All‐Climate Stretchable Dendrite‐Free Zn‐Ion Hybrid Supercapacitors Enabled by Hydrogel Electrolyte Engineering

Hybrid supercapacitors have shown great potentials to fulfill the demand of future diverse applications such as electric vehicles and portable/wearable electronics. In particular, aqueous zinc‐ion hybrid supercapacitors (ZHSCs) have gained much attention due to their low‐cost, high energy density, a...

Full description

Saved in:
Bibliographic Details
Published inEnergy & environmental materials (Hoboken, N.J.) Vol. 6; no. 2; pp. 384 - n/a
Main Authors Jiang, Yuqi, Ma, Kun, Sun, Meiling, Li, Yuanyuan, Liu, Jinping
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.03.2023
Key Laboratory for Photonic and Electronic Bandgap Materials,Ministry of Education,School of Physics and Electronic Engineering,Harbin Normal University,Harbin 150025,China
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China%The Institute of Technological Sciences,Wuhan University,Wuhan 430072,China%School of Chemistry,Chemical Engineering and Life Science,Wuhan University of Technology,Wuhan 430070,China%School of Optical and Electronic Information,Huazhong University of Science and Technology,Wuhan 430074,China%State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hybrid supercapacitors have shown great potentials to fulfill the demand of future diverse applications such as electric vehicles and portable/wearable electronics. In particular, aqueous zinc‐ion hybrid supercapacitors (ZHSCs) have gained much attention due to their low‐cost, high energy density, and environmental friendliness. Nevertheless, typical ZHSCs use Zn metal anode and normal liquid electrolyte, causing the dendrite issue, restricted working temperature, and inferior device flexibility. Herein, a novel flexible Zn‐ion hybrid supercapacitor (FZHSC) is developed by using activated carbon (AC) anode, δ‐MnO2 cathode, and innovative PVA‐based gel electrolyte. In this design, heavy Zn anode and its dendrite issue are avoided and layered cathode with large interlayer spacing is employed. In addition, flexible electrodes are prepared and integrated with an anti‐freezing, stretchable, and compressible hydrogel electrolyte, which is attained by simultaneously using glycerol additive and freezing/thawing technique to regulate the hydrogen bond and microstructure. The resulting FZHSC exhibits good rate capability, high energy density (47.86 Wh kg−1; 3.94 mWh cm−3), high power density (5.81 kW kg−1; 480 mW cm−3), and excellent cycling stability (~91% capacity retention after 30 000 cycles). Furthermore, our FZHSC demonstrates outstanding flexibility with capacitance almost unchanged even after various continuous shape deformations. The hydrogel electrolyte still maintains high ionic conductivity at ultralow temperatures (≤−30°C), enabling the FZHSC cycled well, and powering electronic timer robustly within an all‐climate temperature range of −30~80°C. This work highlights that the promising Zn metal‐free aqueous ZHSCs can be designed with great multifunctionality for more practical application scenarios. An advanced quasi‐solid‐state flexible Zn‐ion hybrid supercapacitor (FZHSC) is developed in the absence of heavy Zn, avoiding the growth of Zn dendrite. Enabled by the anti‐freezing, stretchable, and compressible PVA hydrogel electrolyte designed via hydrogen bond and microstructure regulation, the FZHSC exhibits robust stretchability and can be operated at −30~80 °C, ensuring all‐climate application.
AbstractList Hybrid supercapacitors have shown great potentials to fulfill the demand of future diverse applications such as electric vehicles and portable/wearable electronics.In particular,aqueous zinc-ion hybrid supercapacitors(ZHSCs)have gained much attention due to their low-cost,high energy density,and environmental friendliness.Nevertheless,typical ZHSCs use Zn metal anode and normal liquid electrolyte,causing the dendrite issue,restricted working temperature,and inferior device flexibility.Herein,a novel flexible Zn-ion hybrid supercapacitor(FZHSC)is developed by using activated carbon(AC)anode,δ-MnO2 cathode,and innovative PVA-based gel electrolyte.In this design,heavy Zn anode and its dendrite issue are avoided and layered cathode with large interlayer spacing is employed.In addition,flexible electrodes are prepared and integrated with an anti-freezing,stretchable,and compressible hydrogel electrolyte,which is attained by simultaneously using glycerol additive and freezing/thawing technique to regulate the hydrogen bond and microstructure.The resulting FZHSC exhibits good rate capability,high energy density(47.86 Wh kg-1;3.94 mWh cm-3),high power density(5.81 kW kg-1;480 mW cm-3),and excellent cycling stability(~91%capacity retention after 30 000 cycles).Furthermore,our FZHSC demonstrates outstanding flexibility with capacitance almost unchanged even after various continuous shape deformations.The hydrogel electrolyte still maintains high ionic conductivity at ultralow temperatures(≤-30℃),enabling the FZHSC cycled well,and powering electronic timer robustly within an all-climate temperature range of-30~80℃.This work highlights that the promising Zn metal-free aqueous ZHSCs can be designed with great multifunctionality for more practical application scenarios.
Hybrid supercapacitors have shown great potentials to fulfill the demand of future diverse applications such as electric vehicles and portable/wearable electronics. In particular, aqueous zinc‐ion hybrid supercapacitors (ZHSCs) have gained much attention due to their low‐cost, high energy density, and environmental friendliness. Nevertheless, typical ZHSCs use Zn metal anode and normal liquid electrolyte, causing the dendrite issue, restricted working temperature, and inferior device flexibility. Herein, a novel flexible Zn‐ion hybrid supercapacitor (FZHSC) is developed by using activated carbon (AC) anode, δ‐MnO2 cathode, and innovative PVA‐based gel electrolyte. In this design, heavy Zn anode and its dendrite issue are avoided and layered cathode with large interlayer spacing is employed. In addition, flexible electrodes are prepared and integrated with an anti‐freezing, stretchable, and compressible hydrogel electrolyte, which is attained by simultaneously using glycerol additive and freezing/thawing technique to regulate the hydrogen bond and microstructure. The resulting FZHSC exhibits good rate capability, high energy density (47.86 Wh kg−1; 3.94 mWh cm−3), high power density (5.81 kW kg−1; 480 mW cm−3), and excellent cycling stability (~91% capacity retention after 30 000 cycles). Furthermore, our FZHSC demonstrates outstanding flexibility with capacitance almost unchanged even after various continuous shape deformations. The hydrogel electrolyte still maintains high ionic conductivity at ultralow temperatures (≤−30°C), enabling the FZHSC cycled well, and powering electronic timer robustly within an all‐climate temperature range of −30~80°C. This work highlights that the promising Zn metal‐free aqueous ZHSCs can be designed with great multifunctionality for more practical application scenarios.
Hybrid supercapacitors have shown great potentials to fulfill the demand of future diverse applications such as electric vehicles and portable/wearable electronics. In particular, aqueous zinc‐ion hybrid supercapacitors (ZHSCs) have gained much attention due to their low‐cost, high energy density, and environmental friendliness. Nevertheless, typical ZHSCs use Zn metal anode and normal liquid electrolyte, causing the dendrite issue, restricted working temperature, and inferior device flexibility. Herein, a novel flexible Zn‐ion hybrid supercapacitor (FZHSC) is developed by using activated carbon (AC) anode, δ‐MnO 2 cathode, and innovative PVA‐based gel electrolyte. In this design, heavy Zn anode and its dendrite issue are avoided and layered cathode with large interlayer spacing is employed. In addition, flexible electrodes are prepared and integrated with an anti‐freezing, stretchable, and compressible hydrogel electrolyte, which is attained by simultaneously using glycerol additive and freezing/thawing technique to regulate the hydrogen bond and microstructure. The resulting FZHSC exhibits good rate capability, high energy density (47.86 Wh kg −1 ; 3.94 mWh cm −3 ), high power density (5.81 kW kg −1 ; 480 mW cm −3 ), and excellent cycling stability (~91% capacity retention after 30 000 cycles). Furthermore, our FZHSC demonstrates outstanding flexibility with capacitance almost unchanged even after various continuous shape deformations. The hydrogel electrolyte still maintains high ionic conductivity at ultralow temperatures (≤−30°C), enabling the FZHSC cycled well, and powering electronic timer robustly within an all‐climate temperature range of −30~80°C. This work highlights that the promising Zn metal‐free aqueous ZHSCs can be designed with great multifunctionality for more practical application scenarios.
Hybrid supercapacitors have shown great potentials to fulfill the demand of future diverse applications such as electric vehicles and portable/wearable electronics. In particular, aqueous zinc‐ion hybrid supercapacitors (ZHSCs) have gained much attention due to their low‐cost, high energy density, and environmental friendliness. Nevertheless, typical ZHSCs use Zn metal anode and normal liquid electrolyte, causing the dendrite issue, restricted working temperature, and inferior device flexibility. Herein, a novel flexible Zn‐ion hybrid supercapacitor (FZHSC) is developed by using activated carbon (AC) anode, δ‐MnO2 cathode, and innovative PVA‐based gel electrolyte. In this design, heavy Zn anode and its dendrite issue are avoided and layered cathode with large interlayer spacing is employed. In addition, flexible electrodes are prepared and integrated with an anti‐freezing, stretchable, and compressible hydrogel electrolyte, which is attained by simultaneously using glycerol additive and freezing/thawing technique to regulate the hydrogen bond and microstructure. The resulting FZHSC exhibits good rate capability, high energy density (47.86 Wh kg−1; 3.94 mWh cm−3), high power density (5.81 kW kg−1; 480 mW cm−3), and excellent cycling stability (~91% capacity retention after 30 000 cycles). Furthermore, our FZHSC demonstrates outstanding flexibility with capacitance almost unchanged even after various continuous shape deformations. The hydrogel electrolyte still maintains high ionic conductivity at ultralow temperatures (≤−30°C), enabling the FZHSC cycled well, and powering electronic timer robustly within an all‐climate temperature range of −30~80°C. This work highlights that the promising Zn metal‐free aqueous ZHSCs can be designed with great multifunctionality for more practical application scenarios. An advanced quasi‐solid‐state flexible Zn‐ion hybrid supercapacitor (FZHSC) is developed in the absence of heavy Zn, avoiding the growth of Zn dendrite. Enabled by the anti‐freezing, stretchable, and compressible PVA hydrogel electrolyte designed via hydrogen bond and microstructure regulation, the FZHSC exhibits robust stretchability and can be operated at −30~80 °C, ensuring all‐climate application.
Author Li, Yuanyuan
Liu, Jinping
Jiang, Yuqi
Ma, Kun
Sun, Meiling
AuthorAffiliation State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China%The Institute of Technological Sciences,Wuhan University,Wuhan 430072,China%School of Chemistry,Chemical Engineering and Life Science,Wuhan University of Technology,Wuhan 430070,China%School of Optical and Electronic Information,Huazhong University of Science and Technology,Wuhan 430074,China%State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China;Key Laboratory for Photonic and Electronic Bandgap Materials,Ministry of Education,School of Physics and Electronic Engineering,Harbin Normal University,Harbin 150025,China
AuthorAffiliation_xml – name: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China%The Institute of Technological Sciences,Wuhan University,Wuhan 430072,China%School of Chemistry,Chemical Engineering and Life Science,Wuhan University of Technology,Wuhan 430070,China%School of Optical and Electronic Information,Huazhong University of Science and Technology,Wuhan 430074,China%State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China;Key Laboratory for Photonic and Electronic Bandgap Materials,Ministry of Education,School of Physics and Electronic Engineering,Harbin Normal University,Harbin 150025,China
Author_xml – sequence: 1
  givenname: Yuqi
  surname: Jiang
  fullname: Jiang, Yuqi
  organization: Wuhan University of Technology
– sequence: 2
  givenname: Kun
  surname: Ma
  fullname: Ma, Kun
  organization: Wuhan University
– sequence: 3
  givenname: Meiling
  surname: Sun
  fullname: Sun, Meiling
  email: meiling.sun@whut.edu.cn
  organization: Wuhan University of Technology
– sequence: 4
  givenname: Yuanyuan
  surname: Li
  fullname: Li, Yuanyuan
  organization: Huazhong University of Science and Technology
– sequence: 5
  givenname: Jinping
  orcidid: 0000-0001-6748-8432
  surname: Liu
  fullname: Liu, Jinping
  email: liujp@whut.edu.cn
  organization: Harbin Normal University
BookMark eNp9kc1KxDAUhYMo-LvxCQruhNH8talLGTsqKC7UjZuQpjdjhpiMaQbpzkfwGX0SM46giLjKhXzn3Ms522jdBw8I7RN8RDCmxwBP9IhQVoo1tEVLUY4wK6v1H_Mm2uv7Gc4wJoyTky20OHXu_fVt7OyTSlDcpghJP6rWQXEGvos2Qf6eRIDiwefpMvjiYmij7YrbxRyiVnOlbQqxLxq_lHVFO2Sii2EKrmgc6BSDG7J346fWA0Trp7towyjXw97Xu4PuJ83d-GJ0dXN-OT69GmkmqBiRGlOtFG6NIVwYXRnMoFMCt1xjbVqiasY7DhqXXCtK2AnTuNaiarkqK9OxHXS48n1R3ig_lbOwiD5vlH4YHmfaSaCYshwHqzN8sILnMTwvoE_fNBV1JWoqOP-21DH0fQQj5zFnFwdJsFzWIJc1yM8aMox_wTkrlWzwKSrr_paQr5Otg-Efc9k013Sl-QBfLp-C
CitedBy_id crossref_primary_10_1016_j_ensm_2024_103255
crossref_primary_10_1016_j_indcrop_2024_119034
crossref_primary_10_1007_s11664_024_11537_4
crossref_primary_10_1016_j_mtchem_2024_102384
crossref_primary_10_1002_pat_6590
crossref_primary_10_1039_D2TA06985G
crossref_primary_10_1016_j_est_2024_114338
crossref_primary_10_1016_j_est_2023_110370
crossref_primary_10_1039_D2EE03793A
crossref_primary_10_1016_j_est_2024_114851
crossref_primary_10_1002_adma_202303353
crossref_primary_10_1002_smll_202308500
crossref_primary_10_1016_j_est_2025_116291
crossref_primary_10_1016_j_mtchem_2024_102059
crossref_primary_10_1021_acs_jpcc_2c02689
crossref_primary_10_1002_smll_202305140
crossref_primary_10_1016_j_jallcom_2022_165868
crossref_primary_10_1016_j_cej_2023_145658
crossref_primary_10_1016_j_matchemphys_2024_129809
crossref_primary_10_1039_D2QM00640E
crossref_primary_10_1002_anie_202413728
crossref_primary_10_1021_acsnano_4c01304
crossref_primary_10_1016_j_jcis_2023_06_172
crossref_primary_10_1021_acsnano_4c09999
crossref_primary_10_1016_j_jmst_2024_04_077
crossref_primary_10_1002_adfm_202314825
crossref_primary_10_1016_j_jallcom_2025_179516
crossref_primary_10_1002_eem2_12522
crossref_primary_10_1002_smll_202307446
crossref_primary_10_1016_j_est_2024_114061
crossref_primary_10_1016_j_jpowsour_2025_236449
crossref_primary_10_31857_S0424857024020019
crossref_primary_10_1039_D4CS00584H
crossref_primary_10_1002_adfm_202406968
crossref_primary_10_1002_adfm_202316127
crossref_primary_10_1016_j_indcrop_2024_120047
crossref_primary_10_1002_aenm_202403739
crossref_primary_10_1007_s12613_023_2665_y
crossref_primary_10_1016_j_jallcom_2022_168065
crossref_primary_10_1039_D4TA02102A
crossref_primary_10_1016_j_jpowsour_2024_235368
crossref_primary_10_1016_j_jpowsour_2025_236856
crossref_primary_10_1016_j_ensm_2024_103903
crossref_primary_10_1002_adfm_202314651
crossref_primary_10_1016_j_ensm_2024_103462
crossref_primary_10_1007_s12209_023_00366_x
crossref_primary_10_3390_polym14194037
crossref_primary_10_1002_ange_202413728
crossref_primary_10_1016_j_cej_2024_157589
crossref_primary_10_1007_s40820_023_01065_x
crossref_primary_10_1016_j_est_2024_113550
crossref_primary_10_1039_D4EE00357H
crossref_primary_10_1002_adfm_202311259
crossref_primary_10_1016_j_jallcom_2023_173118
crossref_primary_10_1002_eem2_12502
crossref_primary_10_1016_j_cej_2023_145551
Cites_doi 10.1039/C8EE02567C
10.3389/fenrg.2016.00034
10.1126/science.aak9991
10.1126/science.1216744
10.1002/anie.202005270
10.1126/sciadv.aba4098
10.1002/advs.201600539
10.1016/j.ensm.2018.10.020
10.1021/nn306044d
10.1016/j.synthmet.2011.07.018
10.1002/adma.201202146
10.1038/s41467-018-07980-7
10.1039/C9TA02678A
10.1016/j.rser.2013.06.017
10.1021/acsenergylett.0c00109
10.1002/anie.201908913
10.1007/s10854-019-00841-z
10.1002/adma.202004959
10.1002/advs.201902795
10.1002/adfm.201804560
10.1007/s40843-021-1733-1
10.1021/jacs.1c06923
10.1016/j.joule.2020.07.023
10.1021/acsami.6b08367
10.1021/acsami.1c02242
10.1002/adma.201503543
10.1021/acsami.6b08374
10.1016/j.jpowsour.2019.227345
10.1007/s10008-017-3725-x
10.1002/adma.201404639
10.1002/(SICI)1097-4628(19980919)69:12<2477::AID-APP19>3.0.CO;2-U
10.1016/j.ensm.2018.01.003
10.1016/j.polymertesting.2020.106649
10.1016/j.jmrt.2019.12.078
10.1016/S0378-7753(00)00484-5
10.1007/s40820-019-0301-1
10.1038/nenergy.2016.39
10.1016/j.carbpol.2021.118697
10.1007/s40843-019-9475-4
10.1002/aelm.201900537
10.1021/nl404008e
ContentType Journal Article
Copyright 2022 Zhengzhou University
2023 Zhengzhou University
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: 2022 Zhengzhou University
– notice: 2023 Zhengzhou University
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID AAYXX
CITATION
7SR
7ST
8FD
C1K
JG9
SOI
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1002/eem2.12357
DatabaseName CrossRef
Engineered Materials Abstracts
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
Environment Abstracts
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Materials Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
EISSN 2575-0356
EndPage n/a
ExternalDocumentID nyyhjcl_e202302038
10_1002_eem2_12357
EEM212357
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51872104; 51972257; 52072136; 52172229
– fundername: Ningxia Key R&D Program
  funderid: 2019BFG02018
– fundername: Fundamental Research Funds for the Central Universities
  funderid: WUT:2021IVA071; WUT:2021IVA115
GroupedDBID 0R~
1OC
24P
ACCMX
ACXQS
ALMA_UNASSIGNED_HOLDINGS
AVUZU
EBS
EJD
OK1
WIN
AAYXX
CITATION
7SR
7ST
8FD
C1K
JG9
SOI
2B.
4A8
92I
93N
PSX
TCJ
ID FETCH-LOGICAL-c3727-1802caa0bff147fc6f03eda70b4c0cfb1a834d4ec054ca21393c08c76b4a56fd3
IEDL.DBID 24P
ISSN 2575-0356
2575-0348
IngestDate Thu May 29 04:00:40 EDT 2025
Mon Jun 30 12:02:50 EDT 2025
Tue Jul 01 01:03:05 EDT 2025
Thu Apr 24 23:07:58 EDT 2025
Wed Jan 22 16:14:42 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords all-climate operation
high flexibility
dendrite-free anode
Zn-ion hybrid supercapacitor
multifunctional gel electrolyte
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3727-1802caa0bff147fc6f03eda70b4c0cfb1a834d4ec054ca21393c08c76b4a56fd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6748-8432
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/eem2.12357
PQID 2786782744
PQPubID 5251211
PageCount 8
ParticipantIDs wanfang_journals_nyyhjcl_e202302038
proquest_journals_2786782744
crossref_primary_10_1002_eem2_12357
crossref_citationtrail_10_1002_eem2_12357
wiley_primary_10_1002_eem2_12357_EEM212357
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2023
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: March 2023
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Energy & environmental materials (Hoboken, N.J.)
PublicationTitle_FL Energy & Environmental Materials
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Key Laboratory for Photonic and Electronic Bandgap Materials,Ministry of Education,School of Physics and Electronic Engineering,Harbin Normal University,Harbin 150025,China
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China%The Institute of Technological Sciences,Wuhan University,Wuhan 430072,China%School of Chemistry,Chemical Engineering and Life Science,Wuhan University of Technology,Wuhan 430070,China%School of Optical and Electronic Information,Huazhong University of Science and Technology,Wuhan 430074,China%State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China
Publisher_xml – name: Wiley Subscription Services, Inc
– name: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China%The Institute of Technological Sciences,Wuhan University,Wuhan 430072,China%School of Chemistry,Chemical Engineering and Life Science,Wuhan University of Technology,Wuhan 430070,China%School of Optical and Electronic Information,Huazhong University of Science and Technology,Wuhan 430074,China%State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China
– name: Key Laboratory for Photonic and Electronic Bandgap Materials,Ministry of Education,School of Physics and Electronic Engineering,Harbin Normal University,Harbin 150025,China
References 2019; 7
2018; 28
2022; 275
2017; 4
2019; 5
2013; 27
2019; 30
2019; 11
2019; 2
2019; 10
2017; 22
2017; 23
2019; 58
2020; 446
2020; 59
2000; 91
2022; 65
2021; 143
2013; 7
2017; 356
1998; 69
2016; 4
2020; 7
2021; 13
2020; 6
2020; 5
2020; 4
2016; 1
2015; 27
2019; 62
2021; 33
2019; 20
2020; 90
2020; 9
2014; 14
2018; 11
2012; 335
2012; 24
2011; 161
2016; 8
2018; 13
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
Zhao J. W. (e_1_2_7_12_1) 2017; 23
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
He L. (e_1_2_7_31_1) 2019; 2
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 5
  start-page: 685
  year: 2020
  publication-title: ACS Energy Lett.
– volume: 11
  start-page: 70
  year: 2019
  publication-title: Nano‐Micro Lett.
– volume: 446
  start-page: 227345
  year: 2020
  publication-title: J. Power Sourc.
– volume: 161
  start-page: 2017
  year: 2011
  publication-title: Synth. Met.
– volume: 13
  start-page: 96
  year: 2018
  publication-title: Energy Storage Mater.
– volume: 20
  start-page: 335
  year: 2019
  publication-title: Energy Storage Mater.
– volume: 2
  start-page: 5835
  year: 2019
  publication-title: Energy Mater.
– volume: 23
  start-page: 581
  year: 2017
  publication-title: J. Electrochem.
– volume: 59
  start-page: 14541
  year: 2020
  publication-title: Angew. Chem. Int. Ed.
– volume: 8
  start-page: 30853
  year: 2016
  publication-title: Mater. Interfaces
– volume: 90
  start-page: 106649
  year: 2020
  publication-title: Polym. Test
– volume: 7
  start-page: 2617
  year: 2013
  publication-title: ACS Nano
– volume: 30
  start-page: 5478
  year: 2019
  publication-title: J. Mater. Sci. Mater. Electron.
– volume: 69
  start-page: 2477
  year: 1998
  publication-title: J. Appl. Polym. Sci.
– volume: 335
  start-page: 1326
  year: 2012
  publication-title: Science
– volume: 24
  start-page: 5166
  year: 2012
  publication-title: Adv. Mater.
– volume: 8
  start-page: 27199
  year: 2016
  publication-title: Mater. Interfac.
– volume: 91
  start-page: 27
  year: 2000
  publication-title: J. Power Sourc.
– volume: 58
  start-page: 16994
  year: 2019
  publication-title: Angew. Chem. Int. Ed.
– volume: 27
  start-page: 7451
  year: 2015
  publication-title: Adv. Mater.
– volume: 13
  start-page: 16454
  year: 2021
  publication-title: Mater. Interfac.
– volume: 11
  start-page: 3367
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 65
  start-page: 10
  year: 2022
  publication-title: Sci. China Mater.
– volume: 7
  start-page: 1902795
  year: 2020
  publication-title: Adv. Sci.
– volume: 356
  start-page: 415
  year: 2017
  publication-title: Science
– volume: 9
  start-page: 2477
  year: 2020
  publication-title: J. Mater. Res. Technol.
– volume: 4
  start-page: 34
  year: 2016
  publication-title: Front. Energy Res.
– volume: 4
  start-page: 1846
  year: 2020
  publication-title: Joule
– volume: 5
  start-page: 1900537
  year: 2019
  publication-title: Adv. Electron. Mater.
– volume: 7
  start-page: 13810
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 143
  start-page: 15475
  year: 2021
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 1600539
  year: 2017
  publication-title: Adv. Sci.
– volume: 27
  start-page: 475
  year: 2013
  publication-title: Renew. Sust. Energ. Rev.
– volume: 6
  start-page: eaba4098
  year: 2020
  publication-title: Sci. Adv.
– volume: 27
  start-page: 1396
  year: 2015
  publication-title: Adv. Mater.
– volume: 62
  start-page: 1556
  year: 2019
  publication-title: Sci. China Mater.
– volume: 275
  start-page: 118697
  year: 2022
  publication-title: Carbohyd. Polym.
– volume: 28
  start-page: 1804560
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 1
  start-page: 16039
  year: 2016
  publication-title: Nat. Energy
– volume: 22
  start-page: 91
  year: 2017
  publication-title: J. Solid State Electr.
– volume: 33
  start-page: 2004959
  year: 2021
  publication-title: Adv. Mater.
– volume: 14
  start-page: 731
  year: 2014
  publication-title: Nano Lett.
– volume: 10
  start-page: 73
  year: 2019
  publication-title: Nat. Commun.
– ident: e_1_2_7_16_1
  doi: 10.1039/C8EE02567C
– ident: e_1_2_7_6_1
  doi: 10.3389/fenrg.2016.00034
– ident: e_1_2_7_17_1
  doi: 10.1126/science.aak9991
– ident: e_1_2_7_33_1
  doi: 10.1126/science.1216744
– ident: e_1_2_7_2_1
  doi: 10.1002/anie.202005270
– ident: e_1_2_7_13_1
  doi: 10.1126/sciadv.aba4098
– ident: e_1_2_7_3_1
  doi: 10.1002/advs.201600539
– ident: e_1_2_7_20_1
  doi: 10.1016/j.ensm.2018.10.020
– ident: e_1_2_7_36_1
  doi: 10.1021/nn306044d
– ident: e_1_2_7_4_1
  doi: 10.1016/j.synthmet.2011.07.018
– ident: e_1_2_7_35_1
  doi: 10.1002/adma.201202146
– ident: e_1_2_7_8_1
  doi: 10.1038/s41467-018-07980-7
– ident: e_1_2_7_14_1
  doi: 10.1039/C9TA02678A
– ident: e_1_2_7_39_1
  doi: 10.1016/j.rser.2013.06.017
– ident: e_1_2_7_22_1
  doi: 10.1021/acsenergylett.0c00109
– ident: e_1_2_7_23_1
  doi: 10.1002/anie.201908913
– ident: e_1_2_7_32_1
  doi: 10.1007/s10854-019-00841-z
– volume: 2
  start-page: 5835
  year: 2019
  ident: e_1_2_7_31_1
  publication-title: Energy Mater.
– ident: e_1_2_7_24_1
  doi: 10.1002/adma.202004959
– ident: e_1_2_7_9_1
  doi: 10.1002/advs.201902795
– ident: e_1_2_7_27_1
  doi: 10.1002/adfm.201804560
– ident: e_1_2_7_5_1
  doi: 10.1007/s40843-021-1733-1
– ident: e_1_2_7_10_1
  doi: 10.1021/jacs.1c06923
– ident: e_1_2_7_21_1
  doi: 10.1016/j.joule.2020.07.023
– ident: e_1_2_7_7_1
  doi: 10.1021/acsami.6b08367
– ident: e_1_2_7_25_1
  doi: 10.1021/acsami.1c02242
– ident: e_1_2_7_28_1
  doi: 10.1002/adma.201503543
– ident: e_1_2_7_37_1
  doi: 10.1021/acsami.6b08374
– ident: e_1_2_7_19_1
  doi: 10.1016/j.jpowsour.2019.227345
– ident: e_1_2_7_29_1
  doi: 10.1007/s10008-017-3725-x
– ident: e_1_2_7_43_1
  doi: 10.1002/adma.201404639
– ident: e_1_2_7_40_1
  doi: 10.1002/(SICI)1097-4628(19980919)69:12<2477::AID-APP19>3.0.CO;2-U
– ident: e_1_2_7_15_1
  doi: 10.1016/j.ensm.2018.01.003
– ident: e_1_2_7_38_1
  doi: 10.1016/j.polymertesting.2020.106649
– ident: e_1_2_7_41_1
  doi: 10.1016/j.jmrt.2019.12.078
– ident: e_1_2_7_1_1
  doi: 10.1016/S0378-7753(00)00484-5
– ident: e_1_2_7_18_1
  doi: 10.1007/s40820-019-0301-1
– ident: e_1_2_7_11_1
  doi: 10.1038/nenergy.2016.39
– ident: e_1_2_7_42_1
  doi: 10.1016/j.carbpol.2021.118697
– ident: e_1_2_7_26_1
  doi: 10.1007/s40843-019-9475-4
– ident: e_1_2_7_30_1
  doi: 10.1002/aelm.201900537
– volume: 23
  start-page: 581
  year: 2017
  ident: e_1_2_7_12_1
  publication-title: J. Electrochem.
– ident: e_1_2_7_34_1
  doi: 10.1021/nl404008e
SSID ssj0002013419
Score 2.554654
Snippet Hybrid supercapacitors have shown great potentials to fulfill the demand of future diverse applications such as electric vehicles and portable/wearable...
SourceID wanfang
proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 384
SubjectTerms Activated carbon
all‐climate operation
Capacitance
Cathodes
Climate
Compressibility
Dendrites
dendrite‐free anode
Electric vehicles
Electrolytes
Flexibility
Freezing
Glycerol
high flexibility
Hydrogels
Hydrogen bonds
Interlayers
Ion currents
Low temperature
Manganese dioxide
multifunctional gel electrolyte
Supercapacitors
Thawing
Zinc
Zn‐ion hybrid supercapacitor
Title All‐Climate Stretchable Dendrite‐Free Zn‐Ion Hybrid Supercapacitors Enabled by Hydrogel Electrolyte Engineering
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feem2.12357
https://www.proquest.com/docview/2786782744
https://d.wanfangdata.com.cn/periodical/nyyhjcl-e202302038
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Ra9RAEF5qi-CLKFU8rWVBXxRik81ecgd9OWqOU2gR9KT0JezOzraVuFeuPSRv_Qn9jf0lziS5OwtS6NvCTnZhJpP5MrvzjRDvEzNI0BgXIXoXae_zyKbKRkp7C0mSWWc4D3l4lE2m-utx_3hD7C9rYVp-iFXCjT2j-V6zgxt7ubcmDUX8rT5xpWf-SGxxbS1f6FP62yrDQqGNycq4uxxhkihO-9mKn1TtrR-_G5HWMPPxHxO8Cad3YWsTd8bPxNMOMMpRa-HnYgPDtliMqur2-uagOifAiZKPlkn7XAUlP2Nw9MOPND2eI8qTQKMvsyAnNRdnye-LC5wDhUg450Y7smiKp5y0NUm4-ewUK1m0vXGqmtb-h7DwhZiOix8Hk6hroBBBSrgkYnY3MCa23ic695D5OEVn8thqiMFbMlSqnUYg3AZGERhMIR5Anllt-pl36UuxGWYBXwnphwp032qVG621A5u5GIaoMHHDPFbYEx-WSiyhYxfnJhdV2fIiq5IVXjYK74l3K9mLllPjv1I7S1uUnV9dliofUHRlVkNapLPPejbU9dkvqErknvB8xDroiY-N7e7ZpyyKQ9WMXj9E-I14wru019F2xObVfIFvCZ9c2d3mNdwVW6Of05PpXyYE5j8
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NatwwEBZpQmkupaEt3fxV0F5acGPLWnv3uCReNm02l2ZLyEXoZ5SmONqwyRJ86yPkGfMkmbGd3QZKoTeBhhFoNJ7PI803jH1MdC8BrV0E4F0kvc8jkwoTCemNTZLMOE15yPFxNprIr6fd0_ZtDtXCNPwQi4QbeUb9vSYHp4T03pI1FOBSfKFSz_wZWyNYg4d6bfBjcjZZJFkwuhFfGTWYQ1gSxWk3W1CUir2lgqdBaYk0n9_q4HU4f4pc69AzfMVetpiRDxojb7AVCK_ZfFCW97_v9ssLxJzA6XYZDUCFUPwAgsN_fsDp4QyAnwUcHU4DH1VUn8W_z69gZjFK2gvqtcOLun7KcVOhhJtNz6HkRdMep6xQ9x-chW_YZFic7I-itodCZFOEJhERvFmtY-N9InNvMx-n4HQeG2lj6w3aKpVOgkXoZrVAPJjauGfzzEjdzbxL37LVMA3wjnHfF1Z2jRS5llI6azIX2z4ISFw_jwV02KfHTVS2JRinPhelaqiRhaINV_WGd9iHhexVQ6vxV6ntR1uo1rWulch7GGCJ2BCVtPZZzoaq-vnLlgqoLTzdsvY67HNtu3-so4piLOrR5v8Iv2cvRifjI3V0ePxti63Tis3rtG22ejObww7ClRuz2x7KB8XI6bw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fa9RAEF_qFcUXUap42tYF-1IhdrPZJHfQl6PNca1tEfSk9GXZP7O1EveOs4fkzY_Qz9hP0tkkd2ehCL4t7DALM5nML7OZ3xCyE6teDErZCMDZSDiXRzrhOuLCaRPHmbYq1CFPz7LRWByfp-drZH_RC9PwQywLbiEy6vd1CPCpdXsr0lCAn_xj6PTMH5H1FNMS65D1wbfxxXhZY8HkFujKwnw5RCURS9JsyVDK91YK7uekFdB8_Ft5p_zlfeBaZ57hc_KshYx00Pj4BVkDv0Hmg7K8_XNzUF4h5AQaLpfR_qEPih6Ct_jJD7g9nAHQC4-ro4mnoyq0Z9Ev8ynMDCZJcxVG7dCibp-yVFcoYWeTSyhp0UzHKSvU_Rdl4UsyHhZfD0ZRO0IhMgkikyjwuxmlmHYuFrkzmWMJWJUzLQwzTqOrEmEFGERuRnGEg4lhPZNnWqg0czZ5RTp-4uE1oa7PjUi14LkSQlijM8tMHzjEtp8zDl2yuzCiNC2_eBhzUcqGGZnLYHBZG7xL3i9lpw2rxoNSmwtfyDayfkme9zC_Bl5DVNL6Z7Xrq-r7D1NKCFPhwyVrr0s-1L77xzmyKE55vXrzP8LvyJPPh0N5cnT26S15Gg5s_k3bJJ3r2Ry2EKxc6-32mbwDUq7o3A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=All%E2%80%90Climate+Stretchable+Dendrite%E2%80%90Free+Zn%E2%80%90Ion+Hybrid+Supercapacitors+Enabled+by+Hydrogel+Electrolyte+Engineering&rft.jtitle=Energy+%26+environmental+materials+%28Hoboken%2C+N.J.%29&rft.au=Jiang%2C+Yuqi&rft.au=Ma%2C+Kun&rft.au=Sun%2C+Meiling&rft.au=Li%2C+Yuanyuan&rft.date=2023-03-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.eissn=2575-0356&rft.volume=6&rft.issue=2&rft_id=info:doi/10.1002%2Feem2.12357&rft.externalDBID=NO_FULL_TEXT
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnyyhjcl-e%2Fnyyhjcl-e.jpg