Heterogeneous Mediator Enabling Three‐Dimensional Growth of Lithium Sulfide for High‐Performance Lithium–Sulfur Batteries
Two‐dimensional (2D) deposition regime of insulating lithium sulfide (Li2S) is a major obstacle to achieve high reversible capacity in the conventional glyme‐based lithium–sulfur (Li–S) batteries as it leads to rapid loss of active electrode surface and low sulfur utilization. Achieving three‐dimens...
Saved in:
Published in | Energy & environmental materials (Hoboken, N.J.) Vol. 5; no. 4; pp. 1214 - 1221 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.10.2022
State Keys Laboratory of Urban Water Resource and Environment,Harbin Institute of Technology,Harbin 150001,China School of Chemistry and Chemical Engineering,Harbin Institute of Technology,Harbin 150001,China%Academy of Fundamental and Interdisciplinary Sciences,Harbin Institute of Technology,Harbin 150001,China%Academy of Fundamental and Interdisciplinary Sciences,Harbin Institute of Technology,Harbin 150001,China |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Two‐dimensional (2D) deposition regime of insulating lithium sulfide (Li2S) is a major obstacle to achieve high reversible capacity in the conventional glyme‐based lithium–sulfur (Li–S) batteries as it leads to rapid loss of active electrode surface and low sulfur utilization. Achieving three‐dimensional (3D) growth of Li2S is therefore considered to be necessary, but the available strategies are mainly based on the electrolyte manipulations, which inevitably lead to added complexity of the electrode–electrolyte compatibility and, in particular, instability of the lithium anode. In this work, we have developed a heterogeneous polysulfide mediator composed of discrete Mo5N6 anchored on graphene, which functions on the cathode side, to regulate the deposition mode of Li2S. Mo5N6 can efficiently boost the formation of Li2S as demonstrated by a series of experimental and computational results. More importantly, the discrete distribution of Mo5N6 nucleants on graphene postpones the merging of adjacent Li2S nuclei to promote their isotropic growth. Thus, 3D deposits of Li2S is guided by the heterogeneous mediator. Benefiting from these unique superiorities, Li–S cells with high rate capability of 954 mAh g−1 at 2 C and long cycle life exceeding 1000 cycles are realized without advanced lithium anode protection.
A heterogeneous polysulfide mediator composed of discrete Mo5N6 anchored on graphene is developed to regulate the deposition mode of Li2S. Mo5N6 efficiently boosts the formation of Li2S and the discrete distribution of Mo5N6 nucleants on graphene postpones the merging of adjacent Li2S nuclei to promote their isotropic growth. |
---|---|
AbstractList | Two‐dimensional (2D) deposition regime of insulating lithium sulfide (Li2S) is a major obstacle to achieve high reversible capacity in the conventional glyme‐based lithium–sulfur (Li–S) batteries as it leads to rapid loss of active electrode surface and low sulfur utilization. Achieving three‐dimensional (3D) growth of Li2S is therefore considered to be necessary, but the available strategies are mainly based on the electrolyte manipulations, which inevitably lead to added complexity of the electrode–electrolyte compatibility and, in particular, instability of the lithium anode. In this work, we have developed a heterogeneous polysulfide mediator composed of discrete Mo5N6 anchored on graphene, which functions on the cathode side, to regulate the deposition mode of Li2S. Mo5N6 can efficiently boost the formation of Li2S as demonstrated by a series of experimental and computational results. More importantly, the discrete distribution of Mo5N6 nucleants on graphene postpones the merging of adjacent Li2S nuclei to promote their isotropic growth. Thus, 3D deposits of Li2S is guided by the heterogeneous mediator. Benefiting from these unique superiorities, Li–S cells with high rate capability of 954 mAh g−1 at 2 C and long cycle life exceeding 1000 cycles are realized without advanced lithium anode protection.
A heterogeneous polysulfide mediator composed of discrete Mo5N6 anchored on graphene is developed to regulate the deposition mode of Li2S. Mo5N6 efficiently boosts the formation of Li2S and the discrete distribution of Mo5N6 nucleants on graphene postpones the merging of adjacent Li2S nuclei to promote their isotropic growth. Two‐dimensional (2D) deposition regime of insulating lithium sulfide (Li 2 S) is a major obstacle to achieve high reversible capacity in the conventional glyme‐based lithium–sulfur (Li–S) batteries as it leads to rapid loss of active electrode surface and low sulfur utilization. Achieving three‐dimensional (3D) growth of Li 2 S is therefore considered to be necessary, but the available strategies are mainly based on the electrolyte manipulations, which inevitably lead to added complexity of the electrode–electrolyte compatibility and, in particular, instability of the lithium anode. In this work, we have developed a heterogeneous polysulfide mediator composed of discrete Mo 5 N 6 anchored on graphene, which functions on the cathode side, to regulate the deposition mode of Li 2 S. Mo 5 N 6 can efficiently boost the formation of Li 2 S as demonstrated by a series of experimental and computational results. More importantly, the discrete distribution of Mo 5 N 6 nucleants on graphene postpones the merging of adjacent Li 2 S nuclei to promote their isotropic growth. Thus, 3D deposits of Li 2 S is guided by the heterogeneous mediator. Benefiting from these unique superiorities, Li–S cells with high rate capability of 954 mAh g −1 at 2 C and long cycle life exceeding 1000 cycles are realized without advanced lithium anode protection. Two‐dimensional (2D) deposition regime of insulating lithium sulfide (Li2S) is a major obstacle to achieve high reversible capacity in the conventional glyme‐based lithium–sulfur (Li–S) batteries as it leads to rapid loss of active electrode surface and low sulfur utilization. Achieving three‐dimensional (3D) growth of Li2S is therefore considered to be necessary, but the available strategies are mainly based on the electrolyte manipulations, which inevitably lead to added complexity of the electrode–electrolyte compatibility and, in particular, instability of the lithium anode. In this work, we have developed a heterogeneous polysulfide mediator composed of discrete Mo5N6 anchored on graphene, which functions on the cathode side, to regulate the deposition mode of Li2S. Mo5N6 can efficiently boost the formation of Li2S as demonstrated by a series of experimental and computational results. More importantly, the discrete distribution of Mo5N6 nucleants on graphene postpones the merging of adjacent Li2S nuclei to promote their isotropic growth. Thus, 3D deposits of Li2S is guided by the heterogeneous mediator. Benefiting from these unique superiorities, Li–S cells with high rate capability of 954 mAh g−1 at 2 C and long cycle life exceeding 1000 cycles are realized without advanced lithium anode protection. |
Author | Zhang, Naiqing Fan, Lishuang Zhao, Chenghao Zhang, Yu Song, Xueqin Qiu, Yue Jiang, Bo Tian, Da Sun, Xun Xu, Xianzhu |
AuthorAffiliation | School of Chemistry and Chemical Engineering,Harbin Institute of Technology,Harbin 150001,China%Academy of Fundamental and Interdisciplinary Sciences,Harbin Institute of Technology,Harbin 150001,China%Academy of Fundamental and Interdisciplinary Sciences,Harbin Institute of Technology,Harbin 150001,China;State Keys Laboratory of Urban Water Resource and Environment,Harbin Institute of Technology,Harbin 150001,China |
AuthorAffiliation_xml | – name: School of Chemistry and Chemical Engineering,Harbin Institute of Technology,Harbin 150001,China%Academy of Fundamental and Interdisciplinary Sciences,Harbin Institute of Technology,Harbin 150001,China%Academy of Fundamental and Interdisciplinary Sciences,Harbin Institute of Technology,Harbin 150001,China;State Keys Laboratory of Urban Water Resource and Environment,Harbin Institute of Technology,Harbin 150001,China |
Author_xml | – sequence: 1 givenname: Da surname: Tian fullname: Tian, Da organization: Harbin Institute of Technology – sequence: 2 givenname: Xueqin surname: Song fullname: Song, Xueqin organization: Harbin Institute of Technology – sequence: 3 givenname: Yue surname: Qiu fullname: Qiu, Yue organization: Harbin Institute of Technology – sequence: 4 givenname: Xun surname: Sun fullname: Sun, Xun organization: Harbin Institute of Technology – sequence: 5 givenname: Bo surname: Jiang fullname: Jiang, Bo organization: Harbin Institute of Technology – sequence: 6 givenname: Chenghao surname: Zhao fullname: Zhao, Chenghao organization: Harbin Institute of Technology – sequence: 7 givenname: Yu surname: Zhang fullname: Zhang, Yu organization: Harbin Institute of Technology – sequence: 8 givenname: Xianzhu surname: Xu fullname: Xu, Xianzhu organization: Harbin Institute of Technology – sequence: 9 givenname: Lishuang surname: Fan fullname: Fan, Lishuang organization: Harbin Institute of Technology – sequence: 10 givenname: Naiqing orcidid: 0000-0002-9528-9673 surname: Zhang fullname: Zhang, Naiqing email: znqmww@163.com organization: Harbin Institute of Technology |
BookMark | eNp9kc1qGzEUhUVJoWmSTZ9A0F3BqX5GkrNsUzcOOKSQdC1kzZVHZkZKJQ3Bq-QRCn3DPEnkOiWllKx0Bd859-e8RXshBkDoHSXHlBD2EWBgx5QxLl-hfSaUmBAu5N5f9Rt0lPOaVJhQ3tCTfXQ3hwIpriBAHDO-gNabEhOeBbPsfVjh6y4BPNz__OIHCNnHYHp8luJt6XB0eOFL58cBX4298y1gV6Vzv-qq4Buk-htMsPAHe7j_tQXHhD-bUtt6yIfotTN9hqOn9wB9_zq7Pp1PFpdn56efFhPLFZOTVkyVbJZAWmVl3aZpQLSWtUJxxqdWKmGdcSeNmtqGLoVg0jLq2iVQwR2Vjh-gDzvfWxOcCSu9jmOqu2QdNptubXsNjDBGGkJVhd_v4JsUf4yQyzPNasNGMU7ls6VNMecETt8kP5i00ZTobSB6G4j-HUiFyT-w9cWUes-SjO__L6FPI_seNi-Y69nsgu00j_dSorI |
CitedBy_id | crossref_primary_10_1002_advs_202103798 crossref_primary_10_1002_eem2_12483 crossref_primary_10_1016_j_surfin_2024_105047 crossref_primary_10_1016_j_cej_2023_141620 crossref_primary_10_1063_5_0117219 crossref_primary_10_1002_adfm_202421900 crossref_primary_10_1016_j_est_2024_111842 crossref_primary_10_1002_smll_202407648 crossref_primary_10_1007_s10853_022_06925_2 crossref_primary_10_1002_eem2_12479 crossref_primary_10_1007_s40820_024_01573_4 crossref_primary_10_1002_eem2_12319 crossref_primary_10_1002_eem2_12491 crossref_primary_10_1021_acsami_3c02699 crossref_primary_10_1073_pnas_2316564121 crossref_primary_10_1002_smll_202200046 crossref_primary_10_1016_j_electacta_2025_145892 crossref_primary_10_1007_s12598_023_02378_x crossref_primary_10_1016_j_jmst_2023_10_058 crossref_primary_10_1002_adfm_202309437 crossref_primary_10_1038_s41467_024_47565_1 crossref_primary_10_1016_j_apenergy_2025_125720 crossref_primary_10_1002_eem2_12567 crossref_primary_10_1002_eem2_12703 crossref_primary_10_3390_ma16165540 |
Cites_doi | 10.1021/acsnano.8b07841 10.1039/c0ee00777c 10.1038/nmat2460 10.1016/j.jechem.2018.12.012 10.1002/aenm.201902096 10.1002/adfm.201907343 10.1002/smtd.201900344 10.1002/anie.201605676 10.1021/acsenergylett.6b00603 10.1039/D0TA01217C 10.1021/acs.nanolett.5b04189 10.1016/j.electacta.2014.05.055 10.1002/aenm.201901940 10.1039/C5CS00410A 10.1039/C7EE01047H 10.1038/ncomms11203 10.1002/anie.202009217 10.1016/j.joule.2018.09.024 10.1038/nenergy.2016.132 10.1021/acs.chemmater.8b01352 10.1002/adfm.201707536 10.1002/adma.202003012 10.1002/aenm.201802768 10.1002/aenm.202000493 10.1002/aenm.201802207 10.1002/adma.201501559 10.1039/c2cs35256g 10.1038/s41467-018-07975-4 10.1016/j.electacta.2013.02.101 10.1016/j.trechm.2019.06.007 10.1038/s41560-017-0005-z 10.1016/j.matt.2019.05.016 10.1016/j.nanoen.2018.06.011 10.1016/j.joule.2020.01.001 10.1016/0013-4686(83)85163-9 10.1016/j.nantod.2017.12.010 10.1038/ncomms5759 10.1002/aenm.201700174 10.1002/anie.201304762 10.1021/acs.nanolett.5b04166 10.1039/tf9625802200 10.1002/aenm.201700260 10.1038/ncomms4943 10.1126/science.1212741 10.1126/sciadv.aax8784 10.1021/acs.chemrev.0c00275 |
ContentType | Journal Article |
Copyright | 2021 Zhengzhou University 2022 Zhengzhou University Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: 2021 Zhengzhou University – notice: 2022 Zhengzhou University – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | AAYXX CITATION 7SR 7ST 8FD C1K JG9 SOI 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1002/eem2.12236 |
DatabaseName | CrossRef Engineered Materials Abstracts Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management Materials Research Database Environment Abstracts Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Environment Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2575-0356 |
EndPage | 1221 |
ExternalDocumentID | nyyhjcl_e202204017 10_1002_eem2_12236 EEM212236 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 22078078 |
GroupedDBID | 0R~ 1OC 24P ACCMX ACXQS ALMA_UNASSIGNED_HOLDINGS AVUZU EBS EJD OK1 WIN AAYXX CITATION 7SR 7ST 8FD C1K JG9 SOI 2B. 4A8 92I 93N PSX TCJ |
ID | FETCH-LOGICAL-c3726-d58764be0d7c657544e5dc2d573238c675cfaf9478c41b5526c21fdbe153f16f3 |
IEDL.DBID | 24P |
ISSN | 2575-0356 2575-0348 |
IngestDate | Thu May 29 04:00:40 EDT 2025 Mon Jun 30 12:00:39 EDT 2025 Tue Jul 01 01:03:05 EDT 2025 Thu Apr 24 23:10:44 EDT 2025 Wed Jan 22 16:30:55 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | shuttle effect polysulfide redox reaction lithium-sulfur batteries electrocatalysis lithium sulfide nucleation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3726-d58764be0d7c657544e5dc2d573238c675cfaf9478c41b5526c21fdbe153f16f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9528-9673 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/eem2.12236 |
PQID | 2732472316 |
PQPubID | 5251211 |
PageCount | 1221 |
ParticipantIDs | wanfang_journals_nyyhjcl_e202204017 proquest_journals_2732472316 crossref_primary_10_1002_eem2_12236 crossref_citationtrail_10_1002_eem2_12236 wiley_primary_10_1002_eem2_12236_EEM212236 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2022 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: October 2022 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Energy & environmental materials (Hoboken, N.J.) |
PublicationTitle_FL | Energy & Environmental Materials |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc State Keys Laboratory of Urban Water Resource and Environment,Harbin Institute of Technology,Harbin 150001,China School of Chemistry and Chemical Engineering,Harbin Institute of Technology,Harbin 150001,China%Academy of Fundamental and Interdisciplinary Sciences,Harbin Institute of Technology,Harbin 150001,China%Academy of Fundamental and Interdisciplinary Sciences,Harbin Institute of Technology,Harbin 150001,China |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: State Keys Laboratory of Urban Water Resource and Environment,Harbin Institute of Technology,Harbin 150001,China – name: School of Chemistry and Chemical Engineering,Harbin Institute of Technology,Harbin 150001,China%Academy of Fundamental and Interdisciplinary Sciences,Harbin Institute of Technology,Harbin 150001,China%Academy of Fundamental and Interdisciplinary Sciences,Harbin Institute of Technology,Harbin 150001,China |
References | 2011; 334 2017; 7 2018; 28 2019; 9 2017; 2 2019; 3 1980; 2015 2020; 120 2019; 10 2019; 1 2013; 42 2019; 39 2020; 59 1962; 58 2020; 10 2020; 32 2011; 4 2016; 16 2016; 55 2014; 135 2020; 8 2018; 18 2020; 6 2016; 7 2018; 8 2020; 4 2014; 5 2016; 1 2015; 27 2020; 30 2017; 10 2013; 97 2013; 52 2009; 8 2018; 30 2018; 50 2018; 12 1983; 28 2016; 45 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Manthiram A. (e_1_2_7_6_1) 1980; 2015 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – volume: 4 start-page: 2614 year: 2011 publication-title: Energy Environ. Sci. – volume: 9 start-page: 1901940 year: 2019 publication-title: Adv. Energy Mater. – volume: 9 start-page: 1802207 year: 2019 publication-title: Adv. Energy Mater. – volume: 5 start-page: 3943 year: 2014 publication-title: Nat. Commun. – volume: 32 start-page: 2003012 year: 2020 publication-title: Adv. Mater. – volume: 4 start-page: 285 year: 2020 publication-title: Joule – volume: 97 start-page: 42 year: 2013 publication-title: Electrochim. Acta – volume: 52 start-page: 13186 year: 2013 publication-title: Angew Chem. Int. Ed. Engl – volume: 28 start-page: 879 year: 1983 publication-title: Electrochim. Acta – volume: 4 start-page: 1900344 year: 2020 publication-title: Small Methods – volume: 50 start-page: 685 year: 2018 publication-title: Nano Energy – volume: 1 start-page: 16132 year: 2016 publication-title: Nat. Energy – volume: 1 start-page: 317 year: 2019 publication-title: Matter – volume: 16 start-page: 549 year: 2016 publication-title: Nano Lett. – volume: 27 start-page: 5203 year: 2015 publication-title: Adv. Mater. – volume: 8 start-page: 500 year: 2009 publication-title: Nat. Mater. – volume: 30 start-page: 1907343 year: 2020 publication-title: Adv. Funct. Mater. – volume: 59 start-page: 20411 year: 2020 publication-title: Angew Chem. Int. Ed. Engl – volume: 39 start-page: 17 year: 2019 publication-title: J. Energy Chem. – volume: 6 start-page: eaax8784 year: 2020 publication-title: Sci. Adv. – volume: 7 start-page: 1700260 year: 2017 publication-title: Adv. Energy Mater. – volume: 18 start-page: 35 year: 2018 publication-title: Nano Today – volume: 30 start-page: 6969 year: 2018 publication-title: Chem. Mater. – volume: 12 start-page: 12761 year: 2018 publication-title: ACS Nano – volume: 10 start-page: 1476 year: 2017 publication-title: Energy Environ. Sci. – volume: 1 start-page: 693 year: 2019 publication-title: Trends Chem. – volume: 9 start-page: 1902096 year: 2019 publication-title: Adv. Energy Mater. – volume: 16 start-page: 519 year: 2016 publication-title: Nano Lett. – volume: 3 start-page: 136 year: 2019 publication-title: Joule – volume: 9 start-page: 1802768 year: 2019 publication-title: Adv. Energy Mater. – volume: 55 start-page: 12990 year: 2016 publication-title: Angew Chem. Int. Ed. Engl – volume: 58 start-page: 2200 year: 1962 publication-title: Trans. Faraday Soc. – volume: 8 start-page: 1700174 year: 2018 publication-title: Adv. Energy Mater. – volume: 10 start-page: 2000493 year: 2020 publication-title: Adv. Energy Mater. – volume: 334 start-page: 928 year: 2011 publication-title: Science – volume: 28 start-page: 1707536 year: 2018 publication-title: Adv. Funct. Mater. – volume: 8 start-page: 11818 year: 2020 publication-title: J. Mater. Chem. A – volume: 10 start-page: 188 year: 2019 publication-title: Nat. Commun. – volume: 42 start-page: 3018 year: 2013 publication-title: Chem. Soc. Rev. – volume: 5 start-page: 4759 year: 2014 publication-title: Nat. Commun. – volume: 7 start-page: 11203 year: 2016 publication-title: Nat. Commun. – volume: 2 start-page: 813 year: 2017 publication-title: Nat. Energy – volume: 45 start-page: 5605 year: 2016 publication-title: Chem. Soc. Rev. – volume: 120 start-page: 13312 year: 2020 publication-title: Chem. Rev. – volume: 2015 start-page: 27 year: 1980 publication-title: Adv. Mater. – volume: 2 start-page: 327 year: 2017 publication-title: ACS Energy Lett. – volume: 135 start-page: 526 year: 2014 publication-title: Electrochim. Acta – ident: e_1_2_7_25_1 doi: 10.1021/acsnano.8b07841 – ident: e_1_2_7_3_1 doi: 10.1039/c0ee00777c – ident: e_1_2_7_2_1 doi: 10.1038/nmat2460 – ident: e_1_2_7_43_1 doi: 10.1016/j.jechem.2018.12.012 – ident: e_1_2_7_28_1 doi: 10.1002/aenm.201902096 – ident: e_1_2_7_42_1 doi: 10.1002/adfm.201907343 – ident: e_1_2_7_16_1 doi: 10.1002/smtd.201900344 – ident: e_1_2_7_24_1 doi: 10.1002/anie.201605676 – ident: e_1_2_7_31_1 doi: 10.1021/acsenergylett.6b00603 – ident: e_1_2_7_34_1 doi: 10.1039/D0TA01217C – ident: e_1_2_7_14_1 doi: 10.1021/acs.nanolett.5b04189 – ident: e_1_2_7_41_1 doi: 10.1016/j.electacta.2014.05.055 – ident: e_1_2_7_35_1 doi: 10.1002/aenm.201901940 – ident: e_1_2_7_1_1 doi: 10.1039/C5CS00410A – ident: e_1_2_7_27_1 doi: 10.1039/C7EE01047H – ident: e_1_2_7_22_1 doi: 10.1038/ncomms11203 – ident: e_1_2_7_30_1 doi: 10.1002/anie.202009217 – ident: e_1_2_7_39_1 doi: 10.1016/j.joule.2018.09.024 – ident: e_1_2_7_12_1 doi: 10.1038/nenergy.2016.132 – ident: e_1_2_7_32_1 doi: 10.1021/acs.chemmater.8b01352 – ident: e_1_2_7_9_1 doi: 10.1002/adfm.201707536 – ident: e_1_2_7_44_1 doi: 10.1002/adma.202003012 – ident: e_1_2_7_36_1 doi: 10.1002/aenm.201802768 – volume: 2015 start-page: 27 year: 1980 ident: e_1_2_7_6_1 publication-title: Adv. Mater. – ident: e_1_2_7_13_1 doi: 10.1002/aenm.202000493 – ident: e_1_2_7_18_1 doi: 10.1002/aenm.201802207 – ident: e_1_2_7_19_1 doi: 10.1002/adma.201501559 – ident: e_1_2_7_5_1 doi: 10.1039/c2cs35256g – ident: e_1_2_7_15_1 doi: 10.1038/s41467-018-07975-4 – ident: e_1_2_7_40_1 doi: 10.1016/j.electacta.2013.02.101 – ident: e_1_2_7_45_1 doi: 10.1016/j.trechm.2019.06.007 – ident: e_1_2_7_17_1 doi: 10.1038/s41560-017-0005-z – ident: e_1_2_7_46_1 doi: 10.1016/j.matt.2019.05.016 – ident: e_1_2_7_33_1 doi: 10.1016/j.nanoen.2018.06.011 – ident: e_1_2_7_10_1 doi: 10.1016/j.joule.2020.01.001 – ident: e_1_2_7_37_1 doi: 10.1016/0013-4686(83)85163-9 – ident: e_1_2_7_11_1 doi: 10.1016/j.nantod.2017.12.010 – ident: e_1_2_7_21_1 doi: 10.1038/ncomms5759 – ident: e_1_2_7_29_1 doi: 10.1002/aenm.201700174 – ident: e_1_2_7_8_1 doi: 10.1002/anie.201304762 – ident: e_1_2_7_23_1 doi: 10.1021/acs.nanolett.5b04166 – ident: e_1_2_7_38_1 doi: 10.1039/tf9625802200 – ident: e_1_2_7_7_1 doi: 10.1002/aenm.201700260 – ident: e_1_2_7_20_1 doi: 10.1038/ncomms4943 – ident: e_1_2_7_4_1 doi: 10.1126/science.1212741 – ident: e_1_2_7_26_1 doi: 10.1126/sciadv.aax8784 – ident: e_1_2_7_47_1 doi: 10.1021/acs.chemrev.0c00275 |
SSID | ssj0002013419 |
Score | 2.376802 |
Snippet | Two‐dimensional (2D) deposition regime of insulating lithium sulfide (Li2S) is a major obstacle to achieve high reversible capacity in the conventional... Two‐dimensional (2D) deposition regime of insulating lithium sulfide (Li 2 S) is a major obstacle to achieve high reversible capacity in the conventional... |
SourceID | wanfang proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1214 |
SubjectTerms | Anodic protection Computer applications Deposition electrocatalysis Electrodes Electrolytes Electrolytic cells Graphene Insulation Lithium lithium sulfide nucleation Lithium sulfur batteries polysulfide redox reaction shuttle effect Sulfides Sulfur |
Title | Heterogeneous Mediator Enabling Three‐Dimensional Growth of Lithium Sulfide for High‐Performance Lithium–Sulfur Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feem2.12236 https://www.proquest.com/docview/2732472316 https://d.wanfangdata.com.cn/periodical/nyyhjcl-e202204017 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEF2qIngRRcVqlQW9KESbzW7Sgpei1SJWCloRLyH7ZSttKv1APOlPEPyH_hJnkrRBEMFbILNJ2MnuvLe784aQ_YpgEui_dqpRJByutXKkVdbRAP0lkxUrk93z5rXfaPPLe3FfICfTXJhUH2K24IYjI5mvcYBHcnSci4Ya02dHLkQ3f44sYG4tKucz3pqtsEBoQ7EyrC4HmMQpe8Kf6ZOy47z5z4iUw8zFlyi2Ufz4E7Ymced8hSxngJHWUg-vkoKJ18hbA0-xDMD5Bpg7bSb1NgZDWsdMKAhG9BZcZL7eP85QvD8V3qAXwLjHHTqw9Ko77nQnfXoz6dmuNhSAK8UDH9CglScSTM2-3j_RcDKkqRgncOt10j6v3542nKyUgqO8gPmOFjDrcWnKOlC41cK5EVoxLQIPYrYC1qBsZKs8qCjuSiGYr5hrtTQwIVrXt94GmY8HsdkkVARWBMxTrGyAikgUcPellb4yWpe1J4vkYNqdocp0xrHcRS9MFZJZiF0fJl1fJHsz2-dUXeNXq9LUK2E2wkYhwC7G4TtcfEjmqfxu_PraeVK90DDMJAYOGRTJYeLFP94T1utNllxt_cd4myzhW9ITfiUyPx5OzA4glbHcTX7IXbJQu2s_tL8BFI_o7Q |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fa9swEBddy9heSss2li5tBdvLBl5jWZKTx9KmTbckBJZA3oT1r0lJnZEllD41H6HQb5hP0jvbiSmMwd4MPtlG59P9Trr7HSFf6oJpCP9t0EgSEXBrTaC98YEF6K-ZrnudnZ53urI14D-GYljk5mAtTM4PsdlwQ8vI1ms0cNyQPilZQ527Zd9DcG_yFdnhksVol4z3Nlss4NuQrQzbywEoCWqRkBuCUnZSDn_pkkqc-fouSX2SXr_ErZnjudgjuwVipKe5ivfJlkvfkYcWprFMQfsOQnfayRpuTGe0iaVQ4I1oH3TkVsvHc2Tvz5k36CWE3PMRnXraHs9H48Ut_bWY-LF1FJArxYwPGNArKwnWYqvlEwouZjRn44Tg-j0ZXDT7Z62g6KUQmChmMrAClj2uXc3GBs9aOHfCGmZFHIHTNhA2GJ_4Bo_rhodaCCYNC73VDlZEH0offSDb6TR1HwkVsRcxiwyrOYhFNDK4S-21NM7amo10hXxdT6cyBdE49ruYqJwimSmcepVNfYV83sj-zuk1_ipVXWtFFSb2RwHuYhy-I8SHFJoq76b396MbM1GOYSkxBJFxhXzLtPiP96hms8Oyq4P_ET4mb1r9Tlu1r7o_P5G3-MY83a9KtuezhTsE2DLXR9nP-QxRJOqb |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fS8MwEA86UXwRRcXp1IC-KFTXtGkn-CK6Of9MBJ2IL6H55yazk7khPulHEPyGfhLv2m5FEMG3Qq9JuUtyv0tyvyNks8KZhPBfO3tRxB1fa-VIq6yjAfpLJitWJqfnjYug3vRPb_ntGNkf5sKk_BCjDTecGcl6jRP8SdvdnDTUmEe244J3C8bJBNLkwZieOLhp3jVHeyzg3JCuDOvLASpxyh4PRgylbDdv4KdPyoHm5EsU2yi-_wlcE89TmyUzGWSkB6mN58iYiefJWx3vsXTB_AZid9pIKm50e7SKuVDgjug1GMl8vX8cIX1_Sr1BjyHm7rdo19Lzdr_VHjzSq0HHtrWhAF0pXvmADy7zVIKh2Nf7JwoOejSl44ToeoE0a9Xrw7qTFVNwlBeywNEc1j1fmrIOFR62-L7hWjHNQw-8toK4QdnI7vlhRfmu5JwFirlWSwNLonUD6y2SQtyNzRKhPLQ8ZJ5iZQPBiEQK90BaGSijdVl7ski2huoUKmMax4IXHZFyJDOBqheJ6otkYyT7lPJr_CpVGlpFZHPsWQDwYj78h4uNZJbK38avr60H1RGGYS4xRJFhkWwnVvyjH1GtNljytPwf4XUydXlUE-cnF2crZBo7TK_7lUih3xuYVYAtfbmWjc5vbpDrkw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heterogeneous+Mediator+Enabling+Three%E2%80%90Dimensional+Growth+of+Lithium+Sulfide+for+High%E2%80%90Performance+Lithium%E2%80%93Sulfur+Batteries&rft.jtitle=Energy+%26+environmental+materials+%28Hoboken%2C+N.J.%29&rft.au=Tian%2C+Da&rft.au=Song%2C+Xueqin&rft.au=Qiu%2C+Yue&rft.au=Sun%2C+Xun&rft.date=2022-10-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.eissn=2575-0356&rft.volume=5&rft.issue=4&rft.spage=1214&rft.epage=1221&rft_id=info:doi/10.1002%2Feem2.12236&rft.externalDBID=NO_FULL_TEXT |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnyyhjcl-e%2Fnyyhjcl-e.jpg |