Relative Humidity Has Uneven Effects on Shifts From Snow to Rain Over the Western U.S

Predicting the phase of precipitation is fundamental to water supply and hazard forecasting. Phase prediction methods (PPMs) are used to predict snow fraction, or the ratio of snowfall to total precipitation. Common temperature‐based regression (Dai method) and threshold at freezing (0°C) PPMs had c...

Full description

Saved in:
Bibliographic Details
Published inGeophysical research letters Vol. 44; no. 19; pp. 9742 - 9750
Main Authors Harpold, A. A., Rajagopal, S., Crews, J. B., Winchell, T., Schumer, R.
Format Journal Article
LanguageEnglish
Published Washington John Wiley & Sons, Inc 16.10.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Predicting the phase of precipitation is fundamental to water supply and hazard forecasting. Phase prediction methods (PPMs) are used to predict snow fraction, or the ratio of snowfall to total precipitation. Common temperature‐based regression (Dai method) and threshold at freezing (0°C) PPMs had comparable accuracy to a humidity‐based PPM (TRH method) using 6 and 24 h observations. Using a daily climate data set from 1980 to 2015, the TRH method estimates 14% and 6% greater precipitation‐weighted snow fraction than the 0°C and Dai methods, respectively. The TRH method predicts four times less area with declining snow fraction than the Dai method (2.1% and 8.1% of the study domain, respectively) from 1980 to 2015, with the largest differences in the Cascade and Sierra Nevada mountains and southwestern U.S. Future Representative Concentration Pathway (RCP) 8.5 projections suggest warming temperatures of 4.2°C and declining relative humidity of 1% over the 21st century. The TRH method predicts a smaller reduction in snow fraction than temperature‐only PPMs by 2100, consistent with lower humidity buffering declines in snow fraction caused by regional warming. Key Points A humidity phase prediction method (PPM) had differing snow fraction (snowfall to precipitation) but similar accuracy to temperature PPMs Hindcasts from 1980 to 2015 estimate less area with declining snow fraction trends using humidity‐based PPM compared to temperature‐only PPMs Some GCMs project declines in relative humidity capable of buffering changes from snow to rain caused by warming temperatures Plain Language Summary The phase of precipitation as rain or snow when it lands on the ground can cause different flood risks and alter water supplies for people and ecosystems. Most of our water supply forecasting models use simple temperature‐only phase prediction methods, or PPMs, despite the fact that atmospheric conditions like humidity and pressure can also affect precipitation phase. In this study, we compared simple temperature‐only PPMs, with another PPM that included temperature and relative humidity. Relative humidity well‐below 100% acts to cool the falling snowflake through evaporation, similar to how sweating cools people through evaporative heat loss. We show that the different PPMs have relatively similar accuracy compared to observations. This gives confidence that we can hindcast back in time and forecast forward in time using the different PPMs and gridded climate datasets. We show that both hindcasts and forecasts are sensitive to the PPM chosen, with the PPM using relative humidity generally leading to more snowfall than the two temperature‐only PPMs. These results suggest that future declines in relative humidity may be sufficient to buffer declines in snowfall as temperatures warm over the 21st century.
AbstractList Predicting the phase of precipitation is fundamental to water supply and hazard forecasting. Phase prediction methods (PPMs) are used to predict snow fraction, or the ratio of snowfall to total precipitation. Common temperature‐based regression (Dai method) and threshold at freezing (0°C) PPMs had comparable accuracy to a humidity‐based PPM (TRH method) using 6 and 24 h observations. Using a daily climate data set from 1980 to 2015, the TRH method estimates 14% and 6% greater precipitation‐weighted snow fraction than the 0°C and Dai methods, respectively. The TRH method predicts four times less area with declining snow fraction than the Dai method (2.1% and 8.1% of the study domain, respectively) from 1980 to 2015, with the largest differences in the Cascade and Sierra Nevada mountains and southwestern U.S. Future Representative Concentration Pathway (RCP) 8.5 projections suggest warming temperatures of 4.2°C and declining relative humidity of 1% over the 21st century. The TRH method predicts a smaller reduction in snow fraction than temperature‐only PPMs by 2100, consistent with lower humidity buffering declines in snow fraction caused by regional warming. Key Points A humidity phase prediction method (PPM) had differing snow fraction (snowfall to precipitation) but similar accuracy to temperature PPMs Hindcasts from 1980 to 2015 estimate less area with declining snow fraction trends using humidity‐based PPM compared to temperature‐only PPMs Some GCMs project declines in relative humidity capable of buffering changes from snow to rain caused by warming temperatures Plain Language Summary The phase of precipitation as rain or snow when it lands on the ground can cause different flood risks and alter water supplies for people and ecosystems. Most of our water supply forecasting models use simple temperature‐only phase prediction methods, or PPMs, despite the fact that atmospheric conditions like humidity and pressure can also affect precipitation phase. In this study, we compared simple temperature‐only PPMs, with another PPM that included temperature and relative humidity. Relative humidity well‐below 100% acts to cool the falling snowflake through evaporation, similar to how sweating cools people through evaporative heat loss. We show that the different PPMs have relatively similar accuracy compared to observations. This gives confidence that we can hindcast back in time and forecast forward in time using the different PPMs and gridded climate datasets. We show that both hindcasts and forecasts are sensitive to the PPM chosen, with the PPM using relative humidity generally leading to more snowfall than the two temperature‐only PPMs. These results suggest that future declines in relative humidity may be sufficient to buffer declines in snowfall as temperatures warm over the 21st century.
Abstract Predicting the phase of precipitation is fundamental to water supply and hazard forecasting. Phase prediction methods (PPMs) are used to predict snow fraction, or the ratio of snowfall to total precipitation. Common temperature‐based regression (Dai method) and threshold at freezing (0°C) PPMs had comparable accuracy to a humidity‐based PPM ( T RH method) using 6 and 24 h observations. Using a daily climate data set from 1980 to 2015, the T RH method estimates 14% and 6% greater precipitation‐weighted snow fraction than the 0°C and Dai methods, respectively. The T RH method predicts four times less area with declining snow fraction than the Dai method (2.1% and 8.1% of the study domain, respectively) from 1980 to 2015, with the largest differences in the Cascade and Sierra Nevada mountains and southwestern U.S. Future Representative Concentration Pathway (RCP) 8.5 projections suggest warming temperatures of 4.2°C and declining relative humidity of 1% over the 21st century. The T RH method predicts a smaller reduction in snow fraction than temperature‐only PPMs by 2100, consistent with lower humidity buffering declines in snow fraction caused by regional warming. Key Points A humidity phase prediction method (PPM) had differing snow fraction (snowfall to precipitation) but similar accuracy to temperature PPMs Hindcasts from 1980 to 2015 estimate less area with declining snow fraction trends using humidity‐based PPM compared to temperature‐only PPMs Some GCMs project declines in relative humidity capable of buffering changes from snow to rain caused by warming temperatures Plain Language Summary The phase of precipitation as rain or snow when it lands on the ground can cause different flood risks and alter water supplies for people and ecosystems. Most of our water supply forecasting models use simple temperature‐only phase prediction methods, or PPMs, despite the fact that atmospheric conditions like humidity and pressure can also affect precipitation phase. In this study, we compared simple temperature‐only PPMs, with another PPM that included temperature and relative humidity. Relative humidity well‐below 100% acts to cool the falling snowflake through evaporation, similar to how sweating cools people through evaporative heat loss. We show that the different PPMs have relatively similar accuracy compared to observations. This gives confidence that we can hindcast back in time and forecast forward in time using the different PPMs and gridded climate datasets. We show that both hindcasts and forecasts are sensitive to the PPM chosen, with the PPM using relative humidity generally leading to more snowfall than the two temperature‐only PPMs. These results suggest that future declines in relative humidity may be sufficient to buffer declines in snowfall as temperatures warm over the 21st century.
Predicting the phase of precipitation is fundamental to water supply and hazard forecasting. Phase prediction methods (PPMs) are used to predict snow fraction, or the ratio of snowfall to total precipitation. Common temperature‐based regression (Dai method) and threshold at freezing (0°C) PPMs had comparable accuracy to a humidity‐based PPM (TRH method) using 6 and 24 h observations. Using a daily climate data set from 1980 to 2015, the TRH method estimates 14% and 6% greater precipitation‐weighted snow fraction than the 0°C and Dai methods, respectively. The TRH method predicts four times less area with declining snow fraction than the Dai method (2.1% and 8.1% of the study domain, respectively) from 1980 to 2015, with the largest differences in the Cascade and Sierra Nevada mountains and southwestern U.S. Future Representative Concentration Pathway (RCP) 8.5 projections suggest warming temperatures of 4.2°C and declining relative humidity of 1% over the 21st century. The TRH method predicts a smaller reduction in snow fraction than temperature‐only PPMs by 2100, consistent with lower humidity buffering declines in snow fraction caused by regional warming.
Author Winchell, T.
Crews, J. B.
Rajagopal, S.
Schumer, R.
Harpold, A. A.
Author_xml – sequence: 1
  givenname: A. A.
  orcidid: 0000-0002-2566-9574
  surname: Harpold
  fullname: Harpold, A. A.
  email: aharpold@cabnr.unr.edu
  organization: University of Nevada
– sequence: 2
  givenname: S.
  orcidid: 0000-0003-4813-2670
  surname: Rajagopal
  fullname: Rajagopal, S.
  organization: Desert Research Institute
– sequence: 3
  givenname: J. B.
  surname: Crews
  fullname: Crews, J. B.
  organization: Desert Research Institute
– sequence: 4
  givenname: T.
  orcidid: 0000-0002-8630-1415
  surname: Winchell
  fullname: Winchell, T.
  organization: University of Colorado Boulder
– sequence: 5
  givenname: R.
  orcidid: 0000-0001-6094-5637
  surname: Schumer
  fullname: Schumer, R.
  organization: Desert Research Institute
BookMark eNp9kE1Lw0AYhBepYKve_AELXk199yPZzVFKP4RAoTV4DJvkDU1pd-tu2tJ_b6QePHmaOTwzAzMiA-ssEvLEYMwA-CsHpuYZqBhkckOGLJUy0gBqQIYAae-5Su7IKIQtAAgQbEjyFe5M156QLo77tm67C12YQHOLJ7R02jRYdYE6S9ebtundzLs9XVt3pp2jK9Naujyhp90G6SeGDr2l-Xj9QG4bswv4-Kv3JJ9NPyaLKFvO3ydvWVQJxXWUJBrKWKdco0bJZAq10GVZmkrUDYiUMdVIo0Eg43UKyDTXMefIhEy4rIy4J8_X3oN3X8d-v9i6o7f9ZMHSOOnzwFVPvVypyrsQPDbFwbd74y8Fg-LnuOLvcT3Or_i53eHlX7aYr7I4kUqLb5twbWA
CitedBy_id crossref_primary_10_1029_2021WR031778
crossref_primary_10_1002_qj_3240
crossref_primary_10_1016_j_jhydrol_2023_130346
crossref_primary_10_5194_tc_17_2437_2023
crossref_primary_10_1088_1748_9326_ab763f
crossref_primary_10_1360_TB_2023_0325
crossref_primary_10_1016_j_foreco_2021_119387
crossref_primary_10_2166_nh_2020_080
crossref_primary_10_2166_nh_2020_081
crossref_primary_10_3151_jact_18_27
crossref_primary_10_1007_s13351_020_0004_z
crossref_primary_10_1029_2018JD030140
crossref_primary_10_5194_hess_24_5317_2020
crossref_primary_10_5194_gmd_17_685_2024
crossref_primary_10_1029_2018GL080260
crossref_primary_10_3390_w14071122
crossref_primary_10_1073_pnas_1716789115
crossref_primary_10_1109_JSEN_2024_3355475
crossref_primary_10_1016_j_jhydrol_2020_125780
crossref_primary_10_1029_2022EA002714
crossref_primary_10_1016_j_atmosres_2022_106094
crossref_primary_10_1175_JAMC_D_20_0260_1
crossref_primary_10_5194_hess_26_3393_2022
crossref_primary_10_1002_eco_2060
crossref_primary_10_1002_lno_11656
crossref_primary_10_1029_2023WR035801
crossref_primary_10_1088_1748_9326_abb55f
crossref_primary_10_1038_s41467_018_03629_7
crossref_primary_10_1175_BAMS_D_19_0001_1
crossref_primary_10_5194_hess_22_4891_2018
crossref_primary_10_5194_gmd_13_2433_2020
crossref_primary_10_1002_2017JD027704
crossref_primary_10_1016_j_jhydrol_2018_10_023
crossref_primary_10_3389_feart_2020_00186
crossref_primary_10_1146_annurev_earth_071719_055228
crossref_primary_10_1175_AIES_D_22_0010_1
crossref_primary_10_5194_hess_23_3765_2019
crossref_primary_10_1061__ASCE_HE_1943_5584_0001799
crossref_primary_10_2166_nh_2021_072
Cites_doi 10.1175/BAMS-D-11-00094.1
10.1029/2008GL033295
10.1016/j.advwatres.2012.11.012
10.1002/2017WR020840
10.1016/j.rse.2017.06.031
10.1002/joc.3413
10.1002/2014GL060500
10.1002/hyp.9799
10.2151/jmsj1965.59.4_462
10.1002/joc.2312
10.1111/1752-1688.12443
10.1002/joc.4963
10.1175/JCLI3850.1
10.1007/s00382-015-2845-1
10.1175/1520-0469(1990)047<0584:AWTATS>2.0.CO;2
10.3390/hydrology2040266
10.1016/j.atmosres.2004.10.030
10.1175/JCLI-D-16-0351.1
10.1080/01621459.1968.10480934
10.1002/hyp.10214
10.1038/nature04141
10.1016/j.jhydrol.2014.03.038
ContentType Journal Article
Copyright 2017. American Geophysical Union. All Rights Reserved.
Copyright_xml – notice: 2017. American Geophysical Union. All Rights Reserved.
DBID AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
DOI 10.1002/2017GL075046
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList
CrossRef
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Physics
EISSN 1944-8007
EndPage 9750
ExternalDocumentID 10_1002_2017GL075046
GRL56478
Genre article
GrantInformation_xml – fundername: NASA EPSCOR Cooperative Agreement
  funderid: NNX14AN24A
– fundername: National Science Foundation
  funderid: DGE #1144083
– fundername: USDA NIFA
  funderid: NEV05293
– fundername: NSF/USDA
  funderid: #1360506/#1360507
GroupedDBID -DZ
-~X
05W
0R~
1OB
1OC
24P
33P
50Y
5GY
5VS
702
8-1
8R4
8R5
A00
AAESR
AAHHS
AAIHA
AASGY
AAXRX
AAZKR
ABCUV
ABPPZ
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEFZC
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFRAH
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
AVUZU
AZFZN
AZVAB
BENPR
BFHJK
BMXJE
BRXPI
CS3
DCZOG
DPXWK
DRFUL
DRSTM
DU5
EBS
EJD
F5P
G-S
GODZA
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P-X
P2P
P2W
Q2X
R.K
RNS
ROL
SUPJJ
TN5
TWZ
UPT
WBKPD
WH7
WIH
WIN
WXSBR
WYJ
XSW
ZZTAW
~02
~OA
~~A
AAYXX
CITATION
PYCSY
7TG
7TN
8FD
ALXUD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
ID FETCH-LOGICAL-c3728-6680b58928e8e41490d38bbbac3df039117f4a803e12d90e1828522e134624ca3
ISSN 0094-8276
IngestDate Thu Oct 10 20:57:34 EDT 2024
Thu Sep 12 16:27:50 EDT 2024
Sat Aug 24 01:02:14 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3728-6680b58928e8e41490d38bbbac3df039117f4a803e12d90e1828522e134624ca3
ORCID 0000-0002-2566-9574
0000-0001-6094-5637
0000-0002-8630-1415
0000-0003-4813-2670
PQID 1956117027
PQPubID 54723
PageCount 9
ParticipantIDs proquest_journals_1956117027
crossref_primary_10_1002_2017GL075046
wiley_primary_10_1002_2017GL075046_GRL56478
PublicationCentury 2000
PublicationDate 16 October 2017
PublicationDateYYYYMMDD 2017-10-16
PublicationDate_xml – month: 10
  year: 2017
  text: 16 October 2017
  day: 16
PublicationDecade 2010
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Geophysical research letters
PublicationYear 2017
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2012; 93
2017; 53
2014; 513
2013; 27
1990; 47
2013; 55
2017; 21
1976
2005; 438
2008; 35
2017
2006; 19
2016
2015
1981
2013
2014; 28
2016; 29
2014; 41
2016; 37
2012; 32
2005; 77
2016; 47
1968; 63
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
Harpold A. A. (e_1_2_7_13_1) 2017; 21
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
Kendall M. G. (e_1_2_7_14_1) 1976
e_1_2_7_25_1
e_1_2_7_24_1
e_1_2_7_23_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_20_1
Wayand N. E. (e_1_2_7_26_1) 2016
References_xml – year: 2015
  article-title: Meteorological knowledge useful for the improvement of snow rain separation in surface based models
  publication-title: Hydrology
– volume: 29
  start-page: 9045
  issue: 24
  year: 2016
  end-page: 9061
  article-title: Understanding decreases in land relative humidity with global warming: Conceptual model and GCM simulations
  publication-title: Journal of Climate
– volume: 513
  start-page: 154
  year: 2014
  end-page: 163
  article-title: The dependence of precipitation types on surface elevation and meteorological conditions and its parameterization
  publication-title: Journal of Hydrology
– year: 1981
– year: 2016
  article-title: Testing and improving temperature thresholds for snow and rain prediction in the western United States
  publication-title: JAWRA Journal of the American Water Resources Association
– volume: 438
  start-page: 303
  issue: 7066
  year: 2005
  end-page: 309
  article-title: Potential impacts of a warming climate on water availability in snow‐dominated regions
  publication-title: Nature
– volume: 55
  start-page: 98
  year: 2013
  end-page: 110
  article-title: An evaluation of methods for determining during‐storm precipitation phase and the rain/snow transition elevation at the surface in a mountain basin
  publication-title: Advances in Water Resources
– volume: 19
  start-page: 4545
  issue: 18
  year: 2006
  end-page: 4559
  article-title: Trends in snowfall versus rainfall in the western United States
  publication-title: Journal of Climate
– year: 2017
  article-title: Google Earth Engine: Planetary‐scale geospatial analysis for everyone
  publication-title: Remote Sensing of Environment
– volume: 77
  start-page: 218
  issue: 1–4
  year: 2005
  end-page: 231
  article-title: The water phase of precipitation—A comparison between observed, estimated and predicted values
  publication-title: Atmospheric Research
– volume: 21
  start-page: 1
  issue: 1
  year: 2017
  end-page: 22
  article-title: Rain or snow: Hydrologic processes, observations, prediction, and research needs
  publication-title: HESS
– volume: 41
  start-page: 4560
  year: 2014
  end-page: 4568
  article-title: Extent of the rain‐snow transition zone in the western U.S. under historic and projected climate
  publication-title: Geophysical Research Letters
– year: 2013
  article-title: Development of gridded surface meteorological data for ecological applications and modelling
  publication-title: International Journal of Climatology
– volume: 47
  start-page: 584
  issue: 5
  year: 1990
  end-page: 591
  article-title: A wind tunnel and theoretical study of the melting behavior of atmospheric ice particles. IV: Experiment and theory for snow flakes
  publication-title: Journal of the Atmospheric Sciences
– volume: 28
  start-page: 4311
  issue: 14
  year: 2014
  end-page: 4327
  article-title: Hydrological model uncertainty due to precipitation‐phase partitioning methods, edited by S. Carey and B. Quinton
  publication-title: Hydrological Processes
– volume: 27
  start-page: 1901
  issue: 13
  year: 2013
  end-page: 1914
  article-title: Estimating precipitation phase using a psychrometric energy balance method, edited by S. Carey and J. Buttle
  publication-title: Hydrological Processes
– volume: 37
  start-page: 3984
  issue: 10
  year: 2016
  end-page: 3990
  article-title: Less warming projected during heavy winter precipitation in the Cascades and Sierra Nevada
  publication-title: International Journal of Climatology
– volume: 63
  start-page: 1379
  issue: 324
  year: 1968
  end-page: 1389
  article-title: Estimates of the regression coefficient based on Kendall's tau
  publication-title: Journal of the American Statistical Association
– volume: 35
  year: 2008
  article-title: Temperature and pressure dependence of the rain‐snow phase transition over land and ocean
  publication-title: Geophysical Research Letters
– volume: 47
  start-page: 411
  issue: 1–2
  year: 2016
  end-page: 431
  article-title: Downscaling humidity with Localized Constructed Analogs (LOCA) over the conterminous United States
  publication-title: Climate Dynamics
– year: 2016
  article-title: Improving simulations of precipitation phase and snowpack at a site subject to cold air intrusions: Snoqualmie Pass, WA
  publication-title: Journal of Climate
– volume: 32
  start-page: 772
  issue: 5
  year: 2012
  end-page: 780
  article-title: A comparison of statistical downscaling methods suited for wildfire applications
  publication-title: International Journal of Climatology
– year: 1976
– volume: 53
  start-page: 3534
  year: 2017
  end-page: 3544
  article-title: Water and life from snow: A trillion dollar science question
  publication-title: Water Resources Research
– volume: 93
  start-page: 485
  issue: 4
  year: 2012
  end-page: 498
  article-title: An overview of CMIP5 and the experiment design
  publication-title: Bulletin of the American Meteorological Society
– ident: e_1_2_7_25_1
  doi: 10.1175/BAMS-D-11-00094.1
– ident: e_1_2_7_6_1
  doi: 10.1029/2008GL033295
– year: 2016
  ident: e_1_2_7_26_1
  article-title: Improving simulations of precipitation phase and snowpack at a site subject to cold air intrusions: Snoqualmie Pass, WA
  publication-title: Journal of Climate
  contributor:
    fullname: Wayand N. E.
– ident: e_1_2_7_17_1
  doi: 10.1016/j.advwatres.2012.11.012
– ident: e_1_2_7_24_1
  doi: 10.1002/2017WR020840
– ident: e_1_2_7_10_1
  doi: 10.1016/j.rse.2017.06.031
– ident: e_1_2_7_2_1
  doi: 10.1002/joc.3413
– ident: e_1_2_7_15_1
  doi: 10.1002/2014GL060500
– ident: e_1_2_7_11_1
  doi: 10.1002/hyp.9799
– volume-title: Rank Correlation Methods
  year: 1976
  ident: e_1_2_7_14_1
  contributor:
    fullname: Kendall M. G.
– ident: e_1_2_7_18_1
  doi: 10.2151/jmsj1965.59.4_462
– ident: e_1_2_7_3_1
  doi: 10.1002/joc.2312
– ident: e_1_2_7_21_1
  doi: 10.1111/1752-1688.12443
– ident: e_1_2_7_22_1
  doi: 10.1002/joc.4963
– ident: e_1_2_7_16_1
  doi: 10.1175/JCLI3850.1
– ident: e_1_2_7_20_1
  doi: 10.1007/s00382-015-2845-1
– volume: 21
  start-page: 1
  issue: 1
  year: 2017
  ident: e_1_2_7_13_1
  article-title: Rain or snow: Hydrologic processes, observations, prediction, and research needs
  publication-title: HESS
  contributor:
    fullname: Harpold A. A.
– ident: e_1_2_7_19_1
  doi: 10.1175/1520-0469(1990)047<0584:AWTATS>2.0.CO;2
– ident: e_1_2_7_8_1
  doi: 10.3390/hydrology2040266
– ident: e_1_2_7_9_1
  doi: 10.1016/j.atmosres.2004.10.030
– ident: e_1_2_7_5_1
  doi: 10.1175/JCLI-D-16-0351.1
– ident: e_1_2_7_23_1
  doi: 10.1080/01621459.1968.10480934
– ident: e_1_2_7_12_1
  doi: 10.1002/hyp.10214
– ident: e_1_2_7_4_1
  doi: 10.1038/nature04141
– ident: e_1_2_7_7_1
  doi: 10.1016/j.jhydrol.2014.03.038
SSID ssj0003031
Score 2.4855506
Snippet Predicting the phase of precipitation is fundamental to water supply and hazard forecasting. Phase prediction methods (PPMs) are used to predict snow fraction,...
Abstract Predicting the phase of precipitation is fundamental to water supply and hazard forecasting. Phase prediction methods (PPMs) are used to predict snow...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
StartPage 9742
SubjectTerms 21st century
Accuracy
Atmospheric conditions
Atmospheric models
Atmospheric precipitations
Buffers
Climate
Climatic data
Economic forecasting
Ecosystems
Evaporation
Evaporative cooling
Freezing
GCM
Heat loss
Humidity
hydrologic modeling
Methods
Mountains
Precipitation
precipitation phase
Predictions
Rain
Relative humidity
Snow
Snowfall
Supply-demand forecasting
Sweating
Temperature
Temperature effects
Water supply
Weather forecasting
Title Relative Humidity Has Uneven Effects on Shifts From Snow to Rain Over the Western U.S
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2017GL075046
https://www.proquest.com/docview/1956117027
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swEBZZymAvYz9Ztm7oYXsy9mxZsuzHrLQJpdtgqdeyF2PZCs0YTkjSwfYP7N_enSQ7Hi2lHQQjDiFi3efTnX33HSFvBfj0qkzmvlaq8uGEqv2yjrTPuUriEGSixOLkj5-Sac6Pz8X5YPCnl7V0uVVB9fvaupL_0SrIQK9YJXsHzXaLggDGoF-4gobheisd20y2nxpfxS9q9KenJSa8ICuTd9hmasADfLGYw-gIS0lmWPwGDid-2PE-wy0b1_PMEiZ4eTDru6sTvVy1inS0QBfeD1MBtNnZrvXKtZ4eB_DbfTn6jj1WTEMBb9aJD9auu_hx4H3opGeLxqSkGvgE_VcRcLxhZkfSN68Z91MmHbe1tagZB1loW9u2JtdSPrbQynoGFMIb1juMM2lpaa8Yeksci39icoJeD7-GT7ubJ26aac7yyZcTgVW398gek5kQQ7I3_pp_y7tDHU5623zR3aGroYDl3_eX_te72YUs_cDHeC6nj8hDF3LQscXPYzLQzRNyf2JaOv-CkUkCrjZPSd7iibZ4ooAnavFEHZ7osqEWTxTxRBFPdLukiCeKeKKAJ-rwRAFPz0h-dHh6MPVd2w2_iiVL_SRJQyXSjKU61Rwi6LCOU6VUWcX1HBsKRHLOyzSMdcTqLNQRkiAypqOYJ4xXZfycDJtlo18QqhKhVQUxh0oUl0xlskpkKVjJwEQwWY3Iu3a7ipVlVyksjzYr-ts6IvvtXhbu-dsUWOmKfZOYHBHP7O-NaxStjl_eafYr8mAH9X0y3K4v9WvwQ7fqjcPIXzNle_8
link.rule.ids 315,786,790,27955,27956,50847,50956
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT4MwFH7RGaMX4884ndqDngwOSmnhuBi3qWwmbujihbRQ4g6CGVPjf28L7IcXE28NKT289r3vo7z3PYBzR3F6wWliSCEiQyFUbPDYkgYhgtqmeuZwXZzc69NuQO5Gzqjqc6prYUp9iPmFm_aMIl5rB9cX0s2FaqiCLtbxNeQRugprjpbUq8Fa6yl4CebBWEXosmmeRwwXM1rlvqsVmsvv_0alBdVcJqwF4rS3YauiiqhV7u0OrMh0F9Y7RSvebzUqkjejfA-CMqPtUyK1OeNY8WrU5TkKUq3OhEp94hxlKRq8jhM1ak-yNzRIsy80zZD-wYMe1IFGigqi51I4AQVXg30I2jfD665RtUswIpth16DUNYXjetiVriTqy8eMbVcIwSM7TrQQvMUSwl3TlhaOPVNaWrwOY2nZhGIScfsAammWykNAgjpSRIorCioIw8JjEWXcwRyrrcUsqsPFzFzhe6mKEZb6xzhcNmsdGjNbhpVv5KGuUNT9bjCrw2Vh3z_XCDuPvqMrYo_-NfsMNrrDnh_6t_37Y9jUczTkWLQBtenkQ54oLjEVp9V5-QGr5r0I
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagFYgF8RSFAh5gQqGJ49jJWAFtgVIQJVCxRHbiiA4kVVNA_HvOSfpgQWKzItvDne_us3P3HUInDmB6KVhsKClDAyJUZIjIUgalktkmfHOELk6-67GOT28GzqB8cNO1MAU_xOzBTVtG7q-1gY-iuDEnDYXIxdtdHfEoW0ZVABoULl_V5rP_6s98MTjoomeeRw2XcFamvsMOjcX1v4PSHGku4tU84LQ20HqJFHGzUO0mWlLJFlpp5514v2GU526G2Tbyi4S2T4VBN8MIYDXuiAz7iSZnwgU9cYbTBPffhjGMWuP0HfeT9AtPUqz_7-B7OM8YkCB-KXgTsH_e30F-6-rpomOU3RKM0ObENRhzTem4HnGVqyhcfMzIdqWUIrSjWPPAWzymwjVtZZHIM5WluesIUZZNGaGhsHdRJUkTtYewZI6SIUBFySTlRHo8ZFw4RBDQLOFhDZ1OxRWMClKMoKA_JsGiWGuoPpVlUJpGFugCRd3uhvAaOsvl--ceQfux6-iC2P1_zT5Gqw-XraB73bs9QGt6ig44FqujymT8oQ4BSUzkUXlcfgCtAbwx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Relative+Humidity+Has+Uneven+Effects+on+Shifts+From+Snow+to+Rain+Over+the+Western+U.S&rft.jtitle=Geophysical+research+letters&rft.au=Harpold%2C+A.+A.&rft.au=Rajagopal%2C+S.&rft.au=Crews%2C+J.+B.&rft.au=Winchell%2C+T.&rft.date=2017-10-16&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=44&rft.issue=19&rft.spage=9742&rft.epage=9750&rft_id=info:doi/10.1002%2F2017GL075046&rft.externalDBID=10.1002%252F2017GL075046&rft.externalDocID=GRL56478
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon