Combined analysis of mRNA–miRNA reveals the regulatory roles of miRNAs in the metabolism of clam Cyclina sinensis hepatopancreas during acute ammonia nitrogen stress

Clam Cyclina sinensis behaves a stronger ammonia nitrogen tolerance, whereas the molecular regulation mechanism remains unknown. In the present study, C. sinensis was exposed to ammonia nitrogen (32.90 mg/L) for 0 h (the control), 12 h (T1) and 24 h (T2). Integrated analysis of miRNA‐mRNA was conduc...

Full description

Saved in:
Bibliographic Details
Published inAquaculture research Vol. 53; no. 4; pp. 1492 - 1506
Main Authors Ge, Hongxing, Shi, Junjie, Liu, Jialing, Liang, Xiafei, Dong, Zhiguo
Format Journal Article
LanguageEnglish
Published Oxford Hindawi Limited 01.03.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Clam Cyclina sinensis behaves a stronger ammonia nitrogen tolerance, whereas the molecular regulation mechanism remains unknown. In the present study, C. sinensis was exposed to ammonia nitrogen (32.90 mg/L) for 0 h (the control), 12 h (T1) and 24 h (T2). Integrated analysis of miRNA‐mRNA was conducted to reveal the regulatory roles of miRNAs in the metabolism of C. sinensis exposed to acute ammonia nitrogen. Numerous genes involved in detoxification and ammonia excretion expressed differently indicate that nitrogen assimilation and utilization is adjusted to accommodate ammonia exposure. The clam has to alter their glucose and lipid metabolism to meet energy requirements to adapt acute ammonia exposure in the environment. 12, 948 genes were identified as target genes of the differently expressed miRNAs. Most of mRNA–miRNA pairs were involved in metabolisms of carbohydrate, lipid and amino acid. miRNA‐mRNA integrated analysis revealed involvement of Purine metabolism, Wnt signalling pathway, Hippo signalling pathway, PI3K‐Akt signalling pathway in ammonia‐stress response of C. sinensis. Exposed to ammonia, clam may suffer hypoxia exposure. Overall, exposed to ammonia, clam has to alter their glucose and lipid metabolism to meet energy requirements. Numerous mRNA–miRNA pairs were involved in metabolisms of carbohydrate, lipid and amino acid and miRNA can regulate the metabolism of C. sinensis by regulating the expression of target genes during acute ammonia nitrogen stress. The net result is that nitrogen assimilation and utilization is adjusted to accommodate ammonia exposure. The current study is helpful for further investigation into the ammonia nitrogen response mechanisms in mollusks.
AbstractList Clam Cyclina sinensis behaves a stronger ammonia nitrogen tolerance, whereas the molecular regulation mechanism remains unknown. In the present study, C. sinensis was exposed to ammonia nitrogen (32.90 mg/L) for 0 h (the control), 12 h (T1) and 24 h (T2). Integrated analysis of miRNA‐mRNA was conducted to reveal the regulatory roles of miRNAs in the metabolism of C. sinensis exposed to acute ammonia nitrogen. Numerous genes involved in detoxification and ammonia excretion expressed differently indicate that nitrogen assimilation and utilization is adjusted to accommodate ammonia exposure. The clam has to alter their glucose and lipid metabolism to meet energy requirements to adapt acute ammonia exposure in the environment. 12, 948 genes were identified as target genes of the differently expressed miRNAs. Most of mRNA–miRNA pairs were involved in metabolisms of carbohydrate, lipid and amino acid. miRNA‐mRNA integrated analysis revealed involvement of Purine metabolism, Wnt signalling pathway, Hippo signalling pathway, PI3K‐Akt signalling pathway in ammonia‐stress response of C. sinensis. Exposed to ammonia, clam may suffer hypoxia exposure. Overall, exposed to ammonia, clam has to alter their glucose and lipid metabolism to meet energy requirements. Numerous mRNA–miRNA pairs were involved in metabolisms of carbohydrate, lipid and amino acid and miRNA can regulate the metabolism of C. sinensis by regulating the expression of target genes during acute ammonia nitrogen stress. The net result is that nitrogen assimilation and utilization is adjusted to accommodate ammonia exposure. The current study is helpful for further investigation into the ammonia nitrogen response mechanisms in mollusks.
Clam Cyclina sinensis behaves a stronger ammonia nitrogen tolerance, whereas the molecular regulation mechanism remains unknown. In the present study, C. sinensis was exposed to ammonia nitrogen (32.90 mg/L) for 0 h (the control), 12 h (T1) and 24 h (T2). Integrated analysis of miRNA‐mRNA was conducted to reveal the regulatory roles of miRNAs in the metabolism of C. sinensis exposed to acute ammonia nitrogen. Numerous genes involved in detoxification and ammonia excretion expressed differently indicate that nitrogen assimilation and utilization is adjusted to accommodate ammonia exposure. The clam has to alter their glucose and lipid metabolism to meet energy requirements to adapt acute ammonia exposure in the environment. 12, 948 genes were identified as target genes of the differently expressed miRNAs. Most of mRNA–miRNA pairs were involved in metabolisms of carbohydrate, lipid and amino acid. miRNA‐mRNA integrated analysis revealed involvement of Purine metabolism, Wnt signalling pathway, Hippo signalling pathway, PI3K‐Akt signalling pathway in ammonia‐stress response of C. sinensis. Exposed to ammonia, clam may suffer hypoxia exposure. Overall, exposed to ammonia, clam has to alter their glucose and lipid metabolism to meet energy requirements. Numerous mRNA–miRNA pairs were involved in metabolisms of carbohydrate, lipid and amino acid and miRNA can regulate the metabolism of C. sinensis by regulating the expression of target genes during acute ammonia nitrogen stress. The net result is that nitrogen assimilation and utilization is adjusted to accommodate ammonia exposure. The current study is helpful for further investigation into the ammonia nitrogen response mechanisms in mollusks.
Author Shi, Junjie
Ge, Hongxing
Liu, Jialing
Dong, Zhiguo
Liang, Xiafei
Author_xml – sequence: 1
  givenname: Hongxing
  orcidid: 0000-0001-8590-5818
  surname: Ge
  fullname: Ge, Hongxing
  organization: Jiangsu Institute of Marine Resources Development
– sequence: 2
  givenname: Junjie
  surname: Shi
  fullname: Shi, Junjie
  organization: Jiangsu Ocean University
– sequence: 3
  givenname: Jialing
  surname: Liu
  fullname: Liu, Jialing
  organization: Jiangsu Ocean University
– sequence: 4
  givenname: Xiafei
  surname: Liang
  fullname: Liang, Xiafei
  organization: Jiangsu Ocean University
– sequence: 5
  givenname: Zhiguo
  surname: Dong
  fullname: Dong, Zhiguo
  email: dzg7712@163.com
  organization: Jiangsu Ocean University
BookMark eNp1kUtOwzAQhi0EEqWw4AaWWLFIG8dxHsuq4iVVIFUgsYscZ9K6iu1iJ6DsuAOH4F6cBKdhy2xmpPlm_tH8Z-hYGw0IXZJwRnzMuYUZYUlGj9CE0IQFEQnz46FmLGAsfT1FZ87twpDEISUT9L00qpQaKsw1b3onHTY1VuvHxc_nl5I-YwvvwBuH2y34etM1vDW2x9Y0MMID5bDUB0JBy0vTSKeGnmi4wsteNFJz7LyOHhS2sPc79lwLC9zhqrNSbzAXXQuYK2W05FjL1poNaOxaC86do5PaHwEXf3mKXm5vnpf3werp7mG5WAWCphEN0giqPI_zCnidQyZomdRVTLMkpalgORDIaBZDWrFSUFbFwHORxBFAUkEZe36Krsa9e2veOnBtsTOd9a9xRZRESRYxloeeuh4pYY1zFupib6Xiti9IWAw-FN6H4uCDZ-cj-yEb6P8Hi8X6Zpz4BZG5kGE
CitedBy_id crossref_primary_10_3389_fmars_2022_1034152
crossref_primary_10_1016_j_micres_2023_127301
crossref_primary_10_1007_s10499_023_01090_y
crossref_primary_10_1016_j_aqrep_2024_101952
crossref_primary_10_3389_fmars_2023_1076870
crossref_primary_10_1111_are_16062
Cites_doi 10.1016/j.fsi.2017.12.030
10.1016/j.aquaculture.2021.737294
10.1038/srep22907
10.1534/g3.117.300210
10.1016/j.rinim.2016.03.001
10.1016/j.aqrep.2021.100694
10.1016/j.aqrep.2020.100564
10.1016/j.envpol.2020.114326
10.1016/j.gene.2019.04.009
10.1016/j.ecoenv.2021.111895
10.1007/s11103-013-0120-6
10.1242/jeb.057802
10.1186/s12864-015-1503-7
10.1016/j.fsi.2017.10.028
10.1186/1471-2164-14-754
10.1152/physiolgenomics.00032.2019
10.1016/j.fsi.2012.01.025
10.1016/j.aquatox.2019.105235
10.1186/s12864-016-2636-z
10.1016/j.isci.2020.101148
10.1016/j.margen.2014.08.003
10.1016/j.aqrep.2021.100686
10.1016/j.aquaeng.2014.11.007
10.1016/j.cbd.2019.100612
10.1016/j.aquaculture.2020.735362
10.1016/j.fsi.2016.07.035
10.1016/j.aquaculture.2014.05.029
10.1016/j.envpol.2016.12.008
10.1007/s10126-017-9774-4
10.1016/j.ecoenv.2021.112219
10.1242/jcs.125831
10.1016/j.etap.2018.12.003
10.1016/j.aquaculture.2019.734817
10.1016/j.fsi.2018.09.026
10.1016/j.ecoenv.2019.05.029
10.1016/j.ecoenv.2019.04.033
10.1016/S0044-8486(01)00859-6
10.1111/1755-0998.12109
10.1038/s41598-020-60351-5
10.1016/j.aquaculture.2019.734328
10.1016/j.scitotenv.2019.02.236
10.1111/are.14784
ContentType Journal Article
Copyright 2021 John Wiley & Sons Ltd
Copyright © 2022 John Wiley & Sons Ltd
Copyright_xml – notice: 2021 John Wiley & Sons Ltd
– notice: Copyright © 2022 John Wiley & Sons Ltd
DBID AAYXX
CITATION
7TN
7U7
8FD
C1K
F1W
FR3
H95
H98
H99
L.F
L.G
M7N
P64
RC3
DOI 10.1111/are.15683
DatabaseName CrossRef
Oceanic Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts
ASFA: Marine Biotechnology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Toxicology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts
Oceanic Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1365-2109
EndPage 1506
ExternalDocumentID 10_1111_are_15683
ARE15683
Genre article
GrantInformation_xml – fundername: China Agriculture Research System of MOF and MARA
– fundername: Opening Foundation of Jiangsu Institute of Marine Resources Development
  funderid: JSIMR202017
– fundername: National Key Research and Development projects
  funderid: 2019YFD0900403
– fundername: Priority and Academic Program Development of Jiangsu Higher Education Institutions
  funderid: 20KJB240002
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
23M
24P
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAJEY
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFEBI
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AHEFC
AI.
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BGJEQ
BHBCM
BHPHI
BKSAR
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CCPQU
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
ECGQY
EJD
ESX
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
GROUPED_DOAJ
H.T
H.X
H13
HCIFZ
HF~
HVGLF
HZI
HZ~
IAG
IAO
IEP
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PCBAR
PIMPY
Q.N
Q11
QB0
R.K
RHX
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
UB1
VH1
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WRC
WUPDE
WXSBR
WYISQ
XG1
ZZTAW
~IA
~KM
~WT
AAYXX
CITATION
ITC
7TN
7U7
8FD
C1K
F1W
FR3
H95
H98
H99
L.F
L.G
M7N
P64
RC3
ID FETCH-LOGICAL-c3723-72ed9949deaf9e8c3b6fd4386737c59e1e8384e7d5bc35d4ea9c642ee6deb48c3
IEDL.DBID DR2
ISSN 1355-557X
IngestDate Thu Oct 10 21:06:34 EDT 2024
Thu Sep 26 19:07:37 EDT 2024
Sat Aug 24 00:57:32 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3723-72ed9949deaf9e8c3b6fd4386737c59e1e8384e7d5bc35d4ea9c642ee6deb48c3
ORCID 0000-0001-8590-5818
OpenAccessLink https://doi.org/10.1111/are.15683
PQID 2626825590
PQPubID 1026362
PageCount 15
ParticipantIDs proquest_journals_2626825590
crossref_primary_10_1111_are_15683
wiley_primary_10_1111_are_15683_ARE15683
PublicationCentury 2000
PublicationDate March 2022
2022-03-00
20220301
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: March 2022
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Aquaculture research
PublicationYear 2022
Publisher Hindawi Limited
Publisher_xml – name: Hindawi Limited
References 2011; 214
2017; 7
2015; 16
2021; 20
2019; 51
2019; 32
2021; 543
2013; 126
2002; 211
2019; 666
2019; 703
2018; 83
2020; 10
2014; 84
2016; 17
2018; 65
2012; 32
2020; 526
2016; 56
2014; 432
2016; 6
2019; 180
2013; 14
2020; 2020
2017; 71
2021; 211
2013; 13
2020; 51
2020; 72
2015; 64
2021; 217
2021; 19
2019; 214
2019; 179
2017; 19
2018; 74
2020; 23
2014; 18
2019; 513
2017; 222
2022; 546
2020; 518
e_1_2_11_10_1
e_1_2_11_32_1
e_1_2_11_31_1
e_1_2_11_30_1
e_1_2_11_36_1
e_1_2_11_14_1
e_1_2_11_13_1
e_1_2_11_35_1
e_1_2_11_12_1
e_1_2_11_34_1
e_1_2_11_11_1
e_1_2_11_33_1
e_1_2_11_7_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_2_1
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_20_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_41_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_43_1
e_1_2_11_18_1
e_1_2_11_17_1
e_1_2_11_16_1
e_1_2_11_15_1
Zhu Z. (e_1_2_11_45_1) 2021; 543
Ni Q. (e_1_2_11_24_1) 2020; 72
e_1_2_11_37_1
e_1_2_11_38_1
e_1_2_11_39_1
e_1_2_11_19_1
References_xml – volume: 126
  start-page: 3401
  issue: 15
  year: 2013
  end-page: 3408
  article-title: Micro RNA regulation of skin pigmentation in fish
  publication-title: Journal of Cell Science
– volume: 543
  issue: 4
  year: 2021
  article-title: Identifying a genome‐wide QTL interval controlling for ammonia‐nitrogen tolerance on chrLG1 of Nile tilapia
  publication-title: Aquaculture
– volume: 56
  start-page: 427
  year: 2016
  end-page: 435
  article-title: Identification and expression analysis of IκB and NF‐κB genes from
  publication-title: Fish & Shellfish Immunology
– volume: 23
  issue: 6
  year: 2020
  article-title: Chromosome‐level genome assembly of the Venus clam, , helps to elucidate the molecular basis of the adaptation of buried life
  publication-title: iScience
– volume: 72
  year: 2020
  article-title: Effect of salinity on growth performance and resistance of the clam against infection
  publication-title: Israeli Journal of Aquaculture‐Bamidgeh
– volume: 20
  year: 2021
  article-title: Effect of ammonia stress on transcriptome and endoplasmic reticulum stress pathway for common carp ( ) hepatopancreas
  publication-title: Aquaculture Reports
– volume: 211
  year: 2021
  article-title: Effects of acute ammonia exposure on antioxidant and detoxification metabolism in clam
  publication-title: Ecotoxicology and Environmental Safety
– volume: 19
  start-page: 551
  year: 2017
  end-page: 562
  article-title: Differential gene expression profiles and alternative isoform regulations in gill of Nile tilapia in response to acute hypoxia
  publication-title: Marine Biotechnology
– volume: 18
  start-page: 109
  year: 2014
  end-page: 111
  article-title: Next generation sequence analysis of the transcriptome of Sydney rock oysters ( ) exposed to a range of environmental stressors
  publication-title: Marine Genomics
– volume: 7
  start-page: 3999
  issue: 12
  year: 2017
  end-page: 4008
  article-title: Understanding microRNA regulation involved in the metamorphosis of the veined rapa whelk ( )
  publication-title: G3 (Bethesda, Md.)
– volume: 64
  start-page: 8
  year: 2015
  end-page: 14
  article-title: Storage of Pacific oysters in recirculating tank: ammonia excretion and potential nitrification rate
  publication-title: Aquacultural Engineering
– volume: 51
  start-page: 4421
  issue: 11
  year: 2020
  end-page: 4429
  article-title: Menthol as anaesthetic for red‐bellied pacu ( ) and its effect on HIF1a and GlucoR gene expression
  publication-title: Aquaculture Research
– volume: 74
  start-page: 52
  year: 2018
  end-page: 61
  article-title: iTRAQ‐based comparative proteome analysis for molecular mechanism of defense against acute ammonia toxicity in Pacific White shrimp
  publication-title: Fish Shellfish Immunology
– volume: 14
  start-page: 754
  issue: 1
  year: 2013
  article-title: Identification and characterization of micro RNAs involved in growth of blunt snout bream ( ) by Solexa sequencing
  publication-title: BMC Genomics
– volume: 180
  start-page: 491
  year: 2019
  end-page: 500
  article-title: Stress response and tolerance mechanisms of ammonia exposure based on transcriptomics and metabolomics in
  publication-title: Ecotoxicology and Environmental Safety
– volume: 214
  year: 2019
  article-title: Transcriptome analysis of response mechanism to ammonia stress in Asian clam ( )
  publication-title: Aquatic Toxicology
– volume: 32
  year: 2019
  article-title: Transcriptome profiling of the low‐salinity stress responses in the gills of the juvenile
  publication-title: Comparative Biochemistry and Physiology Part D: Genomics and Proteomics
– volume: 546
  year: 2022
  article-title: Integrated analysis of mi RNA and m RNA expression profiles identifies potential regulatory interactions during sexual development of Pacific oyster
  publication-title: Aquaculture
– volume: 513
  year: 2019
  article-title: Transcriptomic analyses of the acute ammonia stress response in the hepatopancreas of the kuruma shrimp ( )
  publication-title: Aquaculture
– volume: 19
  year: 2021
  article-title: Gill transcriptome analysis reveals the molecular response to the acute low‐salinity stress in
  publication-title: Aquaculture Reports
– volume: 222
  start-page: 433
  year: 2017
  end-page: 443
  article-title: Contrasting effects of hypoxia on copper toxicity during development in the three‐spined stickleback ( )
  publication-title: Environmental Pollution
– volume: 211
  start-page: 109
  issue: 1
  year: 2002
  end-page: 114
  article-title: Rearing Venus clam seeds, on a commercial scale
  publication-title: Aquaculture
– volume: 10
  start-page: 4519
  issue: 1
  year: 2020
  article-title: Inner Mongolian cashmere goat secondary follicle development regulation research based on mRNA‐miRNA co‐analysis
  publication-title: Scientific Reports
– volume: 83
  start-page: 162
  year: 2018
  end-page: 170
  article-title: Transcriptome reveals involvement of immune defense, oxidative imbalance, and apoptosis in ammonia‐stress response of the black tiger shrimp ( )
  publication-title: Fish & Shellfish Immunology
– volume: 217
  year: 2021
  article-title: Energy metabolism disorder mediated ammonia gas‐induced autophagy via AMPK/m TOR/ULK1‐Beclin1 pathway in chicken livers
  publication-title: Ecotoxicology and Environmental Safety
– volume: 20
  year: 2021
  article-title: Integrated analysis of m RNA‐seq and micro RNA‐seq depicts the potential roles of mi RNA‐m RNA networks in pigmentation of Chinese soft‐shelled turtle ( )
  publication-title: Aquaculture Reports
– volume: 71
  start-page: 319
  year: 2017
  end-page: 328
  article-title: Gill transcriptomes reveal involvement of cytoskeleton remodeling and immune defense in ammonia stress response in the banana shrimp
  publication-title: Fish & Shellfish Immunology
– volume: 6
  year: 2016
  article-title: Integrated analysis of mRNA‐seq and miRNA‐seq in the liver of in response to hypoxia
  publication-title: Scientific Reports
– volume: 179
  start-page: 9
  issue: 15
  year: 2019
  end-page: 16
  article-title: Ammonia toxicity in the mud crab ( ): The mechanistic insight from physiology to transcriptome analysis
  publication-title: Ecotoxicology and Environmental Safety
– volume: 518
  year: 2020
  article-title: Combined RNA‐Seq with small RNA revealed ribosome biogenesis and oxidative stress associated with cadmium response in carp ( L.) Hepato‐pancreas
  publication-title: Aquaculture
– volume: 6
  start-page: 21
  year: 2016
  end-page: 27
  article-title: De novo assembly of the blunt snout bream ( ) gill transcriptome to identify ammonia exposure associated micro RNAs and their targets
  publication-title: Results in Immunology
– volume: 214
  start-page: 3557
  year: 2011
  end-page: 3569
  article-title: A nose‐to‐nose comparison of the physiological and molecular responses of rainbow trout to high environmental ammonia in seawater versus freshwater
  publication-title: The Journal of Experimental Biology
– volume: 2020
  issue: 263
  year: 2020
  article-title: Hypoxia modifies the response to flutamide and linuron in male three‐spined stickleback ( )
  publication-title: Environmental Pollution
– volume: 84
  start-page: 1
  year: 2014
  end-page: 18
  article-title: Micro RNA mediated regulation of metal toxicity in plants: present status and future perspectives
  publication-title: Plant Molecular Biology
– volume: 526
  year: 2020
  article-title: MiRNA‐mRNA integration analysis reveals the regulatory roles of miRNAs in the metabolism of largemouth bass ( ) livers during acute hypoxic stress
  publication-title: Aquaculture
– volume: 51
  start-page: 432
  issue: 9
  year: 2019
  end-page: 442
  article-title: Profiling the rainbow trout hepatic miRNAome under diet‐induced hyperglycemia
  publication-title: Physiological Genomics
– volume: 703
  start-page: 35
  issue: 30
  year: 2019
  end-page: 49
  article-title: Transcriptome analysis reveals novel insights in air‐breathing magur catfish ( ) in response to high environmental ammonia
  publication-title: Gene
– volume: 16
  start-page: 305
  issue: 1
  year: 2015
  article-title: Temperature during early development has long‐term effects on microRNA expression in Atlantic cod
  publication-title: BMC Genomics
– volume: 65
  start-page: 46
  year: 2018
  end-page: 52
  article-title: Effects of ammonia nitrogen on gill mitochondria in clam
  publication-title: Environmental Toxicology and Pharmacology
– volume: 432
  start-page: 351
  year: 2014
  end-page: 359
  article-title: Effects of ammonia exposure on nitrogen metabolism in gills and hemolymph of the swimming crab
  publication-title: Aquaculture
– volume: 32
  start-page: 741
  issue: 5
  year: 2012
  end-page: 749
  article-title: Alternation of immune parameters and cellular energy allocation of under ammonia‐N exposure and challenge
  publication-title: Fish & Shellfish Immunology
– volume: 666
  start-page: 1071
  year: 2019
  end-page: 1079
  article-title: Response of AMP‐activated protein kinase and lactate metabolism of largemouth bass ( ) under acute hypoxic stress
  publication-title: Science of the Total Environment
– volume: 17
  start-page: 328
  year: 2016
  article-title: Integrated analysis of mi RNA and m RNA expression profiles in tilapia gonads at an early stage of sex differentiation
  publication-title: BMC Genomics
– volume: 13
  start-page: 559
  issue: 4
  year: 2013
  end-page: 572
  article-title: Principles of transcriptome analysis and gene expression quantification: An RNA‐seq tutorial
  publication-title: Molecular Ecology Resources
– ident: e_1_2_11_23_1
  doi: 10.1016/j.fsi.2017.12.030
– ident: e_1_2_11_41_1
  doi: 10.1016/j.aquaculture.2021.737294
– ident: e_1_2_11_43_1
  doi: 10.1038/srep22907
– ident: e_1_2_11_26_1
  doi: 10.1534/g3.117.300210
– ident: e_1_2_11_28_1
  doi: 10.1016/j.rinim.2016.03.001
– ident: e_1_2_11_37_1
  doi: 10.1016/j.aqrep.2021.100694
– ident: e_1_2_11_25_1
  doi: 10.1016/j.aqrep.2020.100564
– ident: e_1_2_11_9_1
  doi: 10.1016/j.envpol.2020.114326
– ident: e_1_2_11_2_1
  doi: 10.1016/j.gene.2019.04.009
– volume: 72
  start-page: 1124924
  year: 2020
  ident: e_1_2_11_24_1
  article-title: Effect of salinity on growth performance and resistance of the clam Cyclina sinensis against Vibrio parahaemolyticus infection
  publication-title: Israeli Journal of Aquaculture‐Bamidgeh
  contributor:
    fullname: Ni Q.
– ident: e_1_2_11_12_1
  doi: 10.1016/j.ecoenv.2021.111895
– ident: e_1_2_11_13_1
  doi: 10.1007/s11103-013-0120-6
– ident: e_1_2_11_35_1
  doi: 10.1242/jeb.057802
– ident: e_1_2_11_3_1
  doi: 10.1186/s12864-015-1503-7
– ident: e_1_2_11_31_1
  doi: 10.1016/j.fsi.2017.10.028
– ident: e_1_2_11_40_1
  doi: 10.1186/1471-2164-14-754
– ident: e_1_2_11_16_1
  doi: 10.1152/physiolgenomics.00032.2019
– ident: e_1_2_11_32_1
  doi: 10.1016/j.fsi.2012.01.025
– ident: e_1_2_11_44_1
  doi: 10.1016/j.aquatox.2019.105235
– ident: e_1_2_11_29_1
  doi: 10.1186/s12864-016-2636-z
– ident: e_1_2_11_33_1
  doi: 10.1016/j.isci.2020.101148
– ident: e_1_2_11_15_1
  doi: 10.1016/j.margen.2014.08.003
– ident: e_1_2_11_30_1
  doi: 10.1016/j.aqrep.2021.100686
– ident: e_1_2_11_4_1
  doi: 10.1016/j.aquaeng.2014.11.007
– ident: e_1_2_11_7_1
  doi: 10.1016/j.cbd.2019.100612
– ident: e_1_2_11_27_1
  doi: 10.1016/j.aquaculture.2020.735362
– ident: e_1_2_11_11_1
  doi: 10.1016/j.fsi.2016.07.035
– ident: e_1_2_11_21_1
  doi: 10.1016/j.aquaculture.2014.05.029
– ident: e_1_2_11_8_1
  doi: 10.1016/j.envpol.2016.12.008
– ident: e_1_2_11_17_1
  doi: 10.1007/s10126-017-9774-4
– ident: e_1_2_11_19_1
  doi: 10.1016/j.ecoenv.2021.112219
– ident: e_1_2_11_38_1
  doi: 10.1242/jcs.125831
– ident: e_1_2_11_6_1
  doi: 10.1016/j.etap.2018.12.003
– ident: e_1_2_11_10_1
  doi: 10.1016/j.aquaculture.2019.734817
– ident: e_1_2_11_18_1
  doi: 10.1016/j.fsi.2018.09.026
– ident: e_1_2_11_36_1
  doi: 10.1016/j.ecoenv.2019.05.029
– ident: e_1_2_11_5_1
  doi: 10.1016/j.ecoenv.2019.04.033
– ident: e_1_2_11_22_1
  doi: 10.1016/S0044-8486(01)00859-6
– ident: e_1_2_11_34_1
  doi: 10.1111/1755-0998.12109
– ident: e_1_2_11_14_1
  doi: 10.1038/s41598-020-60351-5
– ident: e_1_2_11_20_1
  doi: 10.1016/j.aquaculture.2019.734328
– ident: e_1_2_11_39_1
  doi: 10.1016/j.scitotenv.2019.02.236
– ident: e_1_2_11_42_1
  doi: 10.1111/are.14784
– volume: 543
  issue: 4
  year: 2021
  ident: e_1_2_11_45_1
  article-title: Identifying a genome‐wide QTL interval controlling for ammonia‐nitrogen tolerance on chrLG1 of Nile tilapia
  publication-title: Aquaculture
  contributor:
    fullname: Zhu Z.
SSID ssj0014031
Score 2.416748
Snippet Clam Cyclina sinensis behaves a stronger ammonia nitrogen tolerance, whereas the molecular regulation mechanism remains unknown. In the present study,...
Clam Cyclina sinensis behaves a stronger ammonia nitrogen tolerance, whereas the molecular regulation mechanism remains unknown. In the present study, C....
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
StartPage 1492
SubjectTerms 1-Phosphatidylinositol 3-kinase
AKT protein
Amino acids
Ammonia
Analysis
Assimilation
Carbohydrates
clam
Clams
Cyclina sinensis
Detoxification
Energy metabolism
Energy requirements
Excretion
Exposure
Gene expression
Genes
Glucose
Glucose metabolism
Hepatopancreas
Hypoxia
Lipid metabolism
Lipids
Metabolism
miRNA
molecular response
Mollusks
mRNA
NH3
Nitrogen
Purines
Signal transduction
Signaling
Stress response
Wnt protein
Title Combined analysis of mRNA–miRNA reveals the regulatory roles of miRNAs in the metabolism of clam Cyclina sinensis hepatopancreas during acute ammonia nitrogen stress
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fare.15683
https://www.proquest.com/docview/2626825590
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NatwwEBYhp-bQ5qelm2yKCDn04mXXlvxDTsuSsOSQw5LAHgJGlkatae0NtveQnPoOfYi-V58kM7K9SQOFkJMFHv9pZjTzmZlPjJ2KyFjq-PBsBL4nRDT2kgCEp2OLAcpXYWBctcVVOL8Rl0u53GJnfS9Myw-x-eFGnuHWa3JwldXPnFxVMELwERPTJxHpUUK02FBHEQ1dC7ak9KSMlh2rEFXxbK78NxY9JZjP01QXZy4-sNv-Ddvykh-jdZON9MML8sY3fsIue9_ln3zaGswe24Jyn-1Mv1UdBwccsD-4RiBeBsNVx1jCV5YXi6vp31-_ixyPnHif0G45Zo84drvZr6p7TqWKrTBJ1TwvnUQBDZraz7wu6JxGG-Sze2rJVJyq7kt6wncMiw0C-JKy2Jq33ZNc6XUDXJGv5Irj6lOt0OB52-Dykd1cnF_P5l63n4Ong8gPvMgHkyQiMaBsArEOstAaEcS0VY6WCUwgDmIBkZGZDqQRoBKN8AggNJAJlP_EtstVCZ8ZV9FEWkSKVvogEORlOvSFmojMYigOrRqwk16z6V1L25H2cAdnPXWzPmDDXudp57l16iPCiwlnjQfsq1Pe_2-QThfnbnD4etEj9s6nDgpXxjZk2021hmPMa5rsizPgR9059_0
link.rule.ids 315,786,790,1382,27955,27956,46327,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwEB4tywH2wD-isICFOHBJtY3t_EhcqmVXBZYeql2pFxQ59hgqaLpK08Ny4h14CN6LJ2HGScqChIQ4xVImiWPPeOazZj4DPFep81zxEfkU40ip9CDKJarIZp4cVGwS6UK2xTSZnKk3cz3fgZd9LUzLD7HdcGPLCOs1GzhvSF-yclPjkNBHJq_AVTJ3zWb5arYlj2IiuhZuaR1pnc47XiHO49k--rs3-hViXg5Ug6c5vgnv-z62CSafhpumHNovf9A3_u9P3IIbXQgqxq3O3IYdrO7A3vhD3dFw4F34TssEQWZ0wnSkJWLlxXI2Hf_4-m25oKtg6idSXUEBJLXDgfar-kJwtmIrzFJrsaiCxBIb0rbPi_WS71lSQ3F4wVWZRnDifcVf-EiesSEMX3EguxZtAaUwdtOgMGwuCyNoAapXpPOirXG5B2fHR6eHk6g70iGyMo1llMbo8lzlDo3PMbOyTLxTMuPTcqzOcYSZzBSmTpdWaqfQ5JYQEmLisFQkfx92q1WFD0CYdKQ9gUWvY1SE80qbxMqMVOnJGyfeDOBZP7XFecvcUfSIh0a9CKM-gP1-0ovOeNdFTCAvY6h1MIAXYfb-_oJiPDsKjYf_LvoUrk1O350UJ6-nbx_B9ZgLKkJW2z7sNvUGH1OY05RPgjb_BFSV_B0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9RAEC7WFcQ9-BZnXbURD14y7KS788DTsLvD-mCQwYU5CKHTXa2DTmbJZA7ryf_gj_B_-Uus6iTjKgjiKQ2pvLqquuoLVV8DPFOp89zxEfkU40ip9DDKJarIZp4CVGwS6UK1xTQ5PVOv5nq-Ay_6XpiWH2L7w409I6zX7ODnzl9yclPjkMBHJq_AVZXImJHX8WzLHcU8dC3a0jrSOp13tEJcxrO99Pdg9CvDvJynhkAzuQnv-1ds60s-DTdNObRf_mBv_M9vuAU3ugRUjFuLuQ07WN2BvfGHuiPhwLvwnRYJAszohOkoS8TKi-VsOv7x9dtyQUfBxE9kuILSRxqH7exX9YXgWsVWmKXWYlEFiSU2ZGufF-sln7NkhOLognsyjeCy-4qf8JHiYkMIvuI0di3a9klh7KZBYdhZFkbQ8lOvyOJF2-FyD84mJ--OTqNuQ4fIyjSWURqjy3OVOzQ-x8zKMvFOyYz3yrE6xxFmMlOYOl1aqZ1Ck1vCR4iJw1KR_H3YrVYVPgBh0pH2BBW9jlERyittEiszUqWnWJx4M4CnvWaL85a3o-jxDs16EWZ9AAe9zovOdddFTBAvY6B1OIDnQXl_v0Exnp2Ewf6_iz6Ba2-PJ8Wbl9PXD-F6zN0UoaTtAHabeoOPKMdpysfBln8CdXX6zA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combined+analysis+of+mRNA%E2%80%93miRNA+reveals+the+regulatory+roles+of+miRNAs+in+the+metabolism+of+clam+Cyclina+sinensis+hepatopancreas+during+acute+ammonia+nitrogen+stress&rft.jtitle=Aquaculture+research&rft.au=Ge%2C+Hongxing&rft.au=Shi%2C+Junjie&rft.au=Liu%2C+Jialing&rft.au=Liang%2C+Xiafei&rft.date=2022-03-01&rft.pub=Hindawi+Limited&rft.issn=1355-557X&rft.eissn=1365-2109&rft.volume=53&rft.issue=4&rft.spage=1492&rft.epage=1506&rft_id=info:doi/10.1111%2Fare.15683&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1355-557X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1355-557X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1355-557X&client=summon