Protection of CD4+ T cells from hepatitis C virus infection‐associated senescence via ΔNp63–miR‐181a–Sirt1 pathway
Acceleration of HCV infection‐associated T cell senescence is counter‐regulated by the ΔNp63‐miR181a‐Sirt1 pathway. T cell dysfunction has a crucial role in establishing and maintaining viral persistence. We have previously shown a decline in miR‐181a, which regulates CD4+ T cell responses via DUSP6...
Saved in:
Published in | Journal of leukocyte biology Vol. 100; no. 5; pp. 1201 - 1211 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Society for Leukocyte Biology
01.11.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Acceleration of HCV infection‐associated T cell senescence is counter‐regulated by the ΔNp63‐miR181a‐Sirt1 pathway.
T cell dysfunction has a crucial role in establishing and maintaining viral persistence. We have previously shown a decline in miR‐181a, which regulates CD4+ T cell responses via DUSP6 overexpression, in individuals with hepatitis C virus (HCV) infection. Here, we describe accelerated T cell senescence in HCV‐infected individuals compared with age‐ and sex‐matched healthy subjects. Mechanistic studies revealed that up‐regulation of transcription factor ΔNp63 led to the decline of miR‐181a expression, resulting in an overexpression of the antiaging protein Sirt1, in CD4+ T cells from HCV‐infected individuals. Either reconstituting miR‐181a or silencing ΔNp63 or Sirt1 expression in CD4+ T cells led to accelerated T cell senescence, as evidenced by an increased senescence‐associated β‐galactosidase (SA‐β‐gal) expression, shortened telomere length, and decreased EdU incorporation; this suggests that HCV‐induced T cell senescence is counterregulated by the ΔNp63–miR‐181a–Sirt1 pathway. An increase of IL‐2 production was observed in these senescent CD4+ T cells and was driven by a markedly reduced frequency of Foxp3+ regulatory T (Treg) cells and increased number of Foxp3− effector T (Teff) cells upon manipulating the ΔNp63–miR‐181a–Sirt1 pathway. In conclusion, these findings provide novel mechanistic insights into how HCV uses cellular senescent pathways to regulate T cell functions, revealing new targets for rejuvenating impaired T cell responses during chronic viral infection. |
---|---|
AbstractList | T cell dysfunction has a crucial role in establishing and maintaining viral persistence. We have previously shown a decline in miR-181a, which regulates CD4
T cell responses via DUSP6 overexpression, in individuals with hepatitis C virus (HCV) infection. Here, we describe accelerated T cell senescence in HCV-infected individuals compared with age- and sex-matched healthy subjects. Mechanistic studies revealed that up-regulation of transcription factor ΔNp63 led to the decline of miR-181a expression, resulting in an overexpression of the antiaging protein Sirt1, in CD4
T cells from HCV-infected individuals. Either reconstituting miR-181a or silencing ΔNp63 or Sirt1 expression in CD4
T cells led to accelerated T cell senescence, as evidenced by an increased senescence-associated β-galactosidase (SA-β-gal) expression, shortened telomere length, and decreased EdU incorporation; this suggests that HCV-induced T cell senescence is counterregulated by the ΔNp63-miR-181a-Sirt1 pathway. An increase of IL-2 production was observed in these senescent CD4
T cells and was driven by a markedly reduced frequency of Foxp3
regulatory T (T
) cells and increased number of Foxp3
effector T (T
) cells upon manipulating the ΔNp63-miR-181a-Sirt1 pathway. In conclusion, these findings provide novel mechanistic insights into how HCV uses cellular senescent pathways to regulate T cell functions, revealing new targets for rejuvenating impaired T cell responses during chronic viral infection. T cell dysfunction has a crucial role in establishing and maintaining viral persistence. We have previously shown a decline in miR-181a, which regulates CD4+ T cell responses via DUSP6 overexpression, in individuals with hepatitis C virus (HCV) infection. Here, we describe accelerated T cell senescence in HCV-infected individuals compared with age- and sex-matched healthy subjects. Mechanistic studies revealed that up-regulation of transcription factor ΔNp63 led to the decline of miR-181a expression, resulting in an overexpression of the antiaging protein Sirt1, in CD4+ T cells from HCV-infected individuals. Either reconstituting miR-181a or silencing ΔNp63 or Sirt1 expression in CD4+ T cells led to accelerated T cell senescence, as evidenced by an increased senescence-associated β-galactosidase (SA-β-gal) expression, shortened telomere length, and decreased EdU incorporation; this suggests that HCV-induced T cell senescence is counterregulated by the ΔNp63-miR-181a-Sirt1 pathway. An increase of IL-2 production was observed in these senescent CD4+ T cells and was driven by a markedly reduced frequency of Foxp3+ regulatory T (Treg) cells and increased number of Foxp3- effector T (Teff) cells upon manipulating the ΔNp63-miR-181a-Sirt1 pathway. In conclusion, these findings provide novel mechanistic insights into how HCV uses cellular senescent pathways to regulate T cell functions, revealing new targets for rejuvenating impaired T cell responses during chronic viral infection. Acceleration of HCV infection-associated T cell senescence is counter-regulated by the ΔNp63-miR181a-Sirt1 pathway. T cell dysfunction has a crucial role in establishing and maintaining viral persistence. We have previously shown a decline in miR-181a, which regulates CD4 + T cell responses via DUSP6 overexpression, in individuals with hepatitis C virus (HCV) infection. Here, we describe accelerated T cell senescence in HCV-infected individuals compared with age- and sex-matched healthy subjects. Mechanistic studies revealed that up-regulation of transcription factor ΔNp63 led to the decline of miR-181a expression, resulting in an overexpression of the antiaging protein Sirt1, in CD4 + T cells from HCV-infected individuals. Either reconstituting miR-181a or silencing ΔNp63 or Sirt1 expression in CD4 + T cells led to accelerated T cell senescence, as evidenced by an increased senescence-associated β-galactosidase (SA-β-gal) expression, shortened telomere length, and decreased EdU incorporation; this suggests that HCV-induced T cell senescence is counterregulated by the ΔNp63–miR-181a–Sirt1 pathway. An increase of IL-2 production was observed in these senescent CD4 + T cells and was driven by a markedly reduced frequency of Foxp3 + regulatory T (T reg ) cells and increased number of Foxp3 − effector T (T eff ) cells upon manipulating the ΔNp63–miR-181a–Sirt1 pathway. In conclusion, these findings provide novel mechanistic insights into how HCV uses cellular senescent pathways to regulate T cell functions, revealing new targets for rejuvenating impaired T cell responses during chronic viral infection. Acceleration of HCV infection‐associated T cell senescence is counter‐regulated by the ΔNp63‐miR181a‐Sirt1 pathway. T cell dysfunction has a crucial role in establishing and maintaining viral persistence. We have previously shown a decline in miR‐181a, which regulates CD4+ T cell responses via DUSP6 overexpression, in individuals with hepatitis C virus (HCV) infection. Here, we describe accelerated T cell senescence in HCV‐infected individuals compared with age‐ and sex‐matched healthy subjects. Mechanistic studies revealed that up‐regulation of transcription factor ΔNp63 led to the decline of miR‐181a expression, resulting in an overexpression of the antiaging protein Sirt1, in CD4+ T cells from HCV‐infected individuals. Either reconstituting miR‐181a or silencing ΔNp63 or Sirt1 expression in CD4+ T cells led to accelerated T cell senescence, as evidenced by an increased senescence‐associated β‐galactosidase (SA‐β‐gal) expression, shortened telomere length, and decreased EdU incorporation; this suggests that HCV‐induced T cell senescence is counterregulated by the ΔNp63–miR‐181a–Sirt1 pathway. An increase of IL‐2 production was observed in these senescent CD4+ T cells and was driven by a markedly reduced frequency of Foxp3+ regulatory T (Treg) cells and increased number of Foxp3− effector T (Teff) cells upon manipulating the ΔNp63–miR‐181a–Sirt1 pathway. In conclusion, these findings provide novel mechanistic insights into how HCV uses cellular senescent pathways to regulate T cell functions, revealing new targets for rejuvenating impaired T cell responses during chronic viral infection. T cell dysfunction has a crucial role in establishing and maintaining viral persistence. We have previously shown a decline in miR-181a, which regulates CD4+ T cell responses via DUSP6 overexpression, in individuals with hepatitis C virus (HCV) infection. Here, we describe accelerated T cell senescence in HCV-infected individuals compared with age- and sex-matched healthy subjects. Mechanistic studies revealed that up-regulation of transcription factor ΔNp63 led to the decline of miR-181a expression, resulting in an overexpression of the antiaging protein Sirt1, in CD4+ T cells from HCV-infected individuals. Either reconstituting miR-181a or silencing ΔNp63 or Sirt1 expression in CD4+ T cells led to accelerated T cell senescence, as evidenced by an increased senescence-associated β-galactosidase (SA-β-gal) expression, shortened telomere length, and decreased EdU incorporation; this suggests that HCV-induced T cell senescence is counterregulated by the ΔNp63–miR-181a–Sirt1 pathway. An increase of IL-2 production was observed in these senescent CD4+ T cells and was driven by a markedly reduced frequency of Foxp3+ regulatory T (Treg) cells and increased number of Foxp3− effector T (Teff) cells upon manipulating the ΔNp63–miR-181a–Sirt1 pathway. In conclusion, these findings provide novel mechanistic insights into how HCV uses cellular senescent pathways to regulate T cell functions, revealing new targets for rejuvenating impaired T cell responses during chronic viral infection. |
Author | Zhou, Yun Ning, Shun B. Lian, Jian Q. Moorman, Jonathan P. Yao, Zhi Q. Zhao, Juan Zhang, Ying Huang, Chang X. Li, Guang Y. Ren, Jun P. Wang, Ling Jia, Zhan S. |
Author_xml | – sequence: 1 givenname: Yun surname: Zhou fullname: Zhou, Yun – sequence: 2 givenname: Guang Y. surname: Li fullname: Li, Guang Y. – sequence: 3 givenname: Jun P. surname: Ren fullname: Ren, Jun P. – sequence: 4 givenname: Ling surname: Wang fullname: Wang, Ling – sequence: 5 givenname: Juan surname: Zhao fullname: Zhao, Juan – sequence: 6 givenname: Shun B. surname: Ning fullname: Ning, Shun B. – sequence: 7 givenname: Ying surname: Zhang fullname: Zhang, Ying – sequence: 8 givenname: Jian Q. surname: Lian fullname: Lian, Jian Q. – sequence: 9 givenname: Chang X. surname: Huang fullname: Huang, Chang X. – sequence: 10 givenname: Zhan S. surname: Jia fullname: Jia, Zhan S. email: jiazsh@fmmu.edu.cn – sequence: 11 givenname: Jonathan P. surname: Moorman fullname: Moorman, Jonathan P. – sequence: 12 givenname: Zhi Q. surname: Yao fullname: Yao, Zhi Q. email: yao@etsu.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27354409$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkcFu1DAYhC3Uim4Ld07IRySU8v9x4jgXpLJAAa0ALeVsOV6bdZXEWzvbasWlj1AJnouH6JPUS1oEHOBkWf5mxprZJzu97w0hjxAOEUX97LRtDssjYMgzxHo-v0cmWDORMV6xHTKBqsCsLAD2yH6MpwDAcg73yV5esbIooJ6Qrx-DH4wenO-pt3T6snhKT6g2bRupDb6jS7NSgxtcpFN67sI6UtfbUXB9eaVi9NqpwSxoNL2J2vTaJE7RH9_frzi7vvzWuXkCUaBKl08uDEiT4_JCbR6QXavaaB7engfk8-tXJ9M32ezD8dvp0SzTrMox05XiaDkUuUILRpQqmZUWeQNMCyaUBWS8ToRq8gY1skTxylrLFlZoyw7I89F3tW46s0h_HIJq5Sq4ToWN9MrJP196t5Rf_LksgdcgeDJ4cmsQ_NnaxEF2Lm47Ur3x6yhR5LwCURVlQh__nvUr5K7xBPAR0MHHGIyV2g1qW2eKdq1EkNtpZZpWjtPKn9MmIfwlvPP-h6QcJReuNZv_8vLd7AXmqcwbhQy9JA |
CitedBy_id | crossref_primary_10_1016_j_biopha_2017_11_075 crossref_primary_10_1016_j_tranon_2024_102268 crossref_primary_10_1172_JCI143632 crossref_primary_10_1097_CM9_0000000000003439 crossref_primary_10_1016_j_acthis_2024_152134 crossref_primary_10_1038_s41419_020_2395_2 crossref_primary_10_3390_pathogens9020083 crossref_primary_10_3390_v11111025 crossref_primary_10_1186_s12979_019_0153_z crossref_primary_10_3390_v15051061 crossref_primary_10_1111_pai_13038 crossref_primary_10_1038_s41374_020_0444_1 crossref_primary_10_1139_bcb_2018_0126 crossref_primary_10_1016_j_molmed_2020_01_010 crossref_primary_10_1038_s41392_022_01257_8 crossref_primary_10_3389_fimmu_2019_01152 crossref_primary_10_3390_cells11182921 crossref_primary_10_1371_journal_pone_0198477 crossref_primary_10_1016_j_celrep_2019_10_044 crossref_primary_10_1055_s_0040_1722262 crossref_primary_10_3390_cells12010132 crossref_primary_10_3389_fimmu_2021_658420 crossref_primary_10_1038_s41419_018_0897_y crossref_primary_10_1038_s41419_020_03238_7 crossref_primary_10_1038_s41467_018_05552_3 crossref_primary_10_3389_fcimb_2022_1026293 crossref_primary_10_1038_s41421_018_0015_4 |
Cites_doi | 10.1016/j.cell.2006.07.002 10.1073/pnas.1009731107 10.1016/j.immuni.2013.12.010 10.1002/jmv.24527 10.1128/JVI.00016-14 10.1038/sj.cdd.4401926 10.1038/ncomms4555 10.1002/hep.27634 10.1111/eci.12581 10.1073/pnas.1112257109 10.1172/JCI67714 10.4049/jimmunol.167.9.5264 10.1128/JVI.00787-14 10.1007/s12275-014-4267-x 10.1158/1535-7163.MCT-12-0700 10.4049/jimmunol.1002006 10.1146/annurev.micro.112408.134243 10.1038/nm.2963 10.1038/icb.2010.121 10.2174/157016211797636008 10.1101/gad.342305 10.1007/s00005-013-0219-0 10.1016/j.jhep.2010.03.005 10.1158/0008-5472.CAN-10-4274 10.1038/nrmicro1473 10.1073/pnas.92.20.9363 10.1111/j.1365-2567.2008.02829.x 10.1002/eji.201040340 10.1128/JVI.02861-13 10.1200/JCO.2006.10.3101 10.1002/hep.25849 10.1111/eci.12429 10.1016/j.cell.2005.02.003 10.1111/j.1474-9726.2010.00548.x 10.1146/annurev.pathol.4.110807.092250 10.1002/hep.28571 10.1093/carcin/bgp268 10.4049/jimmunol.1200162 10.4049/jimmunol.1302069 10.1038/ncb1988 10.1002/rmv.1850 10.1002/eji.201242768 |
ContentType | Journal Article |
Copyright | 2016 Society for Leukocyte Biology Society for Leukocyte Biology. Society for Leukocyte Biology 2016 Society for Leukocyte Biology |
Copyright_xml | – notice: 2016 Society for Leukocyte Biology – notice: Society for Leukocyte Biology. – notice: Society for Leukocyte Biology 2016 Society for Leukocyte Biology |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1189/jlb.5A0316-119RR |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Biology |
EISSN | 1938-3673 |
EndPage | 1211 |
ExternalDocumentID | PMC5069086 27354409 10_1189_jlb_5A0316_119RR JLB1201 |
Genre | article Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: U.S. Department of Veterans Affairs – fundername: United States Government – fundername: U.S. National Institutes of Health funderid: R01DK093526; R01AI114748 – fundername: VA Merit Review Award to ZQY/JPM funderid: INFA‐016‐15S – fundername: China Scholarship Council funderid: CSC 201306590012 – fundername: Technology Innovation and Development Foundation of Tangdu Hospital funderid: 2015JCYJ011 – fundername: James H. Quillen Veterans Affairs Medical Center – fundername: NIDDK NIH HHS grantid: R01 DK093526 – fundername: BLRD VA grantid: I01 BX002670 – fundername: NIAID NIH HHS grantid: R01 AI114748 |
GroupedDBID | --- .GJ 0R~ 0VX 18M 1OB 1OC 29K 2WC 33P 4.4 53G 5GY 5RE 5WD AABZA AACZT AAHHS AAPGJ AAPXW AARHZ AASGY AAUAY AAVAP AAWDT AAXRX AAZKR ABCUV ABDFA ABEFU ABEJV ABJNI ABLJU ABMNT ABNHQ ABPQP ABPTD ABWST ABXVV ACAHQ ACCFJ ACCZN ACFRR ACGFO ACGFS ACPOU ACPRK ACUTJ ACXBN ACXQS ACZBC ADBBV ADIPN ADKYN ADOZA ADQBN ADVEK ADVOB ADXAS ADZMN AEEZP AENEX AEQDE AFFNX AFGWE AFRAH AFYAG AGMDO AGQXC AHMMS AI. AIURR AIWBW AJAOE AJBDE AJEEA ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ANFBD APJGH ATGXG AVNTJ BCRHZ C45 CS3 D-I DCZOG DRFUL DRSTM DU5 E3Z EBS EJD EMOBN F5P F9R GX1 H13 HZ~ K-O KOP L7B LATKE LEEKS LUTES LYRES O9- OBOKY OCZFY OJZSN OK1 OPAEJ OVD OWPYF P2P P2W RHI RJQFR ROL ROX SJN SUPJJ TCN TEORI TMA TR2 TSL VH1 W8F WOHZO WOQ YHG ZGI ZXP ZZTAW AAYXX ABGNP ABVGC ABXZS ADGKP ADNBA AGORE AJBYB AJNCP ALXQX CITATION AAMMB ABIME ABPIB ABZEO ACVCV ADMTO AEFGJ AFFQV AGXDD AHGBF AIDQK AIDYY AJDVS CGR CUY CVF ECM EIF NPM NU- OBFPC 7X8 5PM |
ID | FETCH-LOGICAL-c3721-c7a61f6042a1f0e85a1815f16b03c838af01369f60ab2b1c13f0e67fff3df8cf3 |
ISSN | 0741-5400 |
IngestDate | Thu Aug 21 18:30:39 EDT 2025 Fri Jul 11 05:57:49 EDT 2025 Mon Jul 21 05:59:47 EDT 2025 Tue Jul 01 00:31:38 EDT 2025 Thu Apr 24 22:59:43 EDT 2025 Wed Jan 22 16:53:06 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | T cell senescence microRNA-181a transcription factor p63 Sirtuin 1 hepatitis C |
Language | English |
License | https://academic.oup.com/pages/standard-publication-reuse-rights Society for Leukocyte Biology. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3721-c7a61f6042a1f0e85a1815f16b03c838af01369f60ab2b1c13f0e67fff3df8cf3 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://jlb.onlinelibrary.wiley.com/doi/pdfdirect/10.1189/jlb.5A0316-119RR |
PMID | 27354409 |
PQID | 1826708745 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5069086 proquest_miscellaneous_1826708745 pubmed_primary_27354409 crossref_citationtrail_10_1189_jlb_5A0316_119RR crossref_primary_10_1189_jlb_5A0316_119RR wiley_primary_10_1189_jlb_5A0316_119RR_JLB1201 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2016 |
PublicationDateYYYYMMDD | 2016-11-01 |
PublicationDate_xml | – month: 11 year: 2016 text: November 2016 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Bethesda, MD, USA |
PublicationTitle | Journal of leukocyte biology |
PublicationTitleAlternate | J Leukoc Biol |
PublicationYear | 2016 |
Publisher | Society for Leukocyte Biology |
Publisher_xml | – name: Society for Leukocyte Biology |
References | 2010; 53 2010; 31 2001; 167 1995; 92 2012; 189 2010; 107 2006; 13 2013; 43 2013; 61 2013; 123 2012; 18 2006; 4 2014; 192 2008; 125 2014; 40 2012; 56 2014; 88 2010; 40 2012; 109 2011; 9 2015; 45 2009; 11 2015; 25 2010; 64 2005; 19 2014; 5 2005; 120 2015; 61 2013; 12 2011; 71 2016 2011; 89 2014; 52 2006; 126 2010; 5 2016; 46 2007; 25 2010; 9 2011; 186 Lee (2023011801095855000_B6) 2014; 52 Guo (2023011801095855000_B38) 2009; 11 Jin (2023011801095855000_B28) 2010; 107 Yao (2023011801095855000_B31) 2001; 167 Yao (2023011801095855000_B12) 2013; 61 Shi (2023011801095855000_B30) 2014; 192 Zhang (2023011801095855000_B7) 2012; 56 Ni (2023011801095855000_B42) 2011; 89 Zhang (2023011801095855000_B33) 2011; 186 Coppola (2023011801095855000_B3) 2016 Candi (2023011801095855000_B19) 2006; 13 Park (2023011801095855000_B1) 2014; 40 Wang (2023011801095855000_B5) 2015; 25 Barathan (2023011801095855000_B13) 2015; 45 Donmez (2023011801095855000_B39) 2010; 9 Li (2023011801095855000_B10) 2015; 61 Mukherjee (2023011801095855000_B8) 2014; 88 Barathan (2023011801095855000_B16) 2016; 46 Sarnow (2023011801095855000_B35) 2006; 4 Longo (2023011801095855000_B22) 2006; 126 Moorman (2023011801095855000_B29) 2012; 189 Campisi (2023011801095855000_B36) 2005; 120 Chhatwal (2023011801095855000_B4) 2016 Hoare (2023011801095855000_B14) 2010; 53 Hornsby (2023011801095855000_B37) 2007; 25 Dimri (2023011801095855000_B18) 1995; 92 Haigis (2023011801095855000_B40) 2010; 5 Ren (2023011801095855000_B25) 2014; 88 Ji (2023011801095855000_B41) 2013; 43 Portmann (2023011801095855000_B24) 2013; 12 Kuwahara (2023011801095855000_B26) 2014; 5 Artandi (2023011801095855000_B17) 2010; 31 Yao (2023011801095855000_B32) 2008; 125 Skalsky (2023011801095855000_B34) 2010; 64 Estrabaud (2023011801095855000_B9) 2014; 88 Rosen (2023011801095855000_B2) 2013; 123 Li (2023011801095855000_B11) 2012; 18 Ferrando-Martínez (2023011801095855000_B15) 2011; 9 Vali (2023011801095855000_B27) 2010; 40 Keyes (2023011801095855000_B20) 2005; 19 Rivetti di Val Cervo (2023011801095855000_B21) 2012; 109 Chen (2023011801095855000_B23) 2011; 71 24439265 - Immunity. 2014 Jan 16;40(1):13-24 18397267 - Immunology. 2008 Oct;125(2):197-207 19898465 - Nat Cell Biol. 2009 Dec;11(12):1451-7 23023500 - Nat Med. 2012 Oct;18(10):1518-24 25721991 - Eur J Clin Invest. 2015 May;45(5):466-74 7568133 - Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9363-7 21263070 - J Immunol. 2011 Mar 1;186(5):3093-103 24672032 - J Virol. 2014 Jun;88(11):6394-402 20462651 - J Hepatol. 2010 Aug;53(2):252-60 15734683 - Cell. 2005 Feb 25;120(4):513-22 24335313 - J Virol. 2014 Mar;88(5):2442-51 19887512 - Carcinogenesis. 2010 Jan;31(1):9-18 20679213 - Proc Natl Acad Sci U S A. 2010 Aug 17;107(33):14733-8 17488983 - J Clin Oncol. 2007 May 10;25(14):1852-7 21916840 - Curr HIV Res. 2011 Jul;9(5):289-94 24694524 - Nat Commun. 2014 Apr 02;5:3555 25477247 - Hepatology. 2015 Apr;61(4):1163-73 24337749 - J Immunol. 2014 Jan 15;192(2):649-57 16873059 - Cell. 2006 Jul 28;126(2):257-68 21527554 - Cancer Res. 2011 Jun 15;71(12):4138-49 20623550 - Eur J Immunol. 2010 Sep;40(9):2493-505 16107615 - Genes Dev. 2005 Sep 1;19(17):1986-99 26258805 - Rev Med Virol. 2015 Sep;25(5):320-41 26681320 - Eur J Clin Invest. 2016 Feb;46(2):170-80 20409078 - Aging Cell. 2010 Apr;9(2):285-90 20078221 - Annu Rev Pathol. 2010;5:253-95 20477536 - Annu Rev Microbiol. 2010;64:123-41 27015107 - Hepatology. 2016 Nov;64(5):1442-1450 16601749 - Cell Death Differ. 2006 Jun;13(6):1037-47 23339189 - Mol Cancer Ther. 2013 Apr;12(4):499-508 24871972 - J Microbiol. 2014 Jun;52(6):445-51 20975732 - Immunol Cell Biol. 2011 May;89(4):535-9 22610915 - Hepatology. 2012 Nov;56(5):1631-40 23400275 - Arch Immunol Ther Exp (Warsz). 2013 Jun;61(3):193-201 24789793 - J Virol. 2014 Jul;88(14):7929-40 26991255 - J Med Virol. 2016 Oct;88(10):1659-71 11673541 - J Immunol. 2001 Nov 1;167(9):5264-72 23161469 - Eur J Immunol. 2013 Feb;43(2):458-67 22706088 - J Immunol. 2012 Jul 15;189(2):755-66 16912711 - Nat Rev Microbiol. 2006 Sep;4(9):651-9 24084744 - J Clin Invest. 2013 Oct;123(10):4121-30 22228303 - Proc Natl Acad Sci U S A. 2012 Jan 24;109(4):1133-8 |
References_xml | – volume: 12 start-page: 499 year: 2013 end-page: 508 article-title: Antitumor effect of SIRT1 inhibition in human HCC tumor models in vitro and in vivo publication-title: Mol. Cancer Ther. – volume: 107 start-page: 14733 year: 2010 end-page: 14738 article-title: Cooperation of Tim‐3 and PD‐1 in CD8 T‐cell exhaustion during chronic viral infection publication-title: Proc. Natl. Acad. Sci. USA – volume: 71 start-page: 4138 year: 2011 end-page: 4149 article-title: Sirtuin 1 is upregulated in a subset of hepatocellular carcinomas where it is essential for telomere maintenance and tumor cell growth publication-title: Cancer Res. – volume: 120 start-page: 513 year: 2005 end-page: 522 article-title: Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors publication-title: Cell – volume: 45 start-page: 466 year: 2015 end-page: 474 article-title: Increased frequency of late‐senescent T cells lacking CD127 in chronic hepatitis C disease publication-title: Eur. J. Clin. Invest. – volume: 126 start-page: 257 year: 2006 end-page: 268 article-title: Sirtuins in aging and age‐related disease publication-title: Cell – volume: 40 start-page: 2493 year: 2010 end-page: 2505 article-title: HCV‐specific T cells in HCV/HIV co‐infection show elevated frequencies of dual Tim‐3/PD‐1 expression that correlate with liver disease progression publication-title: Eur. J. Immunol. – volume: 89 start-page: 535 year: 2011 end-page: 539 article-title: PD‐1 modulates regulatory T cells and suppresses T‐cell responses in HCV‐associated lymphoma publication-title: Immunol. Cell Biol. – volume: 19 start-page: 1986 year: 2005 end-page: 1999 article-title: p63 deficiency activates a program of cellular senescence and leads to accelerated aging publication-title: Genes Dev. – volume: 4 start-page: 651 year: 2006 end-page: 659 article-title: MicroRNAs: expression, avoidance and subversion by vertebrate viruses publication-title: Nat. Rev. Microbiol. – volume: 5 start-page: 3555 year: 2014 article-title: The Menin‐Bach2 axis is critical for regulating CD4 T‐cell senescence and cytokine homeostasis publication-title: Nat. Commun. – volume: 52 start-page: 445 year: 2014 end-page: 451 article-title: The role of microRNAs in hepatitis C virus replication and related liver diseases publication-title: J. Microbiol. – year: 2016 article-title: Clinical impact of the hepatitis C virus mutations in the era of directly acting antivirals publication-title: J. Med. Virol. – volume: 11 start-page: 1451 year: 2009 end-page: 1457 article-title: TAp63 induces senescence and suppresses tumorigenesis in vivo publication-title: Nat. Cell Biol. – volume: 31 start-page: 9 year: 2010 end-page: 18 article-title: Telomeres and telomerase in cancer publication-title: Carcinogenesis – volume: 123 start-page: 4121 year: 2013 end-page: 4130 article-title: Emerging concepts in immunity to hepatitis C virus infection publication-title: J. Clin. Invest. – volume: 46 start-page: 170 year: 2016 end-page: 180 article-title: Peripheral loss of CD8+CD161++TCRVα7md2+ mucosal‐associated invariant T cells in chronic hepatitis C virus‐infected patients publication-title: Eur. J. Clin. Invest. – volume: 167 start-page: 5264 year: 2001 end-page: 5272 article-title: Hepatitis C virus core protein inhibits human T lymphocyte responses by a complement‐dependent regulatory pathway publication-title: J. Immunol. – volume: 53 start-page: 252 year: 2010 end-page: 260 article-title: CD4+ T‐lymphocyte telomere length is related to fibrosis stage, clinical outcome and treatment response in chronic hepatitis C virus infection publication-title: J. Hepatol. – volume: 40 start-page: 13 year: 2014 end-page: 24 article-title: Immune responses to HCV and other hepatitis viruses publication-title: Immunity – volume: 56 start-page: 1631 year: 2012 end-page: 1640 article-title: Hepatitis C virus‐induced up‐regulation of microRNA‐155 promotes hepatocarcinogenesis by activating Wnt signaling publication-title: Hepatology – volume: 189 start-page: 755 year: 2012 end-page: 766 article-title: Tim‐3 controls regulatory and effect or T cell balance during hepatitis C virus Infection publication-title: J. Immunol. – volume: 61 start-page: 1163 year: 2015 end-page: 1173 article-title: Hepatitis C virus–induced reduction in miR‐181a impairs CD4+ T‐cell responses via overexpression of DUSP6 publication-title: Hepatology – volume: 125 start-page: 197 year: 2008 end-page: 207 article-title: Differential regulation of SOCS‐1 signalling in B and T lymphocytes by hepatitis C virus core protein publication-title: Immunology – volume: 9 start-page: 289 year: 2011 end-page: 294 article-title: HIV infection‐related premature immunosenescence: high rates of immune exhaustion after short time of infection publication-title: Curr. HIV Res. – volume: 192 start-page: 649 year: 2014 end-page: 657 article-title: KLRG1 impairs CD4+ T cell responses via p16ink4a and p27kip1 pathways: role in hepatitis B vaccine failure in individuals with hepatitis C virus infection publication-title: J. Immunol. – volume: 18 start-page: 1518 year: 2012 end-page: 1524 article-title: Decline in miR‐181a expression with age impairs T cell receptor sensitivity by increasing DUSP6 activity publication-title: Nat. Med. – volume: 186 start-page: 3093 year: 2011 end-page: 3103 article-title: Cross‐talk between programmed death‐1 and suppressor of cytokine signaling‐1 in ihibition of IL‐12 production by monocytes/macrophages in hepatitis C virus infection publication-title: J. Immunol. – volume: 64 start-page: 123 year: 2010 end-page: 141 article-title: Viruses, microRNAs, and host interactions publication-title: Annu. Rev. Microbiol. – volume: 13 start-page: 1037 year: 2006 end-page: 1047 article-title: Differential roles of p63 isoforms in epidermal development: selective genetic complementation in p63 null mice publication-title: Cell Death Differ. – volume: 25 start-page: 320 year: 2015 end-page: 341 article-title: MicroRNA regulation of viral immunity, latency, and carcinogenesis of selected tumor viruses and HIV publication-title: Rev. Med. Virol. – volume: 25 start-page: 1852 year: 2007 end-page: 1857 article-title: Senescence as an anticancer mechanism publication-title: J. Clin. Oncol. – volume: 61 start-page: 193 year: 2013 end-page: 201 article-title: Immune exhaustion and immune senescence: two distinct pathways for HBV vaccine failure during HCV and/or HIV infection publication-title: Arch. Immunol. Ther. Exp. (Warsz.) – volume: 92 start-page: 9363 year: 1995 end-page: 9367 article-title: A biomarker that identifies senescent human cells in culture and in aging skin in vivo publication-title: Proc. Natl. Acad. Sci. USA – volume: 5 start-page: 253 year: 2010 end-page: 295 article-title: Mammalian sirtuins: biological insights and disease relevance publication-title: Annu. Rev. Pathol. – volume: 109 start-page: 1133 year: 2012 end-page: 1138 article-title: p63‐microRNA feedback in keratinocyte senescence publication-title: Proc. Natl. Acad. Sci. USA – volume: 88 start-page: 6394 year: 2014 end-page: 6402 article-title: Reduction of microRNA 122 expression in IFNL3 CT/TT carriers and during progression of fibrosis in patients with chronic hepatitis C publication-title: J. Virol. – volume: 43 start-page: 458 year: 2013 end-page: 467 article-title: HCV‐infected hepatocytes drive CD4+CD25+Foxp3+ regulatory T‐cell development through the Tim‐3/Gal‐9 pathway publication-title: Eur. J. Immunol. – year: 2016 article-title: Hepatitis C disease burden in the United States in the era of oral direct‐acting antivirals publication-title: Hepatology – volume: 88 start-page: 7929 year: 2014 end-page: 7940 article-title: Transcriptional suppression of miR‐181c by hepatitis C virus enhances homeobox A1 expression publication-title: J. Virol. – volume: 88 start-page: 2442 year: 2014 end-page: 2451 article-title: Sirtuin 1 regulates hepatitis B virus transcription and replication by targeting transcription factor AP‐1 publication-title: J. Virol. – volume: 9 start-page: 285 year: 2010 end-page: 290 article-title: Aging and disease: connections to sirtuins publication-title: Aging Cell – volume: 126 start-page: 257 year: 2006 ident: 2023011801095855000_B22 article-title: Sirtuins in aging and age-related disease publication-title: Cell doi: 10.1016/j.cell.2006.07.002 – volume: 107 start-page: 14733 year: 2010 ident: 2023011801095855000_B28 article-title: Cooperation of Tim-3 and PD-1 in CD8 T-cell exhaustion during chronic viral infection publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1009731107 – volume: 40 start-page: 13 year: 2014 ident: 2023011801095855000_B1 article-title: Immune responses to HCV and other hepatitis viruses publication-title: Immunity doi: 10.1016/j.immuni.2013.12.010 – year: 2016 ident: 2023011801095855000_B3 article-title: Clinical impact of the hepatitis C virus mutations in the era of directly acting antivirals publication-title: J. Med. Virol. doi: 10.1002/jmv.24527 – volume: 88 start-page: 6394 year: 2014 ident: 2023011801095855000_B9 article-title: Reduction of microRNA 122 expression in IFNL3 CT/TT carriers and during progression of fibrosis in patients with chronic hepatitis C publication-title: J. Virol. doi: 10.1128/JVI.00016-14 – volume: 13 start-page: 1037 year: 2006 ident: 2023011801095855000_B19 article-title: Differential roles of p63 isoforms in epidermal development: selective genetic complementation in p63 null mice publication-title: Cell Death Differ. doi: 10.1038/sj.cdd.4401926 – volume: 5 start-page: 3555 year: 2014 ident: 2023011801095855000_B26 article-title: The Menin-Bach2 axis is critical for regulating CD4 T-cell senescence and cytokine homeostasis publication-title: Nat. Commun. doi: 10.1038/ncomms4555 – volume: 61 start-page: 1163 year: 2015 ident: 2023011801095855000_B10 article-title: Hepatitis C virus–induced reduction in miR-181a impairs CD4+ T-cell responses via overexpression of DUSP6 publication-title: Hepatology doi: 10.1002/hep.27634 – volume: 46 start-page: 170 year: 2016 ident: 2023011801095855000_B16 article-title: Peripheral loss of CD8+CD161++TCRVα7md2+ mucosal-associated invariant T cells in chronic hepatitis C virus-infected patients publication-title: Eur. J. Clin. Invest. doi: 10.1111/eci.12581 – volume: 109 start-page: 1133 year: 2012 ident: 2023011801095855000_B21 article-title: p63-microRNA feedback in keratinocyte senescence publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1112257109 – volume: 123 start-page: 4121 year: 2013 ident: 2023011801095855000_B2 article-title: Emerging concepts in immunity to hepatitis C virus infection publication-title: J. Clin. Invest. doi: 10.1172/JCI67714 – volume: 167 start-page: 5264 year: 2001 ident: 2023011801095855000_B31 article-title: Hepatitis C virus core protein inhibits human T lymphocyte responses by a complement-dependent regulatory pathway publication-title: J. Immunol. doi: 10.4049/jimmunol.167.9.5264 – volume: 88 start-page: 7929 year: 2014 ident: 2023011801095855000_B8 article-title: Transcriptional suppression of miR-181c by hepatitis C virus enhances homeobox A1 expression publication-title: J. Virol. doi: 10.1128/JVI.00787-14 – volume: 52 start-page: 445 year: 2014 ident: 2023011801095855000_B6 article-title: The role of microRNAs in hepatitis C virus replication and related liver diseases publication-title: J. Microbiol. doi: 10.1007/s12275-014-4267-x – volume: 12 start-page: 499 year: 2013 ident: 2023011801095855000_B24 article-title: Antitumor effect of SIRT1 inhibition in human HCC tumor models in vitro and in vivo publication-title: Mol. Cancer Ther. doi: 10.1158/1535-7163.MCT-12-0700 – volume: 186 start-page: 3093 year: 2011 ident: 2023011801095855000_B33 article-title: Cross-talk between programmed death-1 and suppressor of cytokine signaling-1 in ihibition of IL-12 production by monocytes/macrophages in hepatitis C virus infection publication-title: J. Immunol. doi: 10.4049/jimmunol.1002006 – volume: 64 start-page: 123 year: 2010 ident: 2023011801095855000_B34 article-title: Viruses, microRNAs, and host interactions publication-title: Annu. Rev. Microbiol. doi: 10.1146/annurev.micro.112408.134243 – volume: 18 start-page: 1518 year: 2012 ident: 2023011801095855000_B11 article-title: Decline in miR-181a expression with age impairs T cell receptor sensitivity by increasing DUSP6 activity publication-title: Nat. Med. doi: 10.1038/nm.2963 – volume: 89 start-page: 535 year: 2011 ident: 2023011801095855000_B42 article-title: PD-1 modulates regulatory T cells and suppresses T-cell responses in HCV-associated lymphoma publication-title: Immunol. Cell Biol. doi: 10.1038/icb.2010.121 – volume: 9 start-page: 289 year: 2011 ident: 2023011801095855000_B15 article-title: HIV infection-related premature immunosenescence: high rates of immune exhaustion after short time of infection publication-title: Curr. HIV Res. doi: 10.2174/157016211797636008 – volume: 19 start-page: 1986 year: 2005 ident: 2023011801095855000_B20 article-title: p63 deficiency activates a program of cellular senescence and leads to accelerated aging publication-title: Genes Dev. doi: 10.1101/gad.342305 – volume: 61 start-page: 193 year: 2013 ident: 2023011801095855000_B12 article-title: Immune exhaustion and immune senescence: two distinct pathways for HBV vaccine failure during HCV and/or HIV infection publication-title: Arch. Immunol. Ther. Exp. (Warsz.) doi: 10.1007/s00005-013-0219-0 – volume: 53 start-page: 252 year: 2010 ident: 2023011801095855000_B14 article-title: CD4+ T-lymphocyte telomere length is related to fibrosis stage, clinical outcome and treatment response in chronic hepatitis C virus infection publication-title: J. Hepatol. doi: 10.1016/j.jhep.2010.03.005 – volume: 71 start-page: 4138 year: 2011 ident: 2023011801095855000_B23 article-title: Sirtuin 1 is upregulated in a subset of hepatocellular carcinomas where it is essential for telomere maintenance and tumor cell growth publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-10-4274 – volume: 4 start-page: 651 year: 2006 ident: 2023011801095855000_B35 article-title: MicroRNAs: expression, avoidance and subversion by vertebrate viruses publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro1473 – volume: 92 start-page: 9363 year: 1995 ident: 2023011801095855000_B18 article-title: A biomarker that identifies senescent human cells in culture and in aging skin in vivo publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.92.20.9363 – volume: 125 start-page: 197 year: 2008 ident: 2023011801095855000_B32 article-title: Differential regulation of SOCS-1 signalling in B and T lymphocytes by hepatitis C virus core protein publication-title: Immunology doi: 10.1111/j.1365-2567.2008.02829.x – volume: 40 start-page: 2493 year: 2010 ident: 2023011801095855000_B27 article-title: HCV-specific T cells in HCV/HIV co-infection show elevated frequencies of dual Tim-3/PD-1 expression that correlate with liver disease progression publication-title: Eur. J. Immunol. doi: 10.1002/eji.201040340 – volume: 88 start-page: 2442 year: 2014 ident: 2023011801095855000_B25 article-title: Sirtuin 1 regulates hepatitis B virus transcription and replication by targeting transcription factor AP-1 publication-title: J. Virol. doi: 10.1128/JVI.02861-13 – volume: 25 start-page: 1852 year: 2007 ident: 2023011801095855000_B37 article-title: Senescence as an anticancer mechanism publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2006.10.3101 – volume: 56 start-page: 1631 year: 2012 ident: 2023011801095855000_B7 article-title: Hepatitis C virus-induced up-regulation of microRNA-155 promotes hepatocarcinogenesis by activating Wnt signaling publication-title: Hepatology doi: 10.1002/hep.25849 – volume: 45 start-page: 466 year: 2015 ident: 2023011801095855000_B13 article-title: Increased frequency of late-senescent T cells lacking CD127 in chronic hepatitis C disease publication-title: Eur. J. Clin. Invest. doi: 10.1111/eci.12429 – volume: 120 start-page: 513 year: 2005 ident: 2023011801095855000_B36 article-title: Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors publication-title: Cell doi: 10.1016/j.cell.2005.02.003 – volume: 9 start-page: 285 year: 2010 ident: 2023011801095855000_B39 article-title: Aging and disease: connections to sirtuins publication-title: Aging Cell doi: 10.1111/j.1474-9726.2010.00548.x – volume: 5 start-page: 253 year: 2010 ident: 2023011801095855000_B40 article-title: Mammalian sirtuins: biological insights and disease relevance publication-title: Annu. Rev. Pathol. doi: 10.1146/annurev.pathol.4.110807.092250 – year: 2016 ident: 2023011801095855000_B4 article-title: Hepatitis C disease burden in the United States in the era of oral direct-acting antivirals publication-title: Hepatology doi: 10.1002/hep.28571 – volume: 31 start-page: 9 year: 2010 ident: 2023011801095855000_B17 article-title: Telomeres and telomerase in cancer publication-title: Carcinogenesis doi: 10.1093/carcin/bgp268 – volume: 189 start-page: 755 year: 2012 ident: 2023011801095855000_B29 article-title: Tim-3 controls regulatory and effect or T cell balance during hepatitis C virus Infection publication-title: J. Immunol. doi: 10.4049/jimmunol.1200162 – volume: 192 start-page: 649 year: 2014 ident: 2023011801095855000_B30 article-title: KLRG1 impairs CD4+ T cell responses via p16ink4a and p27kip1 pathways: role in hepatitis B vaccine failure in individuals with hepatitis C virus infection publication-title: J. Immunol. doi: 10.4049/jimmunol.1302069 – volume: 11 start-page: 1451 year: 2009 ident: 2023011801095855000_B38 article-title: TAp63 induces senescence and suppresses tumorigenesis in vivo publication-title: Nat. Cell Biol. doi: 10.1038/ncb1988 – volume: 25 start-page: 320 year: 2015 ident: 2023011801095855000_B5 article-title: MicroRNA regulation of viral immunity, latency, and carcinogenesis of selected tumor viruses and HIV publication-title: Rev. Med. Virol. doi: 10.1002/rmv.1850 – volume: 43 start-page: 458 year: 2013 ident: 2023011801095855000_B41 article-title: HCV-infected hepatocytes drive CD4+CD25+Foxp3+ regulatory T-cell development through the Tim-3/Gal-9 pathway publication-title: Eur. J. Immunol. doi: 10.1002/eji.201242768 – reference: 20679213 - Proc Natl Acad Sci U S A. 2010 Aug 17;107(33):14733-8 – reference: 24789793 - J Virol. 2014 Jul;88(14):7929-40 – reference: 25721991 - Eur J Clin Invest. 2015 May;45(5):466-74 – reference: 20409078 - Aging Cell. 2010 Apr;9(2):285-90 – reference: 21527554 - Cancer Res. 2011 Jun 15;71(12):4138-49 – reference: 20462651 - J Hepatol. 2010 Aug;53(2):252-60 – reference: 26991255 - J Med Virol. 2016 Oct;88(10):1659-71 – reference: 24337749 - J Immunol. 2014 Jan 15;192(2):649-57 – reference: 19887512 - Carcinogenesis. 2010 Jan;31(1):9-18 – reference: 24084744 - J Clin Invest. 2013 Oct;123(10):4121-30 – reference: 21263070 - J Immunol. 2011 Mar 1;186(5):3093-103 – reference: 20078221 - Annu Rev Pathol. 2010;5:253-95 – reference: 17488983 - J Clin Oncol. 2007 May 10;25(14):1852-7 – reference: 23161469 - Eur J Immunol. 2013 Feb;43(2):458-67 – reference: 20477536 - Annu Rev Microbiol. 2010;64:123-41 – reference: 16107615 - Genes Dev. 2005 Sep 1;19(17):1986-99 – reference: 16912711 - Nat Rev Microbiol. 2006 Sep;4(9):651-9 – reference: 23339189 - Mol Cancer Ther. 2013 Apr;12(4):499-508 – reference: 24694524 - Nat Commun. 2014 Apr 02;5:3555 – reference: 24335313 - J Virol. 2014 Mar;88(5):2442-51 – reference: 20623550 - Eur J Immunol. 2010 Sep;40(9):2493-505 – reference: 7568133 - Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9363-7 – reference: 22228303 - Proc Natl Acad Sci U S A. 2012 Jan 24;109(4):1133-8 – reference: 16601749 - Cell Death Differ. 2006 Jun;13(6):1037-47 – reference: 11673541 - J Immunol. 2001 Nov 1;167(9):5264-72 – reference: 27015107 - Hepatology. 2016 Nov;64(5):1442-1450 – reference: 24439265 - Immunity. 2014 Jan 16;40(1):13-24 – reference: 15734683 - Cell. 2005 Feb 25;120(4):513-22 – reference: 18397267 - Immunology. 2008 Oct;125(2):197-207 – reference: 26258805 - Rev Med Virol. 2015 Sep;25(5):320-41 – reference: 25477247 - Hepatology. 2015 Apr;61(4):1163-73 – reference: 20975732 - Immunol Cell Biol. 2011 May;89(4):535-9 – reference: 23023500 - Nat Med. 2012 Oct;18(10):1518-24 – reference: 26681320 - Eur J Clin Invest. 2016 Feb;46(2):170-80 – reference: 19898465 - Nat Cell Biol. 2009 Dec;11(12):1451-7 – reference: 22706088 - J Immunol. 2012 Jul 15;189(2):755-66 – reference: 16873059 - Cell. 2006 Jul 28;126(2):257-68 – reference: 24672032 - J Virol. 2014 Jun;88(11):6394-402 – reference: 24871972 - J Microbiol. 2014 Jun;52(6):445-51 – reference: 23400275 - Arch Immunol Ther Exp (Warsz). 2013 Jun;61(3):193-201 – reference: 21916840 - Curr HIV Res. 2011 Jul;9(5):289-94 – reference: 22610915 - Hepatology. 2012 Nov;56(5):1631-40 |
SSID | ssj0003260 |
Score | 2.3591416 |
Snippet | Acceleration of HCV infection‐associated T cell senescence is counter‐regulated by the ΔNp63‐miR181a‐Sirt1 pathway.
T cell dysfunction has a crucial role in... T cell dysfunction has a crucial role in establishing and maintaining viral persistence. We have previously shown a decline in miR-181a, which regulates CD4+ T... T cell dysfunction has a crucial role in establishing and maintaining viral persistence. We have previously shown a decline in miR-181a, which regulates CD4 T... Acceleration of HCV infection-associated T cell senescence is counter-regulated by the ΔNp63-miR181a-Sirt1 pathway. T cell dysfunction has a crucial role in... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1201 |
SubjectTerms | Adult Aged Case-Control Studies CD4-Positive T-Lymphocytes - immunology Cellular Senescence Female Genes, Reporter hepatitis C Hepatitis C, Chronic - immunology Humans Interleukin-2 - biosynthesis Interleukin-2 - genetics Male MicroRNAs - biosynthesis MicroRNAs - genetics MicroRNAs - physiology microRNA‐181a Middle Aged Signal Transduction - immunology Sirtuin 1 Sirtuin 1 - biosynthesis Sirtuin 1 - genetics Sirtuin 1 - physiology T cell senescence Telomere Shortening transcription factor p63 Transcription Factors - biosynthesis Transcription Factors - genetics Transcription Factors - physiology Transfection Translational & Clinical Immunology Tumor Suppressor Proteins - biosynthesis Tumor Suppressor Proteins - genetics Tumor Suppressor Proteins - physiology Up-Regulation |
Title | Protection of CD4+ T cells from hepatitis C virus infection‐associated senescence via ΔNp63–miR‐181a–Sirt1 pathway |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1189%2Fjlb.5A0316-119RR https://www.ncbi.nlm.nih.gov/pubmed/27354409 https://www.proquest.com/docview/1826708745 https://pubmed.ncbi.nlm.nih.gov/PMC5069086 |
Volume | 100 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLbKEBI3CDZg5U9GokgoSpdfN7nsymCaxoRKJ3oXOalNA106tcmmcsU7wIvwIjwET8LxT5J2HT_jJkpdx3LyfT7n2D7nGKFnHmGgx2lg0oAx0-PMN8NRQk2esJFj8dDzqYh3fnNE9o-9g6E_bDS-L3ktFXncTj5fGlfyP6hCGeAqomSvgGzVKBTAPeALV0AYrv-E8VuVZEHbfL2XXsvZNQaGWIyfq8CRMRMe03k6N3rGWTorau-rzKQaGTA550LiJXKQn6XUaPX2WqF3dErc0hfCPUn7JqhpWhW8S2e5LdKyjs_pytbwkok7YcWnabLImaFzPdXL1NNCCv-i9giSbgXA2OyDUZnX_TJ0JKvj0N7rFe7DUunqNQub6OC9WrSBHSNcMtSODFOiNwTR6xJ1sEklm3WVdHn7W0pa29ENMv1Tyex1jRCIhKofJ3Hb74IAE10J-_1a-5U7_heUYuWqKCdJQRhBC5FqIZItXEPXHZiZiEMzXg9rryKwhi2V-VW9YLkzHoQ7F_uwagmtTW_WvXSXZ0_S_BncRrc0qLirSHgHNVi2iba6Gc2nJwv8HEtPYonxJrqhDjhdbKHzmqF4yjEw1MADLPmJBT9xxU_cw5Kf-DJ-4pqfUIviH98EN39--VqyEm4lH7Hm4110_Gpv0Ns39VEfZuJ2HNtMOpTYnIAGoTa3QHxQeNjnNoktNwncgHKRWzCEGjR2YjuxXahFOpxzd8SDhLv30EY2zdg2wsQmFmeEBw5nnhWEAfU87hBQ6vEINJbbRDvlZ48SnQdfHMcyiX4HdRO9qJ44VTlg_lD3aYlkBIJafFCasWkxj8REvmOJ0yWa6L5CtmoN5hC-51lhE3VWMK8qiCTwq_9k6Vgmg_dFqvGANFFbsuOvHYwODnfF2HlwhZd6iG7Wo_gR2shnBXsMtngeP5Hs_wUwzdry |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Protection+of+CD4%2B+T+cells+from+hepatitis+C+virus+infection-associated+senescence+via+%CE%94Np63%E2%80%93miR-181a%E2%80%93Sirt1+pathway&rft.jtitle=Journal+of+leukocyte+biology&rft.au=Zhou%2C+Yun&rft.au=Li%2C+Guang+Y&rft.au=Ren%2C+Jun+P&rft.au=Wang%2C+Ling&rft.date=2016-11-01&rft.issn=0741-5400&rft.eissn=1938-3673&rft.volume=100&rft.issue=5&rft.spage=1201&rft.epage=1211&rft_id=info:doi/10.1189%2Fjlb.5A0316-119RR&rft.externalDBID=n%2Fa&rft.externalDocID=10_1189_jlb_5A0316_119RR |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0741-5400&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0741-5400&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0741-5400&client=summon |