoUjcguPYqKiEqCAQ38Gn8IPMJA4UCYGExLWxDxmPZ0ln3jC25xo_1F4kHfJ9DlfCdWQjDTFLSWTiGYkuhRLFXr_RuuTnV-FVjb1VvTBUVmltf2nTC2ttf6lbadbz4bB-gdkDJzy5h0qKMSK3lZUd_fKMedvDYfsED3nf989OB8ctx44WcFQgfBrALgoQSxSlsuFFCaqlDJtGacoXAsOlSJvcNTIwGKHQIu010yjEzFMJHRmiHaDdnyYaFl6r6aN2p9X_yPOIGFN-2iEkoAirjr2irAzj0FQTJ9wTBTuUqA7fecQJL3e2wOZteApHpQQWWU1nS2xuAlq4zF57VMNXcmeJ2QH6yarvAWQyo6kqaphb9DdUGACQWQp3mvqMSS0gpz8BxkRzhXsDD8U0HjS8gMG8HuPCEUbCQCxlJ_9sbYCbsUw1BK4Ld3JczFcC1FI9WmGX_yL_VTaV3Wd6jYGQXPncmMAkRDPkkYuXIzLcKF-lTaXXWVCJN1b25Wn8xiiuCtxu4_JQYjqUmKZy-o115nzsykvuxy_rRXVy8Rf9jdE1_bhz4887d9lMa9Drxt12v7PJZukJdUl64RabQiXQ2xguPSY7Vj2BXf_3jXgHn5IrCw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microstructural+evolution%2C+nanoprecipitation+behavior+and+mechanical+properties+of+selective+laser+melted+high-performance+grade+300+maraging+steel&rft.jtitle=Materials+%26+design&rft.au=Tan%2C+Chaolin&rft.au=Zhou%2C+Kesong&rft.au=Ma%2C+Wenyou&rft.au=Zhang%2C+Panpan&rft.date=2017-11-15&rft.issn=0264-1275&rft.volume=134&rft.spage=23&rft.epage=34&rft_id=info:doi/10.1016%2Fj.matdes.2017.08.026&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_matdes_2017_08_026
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-1275&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-1275&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-1275&client=summon