Microstructural evolution, nanoprecipitation behavior and mechanical properties of selective laser melted high-performance grade 300 maraging steel
High-performance grade 300 maraging steels were fabricated by selective laser melting (SLM) and different heat treatments were applied for improving their mechanical properties. The microstructural evolutions, nanoprecipitation behaviors and mechanical properties of the as-fabricated and heat-treate...
Saved in:
Published in | Materials & design Vol. 134; pp. 23 - 34 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.11.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | High-performance grade 300 maraging steels were fabricated by selective laser melting (SLM) and different heat treatments were applied for improving their mechanical properties. The microstructural evolutions, nanoprecipitation behaviors and mechanical properties of the as-fabricated and heat-treated SLM parts were carefully characterized and analysed. The evolutions of the massive submicron sized cellular and elongated acicular microstructures are illustrated and theoretically explained. Nanoprecipitates triggered by intrinsic heat treatment and amorphous phases in as-fabricated specimens are observed by TEM. High-resolution TEM (HRTEM) images of the age hardened specimens clearly exhibit massive nanosized needle-shaped nanoprecipitates Ni3X (X=Ti, Al, Mo) and 50–60nm sized spherical core-shell structural nanoparticles embedded in amorphous matrix. XRD analyses reveal austenite reversion and probable phase transformations during heat treatments. The hardness and tensile strength of the as-fabricated and age-treated SLM specimens absolutely meet the standard wrought requirements. Furthermore, the lost ductility after aging can be compensated by preposed solution treatments. Relationships between massive nanoprecipitates and dramatically improved mechanical performances of age hardened specimens are elaborately analysed and perfectly explained by Orowan mechanism. This study demonstrates that high-performance grade 300 maraging steels, which is comparable to the standard wrought levels, can be produced by SLM additive manufacturing.
[Display omitted]
•Evolutions of the typical SLMed microstructures are illustrated and theoretically explained.•Precipitation behavior and phase transformation of SLMed maraging steel are characterized by TEM and XRD.•Significant improvement of strength after solution and aging treatment was evaluated and explained.•Relationships between massive nanoprecipitates and improved mechanical performances are elucidated. |
---|---|
AbstractList | High-performance grade 300 maraging steels were fabricated by selective laser melting (SLM) and different heat treatments were applied for improving their mechanical properties. The microstructural evolutions, nanoprecipitation behaviors and mechanical properties of the as-fabricated and heat-treated SLM parts were carefully characterized and analysed. The evolutions of the massive submicron sized cellular and elongated acicular microstructures are illustrated and theoretically explained. Nanoprecipitates triggered by intrinsic heat treatment and amorphous phases in as-fabricated specimens are observed by TEM. High-resolution TEM (HRTEM) images of the age hardened specimens clearly exhibit massive nanosized needle-shaped nanoprecipitates Ni3X (X=Ti, Al, Mo) and 50–60nm sized spherical core-shell structural nanoparticles embedded in amorphous matrix. XRD analyses reveal austenite reversion and probable phase transformations during heat treatments. The hardness and tensile strength of the as-fabricated and age-treated SLM specimens absolutely meet the standard wrought requirements. Furthermore, the lost ductility after aging can be compensated by preposed solution treatments. Relationships between massive nanoprecipitates and dramatically improved mechanical performances of age hardened specimens are elaborately analysed and perfectly explained by Orowan mechanism. This study demonstrates that high-performance grade 300 maraging steels, which is comparable to the standard wrought levels, can be produced by SLM additive manufacturing.
[Display omitted]
•Evolutions of the typical SLMed microstructures are illustrated and theoretically explained.•Precipitation behavior and phase transformation of SLMed maraging steel are characterized by TEM and XRD.•Significant improvement of strength after solution and aging treatment was evaluated and explained.•Relationships between massive nanoprecipitates and improved mechanical performances are elucidated. |
Author | Zhou, Kesong Kuang, Tongchun Zhang, Panpan Tan, Chaolin Liu, Min Ma, Wenyou |
Author_xml | – sequence: 1 givenname: Chaolin orcidid: 0000-0003-2029-4600 surname: Tan fullname: Tan, Chaolin organization: School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China – sequence: 2 givenname: Kesong surname: Zhou fullname: Zhou, Kesong email: kszhou2004@163.com organization: School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China – sequence: 3 givenname: Wenyou surname: Ma fullname: Ma, Wenyou organization: Guangdong Institute of New Materials, National Engineering Laboratory for Modern Materials Surface Engineering Technology, Key Lab of Guangdong for Modern Surface Engineering Technology, Guangzhou 510651, China – sequence: 4 givenname: Panpan surname: Zhang fullname: Zhang, Panpan organization: Guangdong Institute of New Materials, National Engineering Laboratory for Modern Materials Surface Engineering Technology, Key Lab of Guangdong for Modern Surface Engineering Technology, Guangzhou 510651, China – sequence: 5 givenname: Min surname: Liu fullname: Liu, Min organization: Guangdong Institute of New Materials, National Engineering Laboratory for Modern Materials Surface Engineering Technology, Key Lab of Guangdong for Modern Surface Engineering Technology, Guangzhou 510651, China – sequence: 6 givenname: Tongchun surname: Kuang fullname: Kuang, Tongchun organization: School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China |
BookMark | eNqFkMFq3DAURUVJoZM0f5CFPqB2JMu25C4KJbRNIKGbdi3eSE8zGjySkTQD_Y7-cGUmqy7a1YPHPRfuuSZXIQYk5I6zljM-3h_aIxSLue0Yly1TLevGN2TDlRRNzyd5RTb10ze8k8M7cp3zgbGuk6LfkN8v3qSYSzqZckowUzzH-VR8DB9ogBCXhMYvvsD6olvcw9nHRCFYekSzh-BNhZYUF0zFY6bR0YwzmuLPSGfImGpwLmjp3u_2TY25mI4QDNJdAotUMEaPkGDnw47mgji_J28dzBlvX-8N-fn1y4-Hx-b5-7enh8_PjRGyKw0XkomxG5WyMHK15XKCYXIG-2kYhetB2qlnDoRTYlhDyCerBtwKI1G5TtyQj5fe1UBO6LR5HVoS-Flzple9-qAvevWqVzOlq8wK93_BS_J1x6__YZ8uGNZhZ49JZ-Ox2rC-mi7aRv_vgj-ZSJ1W |
CitedBy_id | crossref_primary_10_1016_j_msea_2019_05_115 crossref_primary_10_1051_e3sconf_202337601088 crossref_primary_10_1007_s11837_020_04435_7 crossref_primary_10_1051_e3sconf_202337601087 crossref_primary_10_1016_j_matdes_2020_108689 crossref_primary_10_1016_j_matdes_2021_109813 crossref_primary_10_1016_j_jmrt_2023_09_117 crossref_primary_10_1007_s10853_021_05841_1 crossref_primary_10_1007_s00170_022_09004_7 crossref_primary_10_1016_j_jmrt_2024_12_014 crossref_primary_10_1002_srin_202000195 crossref_primary_10_1016_j_wear_2021_203962 crossref_primary_10_1080_17452759_2021_1964268 crossref_primary_10_1016_j_ijfatigue_2021_106468 crossref_primary_10_1016_j_addma_2022_103262 crossref_primary_10_1016_j_vacuum_2020_109557 crossref_primary_10_1016_j_matdes_2024_112938 crossref_primary_10_1016_j_matchar_2022_112065 crossref_primary_10_1007_s00170_020_05298_7 crossref_primary_10_3390_mi15040494 crossref_primary_10_17073_1997_308X_2022_4_84_92 crossref_primary_10_3390_met13101700 crossref_primary_10_1134_S0031918X23602056 crossref_primary_10_1016_j_msea_2022_143099 crossref_primary_10_3390_ma16134749 crossref_primary_10_1016_j_mtcomm_2024_109152 crossref_primary_10_1016_j_jmatprotec_2020_116906 crossref_primary_10_1016_j_matdes_2018_02_018 crossref_primary_10_1016_j_prostr_2022_12_104 crossref_primary_10_3390_ma16134610 crossref_primary_10_1016_j_msea_2017_11_084 crossref_primary_10_1007_s12540_023_01462_2 crossref_primary_10_1016_j_jmrt_2023_01_104 crossref_primary_10_1002_mawe_202000139 crossref_primary_10_1007_s11665_021_06102_7 crossref_primary_10_1016_j_mtcomm_2024_111259 crossref_primary_10_1016_j_msea_2021_141740 crossref_primary_10_1016_j_vacuum_2020_109216 crossref_primary_10_1016_j_msea_2020_140130 crossref_primary_10_1016_j_matdes_2023_112561 crossref_primary_10_1016_j_msea_2023_145744 crossref_primary_10_1007_s00170_023_12686_2 crossref_primary_10_1016_j_msea_2023_145622 crossref_primary_10_1016_j_msea_2023_145747 crossref_primary_10_1080_14686996_2024_2346071 crossref_primary_10_2139_ssrn_4100229 crossref_primary_10_1016_j_jmatprotec_2021_117358 crossref_primary_10_1016_j_jmst_2023_10_032 crossref_primary_10_1016_j_ijmachtools_2019_04_002 crossref_primary_10_1016_j_msea_2018_12_114 crossref_primary_10_1134_S0031918X19130118 crossref_primary_10_1051_e3sconf_202337603028 crossref_primary_10_1016_j_matdes_2018_09_021 crossref_primary_10_1590_1517_7076_rmat_2024_0279 crossref_primary_10_1080_17452759_2024_2364222 crossref_primary_10_1016_j_msea_2023_145336 crossref_primary_10_17073_0021_3438_2024_1_70_80 crossref_primary_10_1016_j_corsci_2022_110273 crossref_primary_10_1016_j_matdes_2020_108762 crossref_primary_10_1016_j_mtcomm_2023_105825 crossref_primary_10_1016_j_mtcomm_2022_104332 crossref_primary_10_1016_j_mtcomm_2022_103243 crossref_primary_10_1007_s40964_022_00306_6 crossref_primary_10_1016_j_surfcoat_2019_125279 crossref_primary_10_3390_ma13040956 crossref_primary_10_1016_j_msea_2022_143167 crossref_primary_10_1364_AO_409565 crossref_primary_10_1016_j_compositesb_2022_109820 crossref_primary_10_1016_j_addma_2020_101827 crossref_primary_10_1016_j_msea_2019_138512 crossref_primary_10_1016_j_msea_2019_138633 crossref_primary_10_1016_j_ijfatigue_2024_108319 crossref_primary_10_1177_20414196211035486 crossref_primary_10_1016_j_matdes_2020_108637 crossref_primary_10_1016_j_msea_2017_10_045 crossref_primary_10_3389_fmats_2022_797226 crossref_primary_10_1016_j_matchar_2023_113522 crossref_primary_10_1007_s11665_021_05927_6 crossref_primary_10_1016_j_prostr_2020_01_002 crossref_primary_10_1016_j_msea_2024_146804 crossref_primary_10_1016_j_jmatprotec_2019_116253 crossref_primary_10_1016_j_matdes_2022_111279 crossref_primary_10_1016_j_jmapro_2018_08_015 crossref_primary_10_1016_j_scriptamat_2022_114896 crossref_primary_10_1007_s12540_022_01218_4 crossref_primary_10_3390_coatings12030356 crossref_primary_10_1016_j_ijrmhm_2022_105988 crossref_primary_10_1016_j_ijimpeng_2025_105271 crossref_primary_10_1016_j_matchar_2021_111514 crossref_primary_10_1177_09544089221093994 crossref_primary_10_1007_s11665_021_05553_2 crossref_primary_10_1016_j_jmatprotec_2023_117886 crossref_primary_10_1016_j_jmst_2023_02_012 crossref_primary_10_1016_j_msea_2022_144032 crossref_primary_10_1016_j_addma_2018_10_032 crossref_primary_10_1016_j_msea_2022_144154 crossref_primary_10_1016_j_jmst_2024_05_062 crossref_primary_10_1088_2631_8695_acbd8a crossref_primary_10_1038_s41586_020_2409_3 crossref_primary_10_1016_j_addma_2023_103647 crossref_primary_10_2139_ssrn_4021771 crossref_primary_10_3390_met10030400 crossref_primary_10_3390_met14101158 crossref_primary_10_3390_met8060440 crossref_primary_10_1007_s00170_018_1799_y crossref_primary_10_1016_j_commatsci_2024_113045 crossref_primary_10_1007_s11661_021_06180_1 crossref_primary_10_1016_j_matchar_2021_111648 crossref_primary_10_1007_s00170_021_07527_z crossref_primary_10_1051_e3sconf_202338301031 crossref_primary_10_1016_j_msea_2018_07_089 crossref_primary_10_3390_ma13194268 crossref_primary_10_1016_j_matdes_2020_108965 crossref_primary_10_1088_1757_899X_1178_1_012032 crossref_primary_10_1007_s11665_022_06849_7 crossref_primary_10_1016_j_msea_2019_138425 crossref_primary_10_1007_s00170_024_14755_6 crossref_primary_10_1088_1402_4896_ad3681 crossref_primary_10_1016_j_jmrt_2023_07_114 crossref_primary_10_1016_j_addma_2023_103825 crossref_primary_10_3390_ma17020440 crossref_primary_10_1007_s00170_021_07514_4 crossref_primary_10_1021_acs_jcim_0c01455 crossref_primary_10_1016_j_jallcom_2018_03_222 crossref_primary_10_1016_j_msea_2021_140801 crossref_primary_10_21062_mft_2022_030 crossref_primary_10_1016_j_matdes_2018_05_064 crossref_primary_10_1016_j_jallcom_2023_171031 crossref_primary_10_1016_j_mtcomm_2024_109793 crossref_primary_10_1016_j_jmrt_2022_02_126 crossref_primary_10_3390_met14050520 crossref_primary_10_1016_j_msea_2022_143018 crossref_primary_10_1177_09544089241295956 crossref_primary_10_3390_ma14092105 crossref_primary_10_1016_j_msea_2023_145917 crossref_primary_10_1007_s12613_024_2947_z crossref_primary_10_2351_7_0001240 crossref_primary_10_3952_physics_2024_64_2_4 crossref_primary_10_3390_met13071214 crossref_primary_10_1080_14484846_2021_2007620 crossref_primary_10_1016_j_ijmachtools_2021_103804 crossref_primary_10_1002_srin_202400348 crossref_primary_10_1016_j_jallcom_2018_12_274 crossref_primary_10_1016_j_matchar_2024_114422 crossref_primary_10_1007_s11665_020_05414_4 crossref_primary_10_1016_j_ijfatigue_2021_106535 crossref_primary_10_21062_mft_2022_008 crossref_primary_10_1177_1478422X251314174 crossref_primary_10_1016_j_addma_2019_04_018 crossref_primary_10_1016_j_jmrt_2024_09_034 crossref_primary_10_1016_j_mtla_2025_102383 crossref_primary_10_1016_j_wear_2023_204883 crossref_primary_10_1016_j_msea_2018_12_070 crossref_primary_10_1016_j_matdes_2018_10_038 crossref_primary_10_1016_j_msea_2023_144646 crossref_primary_10_1016_j_msea_2023_145975 crossref_primary_10_3390_ma13235533 crossref_primary_10_4028_www_scientific_net_KEM_861_77 crossref_primary_10_1016_j_jmrt_2023_07_158 crossref_primary_10_1016_j_msea_2019_138341 crossref_primary_10_1016_j_mtcomm_2023_107287 crossref_primary_10_3390_app10041232 crossref_primary_10_1016_j_jallcom_2022_167524 crossref_primary_10_3390_ma13153408 crossref_primary_10_1108_RPJ_11_2020_0269 crossref_primary_10_1016_j_jmrt_2022_05_158 crossref_primary_10_1016_j_matchar_2018_08_010 crossref_primary_10_1002_srin_202400173 crossref_primary_10_2478_msp_2022_0031 crossref_primary_10_1016_j_matchar_2024_114711 crossref_primary_10_1088_2631_7990_ad88bc crossref_primary_10_1108_RPJ_08_2018_0189 crossref_primary_10_1016_j_actamat_2021_117240 crossref_primary_10_1016_j_ijmecsci_2024_109055 crossref_primary_10_4150_jpm_2024_00171 crossref_primary_10_3390_met10081016 crossref_primary_10_3390_app122010340 crossref_primary_10_1016_j_scriptamat_2022_115224 crossref_primary_10_1557_jmr_2020_126 crossref_primary_10_1016_j_mfglet_2024_09_103 crossref_primary_10_46519_ij3dptdi_1024485 crossref_primary_10_1108_RPJ_03_2022_0089 crossref_primary_10_1016_j_heliyon_2023_e23202 crossref_primary_10_1016_j_vacuum_2024_113448 crossref_primary_10_1007_s00170_021_07635_w crossref_primary_10_1134_S1029959922020072 crossref_primary_10_1016_j_matchar_2023_113335 crossref_primary_10_1016_j_msea_2022_143585 crossref_primary_10_1016_j_matdes_2021_110265 crossref_primary_10_1016_j_msea_2019_05_013 crossref_primary_10_1080_17445302_2020_1786232 crossref_primary_10_1016_j_addma_2022_102775 crossref_primary_10_4028_www_scientific_net_DDF_405_133 crossref_primary_10_1016_j_addma_2019_100914 crossref_primary_10_3390_met10091273 crossref_primary_10_1007_s40964_023_00530_8 crossref_primary_10_1016_j_surfcoat_2024_131451 crossref_primary_10_1007_s40516_022_00182_6 crossref_primary_10_1016_j_msea_2018_04_046 crossref_primary_10_1016_j_matchar_2024_113767 crossref_primary_10_5006_3972 crossref_primary_10_1016_j_addma_2021_102123 crossref_primary_10_3390_met11050748 crossref_primary_10_1016_j_addma_2021_102122 crossref_primary_10_1017_S1431927619013618 crossref_primary_10_1007_s11661_024_07644_w crossref_primary_10_1557_s43577_021_00054_y crossref_primary_10_1016_j_matchar_2024_114499 crossref_primary_10_1080_17452759_2024_2438899 crossref_primary_10_1016_j_jmrt_2024_10_097 crossref_primary_10_1016_j_surfcoat_2022_128089 crossref_primary_10_1016_j_jmrt_2023_06_276 crossref_primary_10_3390_ma16072866 crossref_primary_10_1016_j_jmrt_2025_02_139 crossref_primary_10_1557_jmr_2018_166 crossref_primary_10_1016_j_msea_2021_141183 crossref_primary_10_1016_j_addma_2022_102712 crossref_primary_10_1557_s43579_024_00679_5 crossref_primary_10_1016_j_jmrt_2024_01_050 crossref_primary_10_1016_j_surfcoat_2024_130984 crossref_primary_10_1016_j_matchar_2021_111266 crossref_primary_10_1016_j_ijmachtools_2023_104032 crossref_primary_10_1016_j_jmst_2019_12_020 crossref_primary_10_1007_s11661_018_4733_x crossref_primary_10_1016_j_jallcom_2021_161033 crossref_primary_10_1016_j_optlastec_2020_106262 crossref_primary_10_1016_j_msea_2019_02_041 crossref_primary_10_1016_j_msea_2021_141195 crossref_primary_10_1007_s12613_023_2731_5 crossref_primary_10_1016_j_corsci_2023_111188 crossref_primary_10_4028_p_9Zguiw crossref_primary_10_1016_j_triboint_2021_107112 crossref_primary_10_1016_j_matdes_2021_109479 crossref_primary_10_1080_09506608_2021_1983351 crossref_primary_10_3390_ma16217008 crossref_primary_10_1016_j_ijfatigue_2020_105796 crossref_primary_10_1016_j_addma_2019_100797 crossref_primary_10_1016_j_msea_2022_143306 crossref_primary_10_1016_j_matlet_2018_05_042 crossref_primary_10_3390_ma15062136 crossref_primary_10_3390_ma15155133 crossref_primary_10_1177_02670836241255257 crossref_primary_10_1016_j_jmapro_2020_03_019 crossref_primary_10_1016_j_ijfatigue_2023_107548 crossref_primary_10_1016_j_msea_2023_145074 crossref_primary_10_1115_1_4062727 crossref_primary_10_1007_s10853_020_05109_0 crossref_primary_10_1080_17452759_2023_2296127 crossref_primary_10_3390_ma17030661 crossref_primary_10_1016_j_surfcoat_2023_129688 crossref_primary_10_1016_j_addma_2021_102560 crossref_primary_10_1016_j_jmatprotec_2024_118425 crossref_primary_10_2355_isijinternational_ISIJINT_2023_045 crossref_primary_10_1016_j_msea_2023_144921 crossref_primary_10_1016_j_ijmachtools_2021_103817 crossref_primary_10_1016_j_jmrt_2021_12_054 crossref_primary_10_1007_s11665_018_3521_5 crossref_primary_10_3390_mi14020362 crossref_primary_10_1007_s10853_024_10102_y crossref_primary_10_1088_1757_899X_1310_1_012037 crossref_primary_10_1002_advs_202206607 crossref_primary_10_1016_j_apsusc_2020_146393 crossref_primary_10_1016_j_wear_2021_204179 crossref_primary_10_1007_s40192_019_00166_z crossref_primary_10_1007_s40195_022_01461_z crossref_primary_10_1002_srin_202400687 crossref_primary_10_1016_j_optlastec_2019_105725 crossref_primary_10_1016_j_addma_2020_101389 crossref_primary_10_1016_j_engfailanal_2023_107713 crossref_primary_10_1016_j_matpr_2020_05_162 crossref_primary_10_1016_j_jmst_2021_10_056 crossref_primary_10_1016_j_matdes_2020_109289 crossref_primary_10_1016_j_matdes_2021_109469 crossref_primary_10_1016_j_pmatsci_2022_101051 crossref_primary_10_1007_s13632_020_00680_z crossref_primary_10_1016_j_addma_2024_104264 crossref_primary_10_1007_s00170_021_08411_6 crossref_primary_10_3390_jmmp5040107 crossref_primary_10_1016_j_optlastec_2022_108914 crossref_primary_10_1557_s43578_023_01022_9 crossref_primary_10_1016_j_optlastec_2023_110493 crossref_primary_10_1080_17452759_2024_2372629 crossref_primary_10_1016_j_ijhydene_2025_02_240 crossref_primary_10_1080_02670836_2019_1668603 crossref_primary_10_1016_j_matchar_2023_113064 crossref_primary_10_1016_j_mtla_2021_101244 crossref_primary_10_1016_j_mtla_2023_101961 crossref_primary_10_1016_j_addma_2024_104494 crossref_primary_10_1016_j_ijleo_2019_163568 crossref_primary_10_3390_ma12244174 crossref_primary_10_1007_s40964_024_00591_3 crossref_primary_10_1007_s40194_024_01861_y crossref_primary_10_1115_1_4053276 crossref_primary_10_1016_j_msea_2021_141266 crossref_primary_10_1016_j_tafmec_2022_103469 crossref_primary_10_1115_1_4053277 crossref_primary_10_1016_j_msea_2022_143983 crossref_primary_10_3390_met9101128 crossref_primary_10_1016_j_msea_2022_142653 crossref_primary_10_1016_j_addma_2020_101125 crossref_primary_10_1016_j_surfcoat_2020_126675 crossref_primary_10_1007_s00170_022_09972_w crossref_primary_10_1016_j_matdes_2020_109147 crossref_primary_10_1007_s11661_023_06969_2 crossref_primary_10_1016_j_matlet_2018_11_115 crossref_primary_10_3390_jmmp8020052 crossref_primary_10_1016_j_procir_2022_02_194 crossref_primary_10_1016_j_prostr_2022_03_097 crossref_primary_10_1016_j_msea_2024_146269 crossref_primary_10_1111_ffe_12917 crossref_primary_10_3390_ma14102588 crossref_primary_10_2139_ssrn_3985314 crossref_primary_10_1016_j_powtec_2018_04_026 crossref_primary_10_3390_ma17153653 crossref_primary_10_1007_s11665_021_05948_1 crossref_primary_10_1016_j_corsci_2023_111440 crossref_primary_10_1051_e3sconf_202338901072 crossref_primary_10_1051_e3sconf_202338901073 crossref_primary_10_1051_e3sconf_202338901071 crossref_primary_10_1177_00325899241253271 crossref_primary_10_3390_met10030410 crossref_primary_10_1016_j_jmrt_2024_12_097 crossref_primary_10_1016_j_matchar_2021_111654 crossref_primary_10_3390_jmmp4040100 crossref_primary_10_1038_s41598_022_09977_1 crossref_primary_10_1016_j_jallcom_2024_176438 crossref_primary_10_3390_ma12142284 crossref_primary_10_1108_RPJ_03_2021_0069 crossref_primary_10_3390_ma15144757 crossref_primary_10_1016_j_optlastec_2022_108711 crossref_primary_10_1016_j_addma_2020_101108 crossref_primary_10_1016_j_corsci_2019_108427 crossref_primary_10_1016_j_jallcom_2023_171824 crossref_primary_10_1016_j_addma_2018_06_005 crossref_primary_10_1115_1_4065498 crossref_primary_10_1016_j_jallcom_2020_154773 crossref_primary_10_1016_j_vacuum_2018_04_044 crossref_primary_10_1016_j_jmst_2024_02_044 crossref_primary_10_1108_RPJ_03_2021_0055 crossref_primary_10_1016_j_matdes_2024_112771 crossref_primary_10_1016_j_addma_2021_101971 crossref_primary_10_1134_S0036029522040139 crossref_primary_10_1007_s11665_022_07166_9 crossref_primary_10_1016_j_msea_2022_143818 crossref_primary_10_3390_physchem1030016 crossref_primary_10_1007_s12210_021_00994_2 crossref_primary_10_2355_tetsutohagane_TETSU_2022_066 crossref_primary_10_3390_ma17174246 crossref_primary_10_1016_j_mtcomm_2024_111087 crossref_primary_10_1016_j_msea_2022_142852 crossref_primary_10_1007_s40436_021_00365_y crossref_primary_10_1007_s10853_022_07197_6 crossref_primary_10_1007_s11661_020_05661_z crossref_primary_10_1016_j_mtcomm_2023_106564 crossref_primary_10_1088_1757_899X_580_1_012047 crossref_primary_10_1016_j_msea_2021_141232 crossref_primary_10_1016_j_jmapro_2020_06_041 crossref_primary_10_1016_j_addma_2024_104429 crossref_primary_10_1038_s41598_021_82572_y crossref_primary_10_1016_j_addma_2021_101954 crossref_primary_10_1016_j_applthermaleng_2019_114335 crossref_primary_10_1016_j_matlet_2019_07_087 crossref_primary_10_1016_j_matchar_2023_112705 crossref_primary_10_3390_ma14175073 crossref_primary_10_1016_j_msea_2023_146031 crossref_primary_10_1016_j_msea_2019_01_019 crossref_primary_10_1007_s11665_021_05913_y crossref_primary_10_1016_j_addma_2020_101561 crossref_primary_10_1016_j_matchar_2022_112549 crossref_primary_10_1016_j_cossms_2023_101106 crossref_primary_10_1016_j_msea_2020_139041 crossref_primary_10_1016_j_matlet_2017_10_097 crossref_primary_10_1080_00325899_2023_2213006 crossref_primary_10_1007_s11837_020_04425_9 crossref_primary_10_1016_j_addma_2021_101847 crossref_primary_10_1016_j_matdes_2021_109503 crossref_primary_10_1016_j_msea_2020_139049 crossref_primary_10_3390_ma15134631 crossref_primary_10_1007_s10853_021_06447_3 crossref_primary_10_1016_j_surfcoat_2021_128055 crossref_primary_10_2139_ssrn_4192936 crossref_primary_10_1016_j_jmapro_2021_12_033 crossref_primary_10_1016_j_msea_2021_141894 crossref_primary_10_1016_j_wear_2024_205562 crossref_primary_10_3390_app13116572 crossref_primary_10_1016_j_matpr_2020_11_883 crossref_primary_10_1016_j_msea_2022_142926 crossref_primary_10_1016_j_jmapro_2021_07_063 crossref_primary_10_1007_s12540_020_00793_8 crossref_primary_10_1016_j_ceramint_2022_09_253 crossref_primary_10_1016_j_tafmec_2023_104207 crossref_primary_10_3390_met10020218 crossref_primary_10_1016_j_msea_2024_147504 crossref_primary_10_5006_4023 crossref_primary_10_2478_msp_2023_0028 crossref_primary_10_7791_jspmee_10_91 |
Cites_doi | 10.1179/174328007X160308 10.1007/s11665-014-0958-z 10.1179/1743280411Y.0000000014 10.1016/j.icheatmasstransfer.2015.08.013 10.1557/jmr.2014.204 10.1007/BF02647188 10.1002/adem.201500419 10.1016/j.actamat.2016.11.018 10.1016/j.actamat.2010.03.010 10.1016/j.actamat.2016.03.037 10.3390/ma10010008 10.1016/j.actamat.2016.06.009 10.1016/j.actamat.2004.08.018 10.1016/j.optlastec.2014.07.021 10.1016/j.wear.2014.11.023 10.1016/j.surfcoat.2005.07.076 10.1016/j.matchar.2014.11.024 10.1016/S1359-6454(99)00370-5 10.1016/j.bushor.2011.11.003 10.1016/j.actamat.2010.02.028 10.1016/j.matdes.2015.05.042 10.1016/j.jallcom.2013.06.087 10.1016/0036-9748(72)90120-2 10.1007/s00339-009-5266-3 10.1016/j.actamat.2017.02.069 10.1007/s11661-009-9993-z 10.1016/j.matdes.2013.10.027 10.1007/BF02646061 10.1007/BF02668193 10.1016/j.pmatsci.2015.03.002 10.1016/j.matdes.2015.07.145 10.1007/s00170-012-4558-5 10.1016/j.actamat.2015.10.020 10.1016/j.actamat.2017.02.007 10.1016/j.matdes.2016.09.080 10.1016/j.matdes.2015.10.065 10.1016/j.phpro.2011.03.033 10.1016/j.matdes.2015.12.135 10.1038/nature22032 10.1016/j.actamat.2016.07.012 10.1016/j.actamat.2015.12.017 10.1016/j.addma.2015.07.001 10.1007/s11661-008-9566-6 10.1016/j.matdes.2015.05.041 10.3139/146.101418 10.1016/j.matdes.2016.05.018 10.1016/j.actamat.2016.07.019 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd |
Copyright_xml | – notice: 2017 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.matdes.2017.08.026 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-4197 |
EndPage | 34 |
ExternalDocumentID | 10_1016_j_matdes_2017_08_026 S0264127517307724 |
GroupedDBID | --K --M -~X .~1 0SF 1B1 1~. 4.4 457 4G. 5GY 5VS 7-5 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAIAV AAKOC AAOAW AAQFI AAXUO ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GROUPED_DOAJ IHE J1W KOM M41 MO0 OAUVE P2P PC. Q38 ROL SDF SDG SDP SPC SSM SST SSZ T5K ~G- 0R~ 29M AALRI AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BCNDV BNPGV CITATION FEDTE FGOYB G-2 HVGLF HZ~ JJJVA MAGPM O9- OK1 P-8 P-9 R2- RIG RNS RPZ SEW SMS SSH WUQ |
ID | FETCH-LOGICAL-c372t-1370362688da618b179a59fce49563f4a7d940fa3f83588dae19d85eb3c7e8f23 |
IEDL.DBID | AIKHN |
ISSN | 0264-1275 |
IngestDate | Tue Jul 01 02:23:45 EDT 2025 Thu Apr 24 23:08:48 EDT 2025 Fri Feb 23 02:29:38 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Microstructural evolution Orowan mechanism Precipitate Selective laser melting Maraging steel Age hardening |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-1370362688da618b179a59fce49563f4a7d940fa3f83588dae19d85eb3c7e8f23 |
ORCID | 0000-0003-2029-4600 |
PageCount | 12 |
ParticipantIDs | crossref_citationtrail_10_1016_j_matdes_2017_08_026 crossref_primary_10_1016_j_matdes_2017_08_026 elsevier_sciencedirect_doi_10_1016_j_matdes_2017_08_026 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-11-15 |
PublicationDateYYYYMMDD | 2017-11-15 |
PublicationDate_xml | – month: 11 year: 2017 text: 2017-11-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Materials & design |
PublicationYear | 2017 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Tan, Zhou, Tong, Huang, Li, Ma, Li, Kuang (bb0055) 2016; 96 Pereloma, Shekhter, Miller, Ringer (bb0115) 2004; 52 SAE Standard (bb0265) 2012 ASTM Standard, E8/E8M-2013a (bb0190) 2013 Suryawanshi, Prashanth, Scudino, Eckert, Prakash, Ramamurty (bb0045) 2016; 115 Zhang, Attar (bb0050) 2016; 18 Jägle, Choi, Van Humbeeck, Raabe (bb0160) 2014; 29 Zhao, Li, Zhang, Liu, Sercombe, Wang, Hao, Yang, Murr (bb0070) 2016; 95 Jiang, Wang, Wu, Liu, Chen, Yao, Gault, Ponge, Raabe, Hirata, Chen, Wang, Lu (bb0150) 2017; 544 Wu, Wang, Wang, Attallah, Loretto (bb0075) 2016; 117 Kürnsteiner, Wilms, Weisheit, Barriobero-Vila, Jägle, Raabe (bb0110) 2017; 129 Schnitzer, Schober, Zinner, Leitner (bb0135) 2010; 58 Casalino, Campanelli, Contuzzi, Ludovico (bb0180) 2015; 65 Tan, Luo, Li, Yan, Duan, Huang (bb0220) 2015; 324 Zheng, Zhou, Smugeresky, Schoenung, Lavernia (bb0165) 2008; 39 Hozoorbakhsh, Ismail, Aziz (bb0215) 2015; 68 Ng, Jarfors, Bi, Zheng (bb0205) 2009; 97 Wang, Li, Yu, Ding, Tang, Li, Zhou (bb0230) 2005; 200 Liu, Sommer, Bos, Mittemeijer (bb0250) 2007; 52 Tewari, Mazumder, Batra, Dey, Banerjee (bb0145) 2000; 48 Xu, Rivera-Díaz-del-Castillo, Wang, Yang, Bliznuk, Kestens, van der Zwaag (bb0245) 2010; 58 Pereloma, Stohr, Miller, Ringer (bb0155) 2009; 40 Tan, Zhou, Tong, Huang, Li, Ma, Li, Kuang (bb0175) 2016 Shin, Jeong, Lee (bb0130) 2015; 99 Acharya, Sharon, Staroselsky (bb0225) 2017; 124 Yuan, Gu, Dai (bb0080) 2015; 82 Sha, Cerezo, Smith (bb0240) 1993; 24 Rao (bb0125) 2006; 97 Li, Yan, Cotton, Ryan, Shen, Wang, Shan, Yang (bb0140) 2015; 82 Huang, Liu, Mokasdar, Hou (bb0035) 2012; 67 Uhlmann, Bergmann, Gridin (bb0185) 2015 ASM International Handbook Committee (bb0260) 1991 Garibaldi, Ashcroft, Simonelli, Hague (bb0200) 2016; 110 Frazier (bb0005) 2014; 23 Jung, Choi, Prashanth, Stoica, Scudino, Yi, Kühn, Kim, Kim, Eckert (bb0255) 2015; 86 Kimura, Nakamoto (bb0210) 2016; 89 Gu, Meiners, Wissenbach, Poprawe (bb0030) 2013; 57 Olakanmi, Cochrane, Dalgarno (bb0025) 2015; 74 Kempen, Yasa, Thijs, Kruth, Van Humbeeck (bb0105) 2011; 12 Vasudevan, Kim, Wayman (bb0120) 1990; 21 Yan, Hao, Hussein, Young, Raymont (bb0060) 2014; 55 Qiu, Adkins, Attallah (bb0100) 2016; 103 Kelly (bb0270) 1972; 6 Song, Dong, Coddet, Zhou, Ouyang, Liao, Coddet (bb0195) 2013; 579 AlMangour, Grzesiak, Jenn (bb0095) 2016; 104 Herzog, Seyda, Wycisk, Emmelmann (bb0015) 2016; 117 Li, Hassanin, Attallah, Adkins, Essa (bb0065) 2016; 105 Wang, Zhang, Tan, Raghavan, Lim, Sun, Wei, Chi (bb0090) 2016; 112 Stampfl, Hatzenbichler (bb0020) 2014 Wang, Carter, Pang, Attallah, Loretto (bb0085) 2017; 128 Berman (bb0040) 2012; 55 Vanderwalker (bb0235) 1987; 18 Thompson, Bian, Shamsaei, Yadollahi (bb0010) 2015; 8 Jägle, Sheng, Kürnsteiner, Ocylok, Weisheit, Raabe (bb0170) 2016; 10 Uhlmann (10.1016/j.matdes.2017.08.026_bb0185) 2015 Yan (10.1016/j.matdes.2017.08.026_bb0060) 2014; 55 Qiu (10.1016/j.matdes.2017.08.026_bb0100) 2016; 103 Zhao (10.1016/j.matdes.2017.08.026_bb0070) 2016; 95 Pereloma (10.1016/j.matdes.2017.08.026_bb0115) 2004; 52 Zhang (10.1016/j.matdes.2017.08.026_bb0050) 2016; 18 Liu (10.1016/j.matdes.2017.08.026_bb0250) 2007; 52 Tewari (10.1016/j.matdes.2017.08.026_bb0145) 2000; 48 Song (10.1016/j.matdes.2017.08.026_bb0195) 2013; 579 ASM International Handbook Committee (10.1016/j.matdes.2017.08.026_bb0260) 1991 ASTM Standard, E8/E8M-2013a (10.1016/j.matdes.2017.08.026_bb0190) 2013 Pereloma (10.1016/j.matdes.2017.08.026_bb0155) 2009; 40 Tan (10.1016/j.matdes.2017.08.026_bb0175) 2016 Olakanmi (10.1016/j.matdes.2017.08.026_bb0025) 2015; 74 Wu (10.1016/j.matdes.2017.08.026_bb0075) 2016; 117 Casalino (10.1016/j.matdes.2017.08.026_bb0180) 2015; 65 Jung (10.1016/j.matdes.2017.08.026_bb0255) 2015; 86 Schnitzer (10.1016/j.matdes.2017.08.026_bb0135) 2010; 58 Rao (10.1016/j.matdes.2017.08.026_bb0125) 2006; 97 Li (10.1016/j.matdes.2017.08.026_bb0140) 2015; 82 Wang (10.1016/j.matdes.2017.08.026_bb0090) 2016; 112 Vanderwalker (10.1016/j.matdes.2017.08.026_bb0235) 1987; 18 Xu (10.1016/j.matdes.2017.08.026_bb0245) 2010; 58 Wang (10.1016/j.matdes.2017.08.026_bb0230) 2005; 200 Acharya (10.1016/j.matdes.2017.08.026_bb0225) 2017; 124 Tan (10.1016/j.matdes.2017.08.026_bb0220) 2015; 324 Stampfl (10.1016/j.matdes.2017.08.026_bb0020) 2014 Kimura (10.1016/j.matdes.2017.08.026_bb0210) 2016; 89 Frazier (10.1016/j.matdes.2017.08.026_bb0005) 2014; 23 Yuan (10.1016/j.matdes.2017.08.026_bb0080) 2015; 82 Tan (10.1016/j.matdes.2017.08.026_bb0055) 2016; 96 Suryawanshi (10.1016/j.matdes.2017.08.026_bb0045) 2016; 115 Kürnsteiner (10.1016/j.matdes.2017.08.026_bb0110) 2017; 129 Gu (10.1016/j.matdes.2017.08.026_bb0030) 2013; 57 Jägle (10.1016/j.matdes.2017.08.026_bb0160) 2014; 29 SAE Standard (10.1016/j.matdes.2017.08.026_bb0265) 2012 Thompson (10.1016/j.matdes.2017.08.026_bb0010) 2015; 8 Jägle (10.1016/j.matdes.2017.08.026_bb0170) 2016; 10 Li (10.1016/j.matdes.2017.08.026_bb0065) 2016; 105 Kelly (10.1016/j.matdes.2017.08.026_bb0270) 1972; 6 Zheng (10.1016/j.matdes.2017.08.026_bb0165) 2008; 39 AlMangour (10.1016/j.matdes.2017.08.026_bb0095) 2016; 104 Kempen (10.1016/j.matdes.2017.08.026_bb0105) 2011; 12 Berman (10.1016/j.matdes.2017.08.026_bb0040) 2012; 55 Sha (10.1016/j.matdes.2017.08.026_bb0240) 1993; 24 Jiang (10.1016/j.matdes.2017.08.026_bb0150) 2017; 544 Garibaldi (10.1016/j.matdes.2017.08.026_bb0200) 2016; 110 Hozoorbakhsh (10.1016/j.matdes.2017.08.026_bb0215) 2015; 68 Vasudevan (10.1016/j.matdes.2017.08.026_bb0120) 1990; 21 Herzog (10.1016/j.matdes.2017.08.026_bb0015) 2016; 117 Huang (10.1016/j.matdes.2017.08.026_bb0035) 2012; 67 Shin (10.1016/j.matdes.2017.08.026_bb0130) 2015; 99 Wang (10.1016/j.matdes.2017.08.026_bb0085) 2017; 128 Ng (10.1016/j.matdes.2017.08.026_bb0205) 2009; 97 |
References_xml | – volume: 117 start-page: 311 year: 2016 end-page: 320 ident: bb0075 article-title: Microstructure and strength of selectively laser melted AlSi10Mg publication-title: Acta Mater. – volume: 68 start-page: 178 year: 2015 end-page: 187 ident: bb0215 article-title: A computational analysis of heat transfer and fluid flow in high-speed scanning of laser micro-welding publication-title: Int. Commun. Heat Mass Transfer – volume: 52 start-page: 5589 year: 2004 end-page: 5602 ident: bb0115 article-title: Ageing behaviour of an Fe–20Ni–1.8Mn–1.6Ti–0.59Al (wt%) maraging alloy: clustering, precipitation and hardening publication-title: Acta Mater. – start-page: 404 year: 2016 end-page: 410 ident: bb0175 article-title: Microstructure and mechanical properties of 18Ni-300 maraging steel fabricated by selective laser melting publication-title: Proceedings of the 2016 6th International Conference on Advanced Design and Manufacturing Engineering – volume: 57 start-page: 133 year: 2013 end-page: 164 ident: bb0030 article-title: Laser additive manufacturing of metallic components: materials, processes and mechanisms publication-title: Int. Mater. Rev. – volume: 18 start-page: 463 year: 2016 end-page: 475 ident: bb0050 article-title: Selective laser melting of titanium alloys and titanium matrix composites for biomedical applications: a review publication-title: Adv. Eng. Mater. – start-page: 8 year: 2015 end-page: 15 ident: bb0185 article-title: Investigation on additive manufacturing of tungsten carbide-cobalt by selective laser melting publication-title: Mic2015 -15th Machining Innovations Conference for Aerospace Industry – volume: 117 start-page: 371 year: 2016 end-page: 392 ident: bb0015 article-title: Additive manufacturing of metals publication-title: Acta Mater. – volume: 324 start-page: 36 year: 2015 end-page: 44 ident: bb0220 article-title: Effect of strengthening particles on the dry sliding wear behavior of Al publication-title: Wear – volume: 12 start-page: 255 year: 2011 end-page: 263 ident: bb0105 article-title: Microstructure and mechanical properties of Selective Laser Melted 18Ni-300 steel publication-title: Phys. Procedia – volume: 74 start-page: 401 year: 2015 end-page: 477 ident: bb0025 article-title: A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: processing, microstructure, and properties publication-title: Prog. Mater. Sci. – volume: 544 start-page: 460 year: 2017 end-page: 464 ident: bb0150 article-title: Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation publication-title: Nature – volume: 82 start-page: 46 year: 2015 end-page: 55 ident: bb0080 article-title: Particulate migration behavior and its mechanism during selective laser melting of TiC reinforced Al matrix nanocomposites publication-title: Mater. Des. – volume: 89 start-page: 1294 year: 2016 end-page: 1301 ident: bb0210 article-title: Microstructures and mechanical properties of A356 (AlSi7Mg0.3) aluminum alloy fabricated by selective laser melting publication-title: Mater. Des. – volume: 115 start-page: 285 year: 2016 end-page: 294 ident: bb0045 article-title: Simultaneous enhancements of strength and toughness in an Al-12Si alloy synthesized using selective laser melting publication-title: Acta Mater. – volume: 18 start-page: 1191 year: 1987 end-page: 1194 ident: bb0235 article-title: The precipitation sequence of Ni3Ti in Co-free maraging steel publication-title: Metall. Trans. A. – volume: 200 start-page: 2080 year: 2005 end-page: 2084 ident: bb0230 article-title: In situ fabrication of bioceramic composite coatings by laser cladding publication-title: Surf. Coat. Technol. – volume: 6 start-page: 647 year: 1972 end-page: 656 ident: bb0270 article-title: The effect of particle shape on dispersion hardening publication-title: Scr. Metall. – volume: 40 start-page: 3069 year: 2009 ident: bb0155 article-title: Observation of precipitation evolution in Fe-Ni-Mn-Ti-Al maraging steel by atom probe tomography publication-title: Metall. Mater. Trans. A – volume: 579 start-page: 415 year: 2013 end-page: 421 ident: bb0195 article-title: Microstructure and tensile behavior of hybrid nano-micro SiC reinforced iron matrix composites produced by selective laser melting publication-title: J. Alloys Compd. – volume: 23 start-page: 1917 year: 2014 end-page: 1928 ident: bb0005 article-title: Metal additive manufacturing: a review publication-title: J. Mater. Eng. Perform. – volume: 96 start-page: 404 year: 2016 end-page: 410 ident: bb0055 article-title: Microstructure and mechanical properties of 18Ni-300 maraging steel fabricated by selective laser melting publication-title: Proceedings of the 2016 6th International Conference on Advanced Design and Manufacturing Engineering – volume: 112 start-page: 290 year: 2016 end-page: 299 ident: bb0090 article-title: Microstructural characteristics and mechanical properties of carbon nanotube reinforced Inconel 625 parts fabricated by selective laser melting publication-title: Mater. Des. – year: 2013 ident: bb0190 article-title: Standard Test Methods for Tension Test of Metallic Materials – start-page: 8 year: 2012 ident: bb0265 article-title: AMS 6514H publication-title: Steel, Maraging, Bars, Forgings, Tubing, and Rings 18.5Ni- 9.0Co- 4.9Mo- 0.65Ti- 0.10Al Consumable Electrode Vacuum Melted, Annealed – volume: 21 start-page: 2655 year: 1990 end-page: 2668 ident: bb0120 article-title: Precipitation reactions and strengthening behavior in 18 Wt Pct nickel maraging steels publication-title: Metall. Trans. A. – volume: 39 start-page: 2237 year: 2008 end-page: 2245 ident: bb0165 article-title: Thermal behavior and microstructure evolution during laser deposition with laser-engineered net shaping: part II. Experimental investigation and discussion publication-title: Metall. Mater. Trans. A – volume: 128 start-page: 87 year: 2017 end-page: 95 ident: bb0085 article-title: Microstructure and yield strength of SLM-fabricated CM247LC Ni-Superalloy publication-title: Acta Mater. – volume: 95 start-page: 21 year: 2016 end-page: 31 ident: bb0070 article-title: Comparison of the microstructures and mechanical properties of Ti–6Al–4V fabricated by selective laser melting and electron beam melting publication-title: Mater. Des. – volume: 8 start-page: 36 year: 2015 end-page: 62 ident: bb0010 article-title: An overview of Direct Laser Deposition for additive manufacturing; part I: transport phenomena, modeling and diagnostics publication-title: Addit. Manuf. – volume: 55 start-page: 533 year: 2014 end-page: 541 ident: bb0060 article-title: Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting publication-title: Mater. Des. – volume: 104 start-page: 141 year: 2016 end-page: 151 ident: bb0095 article-title: Selective laser melting of TiC reinforced 316L stainless steel matrix nanocomposites: influence of starting TiC particle size and volume content publication-title: Mater. Des. – volume: 105 start-page: 75 year: 2016 end-page: 83 ident: bb0065 article-title: The development of TiNi-based negative Poisson's ratio structure using selective laser melting publication-title: Acta Mater. – volume: 55 start-page: 155 year: 2012 end-page: 162 ident: bb0040 article-title: 3-D printing: the new industrial revolution publication-title: Bus. Horiz. – volume: 67 start-page: 1191 year: 2012 end-page: 1203 ident: bb0035 article-title: Additive manufacturing and its societal impact: a literature review publication-title: Int. J. Adv. Manuf. Technol. – volume: 99 start-page: 230 year: 2015 end-page: 237 ident: bb0130 article-title: Microstructural evolution and the variation of tensile behavior after aging heat treatment of precipitation hardened martensitic steel publication-title: Mater. Charact. – volume: 48 start-page: 1187 year: 2000 end-page: 1200 ident: bb0145 article-title: Precipitation in 18 publication-title: Acta Mater. – start-page: 1872 year: 1991 end-page: 1873 ident: bb0260 article-title: Properties and selection: irons steels and high performance alloys publication-title: ASM Handbook – volume: 103 start-page: 382 year: 2016 end-page: 395 ident: bb0100 article-title: Selective laser melting of Invar 36: microstructure and properties publication-title: Acta Mater. – volume: 82 start-page: 56 year: 2015 end-page: 63 ident: bb0140 article-title: A new 1.9 publication-title: Mater. Des. – volume: 110 start-page: 207 year: 2016 end-page: 216 ident: bb0200 article-title: Metallurgy of high-silicon steel parts produced using Selective Laser Melting publication-title: Acta Mater. – volume: 58 start-page: 3582 year: 2010 end-page: 3593 ident: bb0245 article-title: Genetic design and characterization of novel ultra-high-strength stainless steels strengthened by Ni publication-title: Acta Mater. – volume: 58 start-page: 3733 year: 2010 end-page: 3741 ident: bb0135 article-title: Effect of Cu on the evolution of precipitation in an Fe–Cr–Ni–Al–Ti maraging steel publication-title: Acta Mater. – volume: 86 start-page: 703 year: 2015 end-page: 708 ident: bb0255 article-title: Fabrication of Fe-based bulk metallic glass by selective laser melting: a parameter study publication-title: Mater. Des. – volume: 97 start-page: 641 year: 2009 end-page: 649 ident: bb0205 article-title: Porosity formation and gas bubble retention in laser metal deposition publication-title: Appl. Phys. A Mater. Sci. Process. – volume: 124 start-page: 360 year: 2017 end-page: 371 ident: bb0225 article-title: Prediction of microstructure in laser powder bed fusion process publication-title: Acta Mater. – start-page: 20 year: 2014 end-page: 27 ident: bb0020 article-title: Additive manufacturing technologies publication-title: CIRP Encyclopedia of Production Engineering – volume: 129 start-page: 52 year: 2017 end-page: 60 ident: bb0110 article-title: Massive nanoprecipitation in an Fe-19Ni-xAl maraging steel triggered by the intrinsic heat treatment during laser metal deposition publication-title: Acta Mater. – volume: 29 start-page: 2072 year: 2014 end-page: 2079 ident: bb0160 article-title: Precipitation and austenite reversion behavior of a maraging steel produced by selective laser melting publication-title: J. Mater. Res. – volume: 52 start-page: 193 year: 2007 end-page: 212 ident: bb0250 article-title: Analysis of solid state phase transformation kinetics: models and recipes publication-title: Int. Mater. Rev. – volume: 10 start-page: 8 year: 2016 ident: bb0170 article-title: Comparison of maraging steel micro- and nanostructure produced conventionally and by laser additive manufacturing publication-title: Materials – volume: 97 start-page: 1594 year: 2006 end-page: 1607 ident: bb0125 article-title: Progress in understanding the metallurgy of 18% nickel maraging steels publication-title: Int. J. Mater. Res. – volume: 65 start-page: 151 year: 2015 end-page: 158 ident: bb0180 article-title: Experimental investigation and statistical optimisation of the selective laser melting process of a maraging steel publication-title: Opt. Laser Technol. – volume: 24 start-page: 1251 year: 1993 end-page: 1256 ident: bb0240 article-title: Phase chemistry and precipitation reactions in maraging steels: part IV. Discussion and conclusions publication-title: Metall. Mater. Trans. A – start-page: 8 year: 2012 ident: 10.1016/j.matdes.2017.08.026_bb0265 article-title: AMS 6514H – volume: 52 start-page: 193 year: 2007 ident: 10.1016/j.matdes.2017.08.026_bb0250 article-title: Analysis of solid state phase transformation kinetics: models and recipes publication-title: Int. Mater. Rev. doi: 10.1179/174328007X160308 – volume: 23 start-page: 1917 year: 2014 ident: 10.1016/j.matdes.2017.08.026_bb0005 article-title: Metal additive manufacturing: a review publication-title: J. Mater. Eng. Perform. doi: 10.1007/s11665-014-0958-z – volume: 57 start-page: 133 year: 2013 ident: 10.1016/j.matdes.2017.08.026_bb0030 article-title: Laser additive manufacturing of metallic components: materials, processes and mechanisms publication-title: Int. Mater. Rev. doi: 10.1179/1743280411Y.0000000014 – volume: 68 start-page: 178 year: 2015 ident: 10.1016/j.matdes.2017.08.026_bb0215 article-title: A computational analysis of heat transfer and fluid flow in high-speed scanning of laser micro-welding publication-title: Int. Commun. Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2015.08.013 – volume: 29 start-page: 2072 year: 2014 ident: 10.1016/j.matdes.2017.08.026_bb0160 article-title: Precipitation and austenite reversion behavior of a maraging steel produced by selective laser melting publication-title: J. Mater. Res. doi: 10.1557/jmr.2014.204 – year: 2013 ident: 10.1016/j.matdes.2017.08.026_bb0190 – volume: 18 start-page: 1191 year: 1987 ident: 10.1016/j.matdes.2017.08.026_bb0235 article-title: The precipitation sequence of Ni3Ti in Co-free maraging steel publication-title: Metall. Trans. A. doi: 10.1007/BF02647188 – start-page: 1872 year: 1991 ident: 10.1016/j.matdes.2017.08.026_bb0260 article-title: Properties and selection: irons steels and high performance alloys – volume: 18 start-page: 463 year: 2016 ident: 10.1016/j.matdes.2017.08.026_bb0050 article-title: Selective laser melting of titanium alloys and titanium matrix composites for biomedical applications: a review publication-title: Adv. Eng. Mater. doi: 10.1002/adem.201500419 – start-page: 8 year: 2015 ident: 10.1016/j.matdes.2017.08.026_bb0185 article-title: Investigation on additive manufacturing of tungsten carbide-cobalt by selective laser melting – volume: 124 start-page: 360 year: 2017 ident: 10.1016/j.matdes.2017.08.026_bb0225 article-title: Prediction of microstructure in laser powder bed fusion process publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.11.018 – volume: 58 start-page: 3733 year: 2010 ident: 10.1016/j.matdes.2017.08.026_bb0135 article-title: Effect of Cu on the evolution of precipitation in an Fe–Cr–Ni–Al–Ti maraging steel publication-title: Acta Mater. doi: 10.1016/j.actamat.2010.03.010 – volume: 110 start-page: 207 year: 2016 ident: 10.1016/j.matdes.2017.08.026_bb0200 article-title: Metallurgy of high-silicon steel parts produced using Selective Laser Melting publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.03.037 – volume: 96 start-page: 404 year: 2016 ident: 10.1016/j.matdes.2017.08.026_bb0055 article-title: Microstructure and mechanical properties of 18Ni-300 maraging steel fabricated by selective laser melting – volume: 10 start-page: 8 year: 2016 ident: 10.1016/j.matdes.2017.08.026_bb0170 article-title: Comparison of maraging steel micro- and nanostructure produced conventionally and by laser additive manufacturing publication-title: Materials doi: 10.3390/ma10010008 – volume: 115 start-page: 285 year: 2016 ident: 10.1016/j.matdes.2017.08.026_bb0045 article-title: Simultaneous enhancements of strength and toughness in an Al-12Si alloy synthesized using selective laser melting publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.06.009 – volume: 52 start-page: 5589 year: 2004 ident: 10.1016/j.matdes.2017.08.026_bb0115 article-title: Ageing behaviour of an Fe–20Ni–1.8Mn–1.6Ti–0.59Al (wt%) maraging alloy: clustering, precipitation and hardening publication-title: Acta Mater. doi: 10.1016/j.actamat.2004.08.018 – volume: 65 start-page: 151 year: 2015 ident: 10.1016/j.matdes.2017.08.026_bb0180 article-title: Experimental investigation and statistical optimisation of the selective laser melting process of a maraging steel publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2014.07.021 – volume: 324 start-page: 36 year: 2015 ident: 10.1016/j.matdes.2017.08.026_bb0220 article-title: Effect of strengthening particles on the dry sliding wear behavior of Al2O3-M7C3/Fe metal matrix composite coatings produced by laser cladding publication-title: Wear doi: 10.1016/j.wear.2014.11.023 – volume: 200 start-page: 2080 year: 2005 ident: 10.1016/j.matdes.2017.08.026_bb0230 article-title: In situ fabrication of bioceramic composite coatings by laser cladding publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2005.07.076 – volume: 99 start-page: 230 year: 2015 ident: 10.1016/j.matdes.2017.08.026_bb0130 article-title: Microstructural evolution and the variation of tensile behavior after aging heat treatment of precipitation hardened martensitic steel publication-title: Mater. Charact. doi: 10.1016/j.matchar.2014.11.024 – volume: 48 start-page: 1187 year: 2000 ident: 10.1016/j.matdes.2017.08.026_bb0145 article-title: Precipitation in 18wt% Ni maraging steel of grade 350 publication-title: Acta Mater. doi: 10.1016/S1359-6454(99)00370-5 – volume: 55 start-page: 155 year: 2012 ident: 10.1016/j.matdes.2017.08.026_bb0040 article-title: 3-D printing: the new industrial revolution publication-title: Bus. Horiz. doi: 10.1016/j.bushor.2011.11.003 – volume: 58 start-page: 3582 year: 2010 ident: 10.1016/j.matdes.2017.08.026_bb0245 article-title: Genetic design and characterization of novel ultra-high-strength stainless steels strengthened by Ni3Ti intermetallic nanoprecipitates publication-title: Acta Mater. doi: 10.1016/j.actamat.2010.02.028 – volume: 82 start-page: 56 year: 2015 ident: 10.1016/j.matdes.2017.08.026_bb0140 article-title: A new 1.9GPa maraging stainless steel strengthened by multiple precipitating species publication-title: Mater. Des. doi: 10.1016/j.matdes.2015.05.042 – volume: 579 start-page: 415 year: 2013 ident: 10.1016/j.matdes.2017.08.026_bb0195 article-title: Microstructure and tensile behavior of hybrid nano-micro SiC reinforced iron matrix composites produced by selective laser melting publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2013.06.087 – volume: 6 start-page: 647 year: 1972 ident: 10.1016/j.matdes.2017.08.026_bb0270 article-title: The effect of particle shape on dispersion hardening publication-title: Scr. Metall. doi: 10.1016/0036-9748(72)90120-2 – volume: 97 start-page: 641 year: 2009 ident: 10.1016/j.matdes.2017.08.026_bb0205 article-title: Porosity formation and gas bubble retention in laser metal deposition publication-title: Appl. Phys. A Mater. Sci. Process. doi: 10.1007/s00339-009-5266-3 – volume: 129 start-page: 52 year: 2017 ident: 10.1016/j.matdes.2017.08.026_bb0110 article-title: Massive nanoprecipitation in an Fe-19Ni-xAl maraging steel triggered by the intrinsic heat treatment during laser metal deposition publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.02.069 – volume: 40 start-page: 3069 year: 2009 ident: 10.1016/j.matdes.2017.08.026_bb0155 article-title: Observation of precipitation evolution in Fe-Ni-Mn-Ti-Al maraging steel by atom probe tomography publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-009-9993-z – volume: 55 start-page: 533 year: 2014 ident: 10.1016/j.matdes.2017.08.026_bb0060 article-title: Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting publication-title: Mater. Des. doi: 10.1016/j.matdes.2013.10.027 – volume: 21 start-page: 2655 year: 1990 ident: 10.1016/j.matdes.2017.08.026_bb0120 article-title: Precipitation reactions and strengthening behavior in 18 Wt Pct nickel maraging steels publication-title: Metall. Trans. A. doi: 10.1007/BF02646061 – volume: 24 start-page: 1251 year: 1993 ident: 10.1016/j.matdes.2017.08.026_bb0240 article-title: Phase chemistry and precipitation reactions in maraging steels: part IV. Discussion and conclusions publication-title: Metall. Mater. Trans. A doi: 10.1007/BF02668193 – volume: 74 start-page: 401 year: 2015 ident: 10.1016/j.matdes.2017.08.026_bb0025 article-title: A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: processing, microstructure, and properties publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2015.03.002 – volume: 86 start-page: 703 year: 2015 ident: 10.1016/j.matdes.2017.08.026_bb0255 article-title: Fabrication of Fe-based bulk metallic glass by selective laser melting: a parameter study publication-title: Mater. Des. doi: 10.1016/j.matdes.2015.07.145 – volume: 67 start-page: 1191 year: 2012 ident: 10.1016/j.matdes.2017.08.026_bb0035 article-title: Additive manufacturing and its societal impact: a literature review publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-012-4558-5 – volume: 103 start-page: 382 year: 2016 ident: 10.1016/j.matdes.2017.08.026_bb0100 article-title: Selective laser melting of Invar 36: microstructure and properties publication-title: Acta Mater. doi: 10.1016/j.actamat.2015.10.020 – volume: 128 start-page: 87 year: 2017 ident: 10.1016/j.matdes.2017.08.026_bb0085 article-title: Microstructure and yield strength of SLM-fabricated CM247LC Ni-Superalloy publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.02.007 – volume: 112 start-page: 290 year: 2016 ident: 10.1016/j.matdes.2017.08.026_bb0090 article-title: Microstructural characteristics and mechanical properties of carbon nanotube reinforced Inconel 625 parts fabricated by selective laser melting publication-title: Mater. Des. doi: 10.1016/j.matdes.2016.09.080 – volume: 89 start-page: 1294 year: 2016 ident: 10.1016/j.matdes.2017.08.026_bb0210 article-title: Microstructures and mechanical properties of A356 (AlSi7Mg0.3) aluminum alloy fabricated by selective laser melting publication-title: Mater. Des. doi: 10.1016/j.matdes.2015.10.065 – volume: 12 start-page: 255 year: 2011 ident: 10.1016/j.matdes.2017.08.026_bb0105 article-title: Microstructure and mechanical properties of Selective Laser Melted 18Ni-300 steel publication-title: Phys. Procedia doi: 10.1016/j.phpro.2011.03.033 – volume: 95 start-page: 21 year: 2016 ident: 10.1016/j.matdes.2017.08.026_bb0070 article-title: Comparison of the microstructures and mechanical properties of Ti–6Al–4V fabricated by selective laser melting and electron beam melting publication-title: Mater. Des. doi: 10.1016/j.matdes.2015.12.135 – volume: 544 start-page: 460 year: 2017 ident: 10.1016/j.matdes.2017.08.026_bb0150 article-title: Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation publication-title: Nature doi: 10.1038/nature22032 – volume: 117 start-page: 311 year: 2016 ident: 10.1016/j.matdes.2017.08.026_bb0075 article-title: Microstructure and strength of selectively laser melted AlSi10Mg publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.07.012 – volume: 105 start-page: 75 year: 2016 ident: 10.1016/j.matdes.2017.08.026_bb0065 article-title: The development of TiNi-based negative Poisson's ratio structure using selective laser melting publication-title: Acta Mater. doi: 10.1016/j.actamat.2015.12.017 – start-page: 404 year: 2016 ident: 10.1016/j.matdes.2017.08.026_bb0175 article-title: Microstructure and mechanical properties of 18Ni-300 maraging steel fabricated by selective laser melting – volume: 8 start-page: 36 year: 2015 ident: 10.1016/j.matdes.2017.08.026_bb0010 article-title: An overview of Direct Laser Deposition for additive manufacturing; part I: transport phenomena, modeling and diagnostics publication-title: Addit. Manuf. doi: 10.1016/j.addma.2015.07.001 – volume: 39 start-page: 2237 year: 2008 ident: 10.1016/j.matdes.2017.08.026_bb0165 article-title: Thermal behavior and microstructure evolution during laser deposition with laser-engineered net shaping: part II. Experimental investigation and discussion publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-008-9566-6 – volume: 82 start-page: 46 year: 2015 ident: 10.1016/j.matdes.2017.08.026_bb0080 article-title: Particulate migration behavior and its mechanism during selective laser melting of TiC reinforced Al matrix nanocomposites publication-title: Mater. Des. doi: 10.1016/j.matdes.2015.05.041 – volume: 97 start-page: 1594 year: 2006 ident: 10.1016/j.matdes.2017.08.026_bb0125 article-title: Progress in understanding the metallurgy of 18% nickel maraging steels publication-title: Int. J. Mater. Res. doi: 10.3139/146.101418 – start-page: 20 year: 2014 ident: 10.1016/j.matdes.2017.08.026_bb0020 article-title: Additive manufacturing technologies – volume: 104 start-page: 141 year: 2016 ident: 10.1016/j.matdes.2017.08.026_bb0095 article-title: Selective laser melting of TiC reinforced 316L stainless steel matrix nanocomposites: influence of starting TiC particle size and volume content publication-title: Mater. Des. doi: 10.1016/j.matdes.2016.05.018 – volume: 117 start-page: 371 year: 2016 ident: 10.1016/j.matdes.2017.08.026_bb0015 article-title: Additive manufacturing of metals publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.07.019 |
SSID | ssj0022734 |
Score | 2.6515267 |
Snippet | High-performance grade 300 maraging steels were fabricated by selective laser melting (SLM) and different heat treatments were applied for improving their... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 23 |
SubjectTerms | Age hardening Maraging steel Microstructural evolution Orowan mechanism Precipitate Selective laser melting |
Title | Microstructural evolution, nanoprecipitation behavior and mechanical properties of selective laser melted high-performance grade 300 maraging steel |
URI | https://dx.doi.org/10.1016/j.matdes.2017.08.026 |
Volume | 134 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LS8NAEIAXbS96EJ9YH2UPHg3NY9PdHEux1EeLqIXewmazK5U2DVH8I_5hZ5JNrSAKHhN2IclM5rHMfEPIhWv8UHtCOuj7HKa468huGkKWksjEMxJcCiaKo3F3OGE303C6Qfp1LwyWVVrbX9n00lrbOx37NTv5bNZ5hOyBIZ7cAyWFGJFtkqYP3tVtkGbv-nY4XuVdSHCpjloQ0cfDuoOuLPOCuDDVyO32eMnyRMrCTx5qzesMdsmODRdpr3qiPbKhs32yvQYRPCAfI6ypqziwyNCg-t2q0yXNZIZTTtQstyhuWrflU5mldKGx7xfFRHM8lC-QrkqXhr6W03HAEFIIrnUBC-cQmVJkGzv5V6sBfS5kqmngunQhi3LeEQWt0fNDMhlcPfWHjh214KiA-ziQnpdgGiFS2fVEAr-pDCOjNOZPgWGSpxFzjQwMRGy4SHtRKkLIxBXXwvjBEWlky0wfE8olUz4zJjAJ0gWZcEFZhWFG-SqNlG6RoP68sbIvj-Mw5nFdcPYSV0KJUSgxTsn0uy3irHblFYfjj_W8llz8TZ9icBW_7jz5985TsoVX2KnohWekAYLX5xCyvCVtUMn-w91926rmJ_6D8Dw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ3JTsMwEECtCg7AAbGKnTnAjahZnDo9cEAsaulyoUjcguPYqKiEqCAQ38Gn8IPMJA4UCYGExLWxDxmPZ0ln3jC25xo_1F4kHfJ9DlfCdWQjDTFLSWTiGYkuhRLFXr_RuuTnV-FVjb1VvTBUVmltf2nTC2ttf6lbadbz4bB-gdkDJzy5h0qKMSK3lZUd_fKMedvDYfsED3nf989OB8ctx44WcFQgfBrALgoQSxSlsuFFCaqlDJtGacoXAsOlSJvcNTIwGKHQIu010yjEzFMJHRmiHaDdnyYaFl6r6aN2p9X_yPOIGFN-2iEkoAirjr2irAzj0FQTJ9wTBTuUqA7fecQJL3e2wOZteApHpQQWWU1nS2xuAlq4zF57VMNXcmeJ2QH6yarvAWQyo6kqaphb9DdUGACQWQp3mvqMSS0gpz8BxkRzhXsDD8U0HjS8gMG8HuPCEUbCQCxlJ_9sbYCbsUw1BK4Ld3JczFcC1FI9WmGX_yL_VTaV3Wd6jYGQXPncmMAkRDPkkYuXIzLcKF-lTaXXWVCJN1b25Wn8xiiuCtxu4_JQYjqUmKZy-o115nzsykvuxy_rRXVy8Rf9jdE1_bhz4887d9lMa9Drxt12v7PJZukJdUl64RabQiXQ2xguPSY7Vj2BXf_3jXgHn5IrCw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microstructural+evolution%2C+nanoprecipitation+behavior+and+mechanical+properties+of+selective+laser+melted+high-performance+grade+300+maraging+steel&rft.jtitle=Materials+%26+design&rft.au=Tan%2C+Chaolin&rft.au=Zhou%2C+Kesong&rft.au=Ma%2C+Wenyou&rft.au=Zhang%2C+Panpan&rft.date=2017-11-15&rft.issn=0264-1275&rft.volume=134&rft.spage=23&rft.epage=34&rft_id=info:doi/10.1016%2Fj.matdes.2017.08.026&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_matdes_2017_08_026 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-1275&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-1275&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-1275&client=summon |