Polyoxometalates‐Modulated Hydrophilic‐Hydrophobic Composite Interfacial Material for Efficient Solar Water Evaporation and Salt Harvesting in High‐Salinity Brine
Solar vapor generation (SVG) represents a promising technique for seawater desalination to alleviate the global water crisis and energy shortage. One of its main bottleneck problems is that the evaporation efficiency and stability are limited by salt crystallization under high‐salinity brines. Herei...
Saved in:
Published in | Energy & environmental materials (Hoboken, N.J.) Vol. 7; no. 3; pp. 219 - n/a |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.05.2024
Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education,Faculty of Chemistry,Northeast Normal University,Changchun 130024,China |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Solar vapor generation (SVG) represents a promising technique for seawater desalination to alleviate the global water crisis and energy shortage. One of its main bottleneck problems is that the evaporation efficiency and stability are limited by salt crystallization under high‐salinity brines. Herein, we demonstrate that the 3D porous melamine‐foam (MF) wrapped by a type of self‐assembling composite materials based on reduced polyoxometalates (i.e. heteropoly blue, HPB), oleic acid (OA), and polypyrrole (PPy) (labeled with MF@HPB‐PPyn‐OA) can serve as efficient and stable SVG material at high salinity. Structural characterizations of MF@HPB‐PPyn‐OA indicate that both hydrophilic region of HPBs and hydrophobic region of OA co‐exist on the surface of composite materials, optimizing the hydrophilic and hydrophobic interfaces of the SVG materials, and fully exerting its functionality for ultrahigh water‐evaporation and anti‐salt fouling. The optimal MF@HPB‐PPy10‐OA operates continuously and stably for over 100 h in 10 wt% brine. Furthermore, MF@HPB‐PPy10‐OA accomplishes complete salt‐water separation of 10 wt% brine with 3.3 kg m−2 h−1 under 1‐sun irradiation, yielding salt harvesting efficiency of 96.5%, which belongs to the record high of high‐salinity systems reported so far and is close to achieving zero liquid discharge. Moreover, the low cost of MF@HPB‐PPy10‐OA (2.56 $ m−2) suggests its potential application in the practical SVG technique.
Benefiting from the hydrophilic–hydrophobic engineering and the unique structure of the surface, 3D porous MF@HPB‐PPy10‐OA yields an impressive evaporation rate of 3.3 kg m−2 h−1 and a salt harvesting efficiency of 96.5% in desalination of 10 wt% brine. |
---|---|
AbstractList | Solar vapor generation (SVG) represents a promising technique for seawater desalination to alleviate the global water crisis and energy shortage. One of its main bottleneck problems is that the evaporation efficiency and stability are limited by salt crystallization under high‐salinity brines. Herein, we demonstrate that the 3D porous melamine‐foam (MF) wrapped by a type of self‐assembling composite materials based on reduced polyoxometalates (i.e. heteropoly blue, HPB), oleic acid (OA), and polypyrrole (PPy) (labeled with MF@HPB‐PPyn‐OA) can serve as efficient and stable SVG material at high salinity. Structural characterizations of MF@HPB‐PPyn‐OA indicate that both hydrophilic region of HPBs and hydrophobic region of OA co‐exist on the surface of composite materials, optimizing the hydrophilic and hydrophobic interfaces of the SVG materials, and fully exerting its functionality for ultrahigh water‐evaporation and anti‐salt fouling. The optimal MF@HPB‐PPy10‐OA operates continuously and stably for over 100 h in 10 wt% brine. Furthermore, MF@HPB‐PPy10‐OA accomplishes complete salt‐water separation of 10 wt% brine with 3.3 kg m−2 h−1 under 1‐sun irradiation, yielding salt harvesting efficiency of 96.5%, which belongs to the record high of high‐salinity systems reported so far and is close to achieving zero liquid discharge. Moreover, the low cost of MF@HPB‐PPy10‐OA (2.56 $ m−2) suggests its potential application in the practical SVG technique.
Benefiting from the hydrophilic–hydrophobic engineering and the unique structure of the surface, 3D porous MF@HPB‐PPy10‐OA yields an impressive evaporation rate of 3.3 kg m−2 h−1 and a salt harvesting efficiency of 96.5% in desalination of 10 wt% brine. Solar vapor generation (SVG) represents a promising technique for seawater desalination to alleviate the global water crisis and energy shortage. One of its main bottleneck problems is that the evaporation efficiency and stability are limited by salt crystallization under high‐salinity brines. Herein, we demonstrate that the 3D porous melamine‐foam (MF) wrapped by a type of self‐assembling composite materials based on reduced polyoxometalates (i.e. heteropoly blue, HPB), oleic acid (OA), and polypyrrole (PPy) (labeled with MF@HPB‐PPy n ‐OA) can serve as efficient and stable SVG material at high salinity. Structural characterizations of MF@HPB‐PPy n ‐OA indicate that both hydrophilic region of HPBs and hydrophobic region of OA co‐exist on the surface of composite materials, optimizing the hydrophilic and hydrophobic interfaces of the SVG materials, and fully exerting its functionality for ultrahigh water‐evaporation and anti‐salt fouling. The optimal MF@HPB‐PPy 10 ‐OA operates continuously and stably for over 100 h in 10 wt% brine. Furthermore, MF@HPB‐PPy 10 ‐OA accomplishes complete salt‐water separation of 10 wt% brine with 3.3 kg m −2 h −1 under 1‐sun irradiation, yielding salt harvesting efficiency of 96.5%, which belongs to the record high of high‐salinity systems reported so far and is close to achieving zero liquid discharge. Moreover, the low cost of MF@HPB‐PPy 10 ‐OA (2.56 $ m −2 ) suggests its potential application in the practical SVG technique. Solar vapor generation (SVG) represents a promising technique for seawater desalination to alleviate the global water crisis and energy shortage. One of its main bottleneck problems is that the evaporation efficiency and stability are limited by salt crystallization under high‐salinity brines. Herein, we demonstrate that the 3D porous melamine‐foam (MF) wrapped by a type of self‐assembling composite materials based on reduced polyoxometalates (i.e. heteropoly blue, HPB), oleic acid (OA), and polypyrrole (PPy) (labeled with MF@HPB‐PPyn‐OA) can serve as efficient and stable SVG material at high salinity. Structural characterizations of MF@HPB‐PPyn‐OA indicate that both hydrophilic region of HPBs and hydrophobic region of OA co‐exist on the surface of composite materials, optimizing the hydrophilic and hydrophobic interfaces of the SVG materials, and fully exerting its functionality for ultrahigh water‐evaporation and anti‐salt fouling. The optimal MF@HPB‐PPy10‐OA operates continuously and stably for over 100 h in 10 wt% brine. Furthermore, MF@HPB‐PPy10‐OA accomplishes complete salt‐water separation of 10 wt% brine with 3.3 kg m−2 h−1 under 1‐sun irradiation, yielding salt harvesting efficiency of 96.5%, which belongs to the record high of high‐salinity systems reported so far and is close to achieving zero liquid discharge. Moreover, the low cost of MF@HPB‐PPy10‐OA (2.56 $ m−2) suggests its potential application in the practical SVG technique. Solar vapor generation(SVG)represents a promising technique for seawater desalination to alleviate the global water crisis and energy shortage.One of its main bottleneck problems is that the evaporation efficiency and stability are limited by salt crystallization under high-salinity brines.Herein,we demonstrate that the 3D porous melamine-foam(MF)wrapped by a type of self-assembling composite materials based on reduced polyoxometalates(i.e.heteropoly blue,HPB),oleic acid(OA),and polypyrrole(PPy)(labeled with MF@HPB-PPyn-OA)can serve as efficient and stable SVG material at high salinity.Structural characterizations of MF@HPB-PPyn-OA indicate that both hydrophilic region of HPBs and hydrophobic region of OA co-exist on the surface of composite materials,optimizing the hydrophilic and hydrophobic interfaces of the SVG materials,and fully exerting its functionality for ultrahigh water-evaporation and anti-salt fouling.The optimal MF@HPB-PPy10-OA operates continuously and stably for over 100 h in 10wt%brine.Furthermore,MF@HPB-PPy10-OA accomplishes complete salt-water separation of 10wt%brine with 3.3 kg m-2h-1 under 1-sun irradiation,yielding salt harvesting efficiency of 96.5%,which belongs to the record high of high-salinity systems reported so far and is close to achieving zero liquid discharge.Moreover,the low cost of MF@HPB-PPy10-OA(2.56 $ m-2)suggests its potential application in the practical SVG technique. |
Author | Cheng, Sihang Tan, Huaqiao Liu, Cuimei Li, Yangguang Wang, Yonghui Li, Yingqi |
AuthorAffiliation | Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education,Faculty of Chemistry,Northeast Normal University,Changchun 130024,China |
AuthorAffiliation_xml | – name: Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education,Faculty of Chemistry,Northeast Normal University,Changchun 130024,China |
Author_xml | – sequence: 1 givenname: Sihang surname: Cheng fullname: Cheng, Sihang organization: Northeast Normal University – sequence: 2 givenname: Cuimei surname: Liu fullname: Liu, Cuimei organization: Northeast Normal University – sequence: 3 givenname: Yingqi orcidid: 0000-0002-2300-3023 surname: Li fullname: Li, Yingqi organization: Northeast Normal University – sequence: 4 givenname: Huaqiao surname: Tan fullname: Tan, Huaqiao email: tanhq870@nenu.edu.cn organization: Northeast Normal University – sequence: 5 givenname: Yonghui surname: Wang fullname: Wang, Yonghui organization: Northeast Normal University – sequence: 6 givenname: Yangguang orcidid: 0000-0002-9696-8192 surname: Li fullname: Li, Yangguang email: liyg658@nenu.edu.cn organization: Northeast Normal University |
BookMark | eNp9UcFuEzEQtVArUUovfIElbkgptje73hwhWppKjUAqiKPleMfJRI69eJ3SvfEJfAbfxZfgbSJRVYiTn2feezP2e0FOfPBAyCvOLjlj4i3ATlxyUU3lM3ImSllOWFFWJ4_wc3LR91uWyYwXUz47I78-BTeE-7CDpJ1O0P_-8XMZ2v2IW7oY2hi6DTo0uX68hRUaOg-7LvSYgF77BNFqg9rRZVbFEdgQaWMtGgSf6G1wOtKvY5M2d7oLUScMnmrf0lvtEl3oeAd9Qr-m6OkC15s8LnfQYxro-4geXpJTq10PF8fznHz50HyeLyY3H6-u5-9uJqaQQk7AVszamhlpoRQs71WJlteyNlAJOdO2tmBbvZJ1Bdwy2c7EStpqBZU1rJZVcU7eHHy_a2-1X6tt2EefJyo_DJutcQoEE1NWMFFk8usDuYvh2z6_4C-7YGUhp6KePbI0MfR9BKu6iDsdB8WZGpNTY3LqIblMZk_IBtPDd6Wo0f1bwo8ro4PhP-aqaZbioPkDWIC0Ag |
CitedBy_id | crossref_primary_10_1039_D3QI02130K crossref_primary_10_1002_eem2_12841 crossref_primary_10_1021_acsomega_4c03040 crossref_primary_10_1021_acs_inorgchem_4c02363 crossref_primary_10_1016_j_seppur_2025_132237 crossref_primary_10_1021_acs_inorgchem_3c03841 crossref_primary_10_1002_adma_202407705 |
Cites_doi | 10.1126/sciadv.aax0763 10.1038/s41467-022-34528-7 10.1002/anie.201808074 10.1002/adfm.202104380 10.1002/adfm.202100911 10.1126/sciadv.abf8413 10.1021/jacs.6b03375 10.1016/j.rser.2017.07.047 10.1002/smll.202007176 10.1016/j.cej.2023.141431 10.1002/adfm.202112159 10.1038/s41467-019-09535-w 10.1126/sciadv.aaw7013 10.1016/j.apcatb.2021.120329 10.1126/science.148.3673.1127 10.1002/solr.202100427 10.1016/j.ccr.2017.10.025 10.1039/D1EE00113B 10.1016/j.joule.2019.06.009 10.1126/science.1096037 10.1002/anie.202208587 10.1038/s41467-020-14366-1 10.1002/aesr.202200158 10.1002/admi.202100196 10.1021/acs.chemrev.0c00345 10.1038/nchem.1621 10.1038/s41467-022-28457-8 10.1021/acssuschemeng.0c08981 10.1016/j.egypro.2017.03.138 10.1016/j.apcatb.2017.09.027 10.1126/science.289.5477.284 10.1038/s41467-021-21124-4 10.1002/adma.202001544 10.1002/anie.202108293 10.1039/D1TA03610F 10.1016/j.matchemphys.2017.06.045 10.1126/sciadv.1501227 10.1126/science.aad8641 10.1021/acsami.6b13009 10.1016/j.joule.2018.04.004 10.1002/adma.202007761 10.1021/cr960392l 10.1039/C8CS00559A 10.1002/aenm.201702884 10.1038/s41578-020-0182-4 10.1038/s41467-022-32051-3 10.1016/S0040-6031(96)03094-8 10.1021/cr500390v 10.1016/j.xcrp.2020.100074 10.1038/s41565-018-0097-z 10.1126/science.1200488 10.1002/advs.202101727 10.1002/adfm.202113264 10.1039/C9TA01576K 10.1016/j.nanoen.2021.106213 10.1126/science.168.3937.1286-c 10.1080/0144235X.2012.760836 10.1002/anie.201803868 10.1038/s41467-021-25026-3 10.1016/j.carbon.2021.01.140 10.1039/D0TA03307C 10.1360/N972018-00671 10.1002/adma.201900498 10.1039/C8MH00386F 10.1039/D0EE00399A 10.1016/j.desal.2022.115776 10.1002/adma.202203137 10.1039/B502666K |
ContentType | Journal Article |
Copyright | 2023 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University. 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: 2023 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University. – notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 24P AAYXX CITATION 7SR 7ST 8FD C1K JG9 SOI 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1002/eem2.12647 |
DatabaseName | Wiley Online Library Open Access (WRLC) CrossRef Engineered Materials Abstracts Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management Materials Research Database Environment Abstracts Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Environment Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | CrossRef Materials Research Database |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2575-0356 |
EndPage | n/a |
ExternalDocumentID | nyyhjcl_e202403023 10_1002_eem2_12647 EEM212647 |
Genre | researchArticle |
GrantInformation_xml | – fundername: The Fundamental Research Funds for the Central Universities funderid: 2412021QD008 – fundername: Natural Science Foundation of Jilin Province Science and Technology Department funderid: 20230508094RC; 20220101045JC – fundername: National Key Basic Research Program of China funderid: 2020YFA0406101 – fundername: National Natural Science Foundation of China funderid: 22171041; 22071020; 21901035; 22271043 |
GroupedDBID | 0R~ 1OC 24P ACCMX ACXQS ALMA_UNASSIGNED_HOLDINGS AVUZU EBS EJD OK1 WIN AAYXX CITATION 7SR 7ST 8FD C1K JG9 SOI 2B. 4A8 92I 93N PSX TCJ |
ID | FETCH-LOGICAL-c3727-ef60ff80c7fe520fac62d1878ce6279af8fefdab786e1f07d92b7f6be6fc08763 |
IEDL.DBID | 24P |
ISSN | 2575-0356 2575-0348 |
IngestDate | Thu May 29 04:00:40 EDT 2025 Mon Jun 30 12:01:27 EDT 2025 Thu Apr 24 23:06:19 EDT 2025 Tue Jul 01 01:03:07 EDT 2025 Wed Jan 22 17:20:38 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | salt-water separation heteropoly blue(HPB) solar vapor generation(SVG) polyoxometalates(POM) hydrophilic-hydrophobic interface |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3727-ef60ff80c7fe520fac62d1878ce6279af8fefdab786e1f07d92b7f6be6fc08763 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9696-8192 0000-0002-2300-3023 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feem2.12647 |
PQID | 3053742896 |
PQPubID | 5251211 |
PageCount | 9 |
ParticipantIDs | wanfang_journals_nyyhjcl_e202403023 proquest_journals_3053742896 crossref_primary_10_1002_eem2_12647 crossref_citationtrail_10_1002_eem2_12647 wiley_primary_10_1002_eem2_12647_EEM212647 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2024 |
PublicationDateYYYYMMDD | 2024-05-01 |
PublicationDate_xml | – month: 05 year: 2024 text: May 2024 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Energy & environmental materials (Hoboken, N.J.) |
PublicationTitle_FL | Energy & Environmental Materials |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education,Faculty of Chemistry,Northeast Normal University,Changchun 130024,China |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education,Faculty of Chemistry,Northeast Normal University,Changchun 130024,China |
References | 1965; 148 1970; 168 2023; 4 2020; 120 2019; 10 2019; 58 2020; 13 2020; 11 2017; 110 2017; 199 2013; 5 2017; 9 2022; 534 2007; 36 2020; 8 2020; 5 2018; 8 2021; 32 2018; 2 2021; 31 2018; 5 2020; 1 2021; 33 2000; 289 2023; 458 2022; 34 2016; 352 2022; 32 1840; 2019 1998; 98 2021; 9 2019; 7 2021; 8 2021; 7 2018; 221 2011; 333 2021; 5 2021; 87 2019; 3 2019; 5 1997; 292 2019; 31 2018; 63 2020; 32 2004; 304 2021; 14 2021; 12 2016; 2 2015; 115 2013; 32 2022; 61 2021; 17 2019; 48 2022; 13 2018 2019; 378 2021; 296 2016; 138 2021; 176 2021; 60 2018; 13 2018; 57 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 Xia Y. (e_1_2_7_67_1) 1840; 2019 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – volume: 138 start-page: 8156 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 998 year: 2021 publication-title: Nat. Commun. – volume: 1 year: 2020 publication-title: Cell Rep. Phys. Sci. – volume: 115 start-page: 4893 year: 2015 publication-title: Chem. Rev. – year: 2018 publication-title: Renew. Sustain. Energy Rev. – volume: 48 start-page: 260 year: 2019 publication-title: Chem. Soc. Rev. – volume: 5 start-page: 1143 year: 2018 publication-title: Mater. Horiz. – volume: 333 start-page: 712 year: 2011 publication-title: Science – volume: 98 start-page: 3 year: 1998 publication-title: Chem. Rev. – volume: 2019 start-page: 12 year: 1840 publication-title: Energ. Environ. Sci. – volume: 13 start-page: 2087 year: 2020 publication-title: Energ. Environ. Sci. – volume: 120 start-page: 7642 year: 2020 publication-title: Chem. Rev. – volume: 31 start-page: 2100911 year: 2021 publication-title: Adv. Funct. Mater. – volume: 2 year: 2016 publication-title: Sci. Adv. – volume: 5 start-page: 403 year: 2013 publication-title: Nat. Chem. – volume: 3 start-page: 1798 year: 2019 publication-title: Joule – volume: 36 start-page: 105 year: 2007 publication-title: Chem. Soc. Rev. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 8 start-page: 10260 year: 2020 publication-title: J. Mater. Chem. A – volume: 458 start-page: 141431 year: 2023 publication-title: Chem. Eng. J. – volume: 2 start-page: 1331 year: 2018 publication-title: Joule – volume: 304 start-page: 1134 year: 2004 publication-title: Science – volume: 13 start-page: 489 year: 2018 publication-title: Nat. Nanotechnol. – volume: 9 start-page: 16233 year: 2021 publication-title: J. Mater. Chem. A – volume: 10 start-page: 1512 year: 2019 publication-title: Nat. Commun. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 110 start-page: 268 year: 2017 publication-title: Energy Procedia – volume: 32 start-page: 266 year: 2013 publication-title: Int. Rev. Phys. Chem. – volume: 63 start-page: 3296 year: 2018 publication-title: Chin. Sci. Bull. – volume: 534 start-page: 115776 year: 2022 publication-title: Desalination – volume: 13 start-page: 4335 year: 2022 publication-title: Nat. Commun. – volume: 289 start-page: 284 year: 2000 publication-title: Science – volume: 7 start-page: 15333 year: 2019 publication-title: J. Mater. Chem. A – volume: 221 start-page: 280 year: 2018 publication-title: Appl. Catal. Environ. – volume: 292 start-page: 45 year: 1997 publication-title: Thermochim. Acta – volume: 176 start-page: 313 year: 2021 publication-title: Carbon – volume: 32 start-page: 2112159 year: 2021 publication-title: Adv. Funct. Mater. – volume: 9 start-page: 422 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 8 year: 2021 publication-title: Adv. Sci. – volume: 5 start-page: 2100427 year: 2021 publication-title: Solar RRL – volume: 9 start-page: 3887 year: 2021 publication-title: ACS Sustain. Chem. Eng. – volume: 87 year: 2021 publication-title: Nano Energy – volume: 14 start-page: 2451 year: 2021 publication-title: Energ. Environ. Sci. – volume: 17 year: 2021 publication-title: Small – volume: 11 start-page: 521 year: 2020 publication-title: Nat. Commun. – volume: 12 start-page: 4667 year: 2021 publication-title: Nat. Commun. – volume: 32 start-page: 2113264 year: 2022 publication-title: Adv. Funct. Mater. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 352 start-page: 928 year: 2016 publication-title: Science – volume: 378 start-page: 395 year: 2019 publication-title: Coord. Chem. Rev. – volume: 199 start-page: 79 year: 2017 publication-title: Mater. Chem. Phys. – volume: 57 start-page: 14101 year: 2018 publication-title: Angew. Chem. Int. Ed. Engl. – volume: 4 start-page: 2200158 year: 2023 publication-title: Adv. Energy Sustain. Res. – volume: 8 start-page: 2100196 year: 2021 publication-title: Adv. Mater. Interfaces – volume: 60 start-page: 20518 year: 2021 publication-title: Angew. Chem. Int. Ed. Engl. – volume: 31 start-page: 2104380 year: 2021 publication-title: Adv. Funct. Mater. – volume: 148 start-page: 1127 year: 1965 publication-title: Science – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 7 year: 2021 publication-title: Sci. Adv. – volume: 13 start-page: 6653 year: 2022 publication-title: Nat. Commun. – volume: 58 start-page: 2980 year: 2019 publication-title: Angew. Chem. Int. Ed. Engl. – volume: 296 start-page: 120329 year: 2021 publication-title: Appl. Catal. Environ. – volume: 8 start-page: 1702884 year: 2018 publication-title: Adv. Energy Mater. – volume: 5 year: 2019 publication-title: Sci. Adv. – volume: 5 start-page: 388 year: 2020 publication-title: Nat. Rev. Mater. – volume: 168 start-page: 1286 year: 1970 publication-title: Science – volume: 61 year: 2022 publication-title: Angew. Chem. Int. Ed. Engl. – volume: 13 start-page: 849 year: 2022 publication-title: Nat. Commun. – ident: e_1_2_7_17_1 doi: 10.1126/sciadv.aax0763 – ident: e_1_2_7_23_1 doi: 10.1038/s41467-022-34528-7 – ident: e_1_2_7_54_1 doi: 10.1002/anie.201808074 – ident: e_1_2_7_68_1 doi: 10.1002/adfm.202104380 – ident: e_1_2_7_61_1 doi: 10.1002/adfm.202100911 – ident: e_1_2_7_48_1 doi: 10.1126/sciadv.abf8413 – ident: e_1_2_7_53_1 doi: 10.1021/jacs.6b03375 – ident: e_1_2_7_8_1 doi: 10.1016/j.rser.2017.07.047 – ident: e_1_2_7_19_1 doi: 10.1002/smll.202007176 – ident: e_1_2_7_15_1 doi: 10.1016/j.cej.2023.141431 – ident: e_1_2_7_28_1 doi: 10.1002/adfm.202112159 – ident: e_1_2_7_60_1 doi: 10.1038/s41467-019-09535-w – ident: e_1_2_7_16_1 doi: 10.1126/sciadv.aaw7013 – ident: e_1_2_7_49_1 doi: 10.1016/j.apcatb.2021.120329 – ident: e_1_2_7_6_1 doi: 10.1126/science.148.3673.1127 – ident: e_1_2_7_11_1 doi: 10.1002/solr.202100427 – ident: e_1_2_7_45_1 doi: 10.1016/j.ccr.2017.10.025 – ident: e_1_2_7_62_1 doi: 10.1039/D1EE00113B – ident: e_1_2_7_59_1 doi: 10.1016/j.joule.2019.06.009 – ident: e_1_2_7_24_1 doi: 10.1126/science.1096037 – ident: e_1_2_7_31_1 doi: 10.1002/anie.202208587 – ident: e_1_2_7_18_1 doi: 10.1038/s41467-020-14366-1 – ident: e_1_2_7_14_1 doi: 10.1002/aesr.202200158 – ident: e_1_2_7_69_1 doi: 10.1002/admi.202100196 – ident: e_1_2_7_10_1 doi: 10.1021/acs.chemrev.0c00345 – ident: e_1_2_7_46_1 doi: 10.1038/nchem.1621 – ident: e_1_2_7_21_1 doi: 10.1038/s41467-022-28457-8 – ident: e_1_2_7_13_1 doi: 10.1021/acssuschemeng.0c08981 – ident: e_1_2_7_7_1 doi: 10.1016/j.egypro.2017.03.138 – ident: e_1_2_7_58_1 doi: 10.1016/j.apcatb.2017.09.027 – ident: e_1_2_7_1_1 doi: 10.1126/science.289.5477.284 – ident: e_1_2_7_22_1 doi: 10.1038/s41467-021-21124-4 – ident: e_1_2_7_27_1 doi: 10.1002/adma.202001544 – ident: e_1_2_7_52_1 doi: 10.1002/anie.202108293 – ident: e_1_2_7_20_1 doi: 10.1039/D1TA03610F – ident: e_1_2_7_56_1 doi: 10.1016/j.matchemphys.2017.06.045 – volume: 2019 start-page: 12 year: 1840 ident: e_1_2_7_67_1 publication-title: Energ. Environ. Sci. – ident: e_1_2_7_33_1 doi: 10.1126/sciadv.1501227 – ident: e_1_2_7_2_1 doi: 10.1126/science.aad8641 – ident: e_1_2_7_57_1 doi: 10.1021/acsami.6b13009 – ident: e_1_2_7_34_1 doi: 10.1016/j.joule.2018.04.004 – ident: e_1_2_7_51_1 doi: 10.1002/adma.202007761 – ident: e_1_2_7_42_1 doi: 10.1021/cr960392l – ident: e_1_2_7_44_1 doi: 10.1039/C8CS00559A – ident: e_1_2_7_35_1 doi: 10.1002/aenm.201702884 – ident: e_1_2_7_29_1 doi: 10.1038/s41578-020-0182-4 – ident: e_1_2_7_63_1 doi: 10.1038/s41467-022-32051-3 – ident: e_1_2_7_55_1 doi: 10.1016/S0040-6031(96)03094-8 – ident: e_1_2_7_41_1 doi: 10.1021/cr500390v – ident: e_1_2_7_39_1 doi: 10.1016/j.xcrp.2020.100074 – ident: e_1_2_7_26_1 doi: 10.1038/s41565-018-0097-z – ident: e_1_2_7_5_1 doi: 10.1126/science.1200488 – ident: e_1_2_7_40_1 doi: 10.1002/advs.202101727 – ident: e_1_2_7_65_1 doi: 10.1002/adfm.202113264 – ident: e_1_2_7_37_1 doi: 10.1039/C9TA01576K – ident: e_1_2_7_30_1 doi: 10.1016/j.nanoen.2021.106213 – ident: e_1_2_7_4_1 doi: 10.1126/science.168.3937.1286-c – ident: e_1_2_7_25_1 doi: 10.1080/0144235X.2012.760836 – ident: e_1_2_7_50_1 doi: 10.1002/anie.201803868 – ident: e_1_2_7_3_1 doi: 10.1038/s41467-021-25026-3 – ident: e_1_2_7_12_1 doi: 10.1016/j.carbon.2021.01.140 – ident: e_1_2_7_32_1 doi: 10.1039/D0TA03307C – ident: e_1_2_7_47_1 doi: 10.1360/N972018-00671 – ident: e_1_2_7_66_1 doi: 10.1002/adma.201900498 – ident: e_1_2_7_36_1 doi: 10.1039/C8MH00386F – ident: e_1_2_7_38_1 doi: 10.1039/D0EE00399A – ident: e_1_2_7_9_1 doi: 10.1016/j.desal.2022.115776 – ident: e_1_2_7_64_1 doi: 10.1002/adma.202203137 – ident: e_1_2_7_43_1 doi: 10.1039/B502666K |
SSID | ssj0002013419 |
Score | 2.3399127 |
Snippet | Solar vapor generation (SVG) represents a promising technique for seawater desalination to alleviate the global water crisis and energy shortage. One of its... Solar vapor generation(SVG)represents a promising technique for seawater desalination to alleviate the global water crisis and energy shortage.One of its main... |
SourceID | wanfang proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 219 |
SubjectTerms | Brines Composite materials Crystallization Desalination Energy shortages Evaporation heteropoly blue (HPB) Hydrophilicity hydrophilic‐hydrophobic interface Hydrophobicity Irradiation Melamine Oleic acid Optimization polyoxometalates (POM) Polyoxometallates Polypyrroles Salinity Salinity effects Salts salt‐water separation Seawater Self-assembly solar vapor generation (SVG) Water crises |
Title | Polyoxometalates‐Modulated Hydrophilic‐Hydrophobic Composite Interfacial Material for Efficient Solar Water Evaporation and Salt Harvesting in High‐Salinity Brine |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feem2.12647 https://www.proquest.com/docview/3053742896 https://d.wanfangdata.com.cn/periodical/nyyhjcl-e202403023 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3datRAFB5qi-CNVFRcrWVAbxRis7M7Mwl4U8uWRVgp1NXiTZifM3VlO1naFc1dH8HH8Ll8kp4zye5SEMG7JDPJhHzn5HxzmPkOYy-166MlOJkpX0I2lFJlJUbJTALinbvCQapDNvmgxtPh-zN5tsXervbCtPoQ64QbeUb6X5ODG3t1sBENBbgQb_oYz_UdtkN7a0k5XwxP1hkWDG0kVkbV5ZCTZPlAqrU-qTjY3H47Im1o5t0fJgYTz2_T1hR3jnfZ_Y4w8sMW4QdsC-JD9vuknjf1z_oCkDsTW_xz_WtSeyrFBZ6PG39ZLyhT4vB6d1bbmePk_bRKC3jKBAZDCXM-MctkhxwJLB8lTQkMRfyUZr38MzVyJNyLzli4iZ6fmvmSU10hEumI53wWOa0YweGwZYa_iYa_o32Fj9j0ePTxaJx1NRcyN0Aqk0FQeQhF7nQAKXJ8DyV8v9AImhK6NKEIELyxulDQD7n2pbA6KAsquKRu95htxzrCE8a9dE5ag3xEhiG4YAvtjAOcFEsrS3A99mr13SvXCZJTXYx51Uopi4owqhJGPfZi3XfRynD8tdfeCr6qc8WrakCKNTjJKhU-pIN00xqb5us3N69AkNgbVVDqsdcJ7n-MU41GE5GOnv5P52fsHo3SLpfcY9vLy-_wHCnN0u4ny91nO4efpl-mN09R-Zs |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3BbtQwELWgCMEFgQCxUMASXEAKzXpjOzkC2mqBpqrUVvRmOfa4LNo6q7IIcuMT-Ay-iy9hxkl3VQkhcUtiJ448M57n0fgNY8-1G6MmOJkpX0FWSKmyCr1kJgHlnbvSQapDVu-r2XHx_kSeDLk5dBam54dYB9zIMtJ6TQZOAemdDWsowJl4NUaHrq-ya4USmuxSFAfrEAv6NmIro_JyCEqyfCLVmqBU7Gxev-ySNjjz-jcbg42nl3Frcjy7t9mtATHy172I77ArEO-yXwftomu_t2eA4Jng4u8fP-vWUy0u8HzW-fN2SaESh8-Hu7aZO07mT2lawFMoMFiKmPParpIickSwfJpIJdAX8UPa9vKP1MgRcS8HbeE2en5oFytOhYWIpSOe8nnklDKCw2HLHNeJjr-hg4X32PHu9OjtLBuKLmRuglgmg6DyEMrc6QBS5PgfSvhxqVFqOMWVDWWA4G2jSwXjkGtfiUYH1YAKLtHb3WdbsY3wgHEvnZONRUAiQwEuNKV21gHuimUjK3Aj9uJi3o0bGMmpMMbC9FzKwpCMTJLRiD1b9132PBx_7bV9IT4z2OIXMyHKGtxlVQo_Moh00xq77tNntzAgiO2NSiiN2Msk7n-MY6bTWqSrh__T-Sm7MTuq98zeu_0Pj9hNGrHPndxmW6vzr_AY8c2qeZK0-A_hvftJ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dbtMwFLb2IxA3CAQThQGW4AakbKlbO4nEzYBW5afTpFGYuLEc-3gr6pxqFEHueAQeg-fiSTjHSVtNQki7S2IrjvKd4_P5yP4OY08z20VLsDJRroCkL6VKCoySiQTEO7W5hViHbHyoRpP-2xN5ssFeLM_CNPoQq4QbeUacr8nB587vr0VDAc7FXhfjebbJtkkmD216--Dj5PNklWPB4EZyZVRfDllJkvakWimUiv31Cy7HpDXRvPbdBG_C6WXiGiPP8Ba72VJGftBgfJttQLjDfh9Vs7r6UZ0Dsmfii39-_hpXjopxgeOj2l1Uc8qVWHze3lXl1HLyf9qnBTzmAr2hlDkfm0W0RI4Ulg-iqgQGI35M617-iRo5Uu55ay7cBMePzWzBqbIQyXSEUz4NnPaM4HDYMsWJouYv6WThXTYZDj68GiVt1YXE9pDMJOBV6n2e2syDFCl-hxKum2cImxJZYXzuwTtTZrmCrk8zV4gy86oE5W3Ut9thW6EKcI9xJ62VpUFGIn0frC_zzBoLuCyWpSzAdtiz5X_XtpUkp8oYM92IKQtNGOmIUYc9WfWdN0Ic_-y1u4RPt874VfdIswaXWYXCl7SQrltDXZ99sTMNguTeqIZShz2PcP9nHD0YjEW8un-Vzo_Z9aPXQ_3-zeG7B-wGDdjsndxlW4uLb_AQ-c2ifNSa8V8gAvxB |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polyoxometalates%E2%80%90Modulated+Hydrophilic%E2%80%90Hydrophobic+Composite+Interfacial+Material+for+Efficient+Solar+Water+Evaporation+and+Salt+Harvesting+in+High%E2%80%90Salinity+Brine&rft.jtitle=Energy+%26+environmental+materials+%28Hoboken%2C+N.J.%29&rft.au=Cheng%2C+Sihang&rft.au=Liu%2C+Cuimei&rft.au=Li%2C+Yingqi&rft.au=Tan%2C+Huaqiao&rft.date=2024-05-01&rft.issn=2575-0356&rft.eissn=2575-0356&rft.volume=7&rft.issue=3&rft_id=info:doi/10.1002%2Feem2.12647&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_eem2_12647 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnyyhjcl-e%2Fnyyhjcl-e.jpg |