Low‐Enthalpy and High‐Entropy Polymer Electrolytes for Li‐Metal Battery
Ionic‐conductive solid‐state polymer electrolytes are promising for the development of advanced lithium batteries yet a deeper understanding of their underlying ion‐transfer mechanism is needed to improve performance. Here we demonstrate the low‐enthalpy and high‐entropy (LEHE) electrolytes can intr...
Saved in:
Published in | Energy & environmental materials (Hoboken, N.J.) Vol. 7; no. 1; pp. 91 - n/a |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.01.2024
Key Laboratory of Advanced Technologies of Materials,Ministry of Education,School of Materials Science and Engineering,Southwest Jiaotong University,Chengdu 610031,China%Institute of Electrical Engineering,Chinese Academy of Sciences,Beijing 100190,China |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Ionic‐conductive solid‐state polymer electrolytes are promising for the development of advanced lithium batteries yet a deeper understanding of their underlying ion‐transfer mechanism is needed to improve performance. Here we demonstrate the low‐enthalpy and high‐entropy (LEHE) electrolytes can intrinsically generate remarkably free ions and high mobility, enabling them to efficiently drive lithium‐ion storage. The LEHE electrolytes are constructed on the basis of introducing CsPbI3 perovskite quantum dots (PQDs) to strengthen PEO@LiTFSI complexes. An extremely stable cycling >1000 h at 0.3 mA cm−2 can be delivered by LEHE electrolytes. Also, the as‐developed Li | LEHE | LiFePO4 cell retains 92.3% of the initial capacity (160.7 mAh g−1) after 200 cycles. This cycling stability is ascribed to the suppressed charge concentration gradient leading to free lithium dendrites. It is realized by a dramatic increment in lithium‐ion transference number (0.57 vs 0.19) and a significant decline in ion‐transfer activation energy (0.14 eV vs 0.22 eV) for LEHE electrolytes comparing with PEO@LiTFSI counterpart. The CsPbI3 PQDs promote highly structural disorder by inhibiting crystallization and hence endow polymer electrolytes with low melting enthalpy and high structural entropy, which in turn facilitate long‐term cycling stability and excellent rate‐capability of lithium‐metal batteries.
Low‐enthalpy and high‐entropy effect promotes structural disorder degree of PEO, dissociation of Li salts, and generation of even more free Li+ ions in thermodynamic side, and in dynamic side, it facilitates rapid ion transfer, smooth charge distribution, and free lithium dendrites, which can intrinsically endow polymer solid‐state electrolytes remarkably free lithium ions and high mobility for next‐generation lithium‐metal battery. |
---|---|
AbstractList | Ionic‐conductive solid‐state polymer electrolytes are promising for the development of advanced lithium batteries yet a deeper understanding of their underlying ion‐transfer mechanism is needed to improve performance. Here we demonstrate the low‐enthalpy and high‐entropy (LEHE) electrolytes can intrinsically generate remarkably free ions and high mobility, enabling them to efficiently drive lithium‐ion storage. The LEHE electrolytes are constructed on the basis of introducing CsPbI
3
perovskite quantum dots (PQDs) to strengthen PEO@LiTFSI complexes. An extremely stable cycling >1000 h at 0.3 mA cm
−2
can be delivered by LEHE electrolytes. Also, the as‐developed Li | LEHE | LiFePO
4
cell retains 92.3% of the initial capacity (160.7 mAh g
−1
) after 200 cycles. This cycling stability is ascribed to the suppressed charge concentration gradient leading to free lithium dendrites. It is realized by a dramatic increment in lithium‐ion transference number (0.57 vs 0.19) and a significant decline in ion‐transfer activation energy (0.14 eV vs 0.22 eV) for LEHE electrolytes comparing with PEO@LiTFSI counterpart. The CsPbI
3
PQDs promote highly structural disorder by inhibiting crystallization and hence endow polymer electrolytes with low melting enthalpy and high structural entropy, which in turn facilitate long‐term cycling stability and excellent rate‐capability of lithium‐metal batteries. lonic-conductive solid-state polymer electrolytes are promising for the development of advanced lithium batteries yet a deeper understanding of their underlying ion-transfer mechanism is needed to improve performance.Here we demonstrate the low-enthalpy and high-entropy(LEHE)electrolytes can intrinsically generate remarkably free ions and high mobility,enabling them to efficiently drive lithium-ion storage.The LEHE electrolytes are constructed on the basis of introducing CsPbl3 perovskite quantum dots(PQDs)to strengthen PEO@LiTFSI complexes.An extremely stable cycling>1000 h at 0.3 mA cm-2 can be delivered by LEHE electrolytes.Also,the as-developed Li|LEHE|LiFePO4 cell retains 92.3%of the initial capacity(160.7 mAh g-1)after 200 cycles.This cycling stability is ascribed to the suppressed charge concentration gradient leading to free lithium dendrites.It is realized by a dramatic increment in lithium-ion transference number(0.57 vs 0.19)and a significant decline in ion-transfer activation energy(0.14 eV vs 0.22 eV)for LEHE electrolytes comparing with PEO@LiTFSI counterpart.The CsPbl3 PQDs promote highly structural disorder by inhibiting crystallization and hence endow polymer electrolytes with low melting enthalpy and high structural entropy,which in turn facilitate long-term cycling stability and excellent rate-capability of lithium-metal batteries. Ionic‐conductive solid‐state polymer electrolytes are promising for the development of advanced lithium batteries yet a deeper understanding of their underlying ion‐transfer mechanism is needed to improve performance. Here we demonstrate the low‐enthalpy and high‐entropy (LEHE) electrolytes can intrinsically generate remarkably free ions and high mobility, enabling them to efficiently drive lithium‐ion storage. The LEHE electrolytes are constructed on the basis of introducing CsPbI3 perovskite quantum dots (PQDs) to strengthen PEO@LiTFSI complexes. An extremely stable cycling >1000 h at 0.3 mA cm−2 can be delivered by LEHE electrolytes. Also, the as‐developed Li | LEHE | LiFePO4 cell retains 92.3% of the initial capacity (160.7 mAh g−1) after 200 cycles. This cycling stability is ascribed to the suppressed charge concentration gradient leading to free lithium dendrites. It is realized by a dramatic increment in lithium‐ion transference number (0.57 vs 0.19) and a significant decline in ion‐transfer activation energy (0.14 eV vs 0.22 eV) for LEHE electrolytes comparing with PEO@LiTFSI counterpart. The CsPbI3 PQDs promote highly structural disorder by inhibiting crystallization and hence endow polymer electrolytes with low melting enthalpy and high structural entropy, which in turn facilitate long‐term cycling stability and excellent rate‐capability of lithium‐metal batteries. Ionic‐conductive solid‐state polymer electrolytes are promising for the development of advanced lithium batteries yet a deeper understanding of their underlying ion‐transfer mechanism is needed to improve performance. Here we demonstrate the low‐enthalpy and high‐entropy (LEHE) electrolytes can intrinsically generate remarkably free ions and high mobility, enabling them to efficiently drive lithium‐ion storage. The LEHE electrolytes are constructed on the basis of introducing CsPbI3 perovskite quantum dots (PQDs) to strengthen PEO@LiTFSI complexes. An extremely stable cycling >1000 h at 0.3 mA cm−2 can be delivered by LEHE electrolytes. Also, the as‐developed Li | LEHE | LiFePO4 cell retains 92.3% of the initial capacity (160.7 mAh g−1) after 200 cycles. This cycling stability is ascribed to the suppressed charge concentration gradient leading to free lithium dendrites. It is realized by a dramatic increment in lithium‐ion transference number (0.57 vs 0.19) and a significant decline in ion‐transfer activation energy (0.14 eV vs 0.22 eV) for LEHE electrolytes comparing with PEO@LiTFSI counterpart. The CsPbI3 PQDs promote highly structural disorder by inhibiting crystallization and hence endow polymer electrolytes with low melting enthalpy and high structural entropy, which in turn facilitate long‐term cycling stability and excellent rate‐capability of lithium‐metal batteries. Low‐enthalpy and high‐entropy effect promotes structural disorder degree of PEO, dissociation of Li salts, and generation of even more free Li+ ions in thermodynamic side, and in dynamic side, it facilitates rapid ion transfer, smooth charge distribution, and free lithium dendrites, which can intrinsically endow polymer solid‐state electrolytes remarkably free lithium ions and high mobility for next‐generation lithium‐metal battery. |
Author | Peng, Hongzhi Huang, Junfeng Wang, Yuchen Zhang, Haitao Jia, Aili Yang, Weiqing Li, Wen Zeng, Xiankan Zhang, Xiong |
AuthorAffiliation | Key Laboratory of Advanced Technologies of Materials,Ministry of Education,School of Materials Science and Engineering,Southwest Jiaotong University,Chengdu 610031,China%Institute of Electrical Engineering,Chinese Academy of Sciences,Beijing 100190,China |
AuthorAffiliation_xml | – name: Key Laboratory of Advanced Technologies of Materials,Ministry of Education,School of Materials Science and Engineering,Southwest Jiaotong University,Chengdu 610031,China%Institute of Electrical Engineering,Chinese Academy of Sciences,Beijing 100190,China |
Author_xml | – sequence: 1 givenname: Haitao orcidid: 0000-0002-2057-7654 surname: Zhang fullname: Zhang, Haitao organization: Southwest Jiaotong University – sequence: 2 givenname: Yuchen surname: Wang fullname: Wang, Yuchen organization: Southwest Jiaotong University – sequence: 3 givenname: Junfeng surname: Huang fullname: Huang, Junfeng organization: Southwest Jiaotong University – sequence: 4 givenname: Wen surname: Li fullname: Li, Wen organization: Southwest Jiaotong University – sequence: 5 givenname: Xiankan surname: Zeng fullname: Zeng, Xiankan organization: Southwest Jiaotong University – sequence: 6 givenname: Aili surname: Jia fullname: Jia, Aili organization: Southwest Jiaotong University – sequence: 7 givenname: Hongzhi surname: Peng fullname: Peng, Hongzhi organization: Southwest Jiaotong University – sequence: 8 givenname: Xiong orcidid: 0000-0001-9760-5206 surname: Zhang fullname: Zhang, Xiong organization: Chinese Academy of Sciences – sequence: 9 givenname: Weiqing orcidid: 0000-0001-8828-9862 surname: Yang fullname: Yang, Weiqing email: wqyang@swjtu.edu.cn organization: Southwest Jiaotong University |
BookMark | eNp9kMFKw0AQhhepYK29-AQBb0Lq7my2yR61RCu06EHPyyadtCnbbN2klNx8BJ_RJ3FrCxURTzP8fP8_w39OOpWtkJBLRgeMUrhBXMGAgWDRCemCiEVIuRh2fuxnpF_XS-phynjEZJdMJ3b7-f6RVs1Cm3Ub6GoWjMv5Yq8566Vna9oVuiA1mHvFtA3WQWFdMCk9NcVGm-BONw269oKcFtrU2D_MHnm9T19G43Dy9PA4up2EOY8hCjXERcxykFLELMkEy6RAPZtlFLguOCZURByHER9KAJ5gLDJWwAwoJnIYZRnvket97lZXha7mamk3rvIXVdW2i2VuFAKFiDLKwMNXe3jt7NsG6-ZIg-RMxhJYfIzMna1rh4Vau3KlXasYVbt61a5e9V2vh-kvOC8b3ZTWV6ZL87eFHV4uDbb_hKs0ncLe8wUeFo8M |
CitedBy_id | crossref_primary_10_1021_acsnano_4c12660 crossref_primary_10_1016_j_jechem_2024_06_026 crossref_primary_10_1039_D4EE03708A crossref_primary_10_1016_j_cej_2024_157191 crossref_primary_10_1039_D3TA03497F crossref_primary_10_1002_ange_202422395 crossref_primary_10_1039_D4MH01869A crossref_primary_10_1002_anie_202422395 crossref_primary_10_1002_celc_202400441 crossref_primary_10_1088_1361_6528_ad40b4 crossref_primary_10_1002_smll_202407713 crossref_primary_10_1021_acsenergylett_4c00621 crossref_primary_10_1002_adfm_202411751 crossref_primary_10_1007_s10853_025_10700_4 crossref_primary_10_1002_adfm_202313168 crossref_primary_10_1021_acssuschemeng_3c03565 crossref_primary_10_1002_adma_202307599 crossref_primary_10_1002_anie_202304411 crossref_primary_10_1039_D4TA04591B crossref_primary_10_1002_ange_202304411 |
Cites_doi | 10.1016/j.cej.2021.130203 10.1016/S0022-0728(96)04832-2 10.1039/C6TA02621D 10.1002/advs.201700996 10.1002/aenm.201702314 10.1016/0167-2738(86)90317-6 10.1016/0032-3861(87)90394-6 10.1039/C6MH00218H 10.1002/cssc.201700408 10.1038/s41560-018-0237-6 10.1002/ese3.95 10.1021/acsaem.1c03680 10.1016/j.cej.2022.135106 10.1038/35087538 10.1002/aenm.201402115 10.1002/aenm.201900019 10.1080/15583724.2015.1011966 10.1021/nl202692y 10.1016/0167-2738(83)90079-6 10.1016/j.electacta.2011.02.025 10.1038/nnano.2016.207 10.1016/j.nanoen.2016.09.002 10.1038/s41565-019-0465-3 10.1039/c2ee21892e 10.1016/0167-2738(92)90291-V 10.1021/acsenergylett.9b02739 10.1016/j.nantod.2020.101033 10.1002/adfm.202104286 10.1002/aenm.201903843 10.1002/aenm.201802955 10.1002/smtd.202100262 10.1039/C3EE43182G 10.1038/s41560-018-0104-5 10.1038/nmat4821 10.1016/j.ensm.2018.07.004 10.1021/acsaem.0c00410 10.1016/0032-3861(82)90052-0 10.1016/j.scib.2020.12.026 10.1038/nature03186 10.1016/j.xcrp.2021.100644 10.1016/0013-4686(75)80008-9 10.1002/adma.202100353 10.1021/acs.nanolett.5b04117 10.1021/acsnano.0c01056 10.1021/acsaem.1c02226 10.1039/C9TA11542K 10.1016/j.nanoen.2016.02.008 10.1016/j.joule.2018.09.008 10.1021/acsaem.2c01505 10.1002/anie.201711598 |
ContentType | Journal Article |
Copyright | 2022 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University. 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: 2022 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University. – notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 24P AAYXX CITATION 7SR 7ST 8FD C1K JG9 SOI 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1002/eem2.12514 |
DatabaseName | Wiley-Blackwell Open Access Collection CrossRef Engineered Materials Abstracts Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management Materials Research Database Environment Abstracts Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Environment Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | CrossRef Materials Research Database |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2575-0356 |
EndPage | n/a |
ExternalDocumentID | nyyhjcl_e202401012 10_1002_eem2_12514 EEM212514 |
Genre | article |
GrantInformation_xml | – fundername: Southwest Jiaotong University Science and Technology Rising Star Program funderid: 2682021CG021 – fundername: National Natural Science Foundation of China funderid: 51972277; 51977185 |
GroupedDBID | 0R~ 1OC 24P ACCMX ACXQS ALMA_UNASSIGNED_HOLDINGS AVUZU EBS EJD OK1 WIN AAYXX CITATION 7SR 7ST 8FD C1K JG9 SOI 2B. 4A8 92I 93N PSX TCJ |
ID | FETCH-LOGICAL-c3724-a27f71c2995718b51b95eaddb023af3e80543e643692238e75b1f2d20e8964bb3 |
IEDL.DBID | 24P |
ISSN | 2575-0356 2575-0348 |
IngestDate | Thu May 29 04:00:40 EDT 2025 Mon Jun 30 11:58:02 EDT 2025 Tue Jul 01 01:03:06 EDT 2025 Thu Apr 24 23:08:27 EDT 2025 Wed Jan 22 16:13:57 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | lithium dendrites low-enthalpy and high-entropy charge concentration gradient lithium-metal battery polymer electrolyte |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3724-a27f71c2995718b51b95eaddb023af3e80543e643692238e75b1f2d20e8964bb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2057-7654 0000-0001-8828-9862 0000-0001-9760-5206 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feem2.12514 |
PQID | 2931979217 |
PQPubID | 5251211 |
PageCount | 9 |
ParticipantIDs | wanfang_journals_nyyhjcl_e202401012 proquest_journals_2931979217 crossref_primary_10_1002_eem2_12514 crossref_citationtrail_10_1002_eem2_12514 wiley_primary_10_1002_eem2_12514_EEM212514 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2024 2024-01-00 20240101 2024 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: January 2024 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Energy & environmental materials (Hoboken, N.J.) |
PublicationTitle_FL | Energy & Environmental Materials |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc Key Laboratory of Advanced Technologies of Materials,Ministry of Education,School of Materials Science and Engineering,Southwest Jiaotong University,Chengdu 610031,China%Institute of Electrical Engineering,Chinese Academy of Sciences,Beijing 100190,China |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: Key Laboratory of Advanced Technologies of Materials,Ministry of Education,School of Materials Science and Engineering,Southwest Jiaotong University,Chengdu 610031,China%Institute of Electrical Engineering,Chinese Academy of Sciences,Beijing 100190,China |
References | 2019; 9 2021; 5 2015; 5 2021; 4 2015; 3 2021; 2 2021; 66 2021; 423 2005; 433 2015; 55 2019; 14 2019; 17 1986; 18‐9 1983; 8 2020; 14 2011; 56 2020; 10 1992; 53 2012; 12 2016; 16 2022; 435 2016; 11 2016; 4 1982; 23 2020; 8 2021; 36 1997; 421 2020; 5 2018; 8 2018; 3 2020; 3 2018; 2 2021; 31 2018; 5 2016; 3 2021; 33 2022; 5 2017; 16 2017; 10 2022; 9 1975; 20 2016; 28 2014; 7 2012; 5 2001; 412 1987; 28 2016; 22 2018; 57 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
References_xml | – volume: 4 start-page: 11470 year: 2021 publication-title: ACS Appl. Energ Mater. – volume: 12 start-page: 1152 year: 2012 publication-title: Nano Lett. – volume: 17 start-page: 309 year: 2019 publication-title: Energy Storage Mater. – volume: 5 start-page: 2121 year: 2022 publication-title: ACS Appl. Energ Mater. – volume: 3 start-page: 889 year: 2018 publication-title: Nat. Energy – volume: 4 start-page: 10038 year: 2016 publication-title: J. Mater. Chem. A – volume: 20 start-page: 575 year: 1975 publication-title: Electrochim. Acta – volume: 28 start-page: 447 year: 2016 publication-title: Nano Energy – volume: 36 start-page: 101033 year: 2021 publication-title: Nano Today – volume: 31 start-page: 2104286 year: 2021 publication-title: Adv. Funct. Mater. – volume: 5 start-page: 7854 year: 2012 publication-title: Energ. Environ. Sci. – volume: 3 start-page: 4007 year: 2020 publication-title: ACS Appl. Energ Mater. – volume: 3 start-page: 227 year: 2018 publication-title: Nat. Energy – volume: 8 start-page: 1702314 year: 2018 publication-title: Adv. Energy Mater. – volume: 421 start-page: 79 year: 1997 publication-title: J. Electroanal. Chem. – volume: 3 start-page: 385 year: 2015 publication-title: Energy Sci. Eng. – volume: 10 start-page: 1903843 year: 2020 publication-title: Adv. Energy Mater. – volume: 55 start-page: 208 year: 2015 publication-title: Polym. Rev. – volume: 9 start-page: 1900019 year: 2019 publication-title: Adv. Energy Mater. – volume: 23 start-page: 690 year: 1982 publication-title: Polymer – volume: 14 start-page: 705 year: 2019 publication-title: Nat. Nanotechnol. – volume: 66 start-page: 914 year: 2021 publication-title: Sci. Bull. – volume: 33 start-page: 2100353 year: 2021 publication-title: Adv. Mater. – volume: 423 start-page: 130203 year: 2021 publication-title: Chem. Eng. J. – volume: 53 start-page: 1064 year: 1992 publication-title: Solid State Ion. – volume: 57 start-page: 992 year: 2018 publication-title: Angew. Chem. Int. Ed. – volume: 5 start-page: 1402115 year: 2015 publication-title: Adv. Energy Mater. – volume: 433 start-page: 50 year: 2005 publication-title: Nature – volume: 8 start-page: 2021 year: 2020 publication-title: J. Mater. Chem. A – volume: 18‐9 start-page: 1105 year: 1986 publication-title: Solid State Ion. – volume: 28 start-page: 2324 year: 1987 publication-title: Polymer – volume: 5 start-page: 826 year: 2020 publication-title: ACS Energy Lett. – volume: 16 start-page: 459 year: 2016 publication-title: Nano Lett. – volume: 22 start-page: 278 year: 2016 publication-title: Nano Energy – volume: 5 start-page: 2100262 year: 2021 publication-title: Small Methods – volume: 435 start-page: 135106 year: 2022 publication-title: Chem. Eng. J. – volume: 5 start-page: 1700996 year: 2018 publication-title: Adv. Sci. – volume: 8 start-page: 159 year: 1983 publication-title: Solid State Ion. – volume: 7 start-page: 1307 year: 2014 publication-title: Energ. Environ. Sci. – volume: 10 start-page: 2274 year: 2017 publication-title: ChemSusChem – volume: 14 start-page: 4916 year: 2020 publication-title: ACS Nano – volume: 2 start-page: 100644 year: 2021 publication-title: Cell Rep. Phys. Sci. – volume: 9 start-page: 9049 year: 2022 publication-title: ACS Appl. Energ Mater – volume: 9 start-page: 1802955 year: 2019 publication-title: Adv. Energy Mater. – volume: 16 start-page: 572 year: 2017 publication-title: Nat. Mater. – volume: 11 start-page: 1031 year: 2016 publication-title: Nat. Nanotechnol. – volume: 3 start-page: 487 year: 2016 publication-title: Mater. Horiz. – volume: 56 start-page: 3926 year: 2011 publication-title: Electrochim. Acta – volume: 412 start-page: 520 year: 2001 publication-title: Nature – volume: 2 start-page: 2208 year: 2018 publication-title: Joule – ident: e_1_2_7_26_1 doi: 10.1016/j.cej.2021.130203 – ident: e_1_2_7_41_1 doi: 10.1016/S0022-0728(96)04832-2 – ident: e_1_2_7_8_1 doi: 10.1039/C6TA02621D – ident: e_1_2_7_36_1 doi: 10.1002/advs.201700996 – ident: e_1_2_7_42_1 doi: 10.1002/aenm.201702314 – ident: e_1_2_7_45_1 doi: 10.1016/0167-2738(86)90317-6 – ident: e_1_2_7_50_1 doi: 10.1016/0032-3861(87)90394-6 – ident: e_1_2_7_2_1 doi: 10.1039/C6MH00218H – ident: e_1_2_7_14_1 doi: 10.1002/cssc.201700408 – ident: e_1_2_7_22_1 doi: 10.1038/s41560-018-0237-6 – ident: e_1_2_7_4_1 doi: 10.1002/ese3.95 – ident: e_1_2_7_28_1 doi: 10.1021/acsaem.1c03680 – ident: e_1_2_7_39_1 doi: 10.1016/j.cej.2022.135106 – ident: e_1_2_7_12_1 doi: 10.1038/35087538 – ident: e_1_2_7_1_1 doi: 10.1002/aenm.201402115 – ident: e_1_2_7_34_1 doi: 10.1002/aenm.201900019 – ident: e_1_2_7_6_1 doi: 10.1080/15583724.2015.1011966 – ident: e_1_2_7_16_1 doi: 10.1021/nl202692y – ident: e_1_2_7_47_1 doi: 10.1016/0167-2738(83)90079-6 – ident: e_1_2_7_40_1 doi: 10.1016/j.electacta.2011.02.025 – ident: e_1_2_7_3_1 doi: 10.1038/nnano.2016.207 – ident: e_1_2_7_17_1 doi: 10.1016/j.nanoen.2016.09.002 – ident: e_1_2_7_23_1 doi: 10.1038/s41565-019-0465-3 – ident: e_1_2_7_11_1 doi: 10.1039/c2ee21892e – ident: e_1_2_7_46_1 doi: 10.1016/0167-2738(92)90291-V – ident: e_1_2_7_24_1 doi: 10.1021/acsenergylett.9b02739 – ident: e_1_2_7_32_1 doi: 10.1016/j.nantod.2020.101033 – ident: e_1_2_7_29_1 doi: 10.1002/adfm.202104286 – ident: e_1_2_7_49_1 doi: 10.1002/aenm.201903843 – ident: e_1_2_7_44_1 doi: 10.1002/aenm.201802955 – ident: e_1_2_7_33_1 doi: 10.1002/smtd.202100262 – ident: e_1_2_7_7_1 doi: 10.1039/C3EE43182G – ident: e_1_2_7_27_1 doi: 10.1038/s41560-018-0104-5 – ident: e_1_2_7_30_1 doi: 10.1038/nmat4821 – ident: e_1_2_7_38_1 doi: 10.1016/j.ensm.2018.07.004 – ident: e_1_2_7_19_1 doi: 10.1021/acsaem.0c00410 – ident: e_1_2_7_10_1 doi: 10.1016/0032-3861(82)90052-0 – ident: e_1_2_7_31_1 doi: 10.1016/j.scib.2020.12.026 – ident: e_1_2_7_13_1 doi: 10.1038/nature03186 – ident: e_1_2_7_21_1 doi: 10.1016/j.xcrp.2021.100644 – ident: e_1_2_7_9_1 doi: 10.1016/0013-4686(75)80008-9 – ident: e_1_2_7_5_1 doi: 10.1002/adma.202100353 – ident: e_1_2_7_35_1 doi: 10.1021/acs.nanolett.5b04117 – ident: e_1_2_7_43_1 doi: 10.1021/acsnano.0c01056 – ident: e_1_2_7_20_1 doi: 10.1021/acsaem.1c02226 – ident: e_1_2_7_18_1 doi: 10.1039/C9TA11542K – ident: e_1_2_7_15_1 doi: 10.1016/j.nanoen.2016.02.008 – ident: e_1_2_7_25_1 doi: 10.1016/j.joule.2018.09.008 – ident: e_1_2_7_37_1 doi: 10.1021/acsaem.2c01505 – ident: e_1_2_7_48_1 doi: 10.1002/anie.201711598 |
SSID | ssj0002013419 |
Score | 2.4052956 |
Snippet | Ionic‐conductive solid‐state polymer electrolytes are promising for the development of advanced lithium batteries yet a deeper understanding of their... lonic-conductive solid-state polymer electrolytes are promising for the development of advanced lithium batteries yet a deeper understanding of their... |
SourceID | wanfang proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 91 |
SubjectTerms | charge concentration gradient Concentration gradient Crystallization Cycles Electrolytes Enthalpy Entropy Ion storage Lithium Lithium batteries lithium dendrites lithium‐metal battery low‐enthalpy and high‐entropy Molten salt electrolytes Perovskites polymer electrolyte Polymers Quantum dots Solid electrolytes |
Title | Low‐Enthalpy and High‐Entropy Polymer Electrolytes for Li‐Metal Battery |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feem2.12514 https://www.proquest.com/docview/2931979217 https://d.wanfangdata.com.cn/periodical/nyyhjcl-e202401012 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1BS8MwFMeDTgQvoqg4naOgF4W6NmmaFrwMqYhs4sGJeClJ--qUrh1zIr35EfyMfhJf2m5jIIK3kr628JL0_29ofo-QEylcR_A4MYFxZjperExfSDDBtyPFmYisks7fv3WvB87NI39cIRezvTAVH2K-4KZnRvm-1hNcqrfOAhoKMKLnWp6dVbKm99Zqcj517uYrLChtGlamq8uhJzEtxt05n5R2FpcvK9LCZq5_yCyR2fOybS1152qLbNaG0ehWPbxNViDbIf1e_vH9-RVk06FMx4Uhs9jQf2xUbZMcm-7ytBjBxAiqOjdpgZ7SQIdq9F4wqg9ouo0KrlnsksFVcH95bdaFEcyICeqYkopE2BEqCUdpUdxWPscRESsUYJkw8NCHMUCv4fqo_h4IruyExtQCz3cdpdgeaWR5BvvEsGXiyARNAugC8iCkgMimthv5QCWzaJOczpITRjU1XBevSMOKd0xDnciwTGSTHM9jxxUr49eo1izHYT1f3kI0HbYvfPw-wpvUeV-czYpi-BqlIVBNZNNEsiY5K_vkj-eEQdCn5dHBf4IPyYZ-SrXK0iKN6eQdjtB3TFW7HF5tstZ9GDwNfgArItRL |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA5eEH0RRcV5LeiLQt2aS7M-ilSmruKDg72FpD11Su1kTqRv_gR_o7_Ek7ZuDETwraQnDZzk5Pt6SL5DyLGWPpciSV1ggrm8nRg3kBpcCLzYCCbjVqnOH936nR6_7ot-fTbH3oWp9CEmCTcbGeV-bQPcJqSbU9VQgGd6ZvGZz5NF7lNp45Lyu0mKBbHNqpXZ8nJIStwWE_5EoJQ2p91nIWnKM5fedZ7q_GGWt5bAc7lGVmvG6JxXU7xO5iDfIFF3-P718Rnm44HOXgpH54ljj2xUbaMhNt0Ns-IZRk5YFbrJCiSVDlJUp_uIVhEg63Yqdc1ik_Quw_uLjltXRnBjJil3NZWp9GKEEoHYYoRnAoFLIjGIwDpl0EYixgDJhh8g_LdBCuOlNKEtaAc-N4ZtkYV8mMM2cTydcp0iSwBbQR6klhB71PPjAKhmLdogJz_OUXEtG26rV2SqEjymyjpSlY5skKOJ7UsllvGr1d6Pj1UdMK8KWYcXyAB_kPAjtd-nb_OiGDzFmQJqJdmsJFmDnJZz8sc4KgwjWj7t_Mf4kCx37qOu6l7d3uySFTtilXLZIwvj0RvsIwkZm4NyqX0D-vPV-Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1dS8MwFIbDdCjeiKLi_CzojUJ1TZpmBW9EO6Zuwwsn4k1I2lM_qN2YE-mdP8Hf6C_xpO02BBG8K-khgZOk79vQPoeQfSU8V_AotoFxZruNSNu-UGCD74SaMxHWczp_p-u1eu7lHb-rkJPxvzAFH2Jy4GZ2Rv68Nht8EMXHU2gowAs9MvLszpCqweThmq6e3vbue5MzFhQ3gysz9eXQldh1xr0JoZQeTzv4qUlTozn3rtJYpQ8_jWuuPM0lslhaRuu0mONlUoF0hXTa_fevj88gHT2qZJBZKo0s881G0TbsY9N1P8leYGgFRaWbJENXaaFHtdpPGNUBtN1WgdfMVkmvGdycteyyNIIdMkFdW1ERCydELeEoLpo72ue4JiKNEqxiBg10YgzQbXg-6n8DBNdOTCNah4bvuVqzNTKb9lNYJ5ajYlfFaBPAlJAHoQSEDnW80AeqWJ3WyME4OTIsueGmfEUiC-IxlSaRMk9kjexNYgcFLePXqK1xjmW5Y14l2g7HFz6-IWEnZd6nd9Mse3wOEwnUMNkMk6xGDvM5-WMcGQQdml9t_Cd4l8xfnzdl-6J7tUkWzIDFkcsWmR0N32AbTchI75Rr7Rvtwtbx |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-Enthalpy+and+High-Entropy+Polymer+Electrolytes+for+Li-Metal+Battery&rft.jtitle=%E8%83%BD%E6%BA%90%E4%B8%8E%E7%8E%AF%E5%A2%83%E6%9D%90%E6%96%99%EF%BC%88%E8%8B%B1%E6%96%87%EF%BC%89&rft.au=Haitao+Zhang&rft.au=Yuchen+Wang&rft.au=Junfeng+Huang&rft.au=Wen+Li&rft.date=2024&rft.pub=Key+Laboratory+of+Advanced+Technologies+of+Materials%2CMinistry+of+Education%2CSchool+of+Materials+Science+and+Engineering%2CSouthwest+Jiaotong+University%2CChengdu+610031%2CChina%25Institute+of+Electrical+Engineering%2CChinese+Academy+of+Sciences%2CBeijing+100190%2CChina&rft.issn=2575-0348&rft.volume=7&rft.issue=1&rft.spage=91&rft.epage=99&rft_id=info:doi/10.1002%2Feem2.12514&rft.externalDocID=nyyhjcl_e202401012 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnyyhjcl-e%2Fnyyhjcl-e.jpg |