All‐Climate Stretchable Dendrite‐Free Zn‐Ion Hybrid Supercapacitors Enabled by Hydrogel Electrolyte Engineering
Hybrid supercapacitors have shown great potentials to fulfill the demand of future diverse applications such as electric vehicles and portable/wearable electronics. In particular, aqueous zinc‐ion hybrid supercapacitors (ZHSCs) have gained much attention due to their low‐cost, high energy density, a...
Saved in:
Cover
Loading…
Abstract | Hybrid supercapacitors have shown great potentials to fulfill the demand of future diverse applications such as electric vehicles and portable/wearable electronics. In particular, aqueous zinc‐ion hybrid supercapacitors (ZHSCs) have gained much attention due to their low‐cost, high energy density, and environmental friendliness. Nevertheless, typical ZHSCs use Zn metal anode and normal liquid electrolyte, causing the dendrite issue, restricted working temperature, and inferior device flexibility. Herein, a novel flexible Zn‐ion hybrid supercapacitor (FZHSC) is developed by using activated carbon (AC) anode, δ‐MnO2 cathode, and innovative PVA‐based gel electrolyte. In this design, heavy Zn anode and its dendrite issue are avoided and layered cathode with large interlayer spacing is employed. In addition, flexible electrodes are prepared and integrated with an anti‐freezing, stretchable, and compressible hydrogel electrolyte, which is attained by simultaneously using glycerol additive and freezing/thawing technique to regulate the hydrogen bond and microstructure. The resulting FZHSC exhibits good rate capability, high energy density (47.86 Wh kg−1; 3.94 mWh cm−3), high power density (5.81 kW kg−1; 480 mW cm−3), and excellent cycling stability (~91% capacity retention after 30 000 cycles). Furthermore, our FZHSC demonstrates outstanding flexibility with capacitance almost unchanged even after various continuous shape deformations. The hydrogel electrolyte still maintains high ionic conductivity at ultralow temperatures (≤−30°C), enabling the FZHSC cycled well, and powering electronic timer robustly within an all‐climate temperature range of −30~80°C. This work highlights that the promising Zn metal‐free aqueous ZHSCs can be designed with great multifunctionality for more practical application scenarios.
An advanced quasi‐solid‐state flexible Zn‐ion hybrid supercapacitor (FZHSC) is developed in the absence of heavy Zn, avoiding the growth of Zn dendrite. Enabled by the anti‐freezing, stretchable, and compressible PVA hydrogel electrolyte designed via hydrogen bond and microstructure regulation, the FZHSC exhibits robust stretchability and can be operated at −30~80 °C, ensuring all‐climate application. |
---|---|
AbstractList | Hybrid supercapacitors have shown great potentials to fulfill the demand of future diverse applications such as electric vehicles and portable/wearable electronics.In particular,aqueous zinc-ion hybrid supercapacitors(ZHSCs)have gained much attention due to their low-cost,high energy density,and environmental friendliness.Nevertheless,typical ZHSCs use Zn metal anode and normal liquid electrolyte,causing the dendrite issue,restricted working temperature,and inferior device flexibility.Herein,a novel flexible Zn-ion hybrid supercapacitor(FZHSC)is developed by using activated carbon(AC)anode,δ-MnO2 cathode,and innovative PVA-based gel electrolyte.In this design,heavy Zn anode and its dendrite issue are avoided and layered cathode with large interlayer spacing is employed.In addition,flexible electrodes are prepared and integrated with an anti-freezing,stretchable,and compressible hydrogel electrolyte,which is attained by simultaneously using glycerol additive and freezing/thawing technique to regulate the hydrogen bond and microstructure.The resulting FZHSC exhibits good rate capability,high energy density(47.86 Wh kg-1;3.94 mWh cm-3),high power density(5.81 kW kg-1;480 mW cm-3),and excellent cycling stability(~91%capacity retention after 30 000 cycles).Furthermore,our FZHSC demonstrates outstanding flexibility with capacitance almost unchanged even after various continuous shape deformations.The hydrogel electrolyte still maintains high ionic conductivity at ultralow temperatures(≤-30℃),enabling the FZHSC cycled well,and powering electronic timer robustly within an all-climate temperature range of-30~80℃.This work highlights that the promising Zn metal-free aqueous ZHSCs can be designed with great multifunctionality for more practical application scenarios. Hybrid supercapacitors have shown great potentials to fulfill the demand of future diverse applications such as electric vehicles and portable/wearable electronics. In particular, aqueous zinc‐ion hybrid supercapacitors (ZHSCs) have gained much attention due to their low‐cost, high energy density, and environmental friendliness. Nevertheless, typical ZHSCs use Zn metal anode and normal liquid electrolyte, causing the dendrite issue, restricted working temperature, and inferior device flexibility. Herein, a novel flexible Zn‐ion hybrid supercapacitor (FZHSC) is developed by using activated carbon (AC) anode, δ‐MnO2 cathode, and innovative PVA‐based gel electrolyte. In this design, heavy Zn anode and its dendrite issue are avoided and layered cathode with large interlayer spacing is employed. In addition, flexible electrodes are prepared and integrated with an anti‐freezing, stretchable, and compressible hydrogel electrolyte, which is attained by simultaneously using glycerol additive and freezing/thawing technique to regulate the hydrogen bond and microstructure. The resulting FZHSC exhibits good rate capability, high energy density (47.86 Wh kg−1; 3.94 mWh cm−3), high power density (5.81 kW kg−1; 480 mW cm−3), and excellent cycling stability (~91% capacity retention after 30 000 cycles). Furthermore, our FZHSC demonstrates outstanding flexibility with capacitance almost unchanged even after various continuous shape deformations. The hydrogel electrolyte still maintains high ionic conductivity at ultralow temperatures (≤−30°C), enabling the FZHSC cycled well, and powering electronic timer robustly within an all‐climate temperature range of −30~80°C. This work highlights that the promising Zn metal‐free aqueous ZHSCs can be designed with great multifunctionality for more practical application scenarios. Hybrid supercapacitors have shown great potentials to fulfill the demand of future diverse applications such as electric vehicles and portable/wearable electronics. In particular, aqueous zinc‐ion hybrid supercapacitors (ZHSCs) have gained much attention due to their low‐cost, high energy density, and environmental friendliness. Nevertheless, typical ZHSCs use Zn metal anode and normal liquid electrolyte, causing the dendrite issue, restricted working temperature, and inferior device flexibility. Herein, a novel flexible Zn‐ion hybrid supercapacitor (FZHSC) is developed by using activated carbon (AC) anode, δ‐MnO 2 cathode, and innovative PVA‐based gel electrolyte. In this design, heavy Zn anode and its dendrite issue are avoided and layered cathode with large interlayer spacing is employed. In addition, flexible electrodes are prepared and integrated with an anti‐freezing, stretchable, and compressible hydrogel electrolyte, which is attained by simultaneously using glycerol additive and freezing/thawing technique to regulate the hydrogen bond and microstructure. The resulting FZHSC exhibits good rate capability, high energy density (47.86 Wh kg −1 ; 3.94 mWh cm −3 ), high power density (5.81 kW kg −1 ; 480 mW cm −3 ), and excellent cycling stability (~91% capacity retention after 30 000 cycles). Furthermore, our FZHSC demonstrates outstanding flexibility with capacitance almost unchanged even after various continuous shape deformations. The hydrogel electrolyte still maintains high ionic conductivity at ultralow temperatures (≤−30°C), enabling the FZHSC cycled well, and powering electronic timer robustly within an all‐climate temperature range of −30~80°C. This work highlights that the promising Zn metal‐free aqueous ZHSCs can be designed with great multifunctionality for more practical application scenarios. Hybrid supercapacitors have shown great potentials to fulfill the demand of future diverse applications such as electric vehicles and portable/wearable electronics. In particular, aqueous zinc‐ion hybrid supercapacitors (ZHSCs) have gained much attention due to their low‐cost, high energy density, and environmental friendliness. Nevertheless, typical ZHSCs use Zn metal anode and normal liquid electrolyte, causing the dendrite issue, restricted working temperature, and inferior device flexibility. Herein, a novel flexible Zn‐ion hybrid supercapacitor (FZHSC) is developed by using activated carbon (AC) anode, δ‐MnO2 cathode, and innovative PVA‐based gel electrolyte. In this design, heavy Zn anode and its dendrite issue are avoided and layered cathode with large interlayer spacing is employed. In addition, flexible electrodes are prepared and integrated with an anti‐freezing, stretchable, and compressible hydrogel electrolyte, which is attained by simultaneously using glycerol additive and freezing/thawing technique to regulate the hydrogen bond and microstructure. The resulting FZHSC exhibits good rate capability, high energy density (47.86 Wh kg−1; 3.94 mWh cm−3), high power density (5.81 kW kg−1; 480 mW cm−3), and excellent cycling stability (~91% capacity retention after 30 000 cycles). Furthermore, our FZHSC demonstrates outstanding flexibility with capacitance almost unchanged even after various continuous shape deformations. The hydrogel electrolyte still maintains high ionic conductivity at ultralow temperatures (≤−30°C), enabling the FZHSC cycled well, and powering electronic timer robustly within an all‐climate temperature range of −30~80°C. This work highlights that the promising Zn metal‐free aqueous ZHSCs can be designed with great multifunctionality for more practical application scenarios. An advanced quasi‐solid‐state flexible Zn‐ion hybrid supercapacitor (FZHSC) is developed in the absence of heavy Zn, avoiding the growth of Zn dendrite. Enabled by the anti‐freezing, stretchable, and compressible PVA hydrogel electrolyte designed via hydrogen bond and microstructure regulation, the FZHSC exhibits robust stretchability and can be operated at −30~80 °C, ensuring all‐climate application. |
Author | Li, Yuanyuan Liu, Jinping Jiang, Yuqi Ma, Kun Sun, Meiling |
AuthorAffiliation | State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China%The Institute of Technological Sciences,Wuhan University,Wuhan 430072,China%School of Chemistry,Chemical Engineering and Life Science,Wuhan University of Technology,Wuhan 430070,China%School of Optical and Electronic Information,Huazhong University of Science and Technology,Wuhan 430074,China%State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China;Key Laboratory for Photonic and Electronic Bandgap Materials,Ministry of Education,School of Physics and Electronic Engineering,Harbin Normal University,Harbin 150025,China |
AuthorAffiliation_xml | – name: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China%The Institute of Technological Sciences,Wuhan University,Wuhan 430072,China%School of Chemistry,Chemical Engineering and Life Science,Wuhan University of Technology,Wuhan 430070,China%School of Optical and Electronic Information,Huazhong University of Science and Technology,Wuhan 430074,China%State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China;Key Laboratory for Photonic and Electronic Bandgap Materials,Ministry of Education,School of Physics and Electronic Engineering,Harbin Normal University,Harbin 150025,China |
Author_xml | – sequence: 1 givenname: Yuqi surname: Jiang fullname: Jiang, Yuqi organization: Wuhan University of Technology – sequence: 2 givenname: Kun surname: Ma fullname: Ma, Kun organization: Wuhan University – sequence: 3 givenname: Meiling surname: Sun fullname: Sun, Meiling email: meiling.sun@whut.edu.cn organization: Wuhan University of Technology – sequence: 4 givenname: Yuanyuan surname: Li fullname: Li, Yuanyuan organization: Huazhong University of Science and Technology – sequence: 5 givenname: Jinping orcidid: 0000-0001-6748-8432 surname: Liu fullname: Liu, Jinping email: liujp@whut.edu.cn organization: Harbin Normal University |
BookMark | eNp9kc1KxDAUhYMo-LvxCQruhNH8talLGTsqKC7UjZuQpjdjhpiMaQbpzkfwGX0SM46giLjKhXzn3Ms522jdBw8I7RN8RDCmxwBP9IhQVoo1tEVLUY4wK6v1H_Mm2uv7Gc4wJoyTky20OHXu_fVt7OyTSlDcpghJP6rWQXEGvos2Qf6eRIDiwefpMvjiYmij7YrbxRyiVnOlbQqxLxq_lHVFO2Sii2EKrmgc6BSDG7J346fWA0Trp7towyjXw97Xu4PuJ83d-GJ0dXN-OT69GmkmqBiRGlOtFG6NIVwYXRnMoFMCt1xjbVqiasY7DhqXXCtK2AnTuNaiarkqK9OxHXS48n1R3ig_lbOwiD5vlH4YHmfaSaCYshwHqzN8sILnMTwvoE_fNBV1JWoqOP-21DH0fQQj5zFnFwdJsFzWIJc1yM8aMox_wTkrlWzwKSrr_paQr5Otg-Efc9k013Sl-QBfLp-C |
CitedBy_id | crossref_primary_10_1016_j_ensm_2024_103255 crossref_primary_10_1016_j_indcrop_2024_119034 crossref_primary_10_1007_s11664_024_11537_4 crossref_primary_10_1016_j_mtchem_2024_102384 crossref_primary_10_1002_pat_6590 crossref_primary_10_1039_D2TA06985G crossref_primary_10_1016_j_est_2024_114338 crossref_primary_10_1016_j_est_2023_110370 crossref_primary_10_1039_D2EE03793A crossref_primary_10_1016_j_est_2024_114851 crossref_primary_10_1002_adma_202303353 crossref_primary_10_1002_smll_202308500 crossref_primary_10_1016_j_est_2025_116291 crossref_primary_10_1016_j_mtchem_2024_102059 crossref_primary_10_1021_acs_jpcc_2c02689 crossref_primary_10_1002_smll_202305140 crossref_primary_10_1016_j_jallcom_2022_165868 crossref_primary_10_1016_j_cej_2023_145658 crossref_primary_10_1016_j_matchemphys_2024_129809 crossref_primary_10_1039_D2QM00640E crossref_primary_10_1002_anie_202413728 crossref_primary_10_1021_acsnano_4c01304 crossref_primary_10_1016_j_jcis_2023_06_172 crossref_primary_10_1021_acsnano_4c09999 crossref_primary_10_1016_j_jmst_2024_04_077 crossref_primary_10_1002_adfm_202314825 crossref_primary_10_1016_j_jallcom_2025_179516 crossref_primary_10_1002_eem2_12522 crossref_primary_10_1002_smll_202307446 crossref_primary_10_1016_j_est_2024_114061 crossref_primary_10_1016_j_jpowsour_2025_236449 crossref_primary_10_31857_S0424857024020019 crossref_primary_10_1039_D4CS00584H crossref_primary_10_1002_adfm_202406968 crossref_primary_10_1002_adfm_202316127 crossref_primary_10_1016_j_indcrop_2024_120047 crossref_primary_10_1002_aenm_202403739 crossref_primary_10_1007_s12613_023_2665_y crossref_primary_10_1016_j_jallcom_2022_168065 crossref_primary_10_1039_D4TA02102A crossref_primary_10_1016_j_jpowsour_2024_235368 crossref_primary_10_1016_j_jpowsour_2025_236856 crossref_primary_10_1016_j_ensm_2024_103903 crossref_primary_10_1002_adfm_202314651 crossref_primary_10_1016_j_ensm_2024_103462 crossref_primary_10_1007_s12209_023_00366_x crossref_primary_10_3390_polym14194037 crossref_primary_10_1002_ange_202413728 crossref_primary_10_1016_j_cej_2024_157589 crossref_primary_10_1007_s40820_023_01065_x crossref_primary_10_1016_j_est_2024_113550 crossref_primary_10_1039_D4EE00357H crossref_primary_10_1002_adfm_202311259 crossref_primary_10_1016_j_jallcom_2023_173118 crossref_primary_10_1002_eem2_12502 crossref_primary_10_1016_j_cej_2023_145551 |
Cites_doi | 10.1039/C8EE02567C 10.3389/fenrg.2016.00034 10.1126/science.aak9991 10.1126/science.1216744 10.1002/anie.202005270 10.1126/sciadv.aba4098 10.1002/advs.201600539 10.1016/j.ensm.2018.10.020 10.1021/nn306044d 10.1016/j.synthmet.2011.07.018 10.1002/adma.201202146 10.1038/s41467-018-07980-7 10.1039/C9TA02678A 10.1016/j.rser.2013.06.017 10.1021/acsenergylett.0c00109 10.1002/anie.201908913 10.1007/s10854-019-00841-z 10.1002/adma.202004959 10.1002/advs.201902795 10.1002/adfm.201804560 10.1007/s40843-021-1733-1 10.1021/jacs.1c06923 10.1016/j.joule.2020.07.023 10.1021/acsami.6b08367 10.1021/acsami.1c02242 10.1002/adma.201503543 10.1021/acsami.6b08374 10.1016/j.jpowsour.2019.227345 10.1007/s10008-017-3725-x 10.1002/adma.201404639 10.1002/(SICI)1097-4628(19980919)69:12<2477::AID-APP19>3.0.CO;2-U 10.1016/j.ensm.2018.01.003 10.1016/j.polymertesting.2020.106649 10.1016/j.jmrt.2019.12.078 10.1016/S0378-7753(00)00484-5 10.1007/s40820-019-0301-1 10.1038/nenergy.2016.39 10.1016/j.carbpol.2021.118697 10.1007/s40843-019-9475-4 10.1002/aelm.201900537 10.1021/nl404008e |
ContentType | Journal Article |
Copyright | 2022 Zhengzhou University 2023 Zhengzhou University Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: 2022 Zhengzhou University – notice: 2023 Zhengzhou University – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | AAYXX CITATION 7SR 7ST 8FD C1K JG9 SOI 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1002/eem2.12357 |
DatabaseName | CrossRef Engineered Materials Abstracts Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management Materials Research Database Environment Abstracts Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Environment Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2575-0356 |
EndPage | n/a |
ExternalDocumentID | nyyhjcl_e202302038 10_1002_eem2_12357 EEM212357 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 51872104; 51972257; 52072136; 52172229 – fundername: Ningxia Key R&D Program funderid: 2019BFG02018 – fundername: Fundamental Research Funds for the Central Universities funderid: WUT:2021IVA071; WUT:2021IVA115 |
GroupedDBID | 0R~ 1OC 24P ACCMX ACXQS ALMA_UNASSIGNED_HOLDINGS AVUZU EBS EJD OK1 WIN AAYXX CITATION 7SR 7ST 8FD C1K JG9 SOI 2B. 4A8 92I 93N PSX TCJ |
ID | FETCH-LOGICAL-c3727-1802caa0bff147fc6f03eda70b4c0cfb1a834d4ec054ca21393c08c76b4a56fd3 |
IEDL.DBID | 24P |
ISSN | 2575-0356 2575-0348 |
IngestDate | Thu May 29 04:00:40 EDT 2025 Mon Jun 30 12:02:50 EDT 2025 Tue Jul 01 01:03:05 EDT 2025 Thu Apr 24 23:07:58 EDT 2025 Wed Jan 22 16:14:42 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | all-climate operation high flexibility dendrite-free anode Zn-ion hybrid supercapacitor multifunctional gel electrolyte |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3727-1802caa0bff147fc6f03eda70b4c0cfb1a834d4ec054ca21393c08c76b4a56fd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6748-8432 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/eem2.12357 |
PQID | 2786782744 |
PQPubID | 5251211 |
PageCount | 8 |
ParticipantIDs | wanfang_journals_nyyhjcl_e202302038 proquest_journals_2786782744 crossref_primary_10_1002_eem2_12357 crossref_citationtrail_10_1002_eem2_12357 wiley_primary_10_1002_eem2_12357_EEM212357 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2023 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: March 2023 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Energy & environmental materials (Hoboken, N.J.) |
PublicationTitle_FL | Energy & Environmental Materials |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc Key Laboratory for Photonic and Electronic Bandgap Materials,Ministry of Education,School of Physics and Electronic Engineering,Harbin Normal University,Harbin 150025,China State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China%The Institute of Technological Sciences,Wuhan University,Wuhan 430072,China%School of Chemistry,Chemical Engineering and Life Science,Wuhan University of Technology,Wuhan 430070,China%School of Optical and Electronic Information,Huazhong University of Science and Technology,Wuhan 430074,China%State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China%The Institute of Technological Sciences,Wuhan University,Wuhan 430072,China%School of Chemistry,Chemical Engineering and Life Science,Wuhan University of Technology,Wuhan 430070,China%School of Optical and Electronic Information,Huazhong University of Science and Technology,Wuhan 430074,China%State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China – name: Key Laboratory for Photonic and Electronic Bandgap Materials,Ministry of Education,School of Physics and Electronic Engineering,Harbin Normal University,Harbin 150025,China |
References | 2019; 7 2018; 28 2022; 275 2017; 4 2019; 5 2013; 27 2019; 30 2019; 11 2019; 2 2019; 10 2017; 22 2017; 23 2019; 58 2020; 446 2020; 59 2000; 91 2022; 65 2021; 143 2013; 7 2017; 356 1998; 69 2016; 4 2020; 7 2021; 13 2020; 6 2020; 5 2020; 4 2016; 1 2015; 27 2019; 62 2021; 33 2019; 20 2020; 90 2020; 9 2014; 14 2018; 11 2012; 335 2012; 24 2011; 161 2016; 8 2018; 13 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 Zhao J. W. (e_1_2_7_12_1) 2017; 23 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 He L. (e_1_2_7_31_1) 2019; 2 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – volume: 5 start-page: 685 year: 2020 publication-title: ACS Energy Lett. – volume: 11 start-page: 70 year: 2019 publication-title: Nano‐Micro Lett. – volume: 446 start-page: 227345 year: 2020 publication-title: J. Power Sourc. – volume: 161 start-page: 2017 year: 2011 publication-title: Synth. Met. – volume: 13 start-page: 96 year: 2018 publication-title: Energy Storage Mater. – volume: 20 start-page: 335 year: 2019 publication-title: Energy Storage Mater. – volume: 2 start-page: 5835 year: 2019 publication-title: Energy Mater. – volume: 23 start-page: 581 year: 2017 publication-title: J. Electrochem. – volume: 59 start-page: 14541 year: 2020 publication-title: Angew. Chem. Int. Ed. – volume: 8 start-page: 30853 year: 2016 publication-title: Mater. Interfaces – volume: 90 start-page: 106649 year: 2020 publication-title: Polym. Test – volume: 7 start-page: 2617 year: 2013 publication-title: ACS Nano – volume: 30 start-page: 5478 year: 2019 publication-title: J. Mater. Sci. Mater. Electron. – volume: 69 start-page: 2477 year: 1998 publication-title: J. Appl. Polym. Sci. – volume: 335 start-page: 1326 year: 2012 publication-title: Science – volume: 24 start-page: 5166 year: 2012 publication-title: Adv. Mater. – volume: 8 start-page: 27199 year: 2016 publication-title: Mater. Interfac. – volume: 91 start-page: 27 year: 2000 publication-title: J. Power Sourc. – volume: 58 start-page: 16994 year: 2019 publication-title: Angew. Chem. Int. Ed. – volume: 27 start-page: 7451 year: 2015 publication-title: Adv. Mater. – volume: 13 start-page: 16454 year: 2021 publication-title: Mater. Interfac. – volume: 11 start-page: 3367 year: 2018 publication-title: Energy Environ. Sci. – volume: 65 start-page: 10 year: 2022 publication-title: Sci. China Mater. – volume: 7 start-page: 1902795 year: 2020 publication-title: Adv. Sci. – volume: 356 start-page: 415 year: 2017 publication-title: Science – volume: 9 start-page: 2477 year: 2020 publication-title: J. Mater. Res. Technol. – volume: 4 start-page: 34 year: 2016 publication-title: Front. Energy Res. – volume: 4 start-page: 1846 year: 2020 publication-title: Joule – volume: 5 start-page: 1900537 year: 2019 publication-title: Adv. Electron. Mater. – volume: 7 start-page: 13810 year: 2019 publication-title: J. Mater. Chem. A – volume: 143 start-page: 15475 year: 2021 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 1600539 year: 2017 publication-title: Adv. Sci. – volume: 27 start-page: 475 year: 2013 publication-title: Renew. Sust. Energ. Rev. – volume: 6 start-page: eaba4098 year: 2020 publication-title: Sci. Adv. – volume: 27 start-page: 1396 year: 2015 publication-title: Adv. Mater. – volume: 62 start-page: 1556 year: 2019 publication-title: Sci. China Mater. – volume: 275 start-page: 118697 year: 2022 publication-title: Carbohyd. Polym. – volume: 28 start-page: 1804560 year: 2018 publication-title: Adv. Funct. Mater. – volume: 1 start-page: 16039 year: 2016 publication-title: Nat. Energy – volume: 22 start-page: 91 year: 2017 publication-title: J. Solid State Electr. – volume: 33 start-page: 2004959 year: 2021 publication-title: Adv. Mater. – volume: 14 start-page: 731 year: 2014 publication-title: Nano Lett. – volume: 10 start-page: 73 year: 2019 publication-title: Nat. Commun. – ident: e_1_2_7_16_1 doi: 10.1039/C8EE02567C – ident: e_1_2_7_6_1 doi: 10.3389/fenrg.2016.00034 – ident: e_1_2_7_17_1 doi: 10.1126/science.aak9991 – ident: e_1_2_7_33_1 doi: 10.1126/science.1216744 – ident: e_1_2_7_2_1 doi: 10.1002/anie.202005270 – ident: e_1_2_7_13_1 doi: 10.1126/sciadv.aba4098 – ident: e_1_2_7_3_1 doi: 10.1002/advs.201600539 – ident: e_1_2_7_20_1 doi: 10.1016/j.ensm.2018.10.020 – ident: e_1_2_7_36_1 doi: 10.1021/nn306044d – ident: e_1_2_7_4_1 doi: 10.1016/j.synthmet.2011.07.018 – ident: e_1_2_7_35_1 doi: 10.1002/adma.201202146 – ident: e_1_2_7_8_1 doi: 10.1038/s41467-018-07980-7 – ident: e_1_2_7_14_1 doi: 10.1039/C9TA02678A – ident: e_1_2_7_39_1 doi: 10.1016/j.rser.2013.06.017 – ident: e_1_2_7_22_1 doi: 10.1021/acsenergylett.0c00109 – ident: e_1_2_7_23_1 doi: 10.1002/anie.201908913 – ident: e_1_2_7_32_1 doi: 10.1007/s10854-019-00841-z – volume: 2 start-page: 5835 year: 2019 ident: e_1_2_7_31_1 publication-title: Energy Mater. – ident: e_1_2_7_24_1 doi: 10.1002/adma.202004959 – ident: e_1_2_7_9_1 doi: 10.1002/advs.201902795 – ident: e_1_2_7_27_1 doi: 10.1002/adfm.201804560 – ident: e_1_2_7_5_1 doi: 10.1007/s40843-021-1733-1 – ident: e_1_2_7_10_1 doi: 10.1021/jacs.1c06923 – ident: e_1_2_7_21_1 doi: 10.1016/j.joule.2020.07.023 – ident: e_1_2_7_7_1 doi: 10.1021/acsami.6b08367 – ident: e_1_2_7_25_1 doi: 10.1021/acsami.1c02242 – ident: e_1_2_7_28_1 doi: 10.1002/adma.201503543 – ident: e_1_2_7_37_1 doi: 10.1021/acsami.6b08374 – ident: e_1_2_7_19_1 doi: 10.1016/j.jpowsour.2019.227345 – ident: e_1_2_7_29_1 doi: 10.1007/s10008-017-3725-x – ident: e_1_2_7_43_1 doi: 10.1002/adma.201404639 – ident: e_1_2_7_40_1 doi: 10.1002/(SICI)1097-4628(19980919)69:12<2477::AID-APP19>3.0.CO;2-U – ident: e_1_2_7_15_1 doi: 10.1016/j.ensm.2018.01.003 – ident: e_1_2_7_38_1 doi: 10.1016/j.polymertesting.2020.106649 – ident: e_1_2_7_41_1 doi: 10.1016/j.jmrt.2019.12.078 – ident: e_1_2_7_1_1 doi: 10.1016/S0378-7753(00)00484-5 – ident: e_1_2_7_18_1 doi: 10.1007/s40820-019-0301-1 – ident: e_1_2_7_11_1 doi: 10.1038/nenergy.2016.39 – ident: e_1_2_7_42_1 doi: 10.1016/j.carbpol.2021.118697 – ident: e_1_2_7_26_1 doi: 10.1007/s40843-019-9475-4 – ident: e_1_2_7_30_1 doi: 10.1002/aelm.201900537 – volume: 23 start-page: 581 year: 2017 ident: e_1_2_7_12_1 publication-title: J. Electrochem. – ident: e_1_2_7_34_1 doi: 10.1021/nl404008e |
SSID | ssj0002013419 |
Score | 2.554654 |
Snippet | Hybrid supercapacitors have shown great potentials to fulfill the demand of future diverse applications such as electric vehicles and portable/wearable... |
SourceID | wanfang proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 384 |
SubjectTerms | Activated carbon all‐climate operation Capacitance Cathodes Climate Compressibility Dendrites dendrite‐free anode Electric vehicles Electrolytes Flexibility Freezing Glycerol high flexibility Hydrogels Hydrogen bonds Interlayers Ion currents Low temperature Manganese dioxide multifunctional gel electrolyte Supercapacitors Thawing Zinc Zn‐ion hybrid supercapacitor |
Title | All‐Climate Stretchable Dendrite‐Free Zn‐Ion Hybrid Supercapacitors Enabled by Hydrogel Electrolyte Engineering |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feem2.12357 https://www.proquest.com/docview/2786782744 https://d.wanfangdata.com.cn/periodical/nyyhjcl-e202302038 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Ra9RAEF5qi-CLKFU8rWVBXxRik81ecgd9OWqOU2gR9KT0JezOzraVuFeuPSRv_Qn9jf0lziS5OwtS6NvCTnZhJpP5MrvzjRDvEzNI0BgXIXoXae_zyKbKRkp7C0mSWWc4D3l4lE2m-utx_3hD7C9rYVp-iFXCjT2j-V6zgxt7ubcmDUX8rT5xpWf-SGxxbS1f6FP62yrDQqGNycq4uxxhkihO-9mKn1TtrR-_G5HWMPPxHxO8Cad3YWsTd8bPxNMOMMpRa-HnYgPDtliMqur2-uagOifAiZKPlkn7XAUlP2Nw9MOPND2eI8qTQKMvsyAnNRdnye-LC5wDhUg450Y7smiKp5y0NUm4-ewUK1m0vXGqmtb-h7DwhZiOix8Hk6hroBBBSrgkYnY3MCa23ic695D5OEVn8thqiMFbMlSqnUYg3AZGERhMIR5Anllt-pl36UuxGWYBXwnphwp032qVG621A5u5GIaoMHHDPFbYEx-WSiyhYxfnJhdV2fIiq5IVXjYK74l3K9mLllPjv1I7S1uUnV9dliofUHRlVkNapLPPejbU9dkvqErknvB8xDroiY-N7e7ZpyyKQ9WMXj9E-I14wru019F2xObVfIFvCZ9c2d3mNdwVW6Of05PpXyYE5j8 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NatwwEBZpQmkupaEt3fxV0F5acGPLWnv3uCReNm02l2ZLyEXoZ5SmONqwyRJ86yPkGfMkmbGd3QZKoTeBhhFoNJ7PI803jH1MdC8BrV0E4F0kvc8jkwoTCemNTZLMOE15yPFxNprIr6fd0_ZtDtXCNPwQi4QbeUb9vSYHp4T03pI1FOBSfKFSz_wZWyNYg4d6bfBjcjZZJFkwuhFfGTWYQ1gSxWk3W1CUir2lgqdBaYk0n9_q4HU4f4pc69AzfMVetpiRDxojb7AVCK_ZfFCW97_v9ssLxJzA6XYZDUCFUPwAgsN_fsDp4QyAnwUcHU4DH1VUn8W_z69gZjFK2gvqtcOLun7KcVOhhJtNz6HkRdMep6xQ9x-chW_YZFic7I-itodCZFOEJhERvFmtY-N9InNvMx-n4HQeG2lj6w3aKpVOgkXoZrVAPJjauGfzzEjdzbxL37LVMA3wjnHfF1Z2jRS5llI6azIX2z4ISFw_jwV02KfHTVS2JRinPhelaqiRhaINV_WGd9iHhexVQ6vxV6ntR1uo1rWulch7GGCJ2BCVtPZZzoaq-vnLlgqoLTzdsvY67HNtu3-so4piLOrR5v8Iv2cvRifjI3V0ePxti63Tis3rtG22ejObww7ClRuz2x7KB8XI6bw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fa9RAEF_qFcUXUap42tYF-1IhdrPZJHfQl6PNca1tEfSk9GXZP7O1EveOs4fkzY_Qz9hP0tkkd2ehCL4t7DALM5nML7OZ3xCyE6teDErZCMDZSDiXRzrhOuLCaRPHmbYq1CFPz7LRWByfp-drZH_RC9PwQywLbiEy6vd1CPCpdXsr0lCAn_xj6PTMH5H1FNMS65D1wbfxxXhZY8HkFujKwnw5RCURS9JsyVDK91YK7uekFdB8_Ft5p_zlfeBaZ57hc_KshYx00Pj4BVkDv0Hmg7K8_XNzUF4h5AQaLpfR_qEPih6Ct_jJD7g9nAHQC4-ro4mnoyq0Z9Ev8ynMDCZJcxVG7dCibp-yVFcoYWeTSyhp0UzHKSvU_Rdl4UsyHhZfD0ZRO0IhMgkikyjwuxmlmHYuFrkzmWMJWJUzLQwzTqOrEmEFGERuRnGEg4lhPZNnWqg0czZ5RTp-4uE1oa7PjUi14LkSQlijM8tMHzjEtp8zDl2yuzCiNC2_eBhzUcqGGZnLYHBZG7xL3i9lpw2rxoNSmwtfyDayfkme9zC_Bl5DVNL6Z7Xrq-r7D1NKCFPhwyVrr0s-1L77xzmyKE55vXrzP8LvyJPPh0N5cnT26S15Gg5s_k3bJJ3r2Ry2EKxc6-32mbwDUq7o3A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=All%E2%80%90Climate+Stretchable+Dendrite%E2%80%90Free+Zn%E2%80%90Ion+Hybrid+Supercapacitors+Enabled+by+Hydrogel+Electrolyte+Engineering&rft.jtitle=Energy+%26+environmental+materials+%28Hoboken%2C+N.J.%29&rft.au=Jiang%2C+Yuqi&rft.au=Ma%2C+Kun&rft.au=Sun%2C+Meiling&rft.au=Li%2C+Yuanyuan&rft.date=2023-03-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.eissn=2575-0356&rft.volume=6&rft.issue=2&rft_id=info:doi/10.1002%2Feem2.12357&rft.externalDBID=NO_FULL_TEXT |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnyyhjcl-e%2Fnyyhjcl-e.jpg |