Polyoxometalates‐Modulated Hydrophilic‐Hydrophobic Composite Interfacial Material for Efficient Solar Water Evaporation and Salt Harvesting in High‐Salinity Brine

Solar vapor generation (SVG) represents a promising technique for seawater desalination to alleviate the global water crisis and energy shortage. One of its main bottleneck problems is that the evaporation efficiency and stability are limited by salt crystallization under high‐salinity brines. Herei...

Full description

Saved in:
Bibliographic Details
Published inEnergy & environmental materials (Hoboken, N.J.) Vol. 7; no. 3; pp. 219 - n/a
Main Authors Cheng, Sihang, Liu, Cuimei, Li, Yingqi, Tan, Huaqiao, Wang, Yonghui, Li, Yangguang
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.05.2024
Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education,Faculty of Chemistry,Northeast Normal University,Changchun 130024,China
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Solar vapor generation (SVG) represents a promising technique for seawater desalination to alleviate the global water crisis and energy shortage. One of its main bottleneck problems is that the evaporation efficiency and stability are limited by salt crystallization under high‐salinity brines. Herein, we demonstrate that the 3D porous melamine‐foam (MF) wrapped by a type of self‐assembling composite materials based on reduced polyoxometalates (i.e. heteropoly blue, HPB), oleic acid (OA), and polypyrrole (PPy) (labeled with MF@HPB‐PPyn‐OA) can serve as efficient and stable SVG material at high salinity. Structural characterizations of MF@HPB‐PPyn‐OA indicate that both hydrophilic region of HPBs and hydrophobic region of OA co‐exist on the surface of composite materials, optimizing the hydrophilic and hydrophobic interfaces of the SVG materials, and fully exerting its functionality for ultrahigh water‐evaporation and anti‐salt fouling. The optimal MF@HPB‐PPy10‐OA operates continuously and stably for over 100 h in 10 wt% brine. Furthermore, MF@HPB‐PPy10‐OA accomplishes complete salt‐water separation of 10 wt% brine with 3.3 kg m−2 h−1 under 1‐sun irradiation, yielding salt harvesting efficiency of 96.5%, which belongs to the record high of high‐salinity systems reported so far and is close to achieving zero liquid discharge. Moreover, the low cost of MF@HPB‐PPy10‐OA (2.56 $ m−2) suggests its potential application in the practical SVG technique. Benefiting from the hydrophilic–hydrophobic engineering and the unique structure of the surface, 3D porous MF@HPB‐PPy10‐OA yields an impressive evaporation rate of 3.3 kg m−2 h−1 and a salt harvesting efficiency of 96.5% in desalination of 10 wt% brine.
AbstractList Solar vapor generation (SVG) represents a promising technique for seawater desalination to alleviate the global water crisis and energy shortage. One of its main bottleneck problems is that the evaporation efficiency and stability are limited by salt crystallization under high‐salinity brines. Herein, we demonstrate that the 3D porous melamine‐foam (MF) wrapped by a type of self‐assembling composite materials based on reduced polyoxometalates (i.e. heteropoly blue, HPB), oleic acid (OA), and polypyrrole (PPy) (labeled with MF@HPB‐PPyn‐OA) can serve as efficient and stable SVG material at high salinity. Structural characterizations of MF@HPB‐PPyn‐OA indicate that both hydrophilic region of HPBs and hydrophobic region of OA co‐exist on the surface of composite materials, optimizing the hydrophilic and hydrophobic interfaces of the SVG materials, and fully exerting its functionality for ultrahigh water‐evaporation and anti‐salt fouling. The optimal MF@HPB‐PPy10‐OA operates continuously and stably for over 100 h in 10 wt% brine. Furthermore, MF@HPB‐PPy10‐OA accomplishes complete salt‐water separation of 10 wt% brine with 3.3 kg m−2 h−1 under 1‐sun irradiation, yielding salt harvesting efficiency of 96.5%, which belongs to the record high of high‐salinity systems reported so far and is close to achieving zero liquid discharge. Moreover, the low cost of MF@HPB‐PPy10‐OA (2.56 $ m−2) suggests its potential application in the practical SVG technique. Benefiting from the hydrophilic–hydrophobic engineering and the unique structure of the surface, 3D porous MF@HPB‐PPy10‐OA yields an impressive evaporation rate of 3.3 kg m−2 h−1 and a salt harvesting efficiency of 96.5% in desalination of 10 wt% brine.
Solar vapor generation (SVG) represents a promising technique for seawater desalination to alleviate the global water crisis and energy shortage. One of its main bottleneck problems is that the evaporation efficiency and stability are limited by salt crystallization under high‐salinity brines. Herein, we demonstrate that the 3D porous melamine‐foam (MF) wrapped by a type of self‐assembling composite materials based on reduced polyoxometalates (i.e. heteropoly blue, HPB), oleic acid (OA), and polypyrrole (PPy) (labeled with MF@HPB‐PPy n ‐OA) can serve as efficient and stable SVG material at high salinity. Structural characterizations of MF@HPB‐PPy n ‐OA indicate that both hydrophilic region of HPBs and hydrophobic region of OA co‐exist on the surface of composite materials, optimizing the hydrophilic and hydrophobic interfaces of the SVG materials, and fully exerting its functionality for ultrahigh water‐evaporation and anti‐salt fouling. The optimal MF@HPB‐PPy 10 ‐OA operates continuously and stably for over 100 h in 10 wt% brine. Furthermore, MF@HPB‐PPy 10 ‐OA accomplishes complete salt‐water separation of 10 wt% brine with 3.3 kg m −2  h −1 under 1‐sun irradiation, yielding salt harvesting efficiency of 96.5%, which belongs to the record high of high‐salinity systems reported so far and is close to achieving zero liquid discharge. Moreover, the low cost of MF@HPB‐PPy 10 ‐OA (2.56 $ m −2 ) suggests its potential application in the practical SVG technique.
Solar vapor generation (SVG) represents a promising technique for seawater desalination to alleviate the global water crisis and energy shortage. One of its main bottleneck problems is that the evaporation efficiency and stability are limited by salt crystallization under high‐salinity brines. Herein, we demonstrate that the 3D porous melamine‐foam (MF) wrapped by a type of self‐assembling composite materials based on reduced polyoxometalates (i.e. heteropoly blue, HPB), oleic acid (OA), and polypyrrole (PPy) (labeled with MF@HPB‐PPyn‐OA) can serve as efficient and stable SVG material at high salinity. Structural characterizations of MF@HPB‐PPyn‐OA indicate that both hydrophilic region of HPBs and hydrophobic region of OA co‐exist on the surface of composite materials, optimizing the hydrophilic and hydrophobic interfaces of the SVG materials, and fully exerting its functionality for ultrahigh water‐evaporation and anti‐salt fouling. The optimal MF@HPB‐PPy10‐OA operates continuously and stably for over 100 h in 10 wt% brine. Furthermore, MF@HPB‐PPy10‐OA accomplishes complete salt‐water separation of 10 wt% brine with 3.3 kg m−2 h−1 under 1‐sun irradiation, yielding salt harvesting efficiency of 96.5%, which belongs to the record high of high‐salinity systems reported so far and is close to achieving zero liquid discharge. Moreover, the low cost of MF@HPB‐PPy10‐OA (2.56 $ m−2) suggests its potential application in the practical SVG technique.
Solar vapor generation(SVG)represents a promising technique for seawater desalination to alleviate the global water crisis and energy shortage.One of its main bottleneck problems is that the evaporation efficiency and stability are limited by salt crystallization under high-salinity brines.Herein,we demonstrate that the 3D porous melamine-foam(MF)wrapped by a type of self-assembling composite materials based on reduced polyoxometalates(i.e.heteropoly blue,HPB),oleic acid(OA),and polypyrrole(PPy)(labeled with MF@HPB-PPyn-OA)can serve as efficient and stable SVG material at high salinity.Structural characterizations of MF@HPB-PPyn-OA indicate that both hydrophilic region of HPBs and hydrophobic region of OA co-exist on the surface of composite materials,optimizing the hydrophilic and hydrophobic interfaces of the SVG materials,and fully exerting its functionality for ultrahigh water-evaporation and anti-salt fouling.The optimal MF@HPB-PPy10-OA operates continuously and stably for over 100 h in 10wt%brine.Furthermore,MF@HPB-PPy10-OA accomplishes complete salt-water separation of 10wt%brine with 3.3 kg m-2h-1 under 1-sun irradiation,yielding salt harvesting efficiency of 96.5%,which belongs to the record high of high-salinity systems reported so far and is close to achieving zero liquid discharge.Moreover,the low cost of MF@HPB-PPy10-OA(2.56 $ m-2)suggests its potential application in the practical SVG technique.
Author Cheng, Sihang
Tan, Huaqiao
Liu, Cuimei
Li, Yangguang
Wang, Yonghui
Li, Yingqi
AuthorAffiliation Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education,Faculty of Chemistry,Northeast Normal University,Changchun 130024,China
AuthorAffiliation_xml – name: Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education,Faculty of Chemistry,Northeast Normal University,Changchun 130024,China
Author_xml – sequence: 1
  givenname: Sihang
  surname: Cheng
  fullname: Cheng, Sihang
  organization: Northeast Normal University
– sequence: 2
  givenname: Cuimei
  surname: Liu
  fullname: Liu, Cuimei
  organization: Northeast Normal University
– sequence: 3
  givenname: Yingqi
  orcidid: 0000-0002-2300-3023
  surname: Li
  fullname: Li, Yingqi
  organization: Northeast Normal University
– sequence: 4
  givenname: Huaqiao
  surname: Tan
  fullname: Tan, Huaqiao
  email: tanhq870@nenu.edu.cn
  organization: Northeast Normal University
– sequence: 5
  givenname: Yonghui
  surname: Wang
  fullname: Wang, Yonghui
  organization: Northeast Normal University
– sequence: 6
  givenname: Yangguang
  orcidid: 0000-0002-9696-8192
  surname: Li
  fullname: Li, Yangguang
  email: liyg658@nenu.edu.cn
  organization: Northeast Normal University
BookMark eNp9UcFuEzEQtVArUUovfIElbkgptje73hwhWppKjUAqiKPleMfJRI69eJ3SvfEJfAbfxZfgbSJRVYiTn2feezP2e0FOfPBAyCvOLjlj4i3ATlxyUU3lM3ImSllOWFFWJ4_wc3LR91uWyYwXUz47I78-BTeE-7CDpJ1O0P_-8XMZ2v2IW7oY2hi6DTo0uX68hRUaOg-7LvSYgF77BNFqg9rRZVbFEdgQaWMtGgSf6G1wOtKvY5M2d7oLUScMnmrf0lvtEl3oeAd9Qr-m6OkC15s8LnfQYxro-4geXpJTq10PF8fznHz50HyeLyY3H6-u5-9uJqaQQk7AVszamhlpoRQs71WJlteyNlAJOdO2tmBbvZJ1Bdwy2c7EStpqBZU1rJZVcU7eHHy_a2-1X6tt2EefJyo_DJutcQoEE1NWMFFk8usDuYvh2z6_4C-7YGUhp6KePbI0MfR9BKu6iDsdB8WZGpNTY3LqIblMZk_IBtPDd6Wo0f1bwo8ro4PhP-aqaZbioPkDWIC0Ag
CitedBy_id crossref_primary_10_1039_D3QI02130K
crossref_primary_10_1002_eem2_12841
crossref_primary_10_1021_acsomega_4c03040
crossref_primary_10_1021_acs_inorgchem_4c02363
crossref_primary_10_1016_j_seppur_2025_132237
crossref_primary_10_1021_acs_inorgchem_3c03841
crossref_primary_10_1002_adma_202407705
Cites_doi 10.1126/sciadv.aax0763
10.1038/s41467-022-34528-7
10.1002/anie.201808074
10.1002/adfm.202104380
10.1002/adfm.202100911
10.1126/sciadv.abf8413
10.1021/jacs.6b03375
10.1016/j.rser.2017.07.047
10.1002/smll.202007176
10.1016/j.cej.2023.141431
10.1002/adfm.202112159
10.1038/s41467-019-09535-w
10.1126/sciadv.aaw7013
10.1016/j.apcatb.2021.120329
10.1126/science.148.3673.1127
10.1002/solr.202100427
10.1016/j.ccr.2017.10.025
10.1039/D1EE00113B
10.1016/j.joule.2019.06.009
10.1126/science.1096037
10.1002/anie.202208587
10.1038/s41467-020-14366-1
10.1002/aesr.202200158
10.1002/admi.202100196
10.1021/acs.chemrev.0c00345
10.1038/nchem.1621
10.1038/s41467-022-28457-8
10.1021/acssuschemeng.0c08981
10.1016/j.egypro.2017.03.138
10.1016/j.apcatb.2017.09.027
10.1126/science.289.5477.284
10.1038/s41467-021-21124-4
10.1002/adma.202001544
10.1002/anie.202108293
10.1039/D1TA03610F
10.1016/j.matchemphys.2017.06.045
10.1126/sciadv.1501227
10.1126/science.aad8641
10.1021/acsami.6b13009
10.1016/j.joule.2018.04.004
10.1002/adma.202007761
10.1021/cr960392l
10.1039/C8CS00559A
10.1002/aenm.201702884
10.1038/s41578-020-0182-4
10.1038/s41467-022-32051-3
10.1016/S0040-6031(96)03094-8
10.1021/cr500390v
10.1016/j.xcrp.2020.100074
10.1038/s41565-018-0097-z
10.1126/science.1200488
10.1002/advs.202101727
10.1002/adfm.202113264
10.1039/C9TA01576K
10.1016/j.nanoen.2021.106213
10.1126/science.168.3937.1286-c
10.1080/0144235X.2012.760836
10.1002/anie.201803868
10.1038/s41467-021-25026-3
10.1016/j.carbon.2021.01.140
10.1039/D0TA03307C
10.1360/N972018-00671
10.1002/adma.201900498
10.1039/C8MH00386F
10.1039/D0EE00399A
10.1016/j.desal.2022.115776
10.1002/adma.202203137
10.1039/B502666K
ContentType Journal Article
Copyright 2023 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.
2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: 2023 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.
– notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 24P
AAYXX
CITATION
7SR
7ST
8FD
C1K
JG9
SOI
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1002/eem2.12647
DatabaseName Wiley Online Library Open Access (WRLC)
CrossRef
Engineered Materials Abstracts
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
Environment Abstracts
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
CrossRef
Materials Research Database

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2575-0356
EndPage n/a
ExternalDocumentID nyyhjcl_e202403023
10_1002_eem2_12647
EEM212647
Genre researchArticle
GrantInformation_xml – fundername: The Fundamental Research Funds for the Central Universities
  funderid: 2412021QD008
– fundername: Natural Science Foundation of Jilin Province Science and Technology Department
  funderid: 20230508094RC; 20220101045JC
– fundername: National Key Basic Research Program of China
  funderid: 2020YFA0406101
– fundername: National Natural Science Foundation of China
  funderid: 22171041; 22071020; 21901035; 22271043
GroupedDBID 0R~
1OC
24P
ACCMX
ACXQS
ALMA_UNASSIGNED_HOLDINGS
AVUZU
EBS
EJD
OK1
WIN
AAYXX
CITATION
7SR
7ST
8FD
C1K
JG9
SOI
2B.
4A8
92I
93N
PSX
TCJ
ID FETCH-LOGICAL-c3727-ef60ff80c7fe520fac62d1878ce6279af8fefdab786e1f07d92b7f6be6fc08763
IEDL.DBID 24P
ISSN 2575-0356
2575-0348
IngestDate Thu May 29 04:00:40 EDT 2025
Mon Jun 30 12:01:27 EDT 2025
Thu Apr 24 23:06:19 EDT 2025
Tue Jul 01 01:03:07 EDT 2025
Wed Jan 22 17:20:38 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords salt-water separation
heteropoly blue(HPB)
solar vapor generation(SVG)
polyoxometalates(POM)
hydrophilic-hydrophobic interface
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3727-ef60ff80c7fe520fac62d1878ce6279af8fefdab786e1f07d92b7f6be6fc08763
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9696-8192
0000-0002-2300-3023
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feem2.12647
PQID 3053742896
PQPubID 5251211
PageCount 9
ParticipantIDs wanfang_journals_nyyhjcl_e202403023
proquest_journals_3053742896
crossref_primary_10_1002_eem2_12647
crossref_citationtrail_10_1002_eem2_12647
wiley_primary_10_1002_eem2_12647_EEM212647
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2024
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: May 2024
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Energy & environmental materials (Hoboken, N.J.)
PublicationTitle_FL Energy & Environmental Materials
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education,Faculty of Chemistry,Northeast Normal University,Changchun 130024,China
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education,Faculty of Chemistry,Northeast Normal University,Changchun 130024,China
References 1965; 148
1970; 168
2023; 4
2020; 120
2019; 10
2019; 58
2020; 13
2020; 11
2017; 110
2017; 199
2013; 5
2017; 9
2022; 534
2007; 36
2020; 8
2020; 5
2018; 8
2021; 32
2018; 2
2021; 31
2018; 5
2020; 1
2021; 33
2000; 289
2023; 458
2022; 34
2016; 352
2022; 32
1840; 2019
1998; 98
2021; 9
2019; 7
2021; 8
2021; 7
2018; 221
2011; 333
2021; 5
2021; 87
2019; 3
2019; 5
1997; 292
2019; 31
2018; 63
2020; 32
2004; 304
2021; 14
2021; 12
2016; 2
2015; 115
2013; 32
2022; 61
2021; 17
2019; 48
2022; 13
2018
2019; 378
2021; 296
2016; 138
2021; 176
2021; 60
2018; 13
2018; 57
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
Xia Y. (e_1_2_7_67_1) 1840; 2019
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 138
  start-page: 8156
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 998
  year: 2021
  publication-title: Nat. Commun.
– volume: 1
  year: 2020
  publication-title: Cell Rep. Phys. Sci.
– volume: 115
  start-page: 4893
  year: 2015
  publication-title: Chem. Rev.
– year: 2018
  publication-title: Renew. Sustain. Energy Rev.
– volume: 48
  start-page: 260
  year: 2019
  publication-title: Chem. Soc. Rev.
– volume: 5
  start-page: 1143
  year: 2018
  publication-title: Mater. Horiz.
– volume: 333
  start-page: 712
  year: 2011
  publication-title: Science
– volume: 98
  start-page: 3
  year: 1998
  publication-title: Chem. Rev.
– volume: 2019
  start-page: 12
  year: 1840
  publication-title: Energ. Environ. Sci.
– volume: 13
  start-page: 2087
  year: 2020
  publication-title: Energ. Environ. Sci.
– volume: 120
  start-page: 7642
  year: 2020
  publication-title: Chem. Rev.
– volume: 31
  start-page: 2100911
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 2
  year: 2016
  publication-title: Sci. Adv.
– volume: 5
  start-page: 403
  year: 2013
  publication-title: Nat. Chem.
– volume: 3
  start-page: 1798
  year: 2019
  publication-title: Joule
– volume: 36
  start-page: 105
  year: 2007
  publication-title: Chem. Soc. Rev.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 8
  start-page: 10260
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 458
  start-page: 141431
  year: 2023
  publication-title: Chem. Eng. J.
– volume: 2
  start-page: 1331
  year: 2018
  publication-title: Joule
– volume: 304
  start-page: 1134
  year: 2004
  publication-title: Science
– volume: 13
  start-page: 489
  year: 2018
  publication-title: Nat. Nanotechnol.
– volume: 9
  start-page: 16233
  year: 2021
  publication-title: J. Mater. Chem. A
– volume: 10
  start-page: 1512
  year: 2019
  publication-title: Nat. Commun.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 110
  start-page: 268
  year: 2017
  publication-title: Energy Procedia
– volume: 32
  start-page: 266
  year: 2013
  publication-title: Int. Rev. Phys. Chem.
– volume: 63
  start-page: 3296
  year: 2018
  publication-title: Chin. Sci. Bull.
– volume: 534
  start-page: 115776
  year: 2022
  publication-title: Desalination
– volume: 13
  start-page: 4335
  year: 2022
  publication-title: Nat. Commun.
– volume: 289
  start-page: 284
  year: 2000
  publication-title: Science
– volume: 7
  start-page: 15333
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 221
  start-page: 280
  year: 2018
  publication-title: Appl. Catal. Environ.
– volume: 292
  start-page: 45
  year: 1997
  publication-title: Thermochim. Acta
– volume: 176
  start-page: 313
  year: 2021
  publication-title: Carbon
– volume: 32
  start-page: 2112159
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: 422
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  year: 2021
  publication-title: Adv. Sci.
– volume: 5
  start-page: 2100427
  year: 2021
  publication-title: Solar RRL
– volume: 9
  start-page: 3887
  year: 2021
  publication-title: ACS Sustain. Chem. Eng.
– volume: 87
  year: 2021
  publication-title: Nano Energy
– volume: 14
  start-page: 2451
  year: 2021
  publication-title: Energ. Environ. Sci.
– volume: 17
  year: 2021
  publication-title: Small
– volume: 11
  start-page: 521
  year: 2020
  publication-title: Nat. Commun.
– volume: 12
  start-page: 4667
  year: 2021
  publication-title: Nat. Commun.
– volume: 32
  start-page: 2113264
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 352
  start-page: 928
  year: 2016
  publication-title: Science
– volume: 378
  start-page: 395
  year: 2019
  publication-title: Coord. Chem. Rev.
– volume: 199
  start-page: 79
  year: 2017
  publication-title: Mater. Chem. Phys.
– volume: 57
  start-page: 14101
  year: 2018
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 4
  start-page: 2200158
  year: 2023
  publication-title: Adv. Energy Sustain. Res.
– volume: 8
  start-page: 2100196
  year: 2021
  publication-title: Adv. Mater. Interfaces
– volume: 60
  start-page: 20518
  year: 2021
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 31
  start-page: 2104380
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 148
  start-page: 1127
  year: 1965
  publication-title: Science
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 7
  year: 2021
  publication-title: Sci. Adv.
– volume: 13
  start-page: 6653
  year: 2022
  publication-title: Nat. Commun.
– volume: 58
  start-page: 2980
  year: 2019
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 296
  start-page: 120329
  year: 2021
  publication-title: Appl. Catal. Environ.
– volume: 8
  start-page: 1702884
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 5
  year: 2019
  publication-title: Sci. Adv.
– volume: 5
  start-page: 388
  year: 2020
  publication-title: Nat. Rev. Mater.
– volume: 168
  start-page: 1286
  year: 1970
  publication-title: Science
– volume: 61
  year: 2022
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 13
  start-page: 849
  year: 2022
  publication-title: Nat. Commun.
– ident: e_1_2_7_17_1
  doi: 10.1126/sciadv.aax0763
– ident: e_1_2_7_23_1
  doi: 10.1038/s41467-022-34528-7
– ident: e_1_2_7_54_1
  doi: 10.1002/anie.201808074
– ident: e_1_2_7_68_1
  doi: 10.1002/adfm.202104380
– ident: e_1_2_7_61_1
  doi: 10.1002/adfm.202100911
– ident: e_1_2_7_48_1
  doi: 10.1126/sciadv.abf8413
– ident: e_1_2_7_53_1
  doi: 10.1021/jacs.6b03375
– ident: e_1_2_7_8_1
  doi: 10.1016/j.rser.2017.07.047
– ident: e_1_2_7_19_1
  doi: 10.1002/smll.202007176
– ident: e_1_2_7_15_1
  doi: 10.1016/j.cej.2023.141431
– ident: e_1_2_7_28_1
  doi: 10.1002/adfm.202112159
– ident: e_1_2_7_60_1
  doi: 10.1038/s41467-019-09535-w
– ident: e_1_2_7_16_1
  doi: 10.1126/sciadv.aaw7013
– ident: e_1_2_7_49_1
  doi: 10.1016/j.apcatb.2021.120329
– ident: e_1_2_7_6_1
  doi: 10.1126/science.148.3673.1127
– ident: e_1_2_7_11_1
  doi: 10.1002/solr.202100427
– ident: e_1_2_7_45_1
  doi: 10.1016/j.ccr.2017.10.025
– ident: e_1_2_7_62_1
  doi: 10.1039/D1EE00113B
– ident: e_1_2_7_59_1
  doi: 10.1016/j.joule.2019.06.009
– ident: e_1_2_7_24_1
  doi: 10.1126/science.1096037
– ident: e_1_2_7_31_1
  doi: 10.1002/anie.202208587
– ident: e_1_2_7_18_1
  doi: 10.1038/s41467-020-14366-1
– ident: e_1_2_7_14_1
  doi: 10.1002/aesr.202200158
– ident: e_1_2_7_69_1
  doi: 10.1002/admi.202100196
– ident: e_1_2_7_10_1
  doi: 10.1021/acs.chemrev.0c00345
– ident: e_1_2_7_46_1
  doi: 10.1038/nchem.1621
– ident: e_1_2_7_21_1
  doi: 10.1038/s41467-022-28457-8
– ident: e_1_2_7_13_1
  doi: 10.1021/acssuschemeng.0c08981
– ident: e_1_2_7_7_1
  doi: 10.1016/j.egypro.2017.03.138
– ident: e_1_2_7_58_1
  doi: 10.1016/j.apcatb.2017.09.027
– ident: e_1_2_7_1_1
  doi: 10.1126/science.289.5477.284
– ident: e_1_2_7_22_1
  doi: 10.1038/s41467-021-21124-4
– ident: e_1_2_7_27_1
  doi: 10.1002/adma.202001544
– ident: e_1_2_7_52_1
  doi: 10.1002/anie.202108293
– ident: e_1_2_7_20_1
  doi: 10.1039/D1TA03610F
– ident: e_1_2_7_56_1
  doi: 10.1016/j.matchemphys.2017.06.045
– volume: 2019
  start-page: 12
  year: 1840
  ident: e_1_2_7_67_1
  publication-title: Energ. Environ. Sci.
– ident: e_1_2_7_33_1
  doi: 10.1126/sciadv.1501227
– ident: e_1_2_7_2_1
  doi: 10.1126/science.aad8641
– ident: e_1_2_7_57_1
  doi: 10.1021/acsami.6b13009
– ident: e_1_2_7_34_1
  doi: 10.1016/j.joule.2018.04.004
– ident: e_1_2_7_51_1
  doi: 10.1002/adma.202007761
– ident: e_1_2_7_42_1
  doi: 10.1021/cr960392l
– ident: e_1_2_7_44_1
  doi: 10.1039/C8CS00559A
– ident: e_1_2_7_35_1
  doi: 10.1002/aenm.201702884
– ident: e_1_2_7_29_1
  doi: 10.1038/s41578-020-0182-4
– ident: e_1_2_7_63_1
  doi: 10.1038/s41467-022-32051-3
– ident: e_1_2_7_55_1
  doi: 10.1016/S0040-6031(96)03094-8
– ident: e_1_2_7_41_1
  doi: 10.1021/cr500390v
– ident: e_1_2_7_39_1
  doi: 10.1016/j.xcrp.2020.100074
– ident: e_1_2_7_26_1
  doi: 10.1038/s41565-018-0097-z
– ident: e_1_2_7_5_1
  doi: 10.1126/science.1200488
– ident: e_1_2_7_40_1
  doi: 10.1002/advs.202101727
– ident: e_1_2_7_65_1
  doi: 10.1002/adfm.202113264
– ident: e_1_2_7_37_1
  doi: 10.1039/C9TA01576K
– ident: e_1_2_7_30_1
  doi: 10.1016/j.nanoen.2021.106213
– ident: e_1_2_7_4_1
  doi: 10.1126/science.168.3937.1286-c
– ident: e_1_2_7_25_1
  doi: 10.1080/0144235X.2012.760836
– ident: e_1_2_7_50_1
  doi: 10.1002/anie.201803868
– ident: e_1_2_7_3_1
  doi: 10.1038/s41467-021-25026-3
– ident: e_1_2_7_12_1
  doi: 10.1016/j.carbon.2021.01.140
– ident: e_1_2_7_32_1
  doi: 10.1039/D0TA03307C
– ident: e_1_2_7_47_1
  doi: 10.1360/N972018-00671
– ident: e_1_2_7_66_1
  doi: 10.1002/adma.201900498
– ident: e_1_2_7_36_1
  doi: 10.1039/C8MH00386F
– ident: e_1_2_7_38_1
  doi: 10.1039/D0EE00399A
– ident: e_1_2_7_9_1
  doi: 10.1016/j.desal.2022.115776
– ident: e_1_2_7_64_1
  doi: 10.1002/adma.202203137
– ident: e_1_2_7_43_1
  doi: 10.1039/B502666K
SSID ssj0002013419
Score 2.3399127
Snippet Solar vapor generation (SVG) represents a promising technique for seawater desalination to alleviate the global water crisis and energy shortage. One of its...
Solar vapor generation(SVG)represents a promising technique for seawater desalination to alleviate the global water crisis and energy shortage.One of its main...
SourceID wanfang
proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 219
SubjectTerms Brines
Composite materials
Crystallization
Desalination
Energy shortages
Evaporation
heteropoly blue (HPB)
Hydrophilicity
hydrophilic‐hydrophobic interface
Hydrophobicity
Irradiation
Melamine
Oleic acid
Optimization
polyoxometalates (POM)
Polyoxometallates
Polypyrroles
Salinity
Salinity effects
Salts
salt‐water separation
Seawater
Self-assembly
solar vapor generation (SVG)
Water crises
Title Polyoxometalates‐Modulated Hydrophilic‐Hydrophobic Composite Interfacial Material for Efficient Solar Water Evaporation and Salt Harvesting in High‐Salinity Brine
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feem2.12647
https://www.proquest.com/docview/3053742896
https://d.wanfangdata.com.cn/periodical/nyyhjcl-e202403023
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3datRAFB5qi-CNVFRcrWVAbxRis7M7Mwl4U8uWRVgp1NXiTZifM3VlO1naFc1dH8HH8Ll8kp4zye5SEMG7JDPJhHzn5HxzmPkOYy-166MlOJkpX0I2lFJlJUbJTALinbvCQapDNvmgxtPh-zN5tsXervbCtPoQ64QbeUb6X5ODG3t1sBENBbgQb_oYz_UdtkN7a0k5XwxP1hkWDG0kVkbV5ZCTZPlAqrU-qTjY3H47Im1o5t0fJgYTz2_T1hR3jnfZ_Y4w8sMW4QdsC-JD9vuknjf1z_oCkDsTW_xz_WtSeyrFBZ6PG39ZLyhT4vB6d1bbmePk_bRKC3jKBAZDCXM-MctkhxwJLB8lTQkMRfyUZr38MzVyJNyLzli4iZ6fmvmSU10hEumI53wWOa0YweGwZYa_iYa_o32Fj9j0ePTxaJx1NRcyN0Aqk0FQeQhF7nQAKXJ8DyV8v9AImhK6NKEIELyxulDQD7n2pbA6KAsquKRu95htxzrCE8a9dE5ag3xEhiG4YAvtjAOcFEsrS3A99mr13SvXCZJTXYx51Uopi4owqhJGPfZi3XfRynD8tdfeCr6qc8WrakCKNTjJKhU-pIN00xqb5us3N69AkNgbVVDqsdcJ7n-MU41GE5GOnv5P52fsHo3SLpfcY9vLy-_wHCnN0u4ny91nO4efpl-mN09R-Zs
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3BbtQwELWgCMEFgQCxUMASXEAKzXpjOzkC2mqBpqrUVvRmOfa4LNo6q7IIcuMT-Ay-iy9hxkl3VQkhcUtiJ448M57n0fgNY8-1G6MmOJkpX0FWSKmyCr1kJgHlnbvSQapDVu-r2XHx_kSeDLk5dBam54dYB9zIMtJ6TQZOAemdDWsowJl4NUaHrq-ya4USmuxSFAfrEAv6NmIro_JyCEqyfCLVmqBU7Gxev-ySNjjz-jcbg42nl3Frcjy7t9mtATHy172I77ArEO-yXwftomu_t2eA4Jng4u8fP-vWUy0u8HzW-fN2SaESh8-Hu7aZO07mT2lawFMoMFiKmPParpIickSwfJpIJdAX8UPa9vKP1MgRcS8HbeE2en5oFytOhYWIpSOe8nnklDKCw2HLHNeJjr-hg4X32PHu9OjtLBuKLmRuglgmg6DyEMrc6QBS5PgfSvhxqVFqOMWVDWWA4G2jSwXjkGtfiUYH1YAKLtHb3WdbsY3wgHEvnZONRUAiQwEuNKV21gHuimUjK3Aj9uJi3o0bGMmpMMbC9FzKwpCMTJLRiD1b9132PBx_7bV9IT4z2OIXMyHKGtxlVQo_Moh00xq77tNntzAgiO2NSiiN2Msk7n-MY6bTWqSrh__T-Sm7MTuq98zeu_0Pj9hNGrHPndxmW6vzr_AY8c2qeZK0-A_hvftJ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dbtMwFLb2IxA3CAQThQGW4AakbKlbO4nEzYBW5afTpFGYuLEc-3gr6pxqFEHueAQeg-fiSTjHSVtNQki7S2IrjvKd4_P5yP4OY08z20VLsDJRroCkL6VKCoySiQTEO7W5hViHbHyoRpP-2xN5ssFeLM_CNPoQq4QbeUacr8nB587vr0VDAc7FXhfjebbJtkkmD216--Dj5PNklWPB4EZyZVRfDllJkvakWimUiv31Cy7HpDXRvPbdBG_C6WXiGiPP8Ba72VJGftBgfJttQLjDfh9Vs7r6UZ0Dsmfii39-_hpXjopxgeOj2l1Uc8qVWHze3lXl1HLyf9qnBTzmAr2hlDkfm0W0RI4Ulg-iqgQGI35M617-iRo5Uu55ay7cBMePzWzBqbIQyXSEUz4NnPaM4HDYMsWJouYv6WThXTYZDj68GiVt1YXE9pDMJOBV6n2e2syDFCl-hxKum2cImxJZYXzuwTtTZrmCrk8zV4gy86oE5W3Ut9thW6EKcI9xJ62VpUFGIn0frC_zzBoLuCyWpSzAdtiz5X_XtpUkp8oYM92IKQtNGOmIUYc9WfWdN0Ic_-y1u4RPt874VfdIswaXWYXCl7SQrltDXZ99sTMNguTeqIZShz2PcP9nHD0YjEW8un-Vzo_Z9aPXQ_3-zeG7B-wGDdjsndxlW4uLb_AQ-c2ifNSa8V8gAvxB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polyoxometalates%E2%80%90Modulated+Hydrophilic%E2%80%90Hydrophobic+Composite+Interfacial+Material+for+Efficient+Solar+Water+Evaporation+and+Salt+Harvesting+in+High%E2%80%90Salinity+Brine&rft.jtitle=Energy+%26+environmental+materials+%28Hoboken%2C+N.J.%29&rft.au=Cheng%2C+Sihang&rft.au=Liu%2C+Cuimei&rft.au=Li%2C+Yingqi&rft.au=Tan%2C+Huaqiao&rft.date=2024-05-01&rft.issn=2575-0356&rft.eissn=2575-0356&rft.volume=7&rft.issue=3&rft_id=info:doi/10.1002%2Feem2.12647&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_eem2_12647
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnyyhjcl-e%2Fnyyhjcl-e.jpg