Heterogeneous Mediator Enabling Three‐Dimensional Growth of Lithium Sulfide for High‐Performance Lithium–Sulfur Batteries

Two‐dimensional (2D) deposition regime of insulating lithium sulfide (Li2S) is a major obstacle to achieve high reversible capacity in the conventional glyme‐based lithium–sulfur (Li–S) batteries as it leads to rapid loss of active electrode surface and low sulfur utilization. Achieving three‐dimens...

Full description

Saved in:
Bibliographic Details
Published inEnergy & environmental materials (Hoboken, N.J.) Vol. 5; no. 4; pp. 1214 - 1221
Main Authors Tian, Da, Song, Xueqin, Qiu, Yue, Sun, Xun, Jiang, Bo, Zhao, Chenghao, Zhang, Yu, Xu, Xianzhu, Fan, Lishuang, Zhang, Naiqing
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.10.2022
State Keys Laboratory of Urban Water Resource and Environment,Harbin Institute of Technology,Harbin 150001,China
School of Chemistry and Chemical Engineering,Harbin Institute of Technology,Harbin 150001,China%Academy of Fundamental and Interdisciplinary Sciences,Harbin Institute of Technology,Harbin 150001,China%Academy of Fundamental and Interdisciplinary Sciences,Harbin Institute of Technology,Harbin 150001,China
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Two‐dimensional (2D) deposition regime of insulating lithium sulfide (Li2S) is a major obstacle to achieve high reversible capacity in the conventional glyme‐based lithium–sulfur (Li–S) batteries as it leads to rapid loss of active electrode surface and low sulfur utilization. Achieving three‐dimensional (3D) growth of Li2S is therefore considered to be necessary, but the available strategies are mainly based on the electrolyte manipulations, which inevitably lead to added complexity of the electrode–electrolyte compatibility and, in particular, instability of the lithium anode. In this work, we have developed a heterogeneous polysulfide mediator composed of discrete Mo5N6 anchored on graphene, which functions on the cathode side, to regulate the deposition mode of Li2S. Mo5N6 can efficiently boost the formation of Li2S as demonstrated by a series of experimental and computational results. More importantly, the discrete distribution of Mo5N6 nucleants on graphene postpones the merging of adjacent Li2S nuclei to promote their isotropic growth. Thus, 3D deposits of Li2S is guided by the heterogeneous mediator. Benefiting from these unique superiorities, Li–S cells with high rate capability of 954 mAh g−1 at 2 C and long cycle life exceeding 1000 cycles are realized without advanced lithium anode protection. A heterogeneous polysulfide mediator composed of discrete Mo5N6 anchored on graphene is developed to regulate the deposition mode of Li2S. Mo5N6 efficiently boosts the formation of Li2S and the discrete distribution of Mo5N6 nucleants on graphene postpones the merging of adjacent Li2S nuclei to promote their isotropic growth.
AbstractList Two‐dimensional (2D) deposition regime of insulating lithium sulfide (Li2S) is a major obstacle to achieve high reversible capacity in the conventional glyme‐based lithium–sulfur (Li–S) batteries as it leads to rapid loss of active electrode surface and low sulfur utilization. Achieving three‐dimensional (3D) growth of Li2S is therefore considered to be necessary, but the available strategies are mainly based on the electrolyte manipulations, which inevitably lead to added complexity of the electrode–electrolyte compatibility and, in particular, instability of the lithium anode. In this work, we have developed a heterogeneous polysulfide mediator composed of discrete Mo5N6 anchored on graphene, which functions on the cathode side, to regulate the deposition mode of Li2S. Mo5N6 can efficiently boost the formation of Li2S as demonstrated by a series of experimental and computational results. More importantly, the discrete distribution of Mo5N6 nucleants on graphene postpones the merging of adjacent Li2S nuclei to promote their isotropic growth. Thus, 3D deposits of Li2S is guided by the heterogeneous mediator. Benefiting from these unique superiorities, Li–S cells with high rate capability of 954 mAh g−1 at 2 C and long cycle life exceeding 1000 cycles are realized without advanced lithium anode protection. A heterogeneous polysulfide mediator composed of discrete Mo5N6 anchored on graphene is developed to regulate the deposition mode of Li2S. Mo5N6 efficiently boosts the formation of Li2S and the discrete distribution of Mo5N6 nucleants on graphene postpones the merging of adjacent Li2S nuclei to promote their isotropic growth.
Two‐dimensional (2D) deposition regime of insulating lithium sulfide (Li 2 S) is a major obstacle to achieve high reversible capacity in the conventional glyme‐based lithium–sulfur (Li–S) batteries as it leads to rapid loss of active electrode surface and low sulfur utilization. Achieving three‐dimensional (3D) growth of Li 2 S is therefore considered to be necessary, but the available strategies are mainly based on the electrolyte manipulations, which inevitably lead to added complexity of the electrode–electrolyte compatibility and, in particular, instability of the lithium anode. In this work, we have developed a heterogeneous polysulfide mediator composed of discrete Mo 5 N 6 anchored on graphene, which functions on the cathode side, to regulate the deposition mode of Li 2 S. Mo 5 N 6 can efficiently boost the formation of Li 2 S as demonstrated by a series of experimental and computational results. More importantly, the discrete distribution of Mo 5 N 6 nucleants on graphene postpones the merging of adjacent Li 2 S nuclei to promote their isotropic growth. Thus, 3D deposits of Li 2 S is guided by the heterogeneous mediator. Benefiting from these unique superiorities, Li–S cells with high rate capability of 954 mAh g −1 at 2 C and long cycle life exceeding 1000 cycles are realized without advanced lithium anode protection.
Two‐dimensional (2D) deposition regime of insulating lithium sulfide (Li2S) is a major obstacle to achieve high reversible capacity in the conventional glyme‐based lithium–sulfur (Li–S) batteries as it leads to rapid loss of active electrode surface and low sulfur utilization. Achieving three‐dimensional (3D) growth of Li2S is therefore considered to be necessary, but the available strategies are mainly based on the electrolyte manipulations, which inevitably lead to added complexity of the electrode–electrolyte compatibility and, in particular, instability of the lithium anode. In this work, we have developed a heterogeneous polysulfide mediator composed of discrete Mo5N6 anchored on graphene, which functions on the cathode side, to regulate the deposition mode of Li2S. Mo5N6 can efficiently boost the formation of Li2S as demonstrated by a series of experimental and computational results. More importantly, the discrete distribution of Mo5N6 nucleants on graphene postpones the merging of adjacent Li2S nuclei to promote their isotropic growth. Thus, 3D deposits of Li2S is guided by the heterogeneous mediator. Benefiting from these unique superiorities, Li–S cells with high rate capability of 954 mAh g−1 at 2 C and long cycle life exceeding 1000 cycles are realized without advanced lithium anode protection.
Author Zhang, Naiqing
Fan, Lishuang
Zhao, Chenghao
Zhang, Yu
Song, Xueqin
Qiu, Yue
Jiang, Bo
Tian, Da
Sun, Xun
Xu, Xianzhu
AuthorAffiliation School of Chemistry and Chemical Engineering,Harbin Institute of Technology,Harbin 150001,China%Academy of Fundamental and Interdisciplinary Sciences,Harbin Institute of Technology,Harbin 150001,China%Academy of Fundamental and Interdisciplinary Sciences,Harbin Institute of Technology,Harbin 150001,China;State Keys Laboratory of Urban Water Resource and Environment,Harbin Institute of Technology,Harbin 150001,China
AuthorAffiliation_xml – name: School of Chemistry and Chemical Engineering,Harbin Institute of Technology,Harbin 150001,China%Academy of Fundamental and Interdisciplinary Sciences,Harbin Institute of Technology,Harbin 150001,China%Academy of Fundamental and Interdisciplinary Sciences,Harbin Institute of Technology,Harbin 150001,China;State Keys Laboratory of Urban Water Resource and Environment,Harbin Institute of Technology,Harbin 150001,China
Author_xml – sequence: 1
  givenname: Da
  surname: Tian
  fullname: Tian, Da
  organization: Harbin Institute of Technology
– sequence: 2
  givenname: Xueqin
  surname: Song
  fullname: Song, Xueqin
  organization: Harbin Institute of Technology
– sequence: 3
  givenname: Yue
  surname: Qiu
  fullname: Qiu, Yue
  organization: Harbin Institute of Technology
– sequence: 4
  givenname: Xun
  surname: Sun
  fullname: Sun, Xun
  organization: Harbin Institute of Technology
– sequence: 5
  givenname: Bo
  surname: Jiang
  fullname: Jiang, Bo
  organization: Harbin Institute of Technology
– sequence: 6
  givenname: Chenghao
  surname: Zhao
  fullname: Zhao, Chenghao
  organization: Harbin Institute of Technology
– sequence: 7
  givenname: Yu
  surname: Zhang
  fullname: Zhang, Yu
  organization: Harbin Institute of Technology
– sequence: 8
  givenname: Xianzhu
  surname: Xu
  fullname: Xu, Xianzhu
  organization: Harbin Institute of Technology
– sequence: 9
  givenname: Lishuang
  surname: Fan
  fullname: Fan, Lishuang
  organization: Harbin Institute of Technology
– sequence: 10
  givenname: Naiqing
  orcidid: 0000-0002-9528-9673
  surname: Zhang
  fullname: Zhang, Naiqing
  email: znqmww@163.com
  organization: Harbin Institute of Technology
BookMark eNp9kc1qGzEUhUVJoWmSTZ9A0F3BqX5GkrNsUzcOOKSQdC1kzZVHZkZKJQ3Bq-QRCn3DPEnkOiWllKx0Bd859-e8RXshBkDoHSXHlBD2EWBgx5QxLl-hfSaUmBAu5N5f9Rt0lPOaVJhQ3tCTfXQ3hwIpriBAHDO-gNabEhOeBbPsfVjh6y4BPNz__OIHCNnHYHp8luJt6XB0eOFL58cBX4298y1gV6Vzv-qq4Buk-htMsPAHe7j_tQXHhD-bUtt6yIfotTN9hqOn9wB9_zq7Pp1PFpdn56efFhPLFZOTVkyVbJZAWmVl3aZpQLSWtUJxxqdWKmGdcSeNmtqGLoVg0jLq2iVQwR2Vjh-gDzvfWxOcCSu9jmOqu2QdNptubXsNjDBGGkJVhd_v4JsUf4yQyzPNasNGMU7ls6VNMecETt8kP5i00ZTobSB6G4j-HUiFyT-w9cWUes-SjO__L6FPI_seNi-Y69nsgu00j_dSorI
CitedBy_id crossref_primary_10_1002_advs_202103798
crossref_primary_10_1002_eem2_12483
crossref_primary_10_1016_j_surfin_2024_105047
crossref_primary_10_1016_j_cej_2023_141620
crossref_primary_10_1063_5_0117219
crossref_primary_10_1002_adfm_202421900
crossref_primary_10_1016_j_est_2024_111842
crossref_primary_10_1002_smll_202407648
crossref_primary_10_1007_s10853_022_06925_2
crossref_primary_10_1002_eem2_12479
crossref_primary_10_1007_s40820_024_01573_4
crossref_primary_10_1002_eem2_12319
crossref_primary_10_1002_eem2_12491
crossref_primary_10_1021_acsami_3c02699
crossref_primary_10_1073_pnas_2316564121
crossref_primary_10_1002_smll_202200046
crossref_primary_10_1016_j_electacta_2025_145892
crossref_primary_10_1007_s12598_023_02378_x
crossref_primary_10_1016_j_jmst_2023_10_058
crossref_primary_10_1002_adfm_202309437
crossref_primary_10_1038_s41467_024_47565_1
crossref_primary_10_1016_j_apenergy_2025_125720
crossref_primary_10_1002_eem2_12567
crossref_primary_10_1002_eem2_12703
crossref_primary_10_3390_ma16165540
Cites_doi 10.1021/acsnano.8b07841
10.1039/c0ee00777c
10.1038/nmat2460
10.1016/j.jechem.2018.12.012
10.1002/aenm.201902096
10.1002/adfm.201907343
10.1002/smtd.201900344
10.1002/anie.201605676
10.1021/acsenergylett.6b00603
10.1039/D0TA01217C
10.1021/acs.nanolett.5b04189
10.1016/j.electacta.2014.05.055
10.1002/aenm.201901940
10.1039/C5CS00410A
10.1039/C7EE01047H
10.1038/ncomms11203
10.1002/anie.202009217
10.1016/j.joule.2018.09.024
10.1038/nenergy.2016.132
10.1021/acs.chemmater.8b01352
10.1002/adfm.201707536
10.1002/adma.202003012
10.1002/aenm.201802768
10.1002/aenm.202000493
10.1002/aenm.201802207
10.1002/adma.201501559
10.1039/c2cs35256g
10.1038/s41467-018-07975-4
10.1016/j.electacta.2013.02.101
10.1016/j.trechm.2019.06.007
10.1038/s41560-017-0005-z
10.1016/j.matt.2019.05.016
10.1016/j.nanoen.2018.06.011
10.1016/j.joule.2020.01.001
10.1016/0013-4686(83)85163-9
10.1016/j.nantod.2017.12.010
10.1038/ncomms5759
10.1002/aenm.201700174
10.1002/anie.201304762
10.1021/acs.nanolett.5b04166
10.1039/tf9625802200
10.1002/aenm.201700260
10.1038/ncomms4943
10.1126/science.1212741
10.1126/sciadv.aax8784
10.1021/acs.chemrev.0c00275
ContentType Journal Article
Copyright 2021 Zhengzhou University
2022 Zhengzhou University
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: 2021 Zhengzhou University
– notice: 2022 Zhengzhou University
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID AAYXX
CITATION
7SR
7ST
8FD
C1K
JG9
SOI
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1002/eem2.12236
DatabaseName CrossRef
Engineered Materials Abstracts
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
Environment Abstracts
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
EISSN 2575-0356
EndPage 1221
ExternalDocumentID nyyhjcl_e202204017
10_1002_eem2_12236
EEM212236
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 22078078
GroupedDBID 0R~
1OC
24P
ACCMX
ACXQS
ALMA_UNASSIGNED_HOLDINGS
AVUZU
EBS
EJD
OK1
WIN
AAYXX
CITATION
7SR
7ST
8FD
C1K
JG9
SOI
2B.
4A8
92I
93N
PSX
TCJ
ID FETCH-LOGICAL-c3726-d58764be0d7c657544e5dc2d573238c675cfaf9478c41b5526c21fdbe153f16f3
IEDL.DBID 24P
ISSN 2575-0356
2575-0348
IngestDate Thu May 29 04:00:40 EDT 2025
Mon Jun 30 12:00:39 EDT 2025
Tue Jul 01 01:03:05 EDT 2025
Thu Apr 24 23:10:44 EDT 2025
Wed Jan 22 16:30:55 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords shuttle effect
polysulfide redox reaction
lithium-sulfur batteries
electrocatalysis
lithium sulfide nucleation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3726-d58764be0d7c657544e5dc2d573238c675cfaf9478c41b5526c21fdbe153f16f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9528-9673
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/eem2.12236
PQID 2732472316
PQPubID 5251211
PageCount 1221
ParticipantIDs wanfang_journals_nyyhjcl_e202204017
proquest_journals_2732472316
crossref_primary_10_1002_eem2_12236
crossref_citationtrail_10_1002_eem2_12236
wiley_primary_10_1002_eem2_12236_EEM212236
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2022
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: October 2022
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Energy & environmental materials (Hoboken, N.J.)
PublicationTitle_FL Energy & Environmental Materials
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
State Keys Laboratory of Urban Water Resource and Environment,Harbin Institute of Technology,Harbin 150001,China
School of Chemistry and Chemical Engineering,Harbin Institute of Technology,Harbin 150001,China%Academy of Fundamental and Interdisciplinary Sciences,Harbin Institute of Technology,Harbin 150001,China%Academy of Fundamental and Interdisciplinary Sciences,Harbin Institute of Technology,Harbin 150001,China
Publisher_xml – name: Wiley Subscription Services, Inc
– name: State Keys Laboratory of Urban Water Resource and Environment,Harbin Institute of Technology,Harbin 150001,China
– name: School of Chemistry and Chemical Engineering,Harbin Institute of Technology,Harbin 150001,China%Academy of Fundamental and Interdisciplinary Sciences,Harbin Institute of Technology,Harbin 150001,China%Academy of Fundamental and Interdisciplinary Sciences,Harbin Institute of Technology,Harbin 150001,China
References 2011; 334
2017; 7
2018; 28
2019; 9
2017; 2
2019; 3
1980; 2015
2020; 120
2019; 10
2019; 1
2013; 42
2019; 39
2020; 59
1962; 58
2020; 10
2020; 32
2011; 4
2016; 16
2016; 55
2014; 135
2020; 8
2018; 18
2020; 6
2016; 7
2018; 8
2020; 4
2014; 5
2016; 1
2015; 27
2020; 30
2017; 10
2013; 97
2013; 52
2009; 8
2018; 30
2018; 50
2018; 12
1983; 28
2016; 45
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Manthiram A. (e_1_2_7_6_1) 1980; 2015
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 4
  start-page: 2614
  year: 2011
  publication-title: Energy Environ. Sci.
– volume: 9
  start-page: 1901940
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 9
  start-page: 1802207
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 3943
  year: 2014
  publication-title: Nat. Commun.
– volume: 32
  start-page: 2003012
  year: 2020
  publication-title: Adv. Mater.
– volume: 4
  start-page: 285
  year: 2020
  publication-title: Joule
– volume: 97
  start-page: 42
  year: 2013
  publication-title: Electrochim. Acta
– volume: 52
  start-page: 13186
  year: 2013
  publication-title: Angew Chem. Int. Ed. Engl
– volume: 28
  start-page: 879
  year: 1983
  publication-title: Electrochim. Acta
– volume: 4
  start-page: 1900344
  year: 2020
  publication-title: Small Methods
– volume: 50
  start-page: 685
  year: 2018
  publication-title: Nano Energy
– volume: 1
  start-page: 16132
  year: 2016
  publication-title: Nat. Energy
– volume: 1
  start-page: 317
  year: 2019
  publication-title: Matter
– volume: 16
  start-page: 549
  year: 2016
  publication-title: Nano Lett.
– volume: 27
  start-page: 5203
  year: 2015
  publication-title: Adv. Mater.
– volume: 8
  start-page: 500
  year: 2009
  publication-title: Nat. Mater.
– volume: 30
  start-page: 1907343
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 59
  start-page: 20411
  year: 2020
  publication-title: Angew Chem. Int. Ed. Engl
– volume: 39
  start-page: 17
  year: 2019
  publication-title: J. Energy Chem.
– volume: 6
  start-page: eaax8784
  year: 2020
  publication-title: Sci. Adv.
– volume: 7
  start-page: 1700260
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 18
  start-page: 35
  year: 2018
  publication-title: Nano Today
– volume: 30
  start-page: 6969
  year: 2018
  publication-title: Chem. Mater.
– volume: 12
  start-page: 12761
  year: 2018
  publication-title: ACS Nano
– volume: 10
  start-page: 1476
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 1
  start-page: 693
  year: 2019
  publication-title: Trends Chem.
– volume: 9
  start-page: 1902096
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 16
  start-page: 519
  year: 2016
  publication-title: Nano Lett.
– volume: 3
  start-page: 136
  year: 2019
  publication-title: Joule
– volume: 9
  start-page: 1802768
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 55
  start-page: 12990
  year: 2016
  publication-title: Angew Chem. Int. Ed. Engl
– volume: 58
  start-page: 2200
  year: 1962
  publication-title: Trans. Faraday Soc.
– volume: 8
  start-page: 1700174
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 10
  start-page: 2000493
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 334
  start-page: 928
  year: 2011
  publication-title: Science
– volume: 28
  start-page: 1707536
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 8
  start-page: 11818
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 10
  start-page: 188
  year: 2019
  publication-title: Nat. Commun.
– volume: 42
  start-page: 3018
  year: 2013
  publication-title: Chem. Soc. Rev.
– volume: 5
  start-page: 4759
  year: 2014
  publication-title: Nat. Commun.
– volume: 7
  start-page: 11203
  year: 2016
  publication-title: Nat. Commun.
– volume: 2
  start-page: 813
  year: 2017
  publication-title: Nat. Energy
– volume: 45
  start-page: 5605
  year: 2016
  publication-title: Chem. Soc. Rev.
– volume: 120
  start-page: 13312
  year: 2020
  publication-title: Chem. Rev.
– volume: 2015
  start-page: 27
  year: 1980
  publication-title: Adv. Mater.
– volume: 2
  start-page: 327
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 135
  start-page: 526
  year: 2014
  publication-title: Electrochim. Acta
– ident: e_1_2_7_25_1
  doi: 10.1021/acsnano.8b07841
– ident: e_1_2_7_3_1
  doi: 10.1039/c0ee00777c
– ident: e_1_2_7_2_1
  doi: 10.1038/nmat2460
– ident: e_1_2_7_43_1
  doi: 10.1016/j.jechem.2018.12.012
– ident: e_1_2_7_28_1
  doi: 10.1002/aenm.201902096
– ident: e_1_2_7_42_1
  doi: 10.1002/adfm.201907343
– ident: e_1_2_7_16_1
  doi: 10.1002/smtd.201900344
– ident: e_1_2_7_24_1
  doi: 10.1002/anie.201605676
– ident: e_1_2_7_31_1
  doi: 10.1021/acsenergylett.6b00603
– ident: e_1_2_7_34_1
  doi: 10.1039/D0TA01217C
– ident: e_1_2_7_14_1
  doi: 10.1021/acs.nanolett.5b04189
– ident: e_1_2_7_41_1
  doi: 10.1016/j.electacta.2014.05.055
– ident: e_1_2_7_35_1
  doi: 10.1002/aenm.201901940
– ident: e_1_2_7_1_1
  doi: 10.1039/C5CS00410A
– ident: e_1_2_7_27_1
  doi: 10.1039/C7EE01047H
– ident: e_1_2_7_22_1
  doi: 10.1038/ncomms11203
– ident: e_1_2_7_30_1
  doi: 10.1002/anie.202009217
– ident: e_1_2_7_39_1
  doi: 10.1016/j.joule.2018.09.024
– ident: e_1_2_7_12_1
  doi: 10.1038/nenergy.2016.132
– ident: e_1_2_7_32_1
  doi: 10.1021/acs.chemmater.8b01352
– ident: e_1_2_7_9_1
  doi: 10.1002/adfm.201707536
– ident: e_1_2_7_44_1
  doi: 10.1002/adma.202003012
– ident: e_1_2_7_36_1
  doi: 10.1002/aenm.201802768
– volume: 2015
  start-page: 27
  year: 1980
  ident: e_1_2_7_6_1
  publication-title: Adv. Mater.
– ident: e_1_2_7_13_1
  doi: 10.1002/aenm.202000493
– ident: e_1_2_7_18_1
  doi: 10.1002/aenm.201802207
– ident: e_1_2_7_19_1
  doi: 10.1002/adma.201501559
– ident: e_1_2_7_5_1
  doi: 10.1039/c2cs35256g
– ident: e_1_2_7_15_1
  doi: 10.1038/s41467-018-07975-4
– ident: e_1_2_7_40_1
  doi: 10.1016/j.electacta.2013.02.101
– ident: e_1_2_7_45_1
  doi: 10.1016/j.trechm.2019.06.007
– ident: e_1_2_7_17_1
  doi: 10.1038/s41560-017-0005-z
– ident: e_1_2_7_46_1
  doi: 10.1016/j.matt.2019.05.016
– ident: e_1_2_7_33_1
  doi: 10.1016/j.nanoen.2018.06.011
– ident: e_1_2_7_10_1
  doi: 10.1016/j.joule.2020.01.001
– ident: e_1_2_7_37_1
  doi: 10.1016/0013-4686(83)85163-9
– ident: e_1_2_7_11_1
  doi: 10.1016/j.nantod.2017.12.010
– ident: e_1_2_7_21_1
  doi: 10.1038/ncomms5759
– ident: e_1_2_7_29_1
  doi: 10.1002/aenm.201700174
– ident: e_1_2_7_8_1
  doi: 10.1002/anie.201304762
– ident: e_1_2_7_23_1
  doi: 10.1021/acs.nanolett.5b04166
– ident: e_1_2_7_38_1
  doi: 10.1039/tf9625802200
– ident: e_1_2_7_7_1
  doi: 10.1002/aenm.201700260
– ident: e_1_2_7_20_1
  doi: 10.1038/ncomms4943
– ident: e_1_2_7_4_1
  doi: 10.1126/science.1212741
– ident: e_1_2_7_26_1
  doi: 10.1126/sciadv.aax8784
– ident: e_1_2_7_47_1
  doi: 10.1021/acs.chemrev.0c00275
SSID ssj0002013419
Score 2.376802
Snippet Two‐dimensional (2D) deposition regime of insulating lithium sulfide (Li2S) is a major obstacle to achieve high reversible capacity in the conventional...
Two‐dimensional (2D) deposition regime of insulating lithium sulfide (Li 2 S) is a major obstacle to achieve high reversible capacity in the conventional...
SourceID wanfang
proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1214
SubjectTerms Anodic protection
Computer applications
Deposition
electrocatalysis
Electrodes
Electrolytes
Electrolytic cells
Graphene
Insulation
Lithium
lithium sulfide nucleation
Lithium sulfur batteries
polysulfide redox reaction
shuttle effect
Sulfides
Sulfur
Title Heterogeneous Mediator Enabling Three‐Dimensional Growth of Lithium Sulfide for High‐Performance Lithium–Sulfur Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feem2.12236
https://www.proquest.com/docview/2732472316
https://d.wanfangdata.com.cn/periodical/nyyhjcl-e202204017
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEF2qIngRRcVqlQW9KESbzW7Sgpei1SJWCloRLyH7ZSttKv1APOlPEPyH_hJnkrRBEMFbILNJ2MnuvLe784aQ_YpgEui_dqpRJByutXKkVdbRAP0lkxUrk93z5rXfaPPLe3FfICfTXJhUH2K24IYjI5mvcYBHcnSci4Ya02dHLkQ3f44sYG4tKucz3pqtsEBoQ7EyrC4HmMQpe8Kf6ZOy47z5z4iUw8zFlyi2Ufz4E7Ymced8hSxngJHWUg-vkoKJ18hbA0-xDMD5Bpg7bSb1NgZDWsdMKAhG9BZcZL7eP85QvD8V3qAXwLjHHTqw9Ko77nQnfXoz6dmuNhSAK8UDH9CglScSTM2-3j_RcDKkqRgncOt10j6v3542nKyUgqO8gPmOFjDrcWnKOlC41cK5EVoxLQIPYrYC1qBsZKs8qCjuSiGYr5hrtTQwIVrXt94GmY8HsdkkVARWBMxTrGyAikgUcPellb4yWpe1J4vkYNqdocp0xrHcRS9MFZJZiF0fJl1fJHsz2-dUXeNXq9LUK2E2wkYhwC7G4TtcfEjmqfxu_PraeVK90DDMJAYOGRTJYeLFP94T1utNllxt_cd4myzhW9ITfiUyPx5OzA4glbHcTX7IXbJQu2s_tL8BFI_o7Q
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fa9swEBddy9heSss2li5tBdvLBl5jWZKTx9KmTbckBJZA3oT1r0lJnZEllD41H6HQb5hP0jvbiSmMwd4MPtlG59P9Trr7HSFf6oJpCP9t0EgSEXBrTaC98YEF6K-ZrnudnZ53urI14D-GYljk5mAtTM4PsdlwQ8vI1ms0cNyQPilZQ527Zd9DcG_yFdnhksVol4z3Nlss4NuQrQzbywEoCWqRkBuCUnZSDn_pkkqc-fouSX2SXr_ErZnjudgjuwVipKe5ivfJlkvfkYcWprFMQfsOQnfayRpuTGe0iaVQ4I1oH3TkVsvHc2Tvz5k36CWE3PMRnXraHs9H48Ut_bWY-LF1FJArxYwPGNArKwnWYqvlEwouZjRn44Tg-j0ZXDT7Z62g6KUQmChmMrAClj2uXc3GBs9aOHfCGmZFHIHTNhA2GJ_4Bo_rhodaCCYNC73VDlZEH0offSDb6TR1HwkVsRcxiwyrOYhFNDK4S-21NM7amo10hXxdT6cyBdE49ruYqJwimSmcepVNfYV83sj-zuk1_ipVXWtFFSb2RwHuYhy-I8SHFJoq76b396MbM1GOYSkxBJFxhXzLtPiP96hms8Oyq4P_ET4mb1r9Tlu1r7o_P5G3-MY83a9KtuezhTsE2DLXR9nP-QxRJOqb
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fS8MwEA86UXwRRcXp1IC-KFTXtGkn-CK6Of9MBJ2IL6H55yazk7khPulHEPyGfhLv2m5FEMG3Qq9JuUtyv0tyvyNks8KZhPBfO3tRxB1fa-VIq6yjAfpLJitWJqfnjYug3vRPb_ntGNkf5sKk_BCjDTecGcl6jRP8SdvdnDTUmEe244J3C8bJBNLkwZieOLhp3jVHeyzg3JCuDOvLASpxyh4PRgylbDdv4KdPyoHm5EsU2yi-_wlcE89TmyUzGWSkB6mN58iYiefJWx3vsXTB_AZid9pIKm50e7SKuVDgjug1GMl8vX8cIX1_Sr1BjyHm7rdo19Lzdr_VHjzSq0HHtrWhAF0pXvmADy7zVIKh2Nf7JwoOejSl44ToeoE0a9Xrw7qTFVNwlBeywNEc1j1fmrIOFR62-L7hWjHNQw-8toK4QdnI7vlhRfmu5JwFirlWSwNLonUD6y2SQtyNzRKhPLQ8ZJ5iZQPBiEQK90BaGSijdVl7ski2huoUKmMax4IXHZFyJDOBqheJ6otkYyT7lPJr_CpVGlpFZHPsWQDwYj78h4uNZJbK38avr60H1RGGYS4xRJFhkWwnVvyjH1GtNljytPwf4XUydXlUE-cnF2crZBo7TK_7lUih3xuYVYAtfbmWjc5vbpDrkw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heterogeneous+Mediator+Enabling+Three%E2%80%90Dimensional+Growth+of+Lithium+Sulfide+for+High%E2%80%90Performance+Lithium%E2%80%93Sulfur+Batteries&rft.jtitle=Energy+%26+environmental+materials+%28Hoboken%2C+N.J.%29&rft.au=Tian%2C+Da&rft.au=Song%2C+Xueqin&rft.au=Qiu%2C+Yue&rft.au=Sun%2C+Xun&rft.date=2022-10-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.eissn=2575-0356&rft.volume=5&rft.issue=4&rft.spage=1214&rft.epage=1221&rft_id=info:doi/10.1002%2Feem2.12236&rft.externalDBID=NO_FULL_TEXT
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnyyhjcl-e%2Fnyyhjcl-e.jpg