Low‐Enthalpy and High‐Entropy Polymer Electrolytes for Li‐Metal Battery

Ionic‐conductive solid‐state polymer electrolytes are promising for the development of advanced lithium batteries yet a deeper understanding of their underlying ion‐transfer mechanism is needed to improve performance. Here we demonstrate the low‐enthalpy and high‐entropy (LEHE) electrolytes can intr...

Full description

Saved in:
Bibliographic Details
Published inEnergy & environmental materials (Hoboken, N.J.) Vol. 7; no. 1; pp. 91 - n/a
Main Authors Zhang, Haitao, Wang, Yuchen, Huang, Junfeng, Li, Wen, Zeng, Xiankan, Jia, Aili, Peng, Hongzhi, Zhang, Xiong, Yang, Weiqing
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.01.2024
Key Laboratory of Advanced Technologies of Materials,Ministry of Education,School of Materials Science and Engineering,Southwest Jiaotong University,Chengdu 610031,China%Institute of Electrical Engineering,Chinese Academy of Sciences,Beijing 100190,China
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ionic‐conductive solid‐state polymer electrolytes are promising for the development of advanced lithium batteries yet a deeper understanding of their underlying ion‐transfer mechanism is needed to improve performance. Here we demonstrate the low‐enthalpy and high‐entropy (LEHE) electrolytes can intrinsically generate remarkably free ions and high mobility, enabling them to efficiently drive lithium‐ion storage. The LEHE electrolytes are constructed on the basis of introducing CsPbI3 perovskite quantum dots (PQDs) to strengthen PEO@LiTFSI complexes. An extremely stable cycling >1000 h at 0.3 mA cm−2 can be delivered by LEHE electrolytes. Also, the as‐developed Li | LEHE | LiFePO4 cell retains 92.3% of the initial capacity (160.7 mAh g−1) after 200 cycles. This cycling stability is ascribed to the suppressed charge concentration gradient leading to free lithium dendrites. It is realized by a dramatic increment in lithium‐ion transference number (0.57 vs 0.19) and a significant decline in ion‐transfer activation energy (0.14 eV vs 0.22 eV) for LEHE electrolytes comparing with PEO@LiTFSI counterpart. The CsPbI3 PQDs promote highly structural disorder by inhibiting crystallization and hence endow polymer electrolytes with low melting enthalpy and high structural entropy, which in turn facilitate long‐term cycling stability and excellent rate‐capability of lithium‐metal batteries. Low‐enthalpy and high‐entropy effect promotes structural disorder degree of PEO, dissociation of Li salts, and generation of even more free Li+ ions in thermodynamic side, and in dynamic side, it facilitates rapid ion transfer, smooth charge distribution, and free lithium dendrites, which can intrinsically endow polymer solid‐state electrolytes remarkably free lithium ions and high mobility for next‐generation lithium‐metal battery.
AbstractList Ionic‐conductive solid‐state polymer electrolytes are promising for the development of advanced lithium batteries yet a deeper understanding of their underlying ion‐transfer mechanism is needed to improve performance. Here we demonstrate the low‐enthalpy and high‐entropy (LEHE) electrolytes can intrinsically generate remarkably free ions and high mobility, enabling them to efficiently drive lithium‐ion storage. The LEHE electrolytes are constructed on the basis of introducing CsPbI 3 perovskite quantum dots (PQDs) to strengthen PEO@LiTFSI complexes. An extremely stable cycling >1000 h at 0.3 mA cm −2 can be delivered by LEHE electrolytes. Also, the as‐developed Li | LEHE | LiFePO 4 cell retains 92.3% of the initial capacity (160.7 mAh g −1 ) after 200 cycles. This cycling stability is ascribed to the suppressed charge concentration gradient leading to free lithium dendrites. It is realized by a dramatic increment in lithium‐ion transference number (0.57 vs 0.19) and a significant decline in ion‐transfer activation energy (0.14 eV vs 0.22 eV) for LEHE electrolytes comparing with PEO@LiTFSI counterpart. The CsPbI 3 PQDs promote highly structural disorder by inhibiting crystallization and hence endow polymer electrolytes with low melting enthalpy and high structural entropy, which in turn facilitate long‐term cycling stability and excellent rate‐capability of lithium‐metal batteries.
lonic-conductive solid-state polymer electrolytes are promising for the development of advanced lithium batteries yet a deeper understanding of their underlying ion-transfer mechanism is needed to improve performance.Here we demonstrate the low-enthalpy and high-entropy(LEHE)electrolytes can intrinsically generate remarkably free ions and high mobility,enabling them to efficiently drive lithium-ion storage.The LEHE electrolytes are constructed on the basis of introducing CsPbl3 perovskite quantum dots(PQDs)to strengthen PEO@LiTFSI complexes.An extremely stable cycling>1000 h at 0.3 mA cm-2 can be delivered by LEHE electrolytes.Also,the as-developed Li|LEHE|LiFePO4 cell retains 92.3%of the initial capacity(160.7 mAh g-1)after 200 cycles.This cycling stability is ascribed to the suppressed charge concentration gradient leading to free lithium dendrites.It is realized by a dramatic increment in lithium-ion transference number(0.57 vs 0.19)and a significant decline in ion-transfer activation energy(0.14 eV vs 0.22 eV)for LEHE electrolytes comparing with PEO@LiTFSI counterpart.The CsPbl3 PQDs promote highly structural disorder by inhibiting crystallization and hence endow polymer electrolytes with low melting enthalpy and high structural entropy,which in turn facilitate long-term cycling stability and excellent rate-capability of lithium-metal batteries.
Ionic‐conductive solid‐state polymer electrolytes are promising for the development of advanced lithium batteries yet a deeper understanding of their underlying ion‐transfer mechanism is needed to improve performance. Here we demonstrate the low‐enthalpy and high‐entropy (LEHE) electrolytes can intrinsically generate remarkably free ions and high mobility, enabling them to efficiently drive lithium‐ion storage. The LEHE electrolytes are constructed on the basis of introducing CsPbI3 perovskite quantum dots (PQDs) to strengthen PEO@LiTFSI complexes. An extremely stable cycling >1000 h at 0.3 mA cm−2 can be delivered by LEHE electrolytes. Also, the as‐developed Li | LEHE | LiFePO4 cell retains 92.3% of the initial capacity (160.7 mAh g−1) after 200 cycles. This cycling stability is ascribed to the suppressed charge concentration gradient leading to free lithium dendrites. It is realized by a dramatic increment in lithium‐ion transference number (0.57 vs 0.19) and a significant decline in ion‐transfer activation energy (0.14 eV vs 0.22 eV) for LEHE electrolytes comparing with PEO@LiTFSI counterpart. The CsPbI3 PQDs promote highly structural disorder by inhibiting crystallization and hence endow polymer electrolytes with low melting enthalpy and high structural entropy, which in turn facilitate long‐term cycling stability and excellent rate‐capability of lithium‐metal batteries.
Ionic‐conductive solid‐state polymer electrolytes are promising for the development of advanced lithium batteries yet a deeper understanding of their underlying ion‐transfer mechanism is needed to improve performance. Here we demonstrate the low‐enthalpy and high‐entropy (LEHE) electrolytes can intrinsically generate remarkably free ions and high mobility, enabling them to efficiently drive lithium‐ion storage. The LEHE electrolytes are constructed on the basis of introducing CsPbI3 perovskite quantum dots (PQDs) to strengthen PEO@LiTFSI complexes. An extremely stable cycling >1000 h at 0.3 mA cm−2 can be delivered by LEHE electrolytes. Also, the as‐developed Li | LEHE | LiFePO4 cell retains 92.3% of the initial capacity (160.7 mAh g−1) after 200 cycles. This cycling stability is ascribed to the suppressed charge concentration gradient leading to free lithium dendrites. It is realized by a dramatic increment in lithium‐ion transference number (0.57 vs 0.19) and a significant decline in ion‐transfer activation energy (0.14 eV vs 0.22 eV) for LEHE electrolytes comparing with PEO@LiTFSI counterpart. The CsPbI3 PQDs promote highly structural disorder by inhibiting crystallization and hence endow polymer electrolytes with low melting enthalpy and high structural entropy, which in turn facilitate long‐term cycling stability and excellent rate‐capability of lithium‐metal batteries. Low‐enthalpy and high‐entropy effect promotes structural disorder degree of PEO, dissociation of Li salts, and generation of even more free Li+ ions in thermodynamic side, and in dynamic side, it facilitates rapid ion transfer, smooth charge distribution, and free lithium dendrites, which can intrinsically endow polymer solid‐state electrolytes remarkably free lithium ions and high mobility for next‐generation lithium‐metal battery.
Author Peng, Hongzhi
Huang, Junfeng
Wang, Yuchen
Zhang, Haitao
Jia, Aili
Yang, Weiqing
Li, Wen
Zeng, Xiankan
Zhang, Xiong
AuthorAffiliation Key Laboratory of Advanced Technologies of Materials,Ministry of Education,School of Materials Science and Engineering,Southwest Jiaotong University,Chengdu 610031,China%Institute of Electrical Engineering,Chinese Academy of Sciences,Beijing 100190,China
AuthorAffiliation_xml – name: Key Laboratory of Advanced Technologies of Materials,Ministry of Education,School of Materials Science and Engineering,Southwest Jiaotong University,Chengdu 610031,China%Institute of Electrical Engineering,Chinese Academy of Sciences,Beijing 100190,China
Author_xml – sequence: 1
  givenname: Haitao
  orcidid: 0000-0002-2057-7654
  surname: Zhang
  fullname: Zhang, Haitao
  organization: Southwest Jiaotong University
– sequence: 2
  givenname: Yuchen
  surname: Wang
  fullname: Wang, Yuchen
  organization: Southwest Jiaotong University
– sequence: 3
  givenname: Junfeng
  surname: Huang
  fullname: Huang, Junfeng
  organization: Southwest Jiaotong University
– sequence: 4
  givenname: Wen
  surname: Li
  fullname: Li, Wen
  organization: Southwest Jiaotong University
– sequence: 5
  givenname: Xiankan
  surname: Zeng
  fullname: Zeng, Xiankan
  organization: Southwest Jiaotong University
– sequence: 6
  givenname: Aili
  surname: Jia
  fullname: Jia, Aili
  organization: Southwest Jiaotong University
– sequence: 7
  givenname: Hongzhi
  surname: Peng
  fullname: Peng, Hongzhi
  organization: Southwest Jiaotong University
– sequence: 8
  givenname: Xiong
  orcidid: 0000-0001-9760-5206
  surname: Zhang
  fullname: Zhang, Xiong
  organization: Chinese Academy of Sciences
– sequence: 9
  givenname: Weiqing
  orcidid: 0000-0001-8828-9862
  surname: Yang
  fullname: Yang, Weiqing
  email: wqyang@swjtu.edu.cn
  organization: Southwest Jiaotong University
BookMark eNp9kMFKw0AQhhepYK29-AQBb0Lq7my2yR61RCu06EHPyyadtCnbbN2klNx8BJ_RJ3FrCxURTzP8fP8_w39OOpWtkJBLRgeMUrhBXMGAgWDRCemCiEVIuRh2fuxnpF_XS-phynjEZJdMJ3b7-f6RVs1Cm3Ub6GoWjMv5Yq8566Vna9oVuiA1mHvFtA3WQWFdMCk9NcVGm-BONw269oKcFtrU2D_MHnm9T19G43Dy9PA4up2EOY8hCjXERcxykFLELMkEy6RAPZtlFLguOCZURByHER9KAJ5gLDJWwAwoJnIYZRnvket97lZXha7mamk3rvIXVdW2i2VuFAKFiDLKwMNXe3jt7NsG6-ZIg-RMxhJYfIzMna1rh4Vau3KlXasYVbt61a5e9V2vh-kvOC8b3ZTWV6ZL87eFHV4uDbb_hKs0ncLe8wUeFo8M
CitedBy_id crossref_primary_10_1021_acsnano_4c12660
crossref_primary_10_1016_j_jechem_2024_06_026
crossref_primary_10_1039_D4EE03708A
crossref_primary_10_1016_j_cej_2024_157191
crossref_primary_10_1039_D3TA03497F
crossref_primary_10_1002_ange_202422395
crossref_primary_10_1039_D4MH01869A
crossref_primary_10_1002_anie_202422395
crossref_primary_10_1002_celc_202400441
crossref_primary_10_1088_1361_6528_ad40b4
crossref_primary_10_1002_smll_202407713
crossref_primary_10_1021_acsenergylett_4c00621
crossref_primary_10_1002_adfm_202411751
crossref_primary_10_1007_s10853_025_10700_4
crossref_primary_10_1002_adfm_202313168
crossref_primary_10_1021_acssuschemeng_3c03565
crossref_primary_10_1002_adma_202307599
crossref_primary_10_1002_anie_202304411
crossref_primary_10_1039_D4TA04591B
crossref_primary_10_1002_ange_202304411
Cites_doi 10.1016/j.cej.2021.130203
10.1016/S0022-0728(96)04832-2
10.1039/C6TA02621D
10.1002/advs.201700996
10.1002/aenm.201702314
10.1016/0167-2738(86)90317-6
10.1016/0032-3861(87)90394-6
10.1039/C6MH00218H
10.1002/cssc.201700408
10.1038/s41560-018-0237-6
10.1002/ese3.95
10.1021/acsaem.1c03680
10.1016/j.cej.2022.135106
10.1038/35087538
10.1002/aenm.201402115
10.1002/aenm.201900019
10.1080/15583724.2015.1011966
10.1021/nl202692y
10.1016/0167-2738(83)90079-6
10.1016/j.electacta.2011.02.025
10.1038/nnano.2016.207
10.1016/j.nanoen.2016.09.002
10.1038/s41565-019-0465-3
10.1039/c2ee21892e
10.1016/0167-2738(92)90291-V
10.1021/acsenergylett.9b02739
10.1016/j.nantod.2020.101033
10.1002/adfm.202104286
10.1002/aenm.201903843
10.1002/aenm.201802955
10.1002/smtd.202100262
10.1039/C3EE43182G
10.1038/s41560-018-0104-5
10.1038/nmat4821
10.1016/j.ensm.2018.07.004
10.1021/acsaem.0c00410
10.1016/0032-3861(82)90052-0
10.1016/j.scib.2020.12.026
10.1038/nature03186
10.1016/j.xcrp.2021.100644
10.1016/0013-4686(75)80008-9
10.1002/adma.202100353
10.1021/acs.nanolett.5b04117
10.1021/acsnano.0c01056
10.1021/acsaem.1c02226
10.1039/C9TA11542K
10.1016/j.nanoen.2016.02.008
10.1016/j.joule.2018.09.008
10.1021/acsaem.2c01505
10.1002/anie.201711598
ContentType Journal Article
Copyright 2022 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.
2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: 2022 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 24P
AAYXX
CITATION
7SR
7ST
8FD
C1K
JG9
SOI
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1002/eem2.12514
DatabaseName Wiley-Blackwell Open Access Collection
CrossRef
Engineered Materials Abstracts
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
Environment Abstracts
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList CrossRef

Materials Research Database

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2575-0356
EndPage n/a
ExternalDocumentID nyyhjcl_e202401012
10_1002_eem2_12514
EEM212514
Genre article
GrantInformation_xml – fundername: Southwest Jiaotong University Science and Technology Rising Star Program
  funderid: 2682021CG021
– fundername: National Natural Science Foundation of China
  funderid: 51972277; 51977185
GroupedDBID 0R~
1OC
24P
ACCMX
ACXQS
ALMA_UNASSIGNED_HOLDINGS
AVUZU
EBS
EJD
OK1
WIN
AAYXX
CITATION
7SR
7ST
8FD
C1K
JG9
SOI
2B.
4A8
92I
93N
PSX
TCJ
ID FETCH-LOGICAL-c3724-a27f71c2995718b51b95eaddb023af3e80543e643692238e75b1f2d20e8964bb3
IEDL.DBID 24P
ISSN 2575-0356
2575-0348
IngestDate Thu May 29 04:00:40 EDT 2025
Mon Jun 30 11:58:02 EDT 2025
Tue Jul 01 01:03:06 EDT 2025
Thu Apr 24 23:08:27 EDT 2025
Wed Jan 22 16:13:57 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords lithium dendrites
low-enthalpy and high-entropy
charge concentration gradient
lithium-metal battery
polymer electrolyte
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3724-a27f71c2995718b51b95eaddb023af3e80543e643692238e75b1f2d20e8964bb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2057-7654
0000-0001-8828-9862
0000-0001-9760-5206
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feem2.12514
PQID 2931979217
PQPubID 5251211
PageCount 9
ParticipantIDs wanfang_journals_nyyhjcl_e202401012
proquest_journals_2931979217
crossref_primary_10_1002_eem2_12514
crossref_citationtrail_10_1002_eem2_12514
wiley_primary_10_1002_eem2_12514_EEM212514
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2024
2024-01-00
20240101
2024
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: January 2024
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Energy & environmental materials (Hoboken, N.J.)
PublicationTitle_FL Energy & Environmental Materials
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Key Laboratory of Advanced Technologies of Materials,Ministry of Education,School of Materials Science and Engineering,Southwest Jiaotong University,Chengdu 610031,China%Institute of Electrical Engineering,Chinese Academy of Sciences,Beijing 100190,China
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Key Laboratory of Advanced Technologies of Materials,Ministry of Education,School of Materials Science and Engineering,Southwest Jiaotong University,Chengdu 610031,China%Institute of Electrical Engineering,Chinese Academy of Sciences,Beijing 100190,China
References 2019; 9
2021; 5
2015; 5
2021; 4
2015; 3
2021; 2
2021; 66
2021; 423
2005; 433
2015; 55
2019; 14
2019; 17
1986; 18‐9
1983; 8
2020; 14
2011; 56
2020; 10
1992; 53
2012; 12
2016; 16
2022; 435
2016; 11
2016; 4
1982; 23
2020; 8
2021; 36
1997; 421
2020; 5
2018; 8
2018; 3
2020; 3
2018; 2
2021; 31
2018; 5
2016; 3
2021; 33
2022; 5
2017; 16
2017; 10
2022; 9
1975; 20
2016; 28
2014; 7
2012; 5
2001; 412
1987; 28
2016; 22
2018; 57
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 4
  start-page: 11470
  year: 2021
  publication-title: ACS Appl. Energ Mater.
– volume: 12
  start-page: 1152
  year: 2012
  publication-title: Nano Lett.
– volume: 17
  start-page: 309
  year: 2019
  publication-title: Energy Storage Mater.
– volume: 5
  start-page: 2121
  year: 2022
  publication-title: ACS Appl. Energ Mater.
– volume: 3
  start-page: 889
  year: 2018
  publication-title: Nat. Energy
– volume: 4
  start-page: 10038
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 20
  start-page: 575
  year: 1975
  publication-title: Electrochim. Acta
– volume: 28
  start-page: 447
  year: 2016
  publication-title: Nano Energy
– volume: 36
  start-page: 101033
  year: 2021
  publication-title: Nano Today
– volume: 31
  start-page: 2104286
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 7854
  year: 2012
  publication-title: Energ. Environ. Sci.
– volume: 3
  start-page: 4007
  year: 2020
  publication-title: ACS Appl. Energ Mater.
– volume: 3
  start-page: 227
  year: 2018
  publication-title: Nat. Energy
– volume: 8
  start-page: 1702314
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 421
  start-page: 79
  year: 1997
  publication-title: J. Electroanal. Chem.
– volume: 3
  start-page: 385
  year: 2015
  publication-title: Energy Sci. Eng.
– volume: 10
  start-page: 1903843
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 55
  start-page: 208
  year: 2015
  publication-title: Polym. Rev.
– volume: 9
  start-page: 1900019
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 23
  start-page: 690
  year: 1982
  publication-title: Polymer
– volume: 14
  start-page: 705
  year: 2019
  publication-title: Nat. Nanotechnol.
– volume: 66
  start-page: 914
  year: 2021
  publication-title: Sci. Bull.
– volume: 33
  start-page: 2100353
  year: 2021
  publication-title: Adv. Mater.
– volume: 423
  start-page: 130203
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 53
  start-page: 1064
  year: 1992
  publication-title: Solid State Ion.
– volume: 57
  start-page: 992
  year: 2018
  publication-title: Angew. Chem. Int. Ed.
– volume: 5
  start-page: 1402115
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 433
  start-page: 50
  year: 2005
  publication-title: Nature
– volume: 8
  start-page: 2021
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 18‐9
  start-page: 1105
  year: 1986
  publication-title: Solid State Ion.
– volume: 28
  start-page: 2324
  year: 1987
  publication-title: Polymer
– volume: 5
  start-page: 826
  year: 2020
  publication-title: ACS Energy Lett.
– volume: 16
  start-page: 459
  year: 2016
  publication-title: Nano Lett.
– volume: 22
  start-page: 278
  year: 2016
  publication-title: Nano Energy
– volume: 5
  start-page: 2100262
  year: 2021
  publication-title: Small Methods
– volume: 435
  start-page: 135106
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 5
  start-page: 1700996
  year: 2018
  publication-title: Adv. Sci.
– volume: 8
  start-page: 159
  year: 1983
  publication-title: Solid State Ion.
– volume: 7
  start-page: 1307
  year: 2014
  publication-title: Energ. Environ. Sci.
– volume: 10
  start-page: 2274
  year: 2017
  publication-title: ChemSusChem
– volume: 14
  start-page: 4916
  year: 2020
  publication-title: ACS Nano
– volume: 2
  start-page: 100644
  year: 2021
  publication-title: Cell Rep. Phys. Sci.
– volume: 9
  start-page: 9049
  year: 2022
  publication-title: ACS Appl. Energ Mater
– volume: 9
  start-page: 1802955
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 16
  start-page: 572
  year: 2017
  publication-title: Nat. Mater.
– volume: 11
  start-page: 1031
  year: 2016
  publication-title: Nat. Nanotechnol.
– volume: 3
  start-page: 487
  year: 2016
  publication-title: Mater. Horiz.
– volume: 56
  start-page: 3926
  year: 2011
  publication-title: Electrochim. Acta
– volume: 412
  start-page: 520
  year: 2001
  publication-title: Nature
– volume: 2
  start-page: 2208
  year: 2018
  publication-title: Joule
– ident: e_1_2_7_26_1
  doi: 10.1016/j.cej.2021.130203
– ident: e_1_2_7_41_1
  doi: 10.1016/S0022-0728(96)04832-2
– ident: e_1_2_7_8_1
  doi: 10.1039/C6TA02621D
– ident: e_1_2_7_36_1
  doi: 10.1002/advs.201700996
– ident: e_1_2_7_42_1
  doi: 10.1002/aenm.201702314
– ident: e_1_2_7_45_1
  doi: 10.1016/0167-2738(86)90317-6
– ident: e_1_2_7_50_1
  doi: 10.1016/0032-3861(87)90394-6
– ident: e_1_2_7_2_1
  doi: 10.1039/C6MH00218H
– ident: e_1_2_7_14_1
  doi: 10.1002/cssc.201700408
– ident: e_1_2_7_22_1
  doi: 10.1038/s41560-018-0237-6
– ident: e_1_2_7_4_1
  doi: 10.1002/ese3.95
– ident: e_1_2_7_28_1
  doi: 10.1021/acsaem.1c03680
– ident: e_1_2_7_39_1
  doi: 10.1016/j.cej.2022.135106
– ident: e_1_2_7_12_1
  doi: 10.1038/35087538
– ident: e_1_2_7_1_1
  doi: 10.1002/aenm.201402115
– ident: e_1_2_7_34_1
  doi: 10.1002/aenm.201900019
– ident: e_1_2_7_6_1
  doi: 10.1080/15583724.2015.1011966
– ident: e_1_2_7_16_1
  doi: 10.1021/nl202692y
– ident: e_1_2_7_47_1
  doi: 10.1016/0167-2738(83)90079-6
– ident: e_1_2_7_40_1
  doi: 10.1016/j.electacta.2011.02.025
– ident: e_1_2_7_3_1
  doi: 10.1038/nnano.2016.207
– ident: e_1_2_7_17_1
  doi: 10.1016/j.nanoen.2016.09.002
– ident: e_1_2_7_23_1
  doi: 10.1038/s41565-019-0465-3
– ident: e_1_2_7_11_1
  doi: 10.1039/c2ee21892e
– ident: e_1_2_7_46_1
  doi: 10.1016/0167-2738(92)90291-V
– ident: e_1_2_7_24_1
  doi: 10.1021/acsenergylett.9b02739
– ident: e_1_2_7_32_1
  doi: 10.1016/j.nantod.2020.101033
– ident: e_1_2_7_29_1
  doi: 10.1002/adfm.202104286
– ident: e_1_2_7_49_1
  doi: 10.1002/aenm.201903843
– ident: e_1_2_7_44_1
  doi: 10.1002/aenm.201802955
– ident: e_1_2_7_33_1
  doi: 10.1002/smtd.202100262
– ident: e_1_2_7_7_1
  doi: 10.1039/C3EE43182G
– ident: e_1_2_7_27_1
  doi: 10.1038/s41560-018-0104-5
– ident: e_1_2_7_30_1
  doi: 10.1038/nmat4821
– ident: e_1_2_7_38_1
  doi: 10.1016/j.ensm.2018.07.004
– ident: e_1_2_7_19_1
  doi: 10.1021/acsaem.0c00410
– ident: e_1_2_7_10_1
  doi: 10.1016/0032-3861(82)90052-0
– ident: e_1_2_7_31_1
  doi: 10.1016/j.scib.2020.12.026
– ident: e_1_2_7_13_1
  doi: 10.1038/nature03186
– ident: e_1_2_7_21_1
  doi: 10.1016/j.xcrp.2021.100644
– ident: e_1_2_7_9_1
  doi: 10.1016/0013-4686(75)80008-9
– ident: e_1_2_7_5_1
  doi: 10.1002/adma.202100353
– ident: e_1_2_7_35_1
  doi: 10.1021/acs.nanolett.5b04117
– ident: e_1_2_7_43_1
  doi: 10.1021/acsnano.0c01056
– ident: e_1_2_7_20_1
  doi: 10.1021/acsaem.1c02226
– ident: e_1_2_7_18_1
  doi: 10.1039/C9TA11542K
– ident: e_1_2_7_15_1
  doi: 10.1016/j.nanoen.2016.02.008
– ident: e_1_2_7_25_1
  doi: 10.1016/j.joule.2018.09.008
– ident: e_1_2_7_37_1
  doi: 10.1021/acsaem.2c01505
– ident: e_1_2_7_48_1
  doi: 10.1002/anie.201711598
SSID ssj0002013419
Score 2.4052956
Snippet Ionic‐conductive solid‐state polymer electrolytes are promising for the development of advanced lithium batteries yet a deeper understanding of their...
lonic-conductive solid-state polymer electrolytes are promising for the development of advanced lithium batteries yet a deeper understanding of their...
SourceID wanfang
proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 91
SubjectTerms charge concentration gradient
Concentration gradient
Crystallization
Cycles
Electrolytes
Enthalpy
Entropy
Ion storage
Lithium
Lithium batteries
lithium dendrites
lithium‐metal battery
low‐enthalpy and high‐entropy
Molten salt electrolytes
Perovskites
polymer electrolyte
Polymers
Quantum dots
Solid electrolytes
Title Low‐Enthalpy and High‐Entropy Polymer Electrolytes for Li‐Metal Battery
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feem2.12514
https://www.proquest.com/docview/2931979217
https://d.wanfangdata.com.cn/periodical/nyyhjcl-e202401012
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1BS8MwFMeDTgQvoqg4naOgF4W6NmmaFrwMqYhs4sGJeClJ--qUrh1zIr35EfyMfhJf2m5jIIK3kr628JL0_29ofo-QEylcR_A4MYFxZjperExfSDDBtyPFmYisks7fv3WvB87NI39cIRezvTAVH2K-4KZnRvm-1hNcqrfOAhoKMKLnWp6dVbKm99Zqcj517uYrLChtGlamq8uhJzEtxt05n5R2FpcvK9LCZq5_yCyR2fOybS1152qLbNaG0ehWPbxNViDbIf1e_vH9-RVk06FMx4Uhs9jQf2xUbZMcm-7ytBjBxAiqOjdpgZ7SQIdq9F4wqg9ouo0KrlnsksFVcH95bdaFEcyICeqYkopE2BEqCUdpUdxWPscRESsUYJkw8NCHMUCv4fqo_h4IruyExtQCz3cdpdgeaWR5BvvEsGXiyARNAugC8iCkgMimthv5QCWzaJOczpITRjU1XBevSMOKd0xDnciwTGSTHM9jxxUr49eo1izHYT1f3kI0HbYvfPw-wpvUeV-czYpi-BqlIVBNZNNEsiY5K_vkj-eEQdCn5dHBf4IPyYZ-SrXK0iKN6eQdjtB3TFW7HF5tstZ9GDwNfgArItRL
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA5eEH0RRcV5LeiLQt2aS7M-ilSmruKDg72FpD11Su1kTqRv_gR_o7_Ek7ZuDETwraQnDZzk5Pt6SL5DyLGWPpciSV1ggrm8nRg3kBpcCLzYCCbjVqnOH936nR6_7ot-fTbH3oWp9CEmCTcbGeV-bQPcJqSbU9VQgGd6ZvGZz5NF7lNp45Lyu0mKBbHNqpXZ8nJIStwWE_5EoJQ2p91nIWnKM5fedZ7q_GGWt5bAc7lGVmvG6JxXU7xO5iDfIFF3-P718Rnm44HOXgpH54ljj2xUbaMhNt0Ns-IZRk5YFbrJCiSVDlJUp_uIVhEg63Yqdc1ik_Quw_uLjltXRnBjJil3NZWp9GKEEoHYYoRnAoFLIjGIwDpl0EYixgDJhh8g_LdBCuOlNKEtaAc-N4ZtkYV8mMM2cTydcp0iSwBbQR6klhB71PPjAKhmLdogJz_OUXEtG26rV2SqEjymyjpSlY5skKOJ7UsllvGr1d6Pj1UdMK8KWYcXyAB_kPAjtd-nb_OiGDzFmQJqJdmsJFmDnJZz8sc4KgwjWj7t_Mf4kCx37qOu6l7d3uySFTtilXLZIwvj0RvsIwkZm4NyqX0D-vPV-Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1dS8MwFIbDdCjeiKLi_CzojUJ1TZpmBW9EO6Zuwwsn4k1I2lM_qN2YE-mdP8Hf6C_xpO02BBG8K-khgZOk79vQPoeQfSU8V_AotoFxZruNSNu-UGCD74SaMxHWczp_p-u1eu7lHb-rkJPxvzAFH2Jy4GZ2Rv68Nht8EMXHU2gowAs9MvLszpCqweThmq6e3vbue5MzFhQ3gysz9eXQldh1xr0JoZQeTzv4qUlTozn3rtJYpQ8_jWuuPM0lslhaRuu0mONlUoF0hXTa_fevj88gHT2qZJBZKo0s881G0TbsY9N1P8leYGgFRaWbJENXaaFHtdpPGNUBtN1WgdfMVkmvGdycteyyNIIdMkFdW1ERCydELeEoLpo72ue4JiKNEqxiBg10YgzQbXg-6n8DBNdOTCNah4bvuVqzNTKb9lNYJ5ajYlfFaBPAlJAHoQSEDnW80AeqWJ3WyME4OTIsueGmfEUiC-IxlSaRMk9kjexNYgcFLePXqK1xjmW5Y14l2g7HFz6-IWEnZd6nd9Mse3wOEwnUMNkMk6xGDvM5-WMcGQQdml9t_Cd4l8xfnzdl-6J7tUkWzIDFkcsWmR0N32AbTchI75Rr7Rvtwtbx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-Enthalpy+and+High-Entropy+Polymer+Electrolytes+for+Li-Metal+Battery&rft.jtitle=%E8%83%BD%E6%BA%90%E4%B8%8E%E7%8E%AF%E5%A2%83%E6%9D%90%E6%96%99%EF%BC%88%E8%8B%B1%E6%96%87%EF%BC%89&rft.au=Haitao+Zhang&rft.au=Yuchen+Wang&rft.au=Junfeng+Huang&rft.au=Wen+Li&rft.date=2024&rft.pub=Key+Laboratory+of+Advanced+Technologies+of+Materials%2CMinistry+of+Education%2CSchool+of+Materials+Science+and+Engineering%2CSouthwest+Jiaotong+University%2CChengdu+610031%2CChina%25Institute+of+Electrical+Engineering%2CChinese+Academy+of+Sciences%2CBeijing+100190%2CChina&rft.issn=2575-0348&rft.volume=7&rft.issue=1&rft.spage=91&rft.epage=99&rft_id=info:doi/10.1002%2Feem2.12514&rft.externalDocID=nyyhjcl_e202401012
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnyyhjcl-e%2Fnyyhjcl-e.jpg