Recent Advances on Graphene Quantum Dots for Electrochemical Energy Storage Devices

Graphene quantum dots (GQDs) which are nanofragments of graphene with an average size between 2 and 50 nm have attracted much attention due to their outstanding properties such as high conductivity, high surface area, and good solubility in various solvents. GQDs combine the quantum confinement and...

Full description

Saved in:
Bibliographic Details
Published inEnergy & environmental materials (Hoboken, N.J.) Vol. 5; no. 1; pp. 201 - 214
Main Authors Zahir, Noura, Magri, Pierre, Luo, Wen, Gaumet, Jean Jacques, Pierrat, Philippe
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Graphene quantum dots (GQDs) which are nanofragments of graphene with an average size between 2 and 50 nm have attracted much attention due to their outstanding properties such as high conductivity, high surface area, and good solubility in various solvents. GQDs combine the quantum confinement and edges effects and the properties of graphene. Therefore, GQDs offers a broad range of applications in various fields (medicine, energy conversion, and energy storage devices). This review will present the recent research based on the introduction of GQDs in batteries, supercapacitors, and micro‐supercapacitors as electrodes materials or mixed with an active material as an auxiliary agent. Tables, discussed on selected examples, summarize the electrochemical performances and finally, challenges and perspectives are recalled for the subsequent optimization strategy of electrode materials. This review is expected to appeal a broad interest on functional GQDs materials and promote the further development of high‐performance energy storage device. Graphene quantum dots (GQDs) were discovered recently and their fascinating physical and chemical properties make them widely studied on the field energy storage. Prepared either by top‐down or bottom‐up techniques GQDs enhance nearly systematically the properties of batteries and supercapacitors with the increase of the electrical conductivity which help the electron charge transfer.
AbstractList Graphene quantum dots (GQDs) which are nanofragments of graphene with an average size between 2 and 50 nm have attracted much attention due to their outstanding properties such as high conductivity, high surface area, and good solubility in various solvents. GQDs combine the quantum confinement and edges effects and the properties of graphene. Therefore, GQDs offers a broad range of applications in various fields (medicine, energy conversion, and energy storage devices). This review will present the recent research based on the introduction of GQDs in batteries, supercapacitors, and micro‐supercapacitors as electrodes materials or mixed with an active material as an auxiliary agent. Tables, discussed on selected examples, summarize the electrochemical performances and finally, challenges and perspectives are recalled for the subsequent optimization strategy of electrode materials. This review is expected to appeal a broad interest on functional GQDs materials and promote the further development of high‐performance energy storage device.
Graphene quantum dots (GQDs) which are nanofragments of graphene with an average size between 2 and 50 nm have attracted much attention due to their outstanding properties such as high conductivity, high surface area, and good solubility in various solvents. GQDs combine the quantum confinement and edges effects and the properties of graphene. Therefore, GQDs offers a broad range of applications in various fields (medicine, energy conversion, and energy storage devices). This review will present the recent research based on the introduction of GQDs in batteries, supercapacitors, and micro‐supercapacitors as electrodes materials or mixed with an active material as an auxiliary agent. Tables, discussed on selected examples, summarize the electrochemical performances and finally, challenges and perspectives are recalled for the subsequent optimization strategy of electrode materials. This review is expected to appeal a broad interest on functional GQDs materials and promote the further development of high‐performance energy storage device. Graphene quantum dots (GQDs) were discovered recently and their fascinating physical and chemical properties make them widely studied on the field energy storage. Prepared either by top‐down or bottom‐up techniques GQDs enhance nearly systematically the properties of batteries and supercapacitors with the increase of the electrical conductivity which help the electron charge transfer.
Author Zahir, Noura
Gaumet, Jean Jacques
Pierrat, Philippe
Luo, Wen
Magri, Pierre
Author_xml – sequence: 1
  givenname: Noura
  surname: Zahir
  fullname: Zahir, Noura
  organization: Université de Lorraine
– sequence: 2
  givenname: Pierre
  orcidid: 0000-0002-8645-5115
  surname: Magri
  fullname: Magri, Pierre
  organization: Université de Lorraine
– sequence: 3
  givenname: Wen
  surname: Luo
  fullname: Luo, Wen
  organization: Wuhan University of Technology
– sequence: 4
  givenname: Jean Jacques
  orcidid: 0000-0001-5526-2567
  surname: Gaumet
  fullname: Gaumet, Jean Jacques
  email: jean-jacques.gaumet@univ-lorraine.fr
  organization: Université de Lorraine
– sequence: 5
  givenname: Philippe
  orcidid: 0000-0001-7327-5310
  surname: Pierrat
  fullname: Pierrat, Philippe
  organization: Université de Lorraine
BookMark eNp9kE1Lw0AQhhdRsNZe_AUL3oTW_UiyybG0sQoV0eo5bDaTNiXZrbubSv-9qfEgIl5m5vC878BzgU610YDQFSUTSgi7BWjYhDIaiRM0YKEIx4SH0emP-xyNnNuSDiaUBzQZoNULKNAeT4u91AocNhovrNxtQAN-bqX2bYPnxjtcGovTGpS3Rm2gqZSscarBrg945Y2Va8Bz2FddxyU6K2XtYPS9h-jtLn2d3Y-XT4uH2XQ5VlwwMZaMB3lCoIxIGRQsD3LgnEoWU1GoIhGKJELGIQ0DTqMoCCIKEEOpKOumzHM-RNd9786a9xacz7amtbp7mbGIESaigMUdddNTyhrnLJTZzlaNtIeMkuzoLTt6y768dTD5BavKS18Z7a2s6r8jtI98VDUc_inP0vSR9ZlPpIOAYA
CitedBy_id crossref_primary_10_1021_acssensors_2c02790
crossref_primary_10_1016_j_est_2024_112919
crossref_primary_10_1016_j_est_2024_111900
crossref_primary_10_1080_10584587_2023_2191547
crossref_primary_10_1080_00150193_2024_2324700
crossref_primary_10_1080_10584587_2023_2191548
crossref_primary_10_1134_S1061934824700527
crossref_primary_10_3390_nano13030554
crossref_primary_10_1007_s40145_021_0562_2
crossref_primary_10_1016_j_cej_2022_135301
crossref_primary_10_1016_j_molstruc_2024_139364
crossref_primary_10_1007_s43979_022_00002_y
crossref_primary_10_1142_S1793292022500217
crossref_primary_10_1021_acs_energyfuels_4c01460
crossref_primary_10_1080_10584587_2024_2327926
crossref_primary_10_3390_batteries9090436
crossref_primary_10_3390_ma17040884
crossref_primary_10_1016_j_jpowsour_2023_233966
crossref_primary_10_1002_eem2_12658
crossref_primary_10_1002_smll_202302489
crossref_primary_10_1007_s00339_024_07562_z
crossref_primary_10_1016_j_jpowsour_2025_236177
crossref_primary_10_3390_ma15155390
crossref_primary_10_1016_j_est_2023_106948
crossref_primary_10_1002_eem2_12574
crossref_primary_10_1016_j_hybadv_2025_100431
crossref_primary_10_1016_j_fuel_2024_133639
crossref_primary_10_1080_00150193_2022_2078112
crossref_primary_10_3390_ma17246163
crossref_primary_10_1016_j_mtelec_2023_100048
crossref_primary_10_1002_smll_202304497
crossref_primary_10_1039_D3NR05842E
crossref_primary_10_1016_j_talo_2023_100202
crossref_primary_10_1038_s42004_023_00866_w
crossref_primary_10_1002_celc_202300752
crossref_primary_10_1016_j_cclet_2024_110321
crossref_primary_10_1016_j_jphotochem_2024_115970
crossref_primary_10_1016_j_chemphys_2025_112682
crossref_primary_10_1088_1402_4896_acdcc5
crossref_primary_10_1007_s00894_024_05996_z
crossref_primary_10_1007_s12613_022_2441_4
crossref_primary_10_1016_j_mseb_2024_117369
crossref_primary_10_1016_j_mseb_2024_117644
crossref_primary_10_1016_j_jallcom_2023_170668
crossref_primary_10_3390_en18030630
crossref_primary_10_1007_s12274_022_5247_9
crossref_primary_10_1016_j_snr_2022_100130
crossref_primary_10_1016_j_cej_2024_156147
crossref_primary_10_1016_j_cej_2022_138951
crossref_primary_10_1080_00150193_2024_2324691
crossref_primary_10_1016_j_triboint_2023_108328
crossref_primary_10_1039_D5SE00148J
crossref_primary_10_3390_molecules29235666
crossref_primary_10_1016_j_electacta_2023_143396
crossref_primary_10_3390_app14198807
crossref_primary_10_1016_j_jpowsour_2024_235200
crossref_primary_10_3390_nano12111939
crossref_primary_10_1002_smtd_202401708
crossref_primary_10_1021_acs_jpcc_4c04349
crossref_primary_10_1016_j_ejpb_2022_09_019
Cites_doi 10.1016/j.electacta.2015.08.018
10.1021/acsomega.7b01539
10.1039/C6CS00776G
10.1039/C4NR02365J
10.1016/j.jlumin.2016.12.006
10.1016/j.mtcomm.2017.02.009
10.1016/j.cap.2016.03.026
10.1039/C6TA00592F
10.1039/C8NR06986G
10.3389/fchem.2019.00116
10.1021/acsami.9b12827
10.1016/j.carbon.2017.01.005
10.1039/c3tc30820k
10.1016/j.flatc.2018.04.001
10.1016/j.carbon.2012.06.002
10.1038/srep30426
10.1039/C5CC03981A
10.1021/nl2038979
10.3390/batteries5010010
10.1016/j.apsusc.2018.08.247
10.1016/j.electacta.2018.12.036
10.1021/acsaem.8b01631
10.1016/j.nanoen.2016.06.030
10.1126/science.1154663
10.3390/nano10020375
10.1021/acsami.9b01082
10.1016/j.jpowsour.2019.227009
10.1039/C7CC09406J
10.1021/acsami.8b00323
10.1016/j.fuel.2018.12.030
10.1039/C5RA26279H
10.1016/j.electacta.2019.01.024
10.1016/j.apsusc.2017.05.189
10.1016/j.orgel.2019.105407
10.1016/j.mtchem.2018.09.007
10.1016/j.jct.2011.09.005
10.1016/j.carbon.2019.08.040
10.1016/j.cej.2019.03.161
10.1088/0957-4484/24/19/195401
10.1021/acsami.9b22408
10.1016/j.mtcomm.2016.11.002
10.1016/j.electacta.2017.06.002
10.1002/adma.201704449
10.1002/adfm.201203771
10.1021/acsami.5b07909
10.1016/j.carbon.2018.08.016
10.1080/21691401.2017.1377725
10.1002/smll.201602164
10.1021/ja204953k
10.1016/j.carbon.2019.01.078
10.1039/C4CP02761B
10.1038/srep19292
10.1002/smll.201800589
10.1016/j.ijhydene.2020.01.179
10.1002/adfm.201805898
10.1016/j.carbon.2020.01.044
10.3390/nano9020201
10.1039/C8TA11620B
10.1016/j.apsusc.2019.145157
10.1016/j.optmat.2016.07.032
10.1039/C4NJ02299H
10.1016/j.electacta.2016.05.030
10.1039/C7CS00889A
10.1002/adma.201905440
10.1016/j.carbon.2018.06.042
10.1016/j.inoche.2019.107718
10.1016/j.apsusc.2019.144430
10.1039/C9TA01641D
10.1016/j.jcis.2020.02.018
10.1016/j.jelechem.2018.09.003
10.1039/C9TC02435B
10.1016/j.electacta.2018.12.179
10.1002/anie.200906623
10.1039/C9QM00553F
10.1021/acs.iecr.7b01302
10.1039/C6NJ03443H
10.1002/smll.201801498
10.1016/j.enchem.2019.100012
10.1039/c3ee41776j
10.1016/j.electacta.2018.02.145
10.1016/j.apsusc.2019.02.243
10.1016/j.carbon.2017.08.072
10.1016/j.cej.2019.05.100
10.1021/acssuschemeng.9b06569
10.1016/j.electacta.2019.06.071
10.1021/acs.jpcc.6b04045
10.1039/C8CS00581H
10.1016/j.tsf.2019.01.030
10.1039/C8TA11982A
10.1021/nl504038s
10.1016/j.electacta.2016.03.034
10.1002/admi.201400499
10.1080/10584587.2019.1674834
10.1016/j.carbon.2020.02.039
10.1021/acssuschemeng.5b01700
10.1016/j.electacta.2017.03.147
10.1002/advs.201700887
10.1039/C9SE00341J
10.1002/pola.28859
10.1016/j.cej.2019.04.073
ContentType Journal Article
Copyright 2021 Zhengzhou University
2022 Zhengzhou University
Copyright_xml – notice: 2021 Zhengzhou University
– notice: 2022 Zhengzhou University
DBID AAYXX
CITATION
7SR
7ST
8FD
C1K
JG9
SOI
DOI 10.1002/eem2.12167
DatabaseName CrossRef
Engineered Materials Abstracts
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList CrossRef
Materials Research Database

DeliveryMethod fulltext_linktorsrc
EISSN 2575-0356
EndPage 214
ExternalDocumentID 10_1002_eem2_12167
EEM212167
Genre reviewArticle
GrantInformation_xml – fundername: L2CM, UMR 7053
GroupedDBID 0R~
1OC
24P
ACCMX
ACXQS
ALMA_UNASSIGNED_HOLDINGS
AVUZU
EBS
EJD
OK1
WIN
AAYXX
CITATION
7SR
7ST
8FD
C1K
JG9
SOI
ID FETCH-LOGICAL-c3727-a234b90ef60f4d2b4be331a2817dcd97c097a8515431664461ee8efc128efabb3
IEDL.DBID 24P
ISSN 2575-0356
IngestDate Mon Jun 30 12:00:21 EDT 2025
Tue Jul 01 01:03:04 EDT 2025
Thu Apr 24 22:59:18 EDT 2025
Wed Jan 22 16:26:14 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3727-a234b90ef60f4d2b4be331a2817dcd97c097a8515431664461ee8efc128efabb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5526-2567
0000-0001-7327-5310
0000-0002-8645-5115
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/eem2.12167
PQID 2620276428
PQPubID 5251211
PageCount 214
ParticipantIDs proquest_journals_2620276428
crossref_primary_10_1002_eem2_12167
crossref_citationtrail_10_1002_eem2_12167
wiley_primary_10_1002_eem2_12167_EEM212167
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2022
2022-01-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: January 2022
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Energy & environmental materials (Hoboken, N.J.)
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 41
2015; 39
2017; 2
2013; 1
2020; 162
2019; 11
2013; 24
2013; 23
2017; 46
2020; 161
2020; 567
2019; 369
2019; 202
2020; 12
2020; 10
2012; 12
2013; 6
2017; 235
2019; 480
2017; 115
2018; 47
2019; 241
2018; 46
2020; 8
2018; 9
2020; 4
2018; 5
2018; 139
2015; 178
2014; 16
2016; 198
2019; 438
2018; 30
2019; 318
2020; 45
2017; 124
2017; 245
2014; 6
2019; 673
2019; 154
2015; 2
2019; 7
2015; 15
2019; 9
2018; 28
2019; 3
2018; 140
2019; 5
2016; 208
2019; 2
2015; 51
2019; 1
2018; 269
2018; 828
2019; 146
2020; 78
2020; 32
2008; 320
2016; 16
2015; 7
2019; 463
2016; 120
2011; 133
2020; 504
2020; 507
2016; 12
2012; 50
2016; 4
2016; 6
2010; 49
2017; 11
2017; 10
2019; 48
2017; 56
2017; 184
2016; 60
2020; 112
2019; 371
2018; 56
2012; 46
2018; 10
2018; 54
2017; 422
2016; 26
2019; 299
2019; 373
2018; 14
2019; 297
e_1_2_7_3_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_100_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_90_1
e_1_2_7_94_1
e_1_2_7_71_1
e_1_2_7_52_1
e_1_2_7_98_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_75_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_79_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_82_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_86_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_97_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_5_1
e_1_2_7_9_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_47_1
e_1_2_7_89_1
e_1_2_7_28_1
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_92_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_77_1
e_1_2_7_54_1
e_1_2_7_96_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_80_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_88_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_91_1
e_1_2_7_72_1
e_1_2_7_95_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_99_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_38_1
References_xml – volume: 297
  start-page: 1094
  year: 2019
  publication-title: Electrochim. Acta
– volume: 10
  start-page: 221
  year: 2018
  publication-title: Mater. Today Chem.
– volume: 7
  start-page: 25378
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  start-page: 22871
  year: 2018
  publication-title: Nanoscale
– volume: 162
  start-page: 114
  year: 2020
  publication-title: Carbon
– volume: 14
  start-page: 1800589
  year: 2018
  publication-title: Small
– volume: 10
  start-page: 375
  year: 2020
  publication-title: Nanomaterials
– volume: 49
  start-page: 6726
  year: 2010
  publication-title: Angew. Chem. Int. Ed.
– volume: 154
  start-page: 410
  year: 2019
  publication-title: Carbon
– volume: 567
  start-page: 264
  year: 2020
  publication-title: J. Colloid Interface Sci.
– volume: 12
  start-page: 11669
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 11441
  year: 2019
  publication-title: J. Mater. Chem. C
– volume: 4
  start-page: 3008
  year: 2016
  publication-title: ACS Sustain. Chem. Eng.
– volume: 235
  start-page: 561
  year: 2017
  publication-title: Electrochim. Acta
– volume: 120
  start-page: 13406
  year: 2016
  publication-title: J. Phys. Chem. C
– volume: 54
  start-page: 1413
  year: 2018
  publication-title: Chem. Commun.
– volume: 320
  start-page: 356
  year: 2008
  publication-title: Science
– volume: 6
  start-page: 30426
  year: 2016
  publication-title: Sci. Rep.
– volume: 4
  start-page: 421
  year: 2020
  publication-title: Mater. Chem. Front.
– volume: 112
  start-page: 107718
  year: 2020
  publication-title: Inorg. Chem. Commun.
– volume: 124
  start-page: 429
  year: 2017
  publication-title: Carbon
– volume: 11
  start-page: 16815
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 245
  start-page: 912
  year: 2017
  publication-title: Electrochim. Acta
– volume: 28
  start-page: 1805898
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 139
  start-page: 67
  year: 2018
  publication-title: Carbon
– volume: 11
  start-page: 36970
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 12751
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 504
  start-page: 144430
  year: 2020
  publication-title: Appl. Surf. Sci.
– volume: 78
  start-page: 105407
  year: 2020
  publication-title: Org. Electron.
– volume: 828
  start-page: 1
  year: 2018
  publication-title: J. Electroanal. Chem.
– volume: 7
  start-page: 6021
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 1700887
  year: 2018
  publication-title: Adv. Sci.
– volume: 198
  start-page: 144
  year: 2016
  publication-title: Electrochim. Acta
– volume: 202
  start-page: 163
  year: 2019
  publication-title: Integr. Ferroelectr.
– volume: 8
  start-page: 2453
  year: 2020
  publication-title: ACS Sustain. Chem. Eng.
– volume: 146
  start-page: 1
  year: 2019
  publication-title: Carbon
– volume: 1
  start-page: 4676
  year: 2013
  publication-title: J. Mater. Chem. C
– volume: 318
  start-page: 228
  year: 2019
  publication-title: Electrochim. Acta
– volume: 60
  start-page: 204
  year: 2016
  publication-title: Opt. Mater.
– volume: 9
  start-page: 201
  year: 2019
  publication-title: Nanomaterials
– volume: 6
  start-page: 19292
  year: 2016
  publication-title: Sci. Rep.
– volume: 30
  start-page: 1704449
  year: 2018
  publication-title: Adv. Mater.
– volume: 463
  start-page: 498
  year: 2019
  publication-title: Appl. Surf. Sci.
– volume: 15
  start-page: 565
  year: 2015
  end-page: 573
  publication-title: Nano Lett.
– volume: 6
  start-page: 50609
  year: 2016
  publication-title: RSC Adv.
– volume: 5
  start-page: 10
  year: 2019
  publication-title: Batteries
– volume: 373
  start-page: 985
  year: 2019
  publication-title: Chem. Eng. J.
– volume: 7
  start-page: 116
  year: 2019
  publication-title: Front. Chem.
– volume: 133
  start-page: 15221
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 438
  start-page: 227009
  year: 2019
  publication-title: J. Power Sources
– volume: 507
  start-page: 145157
  year: 2020
  publication-title: Appl. Surf. Sci.
– volume: 2
  start-page: 1077
  year: 2019
  publication-title: ACS Appl. Energy Mater.
– volume: 9
  start-page: 8
  year: 2018
  end-page: 14
  publication-title: FlatChem
– volume: 32
  start-page: 1905440
  year: 2020
  publication-title: Adv. Mater.
– volume: 10
  start-page: 12983
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 208
  start-page: 260
  year: 2016
  publication-title: Electrochim. Acta
– volume: 14
  start-page: 1801498
  year: 2018
  publication-title: Small
– volume: 12
  start-page: 844
  year: 2012
  publication-title: Nano Lett.
– volume: 39
  start-page: 2425
  year: 2015
  publication-title: New J. Chem.
– volume: 47
  start-page: 4924
  year: 2018
  publication-title: Chem. Soc. Rev.
– volume: 269
  start-page: 45
  year: 2018
  publication-title: Electrochim. Acta
– volume: 299
  start-page: 600
  year: 2019
  publication-title: Electrochim. Acta
– volume: 45
  start-page: 9317
  year: 2020
  publication-title: Int. J. Hydrog. Energy
– volume: 1
  start-page: 100012
  year: 2019
  publication-title: EnergyChem
– volume: 24
  start-page: 195401
  year: 2013
  publication-title: Nanotechnology
– volume: 46
  start-page: 80
  year: 2012
  publication-title: J. Chem. Thermodyn.
– volume: 369
  start-page: 1024
  year: 2019
  publication-title: Chem. Eng. J.
– volume: 4
  start-page: 4783
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 56
  start-page: 50
  year: 2018
  publication-title: J. Polym. Sci. Part Polym. Chem.
– volume: 11
  start-page: 76
  year: 2017
  publication-title: Mater. Today Commun.
– volume: 2
  start-page: 8343
  year: 2017
  publication-title: ACS Omega
– volume: 161
  start-page: 89
  year: 2020
  publication-title: Carbon
– volume: 41
  start-page: 1110
  year: 2017
  publication-title: New J. Chem.
– volume: 178
  start-page: 303
  year: 2015
  publication-title: Electrochim. Acta
– volume: 51
  start-page: 12365
  year: 2015
  publication-title: Chem. Commun.
– volume: 26
  start-page: 746
  year: 2016
  publication-title: Nano Energy
– volume: 46
  start-page: 3529
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 23
  start-page: 4111
  year: 2013
  publication-title: Adv. Funct. Mater.
– volume: 48
  start-page: 1272
  year: 2019
  publication-title: Chem. Soc. Rev.
– volume: 299
  start-page: 125
  year: 2019
  publication-title: Electrochim. Acta
– volume: 6
  start-page: 11988
  year: 2014
  publication-title: Nanoscale
– volume: 673
  start-page: 19
  year: 2019
  publication-title: Thin Solid Films
– volume: 371
  start-page: 245
  year: 2019
  publication-title: Chem. Eng. J.
– volume: 115
  start-page: 134
  year: 2017
  publication-title: Carbon
– volume: 184
  start-page: 110
  year: 2017
  publication-title: J. Lumin.
– volume: 6
  start-page: 3665
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 12
  start-page: 5927
  year: 2016
  publication-title: Small
– volume: 7
  start-page: 7800
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 241
  start-page: 646
  year: 2019
  publication-title: Fuel
– volume: 16
  start-page: 19307
  year: 2014
  publication-title: Phys Chem Chem Phys
– volume: 46
  start-page: 1331
  year: 2018
  publication-title: Artif. Cells Nanomed. Biotechnol.
– volume: 10
  start-page: 112
  year: 2017
  publication-title: Mater. Today Commun.
– volume: 56
  start-page: 9341
  year: 2017
  publication-title: Ind. Eng. Chem. Res.
– volume: 3
  start-page: 2499
  year: 2019
  publication-title: Sustain. Energy Fuels
– volume: 422
  start-page: 847
  year: 2017
  publication-title: Appl. Surf. Sci.
– volume: 16
  start-page: 1192
  year: 2016
  publication-title: Curr. Appl. Phys.
– volume: 2
  start-page: 1400499
  year: 2015
  publication-title: Adv. Mater. Interfaces
– volume: 140
  start-page: 77
  year: 2018
  publication-title: Carbon
– volume: 480
  start-page: 727
  year: 2019
  publication-title: Appl. Surf. Sci.
– volume: 50
  start-page: 4738
  year: 2012
  publication-title: Carbon
– ident: e_1_2_7_30_1
  doi: 10.1016/j.electacta.2015.08.018
– ident: e_1_2_7_15_1
  doi: 10.1021/acsomega.7b01539
– ident: e_1_2_7_43_1
  doi: 10.1039/C6CS00776G
– ident: e_1_2_7_93_1
  doi: 10.1039/C4NR02365J
– ident: e_1_2_7_18_1
  doi: 10.1016/j.jlumin.2016.12.006
– ident: e_1_2_7_95_1
  doi: 10.1016/j.mtcomm.2017.02.009
– ident: e_1_2_7_3_1
  doi: 10.1016/j.cap.2016.03.026
– ident: e_1_2_7_33_1
  doi: 10.1039/C6TA00592F
– ident: e_1_2_7_71_1
  doi: 10.1039/C8NR06986G
– ident: e_1_2_7_39_1
  doi: 10.3389/fchem.2019.00116
– ident: e_1_2_7_80_1
  doi: 10.1021/acsami.9b12827
– ident: e_1_2_7_91_1
  doi: 10.1016/j.carbon.2017.01.005
– ident: e_1_2_7_19_1
  doi: 10.1039/c3tc30820k
– ident: e_1_2_7_46_1
  doi: 10.1016/j.flatc.2018.04.001
– ident: e_1_2_7_17_1
  doi: 10.1016/j.carbon.2012.06.002
– ident: e_1_2_7_60_1
  doi: 10.1038/srep30426
– ident: e_1_2_7_94_1
  doi: 10.1039/C5CC03981A
– ident: e_1_2_7_8_1
  doi: 10.1021/nl2038979
– ident: e_1_2_7_23_1
  doi: 10.3390/batteries5010010
– ident: e_1_2_7_48_1
  doi: 10.1016/j.apsusc.2018.08.247
– ident: e_1_2_7_99_1
  doi: 10.1016/j.electacta.2018.12.036
– ident: e_1_2_7_78_1
  doi: 10.1021/acsaem.8b01631
– ident: e_1_2_7_61_1
  doi: 10.1016/j.nanoen.2016.06.030
– ident: e_1_2_7_1_1
  doi: 10.1126/science.1154663
– ident: e_1_2_7_12_1
  doi: 10.3390/nano10020375
– ident: e_1_2_7_10_1
  doi: 10.1021/acsami.9b01082
– ident: e_1_2_7_77_1
  doi: 10.1016/j.jpowsour.2019.227009
– ident: e_1_2_7_36_1
  doi: 10.1039/C7CC09406J
– ident: e_1_2_7_68_1
  doi: 10.1021/acsami.8b00323
– ident: e_1_2_7_25_1
  doi: 10.1016/j.fuel.2018.12.030
– ident: e_1_2_7_9_1
  doi: 10.1039/C5RA26279H
– ident: e_1_2_7_100_1
  doi: 10.1016/j.electacta.2019.01.024
– ident: e_1_2_7_53_1
  doi: 10.1016/j.apsusc.2017.05.189
– ident: e_1_2_7_98_1
  doi: 10.1016/j.orgel.2019.105407
– ident: e_1_2_7_6_1
  doi: 10.1016/j.mtchem.2018.09.007
– ident: e_1_2_7_24_1
  doi: 10.1016/j.jct.2011.09.005
– ident: e_1_2_7_74_1
  doi: 10.1016/j.carbon.2019.08.040
– ident: e_1_2_7_38_1
  doi: 10.1016/j.cej.2019.03.161
– ident: e_1_2_7_57_1
  doi: 10.1088/0957-4484/24/19/195401
– ident: e_1_2_7_87_1
  doi: 10.1021/acsami.9b22408
– ident: e_1_2_7_50_1
  doi: 10.1016/j.mtcomm.2016.11.002
– ident: e_1_2_7_63_1
  doi: 10.1016/j.electacta.2017.06.002
– ident: e_1_2_7_92_1
  doi: 10.1002/adma.201704449
– ident: e_1_2_7_54_1
  doi: 10.1002/adfm.201203771
– ident: e_1_2_7_59_1
  doi: 10.1021/acsami.5b07909
– ident: e_1_2_7_5_1
  doi: 10.1016/j.carbon.2018.08.016
– ident: e_1_2_7_7_1
  doi: 10.1080/21691401.2017.1377725
– ident: e_1_2_7_90_1
  doi: 10.1002/smll.201602164
– ident: e_1_2_7_20_1
  doi: 10.1021/ja204953k
– ident: e_1_2_7_49_1
  doi: 10.1016/j.carbon.2019.01.078
– ident: e_1_2_7_58_1
  doi: 10.1039/C4CP02761B
– ident: e_1_2_7_52_1
  doi: 10.1038/srep19292
– ident: e_1_2_7_35_1
  doi: 10.1002/smll.201800589
– ident: e_1_2_7_83_1
  doi: 10.1016/j.ijhydene.2020.01.179
– ident: e_1_2_7_69_1
  doi: 10.1002/adfm.201805898
– ident: e_1_2_7_86_1
  doi: 10.1016/j.carbon.2020.01.044
– ident: e_1_2_7_51_1
  doi: 10.3390/nano9020201
– ident: e_1_2_7_55_1
  doi: 10.1039/C8TA11620B
– ident: e_1_2_7_85_1
  doi: 10.1016/j.apsusc.2019.145157
– ident: e_1_2_7_13_1
  doi: 10.1016/j.optmat.2016.07.032
– ident: e_1_2_7_16_1
  doi: 10.1039/C4NJ02299H
– ident: e_1_2_7_62_1
  doi: 10.1016/j.electacta.2016.05.030
– ident: e_1_2_7_22_1
  doi: 10.1039/C7CS00889A
– ident: e_1_2_7_42_1
  doi: 10.1002/adma.201905440
– ident: e_1_2_7_66_1
  doi: 10.1016/j.carbon.2018.06.042
– ident: e_1_2_7_41_1
  doi: 10.1016/j.inoche.2019.107718
– ident: e_1_2_7_29_1
  doi: 10.1016/j.apsusc.2019.144430
– ident: e_1_2_7_44_1
  doi: 10.1039/C9TA01641D
– ident: e_1_2_7_56_1
  doi: 10.1016/j.jcis.2020.02.018
– ident: e_1_2_7_67_1
  doi: 10.1016/j.jelechem.2018.09.003
– ident: e_1_2_7_79_1
  doi: 10.1039/C9TC02435B
– ident: e_1_2_7_76_1
  doi: 10.1016/j.electacta.2018.12.179
– ident: e_1_2_7_2_1
  doi: 10.1002/anie.200906623
– ident: e_1_2_7_26_1
  doi: 10.1039/C9QM00553F
– ident: e_1_2_7_14_1
  doi: 10.1021/acs.iecr.7b01302
– ident: e_1_2_7_65_1
  doi: 10.1039/C6NJ03443H
– ident: e_1_2_7_72_1
  doi: 10.1002/smll.201801498
– ident: e_1_2_7_45_1
  doi: 10.1016/j.enchem.2019.100012
– ident: e_1_2_7_47_1
  doi: 10.1039/c3ee41776j
– ident: e_1_2_7_96_1
  doi: 10.1016/j.electacta.2018.02.145
– ident: e_1_2_7_82_1
  doi: 10.1016/j.apsusc.2019.02.243
– ident: e_1_2_7_4_1
  doi: 10.1016/j.carbon.2017.08.072
– ident: e_1_2_7_28_1
  doi: 10.1016/j.cej.2019.05.100
– ident: e_1_2_7_84_1
  doi: 10.1021/acssuschemeng.9b06569
– ident: e_1_2_7_37_1
  doi: 10.1016/j.electacta.2019.06.071
– ident: e_1_2_7_88_1
  doi: 10.1021/acs.jpcc.6b04045
– ident: e_1_2_7_21_1
  doi: 10.1039/C8CS00581H
– ident: e_1_2_7_11_1
  doi: 10.1016/j.tsf.2019.01.030
– ident: e_1_2_7_27_1
  doi: 10.1039/C8TA11982A
– ident: e_1_2_7_31_1
  doi: 10.1021/nl504038s
– ident: e_1_2_7_34_1
  doi: 10.1016/j.electacta.2016.03.034
– ident: e_1_2_7_32_1
  doi: 10.1002/admi.201400499
– ident: e_1_2_7_75_1
  doi: 10.1080/10584587.2019.1674834
– ident: e_1_2_7_97_1
  doi: 10.1016/j.carbon.2020.02.039
– ident: e_1_2_7_89_1
  doi: 10.1021/acssuschemeng.5b01700
– ident: e_1_2_7_64_1
  doi: 10.1016/j.electacta.2017.03.147
– ident: e_1_2_7_70_1
  doi: 10.1002/advs.201700887
– ident: e_1_2_7_81_1
  doi: 10.1039/C9SE00341J
– ident: e_1_2_7_73_1
  doi: 10.1002/pola.28859
– ident: e_1_2_7_40_1
  doi: 10.1016/j.cej.2019.04.073
SSID ssj0002013419
Score 2.4467762
SecondaryResourceType review_article
Snippet Graphene quantum dots (GQDs) which are nanofragments of graphene with an average size between 2 and 50 nm have attracted much attention due to their...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 201
SubjectTerms Electrochemistry
Electrode materials
Electrodes
Energy conversion
Energy storage
Graphene
graphene quantum dots
lithium ion batteries
Optimization
Quantum confinement
Quantum dots
sodium ion batteries
supercapacitor
Supercapacitors
Title Recent Advances on Graphene Quantum Dots for Electrochemical Energy Storage Devices
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feem2.12167
https://www.proquest.com/docview/2620276428
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3BSsNAEF1qe_EiiorVWhb0ohC62Ww3CXgpNlqEilIjxUvIJrsnm4pp_9-ZTZoqiOAth0kObzMzbyaZN4RcSt8zRkjpDFMmHCHzHNe8-A6ev4Lox1KJs8PTRzmJxcN8OG-Rm80sTKUP0TTc0DNsvEYHT1U52IqGar3gqI0g_R3Swdla_KGPi6emwwKpDcXKcLsccBKHeUPZ6JPywfb2nxlpSzO_k1Wbbe72yV5NE-moOtcD0tLFIZkBx4McQUfVd_uSLgt6j4LTEK_o8xowWi_oeLkqKTBRGlULbrJaEYBGdsqPzqDIhhhCx9rGiCMS30UvtxOnXorgZB5wDSflnlAh00YyI3KuhNKe56Y8cP08y0M_Y6GfAo2yM-5AdqSrdaBNBnlIm1Qp75i0i2WhTwg1WE6hS5sgFEbpMIByibkZoMZSl_MuudoAk2S1YjgurnhPKq1jniCIiQWxSy4a249KJ-NXq94G36T2lTJBSXzuYx3UJdcW8z-ekETRlNur0_8Yn5FdjnMLtnfSI-3V51qfA5tYqb59afqkM3qN3-Iv4EnC4A
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1BT8IwFG4UDnoxGjWiqE30oslC15VuOxKZogKJAQzxsqxbe5JhBP6_73VjaGJMvO3Q9PC1773vve59j5Br6XvGCCmddsKEI2SW4ZgX38HzV-D9WCKxd3gwlL2JeJq2p-W_OdgLU-hDVAU3tAzrr9HAsSDd2qiGaj3jKI4g_W1SR1oDl7reeZ28TaoiC0Q31CvDAXNASxzmtWUlUcpbmw1-BqUN0_zOV23Aud8neyVTpJ3iaA_Ils4PyQhoHoQJ2ime7hd0ntMH1JwGl0VfVgDTaka78-WCAhmlUTHjJi1FAWhkG_3oCPJscCO0q62bOCKT-2h813PKuQhO6gHdcBLuCRUybSQzIuNKKO15bsID18_SLPRTFvoJMCnb5g58R7paB9qkEIq0SZTyjkktn-f6hFCDGRVatQlCYZQOA8iYmJsCaixxOW-QmzUwcVqKhuPsive4kDvmMYIYWxAb5Kpa-1FIZfy6qrnGNy7NZRGjKj73MRVqkFuL-R87xFE04Pbr9D-LL8lObzzox_3H4fMZ2eXYxmBLKU1SW36u9DmQi6W6KK_QFzJwxl0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEB1qC-JFFBWrVRf0ohC62Ww2CXgpNrV-tCi1Il5CPnZPNi22_f_ObtJUQQRvOQx7eJuZeTPLvAG4EJ6jFBfCcmPKLS6yTK958Sx9_wlGPxoLPTs8GIr-mN-_uW81uF7NwhT6EFXDTXuGidfawWeZaq9FQ6WcMK2NILwNaLiYlmgdGp3X8fu46rFgctNyZXq_HLISizquqBRKWXt9wM-ctCaa3-mqyTe9HdguiSLpFDe7CzWZ78EIWR5mCdIpXu7nZJqTWy05jRGLPC8RpeWEdKeLOUEuSsJixU1aagKQ0Mz5kRGW2RhFSFeaKLEP4174ctO3yrUIVuog27Bi5vAkoFIJqnjGEp5Ix7Fj5ttelmaBl9LAi5FImSl3pDvCltKXKsVMJFWcJM4B1PNpLg-BKF1QaadWfsBVIgMfCyZqp4gajW3GmnC5AiZKS81wvbriIyrUjlmkQYwMiE04r2xnhVLGr1atFb5R6S3zSIviM09XQk24Mpj_cUIUhgNmvo7-Y3wGm0_dXvR4N3w4hi2mhxhMI6UF9cXnUp4gtVgkp-Uf9AUO1cV9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Advances+on+Graphene+Quantum+Dots+for+Electrochemical+Energy+Storage+Devices&rft.jtitle=Energy+%26+environmental+materials+%28Hoboken%2C+N.J.%29&rft.au=Zahir%2C+Noura&rft.au=Magri%2C+Pierre&rft.au=Luo%2C+Wen&rft.au=Gaumet%2C+Jean+Jacques&rft.date=2022-01-01&rft.issn=2575-0356&rft.eissn=2575-0356&rft.volume=5&rft.issue=1&rft.spage=201&rft.epage=214&rft_id=info:doi/10.1002%2Feem2.12167&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_eem2_12167
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2575-0356&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2575-0356&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2575-0356&client=summon