Recent Advances on Graphene Quantum Dots for Electrochemical Energy Storage Devices
Graphene quantum dots (GQDs) which are nanofragments of graphene with an average size between 2 and 50 nm have attracted much attention due to their outstanding properties such as high conductivity, high surface area, and good solubility in various solvents. GQDs combine the quantum confinement and...
Saved in:
Published in | Energy & environmental materials (Hoboken, N.J.) Vol. 5; no. 1; pp. 201 - 214 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Graphene quantum dots (GQDs) which are nanofragments of graphene with an average size between 2 and 50 nm have attracted much attention due to their outstanding properties such as high conductivity, high surface area, and good solubility in various solvents. GQDs combine the quantum confinement and edges effects and the properties of graphene. Therefore, GQDs offers a broad range of applications in various fields (medicine, energy conversion, and energy storage devices). This review will present the recent research based on the introduction of GQDs in batteries, supercapacitors, and micro‐supercapacitors as electrodes materials or mixed with an active material as an auxiliary agent. Tables, discussed on selected examples, summarize the electrochemical performances and finally, challenges and perspectives are recalled for the subsequent optimization strategy of electrode materials. This review is expected to appeal a broad interest on functional GQDs materials and promote the further development of high‐performance energy storage device.
Graphene quantum dots (GQDs) were discovered recently and their fascinating physical and chemical properties make them widely studied on the field energy storage. Prepared either by top‐down or bottom‐up techniques GQDs enhance nearly systematically the properties of batteries and supercapacitors with the increase of the electrical conductivity which help the electron charge transfer. |
---|---|
AbstractList | Graphene quantum dots (GQDs) which are nanofragments of graphene with an average size between 2 and 50 nm have attracted much attention due to their outstanding properties such as high conductivity, high surface area, and good solubility in various solvents. GQDs combine the quantum confinement and edges effects and the properties of graphene. Therefore, GQDs offers a broad range of applications in various fields (medicine, energy conversion, and energy storage devices). This review will present the recent research based on the introduction of GQDs in batteries, supercapacitors, and micro‐supercapacitors as electrodes materials or mixed with an active material as an auxiliary agent. Tables, discussed on selected examples, summarize the electrochemical performances and finally, challenges and perspectives are recalled for the subsequent optimization strategy of electrode materials. This review is expected to appeal a broad interest on functional GQDs materials and promote the further development of high‐performance energy storage device. Graphene quantum dots (GQDs) which are nanofragments of graphene with an average size between 2 and 50 nm have attracted much attention due to their outstanding properties such as high conductivity, high surface area, and good solubility in various solvents. GQDs combine the quantum confinement and edges effects and the properties of graphene. Therefore, GQDs offers a broad range of applications in various fields (medicine, energy conversion, and energy storage devices). This review will present the recent research based on the introduction of GQDs in batteries, supercapacitors, and micro‐supercapacitors as electrodes materials or mixed with an active material as an auxiliary agent. Tables, discussed on selected examples, summarize the electrochemical performances and finally, challenges and perspectives are recalled for the subsequent optimization strategy of electrode materials. This review is expected to appeal a broad interest on functional GQDs materials and promote the further development of high‐performance energy storage device. Graphene quantum dots (GQDs) were discovered recently and their fascinating physical and chemical properties make them widely studied on the field energy storage. Prepared either by top‐down or bottom‐up techniques GQDs enhance nearly systematically the properties of batteries and supercapacitors with the increase of the electrical conductivity which help the electron charge transfer. |
Author | Zahir, Noura Gaumet, Jean Jacques Pierrat, Philippe Luo, Wen Magri, Pierre |
Author_xml | – sequence: 1 givenname: Noura surname: Zahir fullname: Zahir, Noura organization: Université de Lorraine – sequence: 2 givenname: Pierre orcidid: 0000-0002-8645-5115 surname: Magri fullname: Magri, Pierre organization: Université de Lorraine – sequence: 3 givenname: Wen surname: Luo fullname: Luo, Wen organization: Wuhan University of Technology – sequence: 4 givenname: Jean Jacques orcidid: 0000-0001-5526-2567 surname: Gaumet fullname: Gaumet, Jean Jacques email: jean-jacques.gaumet@univ-lorraine.fr organization: Université de Lorraine – sequence: 5 givenname: Philippe orcidid: 0000-0001-7327-5310 surname: Pierrat fullname: Pierrat, Philippe organization: Université de Lorraine |
BookMark | eNp9kE1Lw0AQhhdRsNZe_AUL3oTW_UiyybG0sQoV0eo5bDaTNiXZrbubSv-9qfEgIl5m5vC878BzgU610YDQFSUTSgi7BWjYhDIaiRM0YKEIx4SH0emP-xyNnNuSDiaUBzQZoNULKNAeT4u91AocNhovrNxtQAN-bqX2bYPnxjtcGovTGpS3Rm2gqZSscarBrg945Y2Va8Bz2FddxyU6K2XtYPS9h-jtLn2d3Y-XT4uH2XQ5VlwwMZaMB3lCoIxIGRQsD3LgnEoWU1GoIhGKJELGIQ0DTqMoCCIKEEOpKOumzHM-RNd9786a9xacz7amtbp7mbGIESaigMUdddNTyhrnLJTZzlaNtIeMkuzoLTt6y768dTD5BavKS18Z7a2s6r8jtI98VDUc_inP0vSR9ZlPpIOAYA |
CitedBy_id | crossref_primary_10_1021_acssensors_2c02790 crossref_primary_10_1016_j_est_2024_112919 crossref_primary_10_1016_j_est_2024_111900 crossref_primary_10_1080_10584587_2023_2191547 crossref_primary_10_1080_00150193_2024_2324700 crossref_primary_10_1080_10584587_2023_2191548 crossref_primary_10_1134_S1061934824700527 crossref_primary_10_3390_nano13030554 crossref_primary_10_1007_s40145_021_0562_2 crossref_primary_10_1016_j_cej_2022_135301 crossref_primary_10_1016_j_molstruc_2024_139364 crossref_primary_10_1007_s43979_022_00002_y crossref_primary_10_1142_S1793292022500217 crossref_primary_10_1021_acs_energyfuels_4c01460 crossref_primary_10_1080_10584587_2024_2327926 crossref_primary_10_3390_batteries9090436 crossref_primary_10_3390_ma17040884 crossref_primary_10_1016_j_jpowsour_2023_233966 crossref_primary_10_1002_eem2_12658 crossref_primary_10_1002_smll_202302489 crossref_primary_10_1007_s00339_024_07562_z crossref_primary_10_1016_j_jpowsour_2025_236177 crossref_primary_10_3390_ma15155390 crossref_primary_10_1016_j_est_2023_106948 crossref_primary_10_1002_eem2_12574 crossref_primary_10_1016_j_hybadv_2025_100431 crossref_primary_10_1016_j_fuel_2024_133639 crossref_primary_10_1080_00150193_2022_2078112 crossref_primary_10_3390_ma17246163 crossref_primary_10_1016_j_mtelec_2023_100048 crossref_primary_10_1002_smll_202304497 crossref_primary_10_1039_D3NR05842E crossref_primary_10_1016_j_talo_2023_100202 crossref_primary_10_1038_s42004_023_00866_w crossref_primary_10_1002_celc_202300752 crossref_primary_10_1016_j_cclet_2024_110321 crossref_primary_10_1016_j_jphotochem_2024_115970 crossref_primary_10_1016_j_chemphys_2025_112682 crossref_primary_10_1088_1402_4896_acdcc5 crossref_primary_10_1007_s00894_024_05996_z crossref_primary_10_1007_s12613_022_2441_4 crossref_primary_10_1016_j_mseb_2024_117369 crossref_primary_10_1016_j_mseb_2024_117644 crossref_primary_10_1016_j_jallcom_2023_170668 crossref_primary_10_3390_en18030630 crossref_primary_10_1007_s12274_022_5247_9 crossref_primary_10_1016_j_snr_2022_100130 crossref_primary_10_1016_j_cej_2024_156147 crossref_primary_10_1016_j_cej_2022_138951 crossref_primary_10_1080_00150193_2024_2324691 crossref_primary_10_1016_j_triboint_2023_108328 crossref_primary_10_1039_D5SE00148J crossref_primary_10_3390_molecules29235666 crossref_primary_10_1016_j_electacta_2023_143396 crossref_primary_10_3390_app14198807 crossref_primary_10_1016_j_jpowsour_2024_235200 crossref_primary_10_3390_nano12111939 crossref_primary_10_1002_smtd_202401708 crossref_primary_10_1021_acs_jpcc_4c04349 crossref_primary_10_1016_j_ejpb_2022_09_019 |
Cites_doi | 10.1016/j.electacta.2015.08.018 10.1021/acsomega.7b01539 10.1039/C6CS00776G 10.1039/C4NR02365J 10.1016/j.jlumin.2016.12.006 10.1016/j.mtcomm.2017.02.009 10.1016/j.cap.2016.03.026 10.1039/C6TA00592F 10.1039/C8NR06986G 10.3389/fchem.2019.00116 10.1021/acsami.9b12827 10.1016/j.carbon.2017.01.005 10.1039/c3tc30820k 10.1016/j.flatc.2018.04.001 10.1016/j.carbon.2012.06.002 10.1038/srep30426 10.1039/C5CC03981A 10.1021/nl2038979 10.3390/batteries5010010 10.1016/j.apsusc.2018.08.247 10.1016/j.electacta.2018.12.036 10.1021/acsaem.8b01631 10.1016/j.nanoen.2016.06.030 10.1126/science.1154663 10.3390/nano10020375 10.1021/acsami.9b01082 10.1016/j.jpowsour.2019.227009 10.1039/C7CC09406J 10.1021/acsami.8b00323 10.1016/j.fuel.2018.12.030 10.1039/C5RA26279H 10.1016/j.electacta.2019.01.024 10.1016/j.apsusc.2017.05.189 10.1016/j.orgel.2019.105407 10.1016/j.mtchem.2018.09.007 10.1016/j.jct.2011.09.005 10.1016/j.carbon.2019.08.040 10.1016/j.cej.2019.03.161 10.1088/0957-4484/24/19/195401 10.1021/acsami.9b22408 10.1016/j.mtcomm.2016.11.002 10.1016/j.electacta.2017.06.002 10.1002/adma.201704449 10.1002/adfm.201203771 10.1021/acsami.5b07909 10.1016/j.carbon.2018.08.016 10.1080/21691401.2017.1377725 10.1002/smll.201602164 10.1021/ja204953k 10.1016/j.carbon.2019.01.078 10.1039/C4CP02761B 10.1038/srep19292 10.1002/smll.201800589 10.1016/j.ijhydene.2020.01.179 10.1002/adfm.201805898 10.1016/j.carbon.2020.01.044 10.3390/nano9020201 10.1039/C8TA11620B 10.1016/j.apsusc.2019.145157 10.1016/j.optmat.2016.07.032 10.1039/C4NJ02299H 10.1016/j.electacta.2016.05.030 10.1039/C7CS00889A 10.1002/adma.201905440 10.1016/j.carbon.2018.06.042 10.1016/j.inoche.2019.107718 10.1016/j.apsusc.2019.144430 10.1039/C9TA01641D 10.1016/j.jcis.2020.02.018 10.1016/j.jelechem.2018.09.003 10.1039/C9TC02435B 10.1016/j.electacta.2018.12.179 10.1002/anie.200906623 10.1039/C9QM00553F 10.1021/acs.iecr.7b01302 10.1039/C6NJ03443H 10.1002/smll.201801498 10.1016/j.enchem.2019.100012 10.1039/c3ee41776j 10.1016/j.electacta.2018.02.145 10.1016/j.apsusc.2019.02.243 10.1016/j.carbon.2017.08.072 10.1016/j.cej.2019.05.100 10.1021/acssuschemeng.9b06569 10.1016/j.electacta.2019.06.071 10.1021/acs.jpcc.6b04045 10.1039/C8CS00581H 10.1016/j.tsf.2019.01.030 10.1039/C8TA11982A 10.1021/nl504038s 10.1016/j.electacta.2016.03.034 10.1002/admi.201400499 10.1080/10584587.2019.1674834 10.1016/j.carbon.2020.02.039 10.1021/acssuschemeng.5b01700 10.1016/j.electacta.2017.03.147 10.1002/advs.201700887 10.1039/C9SE00341J 10.1002/pola.28859 10.1016/j.cej.2019.04.073 |
ContentType | Journal Article |
Copyright | 2021 Zhengzhou University 2022 Zhengzhou University |
Copyright_xml | – notice: 2021 Zhengzhou University – notice: 2022 Zhengzhou University |
DBID | AAYXX CITATION 7SR 7ST 8FD C1K JG9 SOI |
DOI | 10.1002/eem2.12167 |
DatabaseName | CrossRef Engineered Materials Abstracts Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management Materials Research Database Environment Abstracts |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Environment Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2575-0356 |
EndPage | 214 |
ExternalDocumentID | 10_1002_eem2_12167 EEM212167 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: L2CM, UMR 7053 |
GroupedDBID | 0R~ 1OC 24P ACCMX ACXQS ALMA_UNASSIGNED_HOLDINGS AVUZU EBS EJD OK1 WIN AAYXX CITATION 7SR 7ST 8FD C1K JG9 SOI |
ID | FETCH-LOGICAL-c3727-a234b90ef60f4d2b4be331a2817dcd97c097a8515431664461ee8efc128efabb3 |
IEDL.DBID | 24P |
ISSN | 2575-0356 |
IngestDate | Mon Jun 30 12:00:21 EDT 2025 Tue Jul 01 01:03:04 EDT 2025 Thu Apr 24 22:59:18 EDT 2025 Wed Jan 22 16:26:14 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3727-a234b90ef60f4d2b4be331a2817dcd97c097a8515431664461ee8efc128efabb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5526-2567 0000-0001-7327-5310 0000-0002-8645-5115 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/eem2.12167 |
PQID | 2620276428 |
PQPubID | 5251211 |
PageCount | 214 |
ParticipantIDs | proquest_journals_2620276428 crossref_primary_10_1002_eem2_12167 crossref_citationtrail_10_1002_eem2_12167 wiley_primary_10_1002_eem2_12167_EEM212167 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2022 2022-01-00 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: January 2022 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Energy & environmental materials (Hoboken, N.J.) |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 41 2015; 39 2017; 2 2013; 1 2020; 162 2019; 11 2013; 24 2013; 23 2017; 46 2020; 161 2020; 567 2019; 369 2019; 202 2020; 12 2020; 10 2012; 12 2013; 6 2017; 235 2019; 480 2017; 115 2018; 47 2019; 241 2018; 46 2020; 8 2018; 9 2020; 4 2018; 5 2018; 139 2015; 178 2014; 16 2016; 198 2019; 438 2018; 30 2019; 318 2020; 45 2017; 124 2017; 245 2014; 6 2019; 673 2019; 154 2015; 2 2019; 7 2015; 15 2019; 9 2018; 28 2019; 3 2018; 140 2019; 5 2016; 208 2019; 2 2015; 51 2019; 1 2018; 269 2018; 828 2019; 146 2020; 78 2020; 32 2008; 320 2016; 16 2015; 7 2019; 463 2016; 120 2011; 133 2020; 504 2020; 507 2016; 12 2012; 50 2016; 4 2016; 6 2010; 49 2017; 11 2017; 10 2019; 48 2017; 56 2017; 184 2016; 60 2020; 112 2019; 371 2018; 56 2012; 46 2018; 10 2018; 54 2017; 422 2016; 26 2019; 299 2019; 373 2018; 14 2019; 297 e_1_2_7_3_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_100_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_90_1 e_1_2_7_94_1 e_1_2_7_71_1 e_1_2_7_52_1 e_1_2_7_98_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_75_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_79_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_82_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_86_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_5_1 e_1_2_7_9_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_47_1 e_1_2_7_89_1 e_1_2_7_28_1 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_92_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_54_1 e_1_2_7_96_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_80_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_91_1 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_99_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_38_1 |
References_xml | – volume: 297 start-page: 1094 year: 2019 publication-title: Electrochim. Acta – volume: 10 start-page: 221 year: 2018 publication-title: Mater. Today Chem. – volume: 7 start-page: 25378 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 10 start-page: 22871 year: 2018 publication-title: Nanoscale – volume: 162 start-page: 114 year: 2020 publication-title: Carbon – volume: 14 start-page: 1800589 year: 2018 publication-title: Small – volume: 10 start-page: 375 year: 2020 publication-title: Nanomaterials – volume: 49 start-page: 6726 year: 2010 publication-title: Angew. Chem. Int. Ed. – volume: 154 start-page: 410 year: 2019 publication-title: Carbon – volume: 567 start-page: 264 year: 2020 publication-title: J. Colloid Interface Sci. – volume: 12 start-page: 11669 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 11441 year: 2019 publication-title: J. Mater. Chem. C – volume: 4 start-page: 3008 year: 2016 publication-title: ACS Sustain. Chem. Eng. – volume: 235 start-page: 561 year: 2017 publication-title: Electrochim. Acta – volume: 120 start-page: 13406 year: 2016 publication-title: J. Phys. Chem. C – volume: 54 start-page: 1413 year: 2018 publication-title: Chem. Commun. – volume: 320 start-page: 356 year: 2008 publication-title: Science – volume: 6 start-page: 30426 year: 2016 publication-title: Sci. Rep. – volume: 4 start-page: 421 year: 2020 publication-title: Mater. Chem. Front. – volume: 112 start-page: 107718 year: 2020 publication-title: Inorg. Chem. Commun. – volume: 124 start-page: 429 year: 2017 publication-title: Carbon – volume: 11 start-page: 16815 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 245 start-page: 912 year: 2017 publication-title: Electrochim. Acta – volume: 28 start-page: 1805898 year: 2018 publication-title: Adv. Funct. Mater. – volume: 139 start-page: 67 year: 2018 publication-title: Carbon – volume: 11 start-page: 36970 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 12751 year: 2019 publication-title: J. Mater. Chem. A – volume: 504 start-page: 144430 year: 2020 publication-title: Appl. Surf. Sci. – volume: 78 start-page: 105407 year: 2020 publication-title: Org. Electron. – volume: 828 start-page: 1 year: 2018 publication-title: J. Electroanal. Chem. – volume: 7 start-page: 6021 year: 2019 publication-title: J. Mater. Chem. A – volume: 5 start-page: 1700887 year: 2018 publication-title: Adv. Sci. – volume: 198 start-page: 144 year: 2016 publication-title: Electrochim. Acta – volume: 202 start-page: 163 year: 2019 publication-title: Integr. Ferroelectr. – volume: 8 start-page: 2453 year: 2020 publication-title: ACS Sustain. Chem. Eng. – volume: 146 start-page: 1 year: 2019 publication-title: Carbon – volume: 1 start-page: 4676 year: 2013 publication-title: J. Mater. Chem. C – volume: 318 start-page: 228 year: 2019 publication-title: Electrochim. Acta – volume: 60 start-page: 204 year: 2016 publication-title: Opt. Mater. – volume: 9 start-page: 201 year: 2019 publication-title: Nanomaterials – volume: 6 start-page: 19292 year: 2016 publication-title: Sci. Rep. – volume: 30 start-page: 1704449 year: 2018 publication-title: Adv. Mater. – volume: 463 start-page: 498 year: 2019 publication-title: Appl. Surf. Sci. – volume: 15 start-page: 565 year: 2015 end-page: 573 publication-title: Nano Lett. – volume: 6 start-page: 50609 year: 2016 publication-title: RSC Adv. – volume: 5 start-page: 10 year: 2019 publication-title: Batteries – volume: 373 start-page: 985 year: 2019 publication-title: Chem. Eng. J. – volume: 7 start-page: 116 year: 2019 publication-title: Front. Chem. – volume: 133 start-page: 15221 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 438 start-page: 227009 year: 2019 publication-title: J. Power Sources – volume: 507 start-page: 145157 year: 2020 publication-title: Appl. Surf. Sci. – volume: 2 start-page: 1077 year: 2019 publication-title: ACS Appl. Energy Mater. – volume: 9 start-page: 8 year: 2018 end-page: 14 publication-title: FlatChem – volume: 32 start-page: 1905440 year: 2020 publication-title: Adv. Mater. – volume: 10 start-page: 12983 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 208 start-page: 260 year: 2016 publication-title: Electrochim. Acta – volume: 14 start-page: 1801498 year: 2018 publication-title: Small – volume: 12 start-page: 844 year: 2012 publication-title: Nano Lett. – volume: 39 start-page: 2425 year: 2015 publication-title: New J. Chem. – volume: 47 start-page: 4924 year: 2018 publication-title: Chem. Soc. Rev. – volume: 269 start-page: 45 year: 2018 publication-title: Electrochim. Acta – volume: 299 start-page: 600 year: 2019 publication-title: Electrochim. Acta – volume: 45 start-page: 9317 year: 2020 publication-title: Int. J. Hydrog. Energy – volume: 1 start-page: 100012 year: 2019 publication-title: EnergyChem – volume: 24 start-page: 195401 year: 2013 publication-title: Nanotechnology – volume: 46 start-page: 80 year: 2012 publication-title: J. Chem. Thermodyn. – volume: 369 start-page: 1024 year: 2019 publication-title: Chem. Eng. J. – volume: 4 start-page: 4783 year: 2016 publication-title: J. Mater. Chem. A – volume: 56 start-page: 50 year: 2018 publication-title: J. Polym. Sci. Part Polym. Chem. – volume: 11 start-page: 76 year: 2017 publication-title: Mater. Today Commun. – volume: 2 start-page: 8343 year: 2017 publication-title: ACS Omega – volume: 161 start-page: 89 year: 2020 publication-title: Carbon – volume: 41 start-page: 1110 year: 2017 publication-title: New J. Chem. – volume: 178 start-page: 303 year: 2015 publication-title: Electrochim. Acta – volume: 51 start-page: 12365 year: 2015 publication-title: Chem. Commun. – volume: 26 start-page: 746 year: 2016 publication-title: Nano Energy – volume: 46 start-page: 3529 year: 2017 publication-title: Chem. Soc. Rev. – volume: 23 start-page: 4111 year: 2013 publication-title: Adv. Funct. Mater. – volume: 48 start-page: 1272 year: 2019 publication-title: Chem. Soc. Rev. – volume: 299 start-page: 125 year: 2019 publication-title: Electrochim. Acta – volume: 6 start-page: 11988 year: 2014 publication-title: Nanoscale – volume: 673 start-page: 19 year: 2019 publication-title: Thin Solid Films – volume: 371 start-page: 245 year: 2019 publication-title: Chem. Eng. J. – volume: 115 start-page: 134 year: 2017 publication-title: Carbon – volume: 184 start-page: 110 year: 2017 publication-title: J. Lumin. – volume: 6 start-page: 3665 year: 2013 publication-title: Energy Environ. Sci. – volume: 12 start-page: 5927 year: 2016 publication-title: Small – volume: 7 start-page: 7800 year: 2019 publication-title: J. Mater. Chem. A – volume: 241 start-page: 646 year: 2019 publication-title: Fuel – volume: 16 start-page: 19307 year: 2014 publication-title: Phys Chem Chem Phys – volume: 46 start-page: 1331 year: 2018 publication-title: Artif. Cells Nanomed. Biotechnol. – volume: 10 start-page: 112 year: 2017 publication-title: Mater. Today Commun. – volume: 56 start-page: 9341 year: 2017 publication-title: Ind. Eng. Chem. Res. – volume: 3 start-page: 2499 year: 2019 publication-title: Sustain. Energy Fuels – volume: 422 start-page: 847 year: 2017 publication-title: Appl. Surf. Sci. – volume: 16 start-page: 1192 year: 2016 publication-title: Curr. Appl. Phys. – volume: 2 start-page: 1400499 year: 2015 publication-title: Adv. Mater. Interfaces – volume: 140 start-page: 77 year: 2018 publication-title: Carbon – volume: 480 start-page: 727 year: 2019 publication-title: Appl. Surf. Sci. – volume: 50 start-page: 4738 year: 2012 publication-title: Carbon – ident: e_1_2_7_30_1 doi: 10.1016/j.electacta.2015.08.018 – ident: e_1_2_7_15_1 doi: 10.1021/acsomega.7b01539 – ident: e_1_2_7_43_1 doi: 10.1039/C6CS00776G – ident: e_1_2_7_93_1 doi: 10.1039/C4NR02365J – ident: e_1_2_7_18_1 doi: 10.1016/j.jlumin.2016.12.006 – ident: e_1_2_7_95_1 doi: 10.1016/j.mtcomm.2017.02.009 – ident: e_1_2_7_3_1 doi: 10.1016/j.cap.2016.03.026 – ident: e_1_2_7_33_1 doi: 10.1039/C6TA00592F – ident: e_1_2_7_71_1 doi: 10.1039/C8NR06986G – ident: e_1_2_7_39_1 doi: 10.3389/fchem.2019.00116 – ident: e_1_2_7_80_1 doi: 10.1021/acsami.9b12827 – ident: e_1_2_7_91_1 doi: 10.1016/j.carbon.2017.01.005 – ident: e_1_2_7_19_1 doi: 10.1039/c3tc30820k – ident: e_1_2_7_46_1 doi: 10.1016/j.flatc.2018.04.001 – ident: e_1_2_7_17_1 doi: 10.1016/j.carbon.2012.06.002 – ident: e_1_2_7_60_1 doi: 10.1038/srep30426 – ident: e_1_2_7_94_1 doi: 10.1039/C5CC03981A – ident: e_1_2_7_8_1 doi: 10.1021/nl2038979 – ident: e_1_2_7_23_1 doi: 10.3390/batteries5010010 – ident: e_1_2_7_48_1 doi: 10.1016/j.apsusc.2018.08.247 – ident: e_1_2_7_99_1 doi: 10.1016/j.electacta.2018.12.036 – ident: e_1_2_7_78_1 doi: 10.1021/acsaem.8b01631 – ident: e_1_2_7_61_1 doi: 10.1016/j.nanoen.2016.06.030 – ident: e_1_2_7_1_1 doi: 10.1126/science.1154663 – ident: e_1_2_7_12_1 doi: 10.3390/nano10020375 – ident: e_1_2_7_10_1 doi: 10.1021/acsami.9b01082 – ident: e_1_2_7_77_1 doi: 10.1016/j.jpowsour.2019.227009 – ident: e_1_2_7_36_1 doi: 10.1039/C7CC09406J – ident: e_1_2_7_68_1 doi: 10.1021/acsami.8b00323 – ident: e_1_2_7_25_1 doi: 10.1016/j.fuel.2018.12.030 – ident: e_1_2_7_9_1 doi: 10.1039/C5RA26279H – ident: e_1_2_7_100_1 doi: 10.1016/j.electacta.2019.01.024 – ident: e_1_2_7_53_1 doi: 10.1016/j.apsusc.2017.05.189 – ident: e_1_2_7_98_1 doi: 10.1016/j.orgel.2019.105407 – ident: e_1_2_7_6_1 doi: 10.1016/j.mtchem.2018.09.007 – ident: e_1_2_7_24_1 doi: 10.1016/j.jct.2011.09.005 – ident: e_1_2_7_74_1 doi: 10.1016/j.carbon.2019.08.040 – ident: e_1_2_7_38_1 doi: 10.1016/j.cej.2019.03.161 – ident: e_1_2_7_57_1 doi: 10.1088/0957-4484/24/19/195401 – ident: e_1_2_7_87_1 doi: 10.1021/acsami.9b22408 – ident: e_1_2_7_50_1 doi: 10.1016/j.mtcomm.2016.11.002 – ident: e_1_2_7_63_1 doi: 10.1016/j.electacta.2017.06.002 – ident: e_1_2_7_92_1 doi: 10.1002/adma.201704449 – ident: e_1_2_7_54_1 doi: 10.1002/adfm.201203771 – ident: e_1_2_7_59_1 doi: 10.1021/acsami.5b07909 – ident: e_1_2_7_5_1 doi: 10.1016/j.carbon.2018.08.016 – ident: e_1_2_7_7_1 doi: 10.1080/21691401.2017.1377725 – ident: e_1_2_7_90_1 doi: 10.1002/smll.201602164 – ident: e_1_2_7_20_1 doi: 10.1021/ja204953k – ident: e_1_2_7_49_1 doi: 10.1016/j.carbon.2019.01.078 – ident: e_1_2_7_58_1 doi: 10.1039/C4CP02761B – ident: e_1_2_7_52_1 doi: 10.1038/srep19292 – ident: e_1_2_7_35_1 doi: 10.1002/smll.201800589 – ident: e_1_2_7_83_1 doi: 10.1016/j.ijhydene.2020.01.179 – ident: e_1_2_7_69_1 doi: 10.1002/adfm.201805898 – ident: e_1_2_7_86_1 doi: 10.1016/j.carbon.2020.01.044 – ident: e_1_2_7_51_1 doi: 10.3390/nano9020201 – ident: e_1_2_7_55_1 doi: 10.1039/C8TA11620B – ident: e_1_2_7_85_1 doi: 10.1016/j.apsusc.2019.145157 – ident: e_1_2_7_13_1 doi: 10.1016/j.optmat.2016.07.032 – ident: e_1_2_7_16_1 doi: 10.1039/C4NJ02299H – ident: e_1_2_7_62_1 doi: 10.1016/j.electacta.2016.05.030 – ident: e_1_2_7_22_1 doi: 10.1039/C7CS00889A – ident: e_1_2_7_42_1 doi: 10.1002/adma.201905440 – ident: e_1_2_7_66_1 doi: 10.1016/j.carbon.2018.06.042 – ident: e_1_2_7_41_1 doi: 10.1016/j.inoche.2019.107718 – ident: e_1_2_7_29_1 doi: 10.1016/j.apsusc.2019.144430 – ident: e_1_2_7_44_1 doi: 10.1039/C9TA01641D – ident: e_1_2_7_56_1 doi: 10.1016/j.jcis.2020.02.018 – ident: e_1_2_7_67_1 doi: 10.1016/j.jelechem.2018.09.003 – ident: e_1_2_7_79_1 doi: 10.1039/C9TC02435B – ident: e_1_2_7_76_1 doi: 10.1016/j.electacta.2018.12.179 – ident: e_1_2_7_2_1 doi: 10.1002/anie.200906623 – ident: e_1_2_7_26_1 doi: 10.1039/C9QM00553F – ident: e_1_2_7_14_1 doi: 10.1021/acs.iecr.7b01302 – ident: e_1_2_7_65_1 doi: 10.1039/C6NJ03443H – ident: e_1_2_7_72_1 doi: 10.1002/smll.201801498 – ident: e_1_2_7_45_1 doi: 10.1016/j.enchem.2019.100012 – ident: e_1_2_7_47_1 doi: 10.1039/c3ee41776j – ident: e_1_2_7_96_1 doi: 10.1016/j.electacta.2018.02.145 – ident: e_1_2_7_82_1 doi: 10.1016/j.apsusc.2019.02.243 – ident: e_1_2_7_4_1 doi: 10.1016/j.carbon.2017.08.072 – ident: e_1_2_7_28_1 doi: 10.1016/j.cej.2019.05.100 – ident: e_1_2_7_84_1 doi: 10.1021/acssuschemeng.9b06569 – ident: e_1_2_7_37_1 doi: 10.1016/j.electacta.2019.06.071 – ident: e_1_2_7_88_1 doi: 10.1021/acs.jpcc.6b04045 – ident: e_1_2_7_21_1 doi: 10.1039/C8CS00581H – ident: e_1_2_7_11_1 doi: 10.1016/j.tsf.2019.01.030 – ident: e_1_2_7_27_1 doi: 10.1039/C8TA11982A – ident: e_1_2_7_31_1 doi: 10.1021/nl504038s – ident: e_1_2_7_34_1 doi: 10.1016/j.electacta.2016.03.034 – ident: e_1_2_7_32_1 doi: 10.1002/admi.201400499 – ident: e_1_2_7_75_1 doi: 10.1080/10584587.2019.1674834 – ident: e_1_2_7_97_1 doi: 10.1016/j.carbon.2020.02.039 – ident: e_1_2_7_89_1 doi: 10.1021/acssuschemeng.5b01700 – ident: e_1_2_7_64_1 doi: 10.1016/j.electacta.2017.03.147 – ident: e_1_2_7_70_1 doi: 10.1002/advs.201700887 – ident: e_1_2_7_81_1 doi: 10.1039/C9SE00341J – ident: e_1_2_7_73_1 doi: 10.1002/pola.28859 – ident: e_1_2_7_40_1 doi: 10.1016/j.cej.2019.04.073 |
SSID | ssj0002013419 |
Score | 2.4467762 |
SecondaryResourceType | review_article |
Snippet | Graphene quantum dots (GQDs) which are nanofragments of graphene with an average size between 2 and 50 nm have attracted much attention due to their... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 201 |
SubjectTerms | Electrochemistry Electrode materials Electrodes Energy conversion Energy storage Graphene graphene quantum dots lithium ion batteries Optimization Quantum confinement Quantum dots sodium ion batteries supercapacitor Supercapacitors |
Title | Recent Advances on Graphene Quantum Dots for Electrochemical Energy Storage Devices |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feem2.12167 https://www.proquest.com/docview/2620276428 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3BSsNAEF1qe_EiiorVWhb0ohC62Ww3CXgpNlqEilIjxUvIJrsnm4pp_9-ZTZoqiOAth0kObzMzbyaZN4RcSt8zRkjpDFMmHCHzHNe8-A6ev4Lox1KJs8PTRzmJxcN8OG-Rm80sTKUP0TTc0DNsvEYHT1U52IqGar3gqI0g_R3Swdla_KGPi6emwwKpDcXKcLsccBKHeUPZ6JPywfb2nxlpSzO_k1Wbbe72yV5NE-moOtcD0tLFIZkBx4McQUfVd_uSLgt6j4LTEK_o8xowWi_oeLkqKTBRGlULbrJaEYBGdsqPzqDIhhhCx9rGiCMS30UvtxOnXorgZB5wDSflnlAh00YyI3KuhNKe56Y8cP08y0M_Y6GfAo2yM-5AdqSrdaBNBnlIm1Qp75i0i2WhTwg1WE6hS5sgFEbpMIByibkZoMZSl_MuudoAk2S1YjgurnhPKq1jniCIiQWxSy4a249KJ-NXq94G36T2lTJBSXzuYx3UJdcW8z-ekETRlNur0_8Yn5FdjnMLtnfSI-3V51qfA5tYqb59afqkM3qN3-Iv4EnC4A |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1BT8IwFG4UDnoxGjWiqE30oslC15VuOxKZogKJAQzxsqxbe5JhBP6_73VjaGJMvO3Q9PC1773vve59j5Br6XvGCCmddsKEI2SW4ZgX38HzV-D9WCKxd3gwlL2JeJq2p-W_OdgLU-hDVAU3tAzrr9HAsSDd2qiGaj3jKI4g_W1SR1oDl7reeZ28TaoiC0Q31CvDAXNASxzmtWUlUcpbmw1-BqUN0_zOV23Aud8neyVTpJ3iaA_Ils4PyQhoHoQJ2ime7hd0ntMH1JwGl0VfVgDTaka78-WCAhmlUTHjJi1FAWhkG_3oCPJscCO0q62bOCKT-2h813PKuQhO6gHdcBLuCRUybSQzIuNKKO15bsID18_SLPRTFvoJMCnb5g58R7paB9qkEIq0SZTyjkktn-f6hFCDGRVatQlCYZQOA8iYmJsCaixxOW-QmzUwcVqKhuPsive4kDvmMYIYWxAb5Kpa-1FIZfy6qrnGNy7NZRGjKj73MRVqkFuL-R87xFE04Pbr9D-LL8lObzzox_3H4fMZ2eXYxmBLKU1SW36u9DmQi6W6KK_QFzJwxl0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEB1qC-JFFBWrVRf0ohC62Ww2CXgpNrV-tCi1Il5CPnZPNi22_f_ObtJUQQRvOQx7eJuZeTPLvAG4EJ6jFBfCcmPKLS6yTK958Sx9_wlGPxoLPTs8GIr-mN-_uW81uF7NwhT6EFXDTXuGidfawWeZaq9FQ6WcMK2NILwNaLiYlmgdGp3X8fu46rFgctNyZXq_HLISizquqBRKWXt9wM-ctCaa3-mqyTe9HdguiSLpFDe7CzWZ78EIWR5mCdIpXu7nZJqTWy05jRGLPC8RpeWEdKeLOUEuSsJixU1aagKQ0Mz5kRGW2RhFSFeaKLEP4174ctO3yrUIVuog27Bi5vAkoFIJqnjGEp5Ix7Fj5ttelmaBl9LAi5FImSl3pDvCltKXKsVMJFWcJM4B1PNpLg-BKF1QaadWfsBVIgMfCyZqp4gajW3GmnC5AiZKS81wvbriIyrUjlmkQYwMiE04r2xnhVLGr1atFb5R6S3zSIviM09XQk24Mpj_cUIUhgNmvo7-Y3wGm0_dXvR4N3w4hi2mhxhMI6UF9cXnUp4gtVgkp-Uf9AUO1cV9 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Advances+on+Graphene+Quantum+Dots+for+Electrochemical+Energy+Storage+Devices&rft.jtitle=Energy+%26+environmental+materials+%28Hoboken%2C+N.J.%29&rft.au=Zahir%2C+Noura&rft.au=Magri%2C+Pierre&rft.au=Luo%2C+Wen&rft.au=Gaumet%2C+Jean+Jacques&rft.date=2022-01-01&rft.issn=2575-0356&rft.eissn=2575-0356&rft.volume=5&rft.issue=1&rft.spage=201&rft.epage=214&rft_id=info:doi/10.1002%2Feem2.12167&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_eem2_12167 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2575-0356&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2575-0356&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2575-0356&client=summon |