Protection of CD4+ T cells from hepatitis C virus infection‐associated senescence via ΔNp63–miR‐181a–Sirt1 pathway

Acceleration of HCV infection‐associated T cell senescence is counter‐regulated by the ΔNp63‐miR181a‐Sirt1 pathway. T cell dysfunction has a crucial role in establishing and maintaining viral persistence. We have previously shown a decline in miR‐181a, which regulates CD4+ T cell responses via DUSP6...

Full description

Saved in:
Bibliographic Details
Published inJournal of leukocyte biology Vol. 100; no. 5; pp. 1201 - 1211
Main Authors Zhou, Yun, Li, Guang Y., Ren, Jun P., Wang, Ling, Zhao, Juan, Ning, Shun B., Zhang, Ying, Lian, Jian Q., Huang, Chang X., Jia, Zhan S., Moorman, Jonathan P., Yao, Zhi Q.
Format Journal Article
LanguageEnglish
Published United States Society for Leukocyte Biology 01.11.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Acceleration of HCV infection‐associated T cell senescence is counter‐regulated by the ΔNp63‐miR181a‐Sirt1 pathway. T cell dysfunction has a crucial role in establishing and maintaining viral persistence. We have previously shown a decline in miR‐181a, which regulates CD4+ T cell responses via DUSP6 overexpression, in individuals with hepatitis C virus (HCV) infection. Here, we describe accelerated T cell senescence in HCV‐infected individuals compared with age‐ and sex‐matched healthy subjects. Mechanistic studies revealed that up‐regulation of transcription factor ΔNp63 led to the decline of miR‐181a expression, resulting in an overexpression of the antiaging protein Sirt1, in CD4+ T cells from HCV‐infected individuals. Either reconstituting miR‐181a or silencing ΔNp63 or Sirt1 expression in CD4+ T cells led to accelerated T cell senescence, as evidenced by an increased senescence‐associated β‐galactosidase (SA‐β‐gal) expression, shortened telomere length, and decreased EdU incorporation; this suggests that HCV‐induced T cell senescence is counterregulated by the ΔNp63–miR‐181a–Sirt1 pathway. An increase of IL‐2 production was observed in these senescent CD4+ T cells and was driven by a markedly reduced frequency of Foxp3+ regulatory T (Treg) cells and increased number of Foxp3− effector T (Teff) cells upon manipulating the ΔNp63–miR‐181a–Sirt1 pathway. In conclusion, these findings provide novel mechanistic insights into how HCV uses cellular senescent pathways to regulate T cell functions, revealing new targets for rejuvenating impaired T cell responses during chronic viral infection.
AbstractList T cell dysfunction has a crucial role in establishing and maintaining viral persistence. We have previously shown a decline in miR-181a, which regulates CD4 T cell responses via DUSP6 overexpression, in individuals with hepatitis C virus (HCV) infection. Here, we describe accelerated T cell senescence in HCV-infected individuals compared with age- and sex-matched healthy subjects. Mechanistic studies revealed that up-regulation of transcription factor ΔNp63 led to the decline of miR-181a expression, resulting in an overexpression of the antiaging protein Sirt1, in CD4 T cells from HCV-infected individuals. Either reconstituting miR-181a or silencing ΔNp63 or Sirt1 expression in CD4 T cells led to accelerated T cell senescence, as evidenced by an increased senescence-associated β-galactosidase (SA-β-gal) expression, shortened telomere length, and decreased EdU incorporation; this suggests that HCV-induced T cell senescence is counterregulated by the ΔNp63-miR-181a-Sirt1 pathway. An increase of IL-2 production was observed in these senescent CD4 T cells and was driven by a markedly reduced frequency of Foxp3 regulatory T (T ) cells and increased number of Foxp3 effector T (T ) cells upon manipulating the ΔNp63-miR-181a-Sirt1 pathway. In conclusion, these findings provide novel mechanistic insights into how HCV uses cellular senescent pathways to regulate T cell functions, revealing new targets for rejuvenating impaired T cell responses during chronic viral infection.
T cell dysfunction has a crucial role in establishing and maintaining viral persistence. We have previously shown a decline in miR-181a, which regulates CD4+ T cell responses via DUSP6 overexpression, in individuals with hepatitis C virus (HCV) infection. Here, we describe accelerated T cell senescence in HCV-infected individuals compared with age- and sex-matched healthy subjects. Mechanistic studies revealed that up-regulation of transcription factor ΔNp63 led to the decline of miR-181a expression, resulting in an overexpression of the antiaging protein Sirt1, in CD4+ T cells from HCV-infected individuals. Either reconstituting miR-181a or silencing ΔNp63 or Sirt1 expression in CD4+ T cells led to accelerated T cell senescence, as evidenced by an increased senescence-associated β-galactosidase (SA-β-gal) expression, shortened telomere length, and decreased EdU incorporation; this suggests that HCV-induced T cell senescence is counterregulated by the ΔNp63-miR-181a-Sirt1 pathway. An increase of IL-2 production was observed in these senescent CD4+ T cells and was driven by a markedly reduced frequency of Foxp3+ regulatory T (Treg) cells and increased number of Foxp3- effector T (Teff) cells upon manipulating the ΔNp63-miR-181a-Sirt1 pathway. In conclusion, these findings provide novel mechanistic insights into how HCV uses cellular senescent pathways to regulate T cell functions, revealing new targets for rejuvenating impaired T cell responses during chronic viral infection.
Acceleration of HCV infection-associated T cell senescence is counter-regulated by the ΔNp63-miR181a-Sirt1 pathway. T cell dysfunction has a crucial role in establishing and maintaining viral persistence. We have previously shown a decline in miR-181a, which regulates CD4 + T cell responses via DUSP6 overexpression, in individuals with hepatitis C virus (HCV) infection. Here, we describe accelerated T cell senescence in HCV-infected individuals compared with age- and sex-matched healthy subjects. Mechanistic studies revealed that up-regulation of transcription factor ΔNp63 led to the decline of miR-181a expression, resulting in an overexpression of the antiaging protein Sirt1, in CD4 + T cells from HCV-infected individuals. Either reconstituting miR-181a or silencing ΔNp63 or Sirt1 expression in CD4 + T cells led to accelerated T cell senescence, as evidenced by an increased senescence-associated β-galactosidase (SA-β-gal) expression, shortened telomere length, and decreased EdU incorporation; this suggests that HCV-induced T cell senescence is counterregulated by the ΔNp63–miR-181a–Sirt1 pathway. An increase of IL-2 production was observed in these senescent CD4 + T cells and was driven by a markedly reduced frequency of Foxp3 + regulatory T (T reg ) cells and increased number of Foxp3 − effector T (T eff ) cells upon manipulating the ΔNp63–miR-181a–Sirt1 pathway. In conclusion, these findings provide novel mechanistic insights into how HCV uses cellular senescent pathways to regulate T cell functions, revealing new targets for rejuvenating impaired T cell responses during chronic viral infection.
Acceleration of HCV infection‐associated T cell senescence is counter‐regulated by the ΔNp63‐miR181a‐Sirt1 pathway. T cell dysfunction has a crucial role in establishing and maintaining viral persistence. We have previously shown a decline in miR‐181a, which regulates CD4+ T cell responses via DUSP6 overexpression, in individuals with hepatitis C virus (HCV) infection. Here, we describe accelerated T cell senescence in HCV‐infected individuals compared with age‐ and sex‐matched healthy subjects. Mechanistic studies revealed that up‐regulation of transcription factor ΔNp63 led to the decline of miR‐181a expression, resulting in an overexpression of the antiaging protein Sirt1, in CD4+ T cells from HCV‐infected individuals. Either reconstituting miR‐181a or silencing ΔNp63 or Sirt1 expression in CD4+ T cells led to accelerated T cell senescence, as evidenced by an increased senescence‐associated β‐galactosidase (SA‐β‐gal) expression, shortened telomere length, and decreased EdU incorporation; this suggests that HCV‐induced T cell senescence is counterregulated by the ΔNp63–miR‐181a–Sirt1 pathway. An increase of IL‐2 production was observed in these senescent CD4+ T cells and was driven by a markedly reduced frequency of Foxp3+ regulatory T (Treg) cells and increased number of Foxp3− effector T (Teff) cells upon manipulating the ΔNp63–miR‐181a–Sirt1 pathway. In conclusion, these findings provide novel mechanistic insights into how HCV uses cellular senescent pathways to regulate T cell functions, revealing new targets for rejuvenating impaired T cell responses during chronic viral infection.
T cell dysfunction has a crucial role in establishing and maintaining viral persistence. We have previously shown a decline in miR-181a, which regulates CD4+ T cell responses via DUSP6 overexpression, in individuals with hepatitis C virus (HCV) infection. Here, we describe accelerated T cell senescence in HCV-infected individuals compared with age- and sex-matched healthy subjects. Mechanistic studies revealed that up-regulation of transcription factor ΔNp63 led to the decline of miR-181a expression, resulting in an overexpression of the antiaging protein Sirt1, in CD4+ T cells from HCV-infected individuals. Either reconstituting miR-181a or silencing ΔNp63 or Sirt1 expression in CD4+ T cells led to accelerated T cell senescence, as evidenced by an increased senescence-associated β-galactosidase (SA-β-gal) expression, shortened telomere length, and decreased EdU incorporation; this suggests that HCV-induced T cell senescence is counterregulated by the ΔNp63–miR-181a–Sirt1 pathway. An increase of IL-2 production was observed in these senescent CD4+ T cells and was driven by a markedly reduced frequency of Foxp3+ regulatory T (Treg) cells and increased number of Foxp3− effector T (Teff) cells upon manipulating the ΔNp63–miR-181a–Sirt1 pathway. In conclusion, these findings provide novel mechanistic insights into how HCV uses cellular senescent pathways to regulate T cell functions, revealing new targets for rejuvenating impaired T cell responses during chronic viral infection.
Author Zhou, Yun
Ning, Shun B.
Lian, Jian Q.
Moorman, Jonathan P.
Yao, Zhi Q.
Zhao, Juan
Zhang, Ying
Huang, Chang X.
Li, Guang Y.
Ren, Jun P.
Wang, Ling
Jia, Zhan S.
Author_xml – sequence: 1
  givenname: Yun
  surname: Zhou
  fullname: Zhou, Yun
– sequence: 2
  givenname: Guang Y.
  surname: Li
  fullname: Li, Guang Y.
– sequence: 3
  givenname: Jun P.
  surname: Ren
  fullname: Ren, Jun P.
– sequence: 4
  givenname: Ling
  surname: Wang
  fullname: Wang, Ling
– sequence: 5
  givenname: Juan
  surname: Zhao
  fullname: Zhao, Juan
– sequence: 6
  givenname: Shun B.
  surname: Ning
  fullname: Ning, Shun B.
– sequence: 7
  givenname: Ying
  surname: Zhang
  fullname: Zhang, Ying
– sequence: 8
  givenname: Jian Q.
  surname: Lian
  fullname: Lian, Jian Q.
– sequence: 9
  givenname: Chang X.
  surname: Huang
  fullname: Huang, Chang X.
– sequence: 10
  givenname: Zhan S.
  surname: Jia
  fullname: Jia, Zhan S.
  email: jiazsh@fmmu.edu.cn
– sequence: 11
  givenname: Jonathan P.
  surname: Moorman
  fullname: Moorman, Jonathan P.
– sequence: 12
  givenname: Zhi Q.
  surname: Yao
  fullname: Yao, Zhi Q.
  email: yao@etsu.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27354409$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFu1DAYhC3Uim4Ld07IRySU8v9x4jgXpLJAAa0ALeVsOV6bdZXEWzvbasWlj1AJnouH6JPUS1oEHOBkWf5mxprZJzu97w0hjxAOEUX97LRtDssjYMgzxHo-v0cmWDORMV6xHTKBqsCsLAD2yH6MpwDAcg73yV5esbIooJ6Qrx-DH4wenO-pt3T6snhKT6g2bRupDb6jS7NSgxtcpFN67sI6UtfbUXB9eaVi9NqpwSxoNL2J2vTaJE7RH9_frzi7vvzWuXkCUaBKl08uDEiT4_JCbR6QXavaaB7engfk8-tXJ9M32ezD8dvp0SzTrMox05XiaDkUuUILRpQqmZUWeQNMCyaUBWS8ToRq8gY1skTxylrLFlZoyw7I89F3tW46s0h_HIJq5Sq4ToWN9MrJP196t5Rf_LksgdcgeDJ4cmsQ_NnaxEF2Lm47Ur3x6yhR5LwCURVlQh__nvUr5K7xBPAR0MHHGIyV2g1qW2eKdq1EkNtpZZpWjtPKn9MmIfwlvPP-h6QcJReuNZv_8vLd7AXmqcwbhQy9JA
CitedBy_id crossref_primary_10_1016_j_biopha_2017_11_075
crossref_primary_10_1016_j_tranon_2024_102268
crossref_primary_10_1172_JCI143632
crossref_primary_10_1097_CM9_0000000000003439
crossref_primary_10_1016_j_acthis_2024_152134
crossref_primary_10_1038_s41419_020_2395_2
crossref_primary_10_3390_pathogens9020083
crossref_primary_10_3390_v11111025
crossref_primary_10_1186_s12979_019_0153_z
crossref_primary_10_3390_v15051061
crossref_primary_10_1111_pai_13038
crossref_primary_10_1038_s41374_020_0444_1
crossref_primary_10_1139_bcb_2018_0126
crossref_primary_10_1016_j_molmed_2020_01_010
crossref_primary_10_1038_s41392_022_01257_8
crossref_primary_10_3389_fimmu_2019_01152
crossref_primary_10_3390_cells11182921
crossref_primary_10_1371_journal_pone_0198477
crossref_primary_10_1016_j_celrep_2019_10_044
crossref_primary_10_1055_s_0040_1722262
crossref_primary_10_3390_cells12010132
crossref_primary_10_3389_fimmu_2021_658420
crossref_primary_10_1038_s41419_018_0897_y
crossref_primary_10_1038_s41419_020_03238_7
crossref_primary_10_1038_s41467_018_05552_3
crossref_primary_10_3389_fcimb_2022_1026293
crossref_primary_10_1038_s41421_018_0015_4
Cites_doi 10.1016/j.cell.2006.07.002
10.1073/pnas.1009731107
10.1016/j.immuni.2013.12.010
10.1002/jmv.24527
10.1128/JVI.00016-14
10.1038/sj.cdd.4401926
10.1038/ncomms4555
10.1002/hep.27634
10.1111/eci.12581
10.1073/pnas.1112257109
10.1172/JCI67714
10.4049/jimmunol.167.9.5264
10.1128/JVI.00787-14
10.1007/s12275-014-4267-x
10.1158/1535-7163.MCT-12-0700
10.4049/jimmunol.1002006
10.1146/annurev.micro.112408.134243
10.1038/nm.2963
10.1038/icb.2010.121
10.2174/157016211797636008
10.1101/gad.342305
10.1007/s00005-013-0219-0
10.1016/j.jhep.2010.03.005
10.1158/0008-5472.CAN-10-4274
10.1038/nrmicro1473
10.1073/pnas.92.20.9363
10.1111/j.1365-2567.2008.02829.x
10.1002/eji.201040340
10.1128/JVI.02861-13
10.1200/JCO.2006.10.3101
10.1002/hep.25849
10.1111/eci.12429
10.1016/j.cell.2005.02.003
10.1111/j.1474-9726.2010.00548.x
10.1146/annurev.pathol.4.110807.092250
10.1002/hep.28571
10.1093/carcin/bgp268
10.4049/jimmunol.1200162
10.4049/jimmunol.1302069
10.1038/ncb1988
10.1002/rmv.1850
10.1002/eji.201242768
ContentType Journal Article
Copyright 2016 Society for Leukocyte Biology
Society for Leukocyte Biology.
Society for Leukocyte Biology 2016 Society for Leukocyte Biology
Copyright_xml – notice: 2016 Society for Leukocyte Biology
– notice: Society for Leukocyte Biology.
– notice: Society for Leukocyte Biology 2016 Society for Leukocyte Biology
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1189/jlb.5A0316-119RR
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic


CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Biology
EISSN 1938-3673
EndPage 1211
ExternalDocumentID PMC5069086
27354409
10_1189_jlb_5A0316_119RR
JLB1201
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: U.S. Department of Veterans Affairs
– fundername: United States Government
– fundername: U.S. National Institutes of Health
  funderid: R01DK093526; R01AI114748
– fundername: VA Merit Review Award to ZQY/JPM
  funderid: INFA‐016‐15S
– fundername: China Scholarship Council
  funderid: CSC 201306590012
– fundername: Technology Innovation and Development Foundation of Tangdu Hospital
  funderid: 2015JCYJ011
– fundername: James H. Quillen Veterans Affairs Medical Center
– fundername: NIDDK NIH HHS
  grantid: R01 DK093526
– fundername: BLRD VA
  grantid: I01 BX002670
– fundername: NIAID NIH HHS
  grantid: R01 AI114748
GroupedDBID ---
.GJ
0R~
0VX
18M
1OB
1OC
29K
2WC
33P
4.4
53G
5GY
5RE
5WD
AABZA
AACZT
AAHHS
AAPGJ
AAPXW
AARHZ
AASGY
AAUAY
AAVAP
AAWDT
AAXRX
AAZKR
ABCUV
ABDFA
ABEFU
ABEJV
ABJNI
ABLJU
ABMNT
ABNHQ
ABPQP
ABPTD
ABWST
ABXVV
ACAHQ
ACCFJ
ACCZN
ACFRR
ACGFO
ACGFS
ACPOU
ACPRK
ACUTJ
ACXBN
ACXQS
ACZBC
ADBBV
ADIPN
ADKYN
ADOZA
ADQBN
ADVEK
ADVOB
ADXAS
ADZMN
AEEZP
AENEX
AEQDE
AFFNX
AFGWE
AFRAH
AFYAG
AGMDO
AGQXC
AHMMS
AI.
AIURR
AIWBW
AJAOE
AJBDE
AJEEA
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ANFBD
APJGH
ATGXG
AVNTJ
BCRHZ
C45
CS3
D-I
DCZOG
DRFUL
DRSTM
DU5
E3Z
EBS
EJD
EMOBN
F5P
F9R
GX1
H13
HZ~
K-O
KOP
L7B
LATKE
LEEKS
LUTES
LYRES
O9-
OBOKY
OCZFY
OJZSN
OK1
OPAEJ
OVD
OWPYF
P2P
P2W
RHI
RJQFR
ROL
ROX
SJN
SUPJJ
TCN
TEORI
TMA
TR2
TSL
VH1
W8F
WOHZO
WOQ
YHG
ZGI
ZXP
ZZTAW
AAYXX
ABGNP
ABVGC
ABXZS
ADGKP
ADNBA
AGORE
AJBYB
AJNCP
ALXQX
CITATION
AAMMB
ABIME
ABPIB
ABZEO
ACVCV
ADMTO
AEFGJ
AFFQV
AGXDD
AHGBF
AIDQK
AIDYY
AJDVS
CGR
CUY
CVF
ECM
EIF
NPM
NU-
OBFPC
7X8
5PM
ID FETCH-LOGICAL-c3721-c7a61f6042a1f0e85a1815f16b03c838af01369f60ab2b1c13f0e67fff3df8cf3
ISSN 0741-5400
IngestDate Thu Aug 21 18:30:39 EDT 2025
Fri Jul 11 05:57:49 EDT 2025
Mon Jul 21 05:59:47 EDT 2025
Tue Jul 01 00:31:38 EDT 2025
Thu Apr 24 22:59:43 EDT 2025
Wed Jan 22 16:53:06 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords T cell senescence
microRNA-181a
transcription factor p63
Sirtuin 1
hepatitis C
Language English
License https://academic.oup.com/pages/standard-publication-reuse-rights
Society for Leukocyte Biology.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3721-c7a61f6042a1f0e85a1815f16b03c838af01369f60ab2b1c13f0e67fff3df8cf3
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://jlb.onlinelibrary.wiley.com/doi/pdfdirect/10.1189/jlb.5A0316-119RR
PMID 27354409
PQID 1826708745
PQPubID 23479
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5069086
proquest_miscellaneous_1826708745
pubmed_primary_27354409
crossref_citationtrail_10_1189_jlb_5A0316_119RR
crossref_primary_10_1189_jlb_5A0316_119RR
wiley_primary_10_1189_jlb_5A0316_119RR_JLB1201
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2016
PublicationDateYYYYMMDD 2016-11-01
PublicationDate_xml – month: 11
  year: 2016
  text: November 2016
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Bethesda, MD, USA
PublicationTitle Journal of leukocyte biology
PublicationTitleAlternate J Leukoc Biol
PublicationYear 2016
Publisher Society for Leukocyte Biology
Publisher_xml – name: Society for Leukocyte Biology
References 2010; 53
2010; 31
2001; 167
1995; 92
2012; 189
2010; 107
2006; 13
2013; 43
2013; 61
2013; 123
2012; 18
2006; 4
2014; 192
2008; 125
2014; 40
2012; 56
2014; 88
2010; 40
2012; 109
2011; 9
2015; 45
2009; 11
2015; 25
2010; 64
2005; 19
2014; 5
2005; 120
2015; 61
2013; 12
2011; 71
2016
2011; 89
2014; 52
2006; 126
2010; 5
2016; 46
2007; 25
2010; 9
2011; 186
Lee (2023011801095855000_B6) 2014; 52
Guo (2023011801095855000_B38) 2009; 11
Jin (2023011801095855000_B28) 2010; 107
Yao (2023011801095855000_B31) 2001; 167
Yao (2023011801095855000_B12) 2013; 61
Shi (2023011801095855000_B30) 2014; 192
Zhang (2023011801095855000_B7) 2012; 56
Ni (2023011801095855000_B42) 2011; 89
Zhang (2023011801095855000_B33) 2011; 186
Coppola (2023011801095855000_B3) 2016
Candi (2023011801095855000_B19) 2006; 13
Park (2023011801095855000_B1) 2014; 40
Wang (2023011801095855000_B5) 2015; 25
Barathan (2023011801095855000_B13) 2015; 45
Donmez (2023011801095855000_B39) 2010; 9
Li (2023011801095855000_B10) 2015; 61
Mukherjee (2023011801095855000_B8) 2014; 88
Barathan (2023011801095855000_B16) 2016; 46
Sarnow (2023011801095855000_B35) 2006; 4
Longo (2023011801095855000_B22) 2006; 126
Moorman (2023011801095855000_B29) 2012; 189
Campisi (2023011801095855000_B36) 2005; 120
Chhatwal (2023011801095855000_B4) 2016
Hoare (2023011801095855000_B14) 2010; 53
Hornsby (2023011801095855000_B37) 2007; 25
Dimri (2023011801095855000_B18) 1995; 92
Haigis (2023011801095855000_B40) 2010; 5
Ren (2023011801095855000_B25) 2014; 88
Ji (2023011801095855000_B41) 2013; 43
Portmann (2023011801095855000_B24) 2013; 12
Kuwahara (2023011801095855000_B26) 2014; 5
Artandi (2023011801095855000_B17) 2010; 31
Yao (2023011801095855000_B32) 2008; 125
Skalsky (2023011801095855000_B34) 2010; 64
Estrabaud (2023011801095855000_B9) 2014; 88
Rosen (2023011801095855000_B2) 2013; 123
Li (2023011801095855000_B11) 2012; 18
Ferrando-Martínez (2023011801095855000_B15) 2011; 9
Vali (2023011801095855000_B27) 2010; 40
Keyes (2023011801095855000_B20) 2005; 19
Rivetti di Val Cervo (2023011801095855000_B21) 2012; 109
Chen (2023011801095855000_B23) 2011; 71
24439265 - Immunity. 2014 Jan 16;40(1):13-24
18397267 - Immunology. 2008 Oct;125(2):197-207
19898465 - Nat Cell Biol. 2009 Dec;11(12):1451-7
23023500 - Nat Med. 2012 Oct;18(10):1518-24
25721991 - Eur J Clin Invest. 2015 May;45(5):466-74
7568133 - Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9363-7
21263070 - J Immunol. 2011 Mar 1;186(5):3093-103
24672032 - J Virol. 2014 Jun;88(11):6394-402
20462651 - J Hepatol. 2010 Aug;53(2):252-60
15734683 - Cell. 2005 Feb 25;120(4):513-22
24335313 - J Virol. 2014 Mar;88(5):2442-51
19887512 - Carcinogenesis. 2010 Jan;31(1):9-18
20679213 - Proc Natl Acad Sci U S A. 2010 Aug 17;107(33):14733-8
17488983 - J Clin Oncol. 2007 May 10;25(14):1852-7
21916840 - Curr HIV Res. 2011 Jul;9(5):289-94
24694524 - Nat Commun. 2014 Apr 02;5:3555
25477247 - Hepatology. 2015 Apr;61(4):1163-73
24337749 - J Immunol. 2014 Jan 15;192(2):649-57
16873059 - Cell. 2006 Jul 28;126(2):257-68
21527554 - Cancer Res. 2011 Jun 15;71(12):4138-49
20623550 - Eur J Immunol. 2010 Sep;40(9):2493-505
16107615 - Genes Dev. 2005 Sep 1;19(17):1986-99
26258805 - Rev Med Virol. 2015 Sep;25(5):320-41
26681320 - Eur J Clin Invest. 2016 Feb;46(2):170-80
20409078 - Aging Cell. 2010 Apr;9(2):285-90
20078221 - Annu Rev Pathol. 2010;5:253-95
20477536 - Annu Rev Microbiol. 2010;64:123-41
27015107 - Hepatology. 2016 Nov;64(5):1442-1450
16601749 - Cell Death Differ. 2006 Jun;13(6):1037-47
23339189 - Mol Cancer Ther. 2013 Apr;12(4):499-508
24871972 - J Microbiol. 2014 Jun;52(6):445-51
20975732 - Immunol Cell Biol. 2011 May;89(4):535-9
22610915 - Hepatology. 2012 Nov;56(5):1631-40
23400275 - Arch Immunol Ther Exp (Warsz). 2013 Jun;61(3):193-201
24789793 - J Virol. 2014 Jul;88(14):7929-40
26991255 - J Med Virol. 2016 Oct;88(10):1659-71
11673541 - J Immunol. 2001 Nov 1;167(9):5264-72
23161469 - Eur J Immunol. 2013 Feb;43(2):458-67
22706088 - J Immunol. 2012 Jul 15;189(2):755-66
16912711 - Nat Rev Microbiol. 2006 Sep;4(9):651-9
24084744 - J Clin Invest. 2013 Oct;123(10):4121-30
22228303 - Proc Natl Acad Sci U S A. 2012 Jan 24;109(4):1133-8
References_xml – volume: 12
  start-page: 499
  year: 2013
  end-page: 508
  article-title: Antitumor effect of SIRT1 inhibition in human HCC tumor models in vitro and in vivo
  publication-title: Mol. Cancer Ther.
– volume: 107
  start-page: 14733
  year: 2010
  end-page: 14738
  article-title: Cooperation of Tim‐3 and PD‐1 in CD8 T‐cell exhaustion during chronic viral infection
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 71
  start-page: 4138
  year: 2011
  end-page: 4149
  article-title: Sirtuin 1 is upregulated in a subset of hepatocellular carcinomas where it is essential for telomere maintenance and tumor cell growth
  publication-title: Cancer Res.
– volume: 120
  start-page: 513
  year: 2005
  end-page: 522
  article-title: Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors
  publication-title: Cell
– volume: 45
  start-page: 466
  year: 2015
  end-page: 474
  article-title: Increased frequency of late‐senescent T cells lacking CD127 in chronic hepatitis C disease
  publication-title: Eur. J. Clin. Invest.
– volume: 126
  start-page: 257
  year: 2006
  end-page: 268
  article-title: Sirtuins in aging and age‐related disease
  publication-title: Cell
– volume: 40
  start-page: 2493
  year: 2010
  end-page: 2505
  article-title: HCV‐specific T cells in HCV/HIV co‐infection show elevated frequencies of dual Tim‐3/PD‐1 expression that correlate with liver disease progression
  publication-title: Eur. J. Immunol.
– volume: 89
  start-page: 535
  year: 2011
  end-page: 539
  article-title: PD‐1 modulates regulatory T cells and suppresses T‐cell responses in HCV‐associated lymphoma
  publication-title: Immunol. Cell Biol.
– volume: 19
  start-page: 1986
  year: 2005
  end-page: 1999
  article-title: p63 deficiency activates a program of cellular senescence and leads to accelerated aging
  publication-title: Genes Dev.
– volume: 4
  start-page: 651
  year: 2006
  end-page: 659
  article-title: MicroRNAs: expression, avoidance and subversion by vertebrate viruses
  publication-title: Nat. Rev. Microbiol.
– volume: 5
  start-page: 3555
  year: 2014
  article-title: The Menin‐Bach2 axis is critical for regulating CD4 T‐cell senescence and cytokine homeostasis
  publication-title: Nat. Commun.
– volume: 52
  start-page: 445
  year: 2014
  end-page: 451
  article-title: The role of microRNAs in hepatitis C virus replication and related liver diseases
  publication-title: J. Microbiol.
– year: 2016
  article-title: Clinical impact of the hepatitis C virus mutations in the era of directly acting antivirals
  publication-title: J. Med. Virol.
– volume: 11
  start-page: 1451
  year: 2009
  end-page: 1457
  article-title: TAp63 induces senescence and suppresses tumorigenesis in vivo
  publication-title: Nat. Cell Biol.
– volume: 31
  start-page: 9
  year: 2010
  end-page: 18
  article-title: Telomeres and telomerase in cancer
  publication-title: Carcinogenesis
– volume: 123
  start-page: 4121
  year: 2013
  end-page: 4130
  article-title: Emerging concepts in immunity to hepatitis C virus infection
  publication-title: J. Clin. Invest.
– volume: 46
  start-page: 170
  year: 2016
  end-page: 180
  article-title: Peripheral loss of CD8+CD161++TCRVα7md2+ mucosal‐associated invariant T cells in chronic hepatitis C virus‐infected patients
  publication-title: Eur. J. Clin. Invest.
– volume: 167
  start-page: 5264
  year: 2001
  end-page: 5272
  article-title: Hepatitis C virus core protein inhibits human T lymphocyte responses by a complement‐dependent regulatory pathway
  publication-title: J. Immunol.
– volume: 53
  start-page: 252
  year: 2010
  end-page: 260
  article-title: CD4+ T‐lymphocyte telomere length is related to fibrosis stage, clinical outcome and treatment response in chronic hepatitis C virus infection
  publication-title: J. Hepatol.
– volume: 40
  start-page: 13
  year: 2014
  end-page: 24
  article-title: Immune responses to HCV and other hepatitis viruses
  publication-title: Immunity
– volume: 56
  start-page: 1631
  year: 2012
  end-page: 1640
  article-title: Hepatitis C virus‐induced up‐regulation of microRNA‐155 promotes hepatocarcinogenesis by activating Wnt signaling
  publication-title: Hepatology
– volume: 189
  start-page: 755
  year: 2012
  end-page: 766
  article-title: Tim‐3 controls regulatory and effect or T cell balance during hepatitis C virus Infection
  publication-title: J. Immunol.
– volume: 61
  start-page: 1163
  year: 2015
  end-page: 1173
  article-title: Hepatitis C virus–induced reduction in miR‐181a impairs CD4+ T‐cell responses via overexpression of DUSP6
  publication-title: Hepatology
– volume: 125
  start-page: 197
  year: 2008
  end-page: 207
  article-title: Differential regulation of SOCS‐1 signalling in B and T lymphocytes by hepatitis C virus core protein
  publication-title: Immunology
– volume: 9
  start-page: 289
  year: 2011
  end-page: 294
  article-title: HIV infection‐related premature immunosenescence: high rates of immune exhaustion after short time of infection
  publication-title: Curr. HIV Res.
– volume: 192
  start-page: 649
  year: 2014
  end-page: 657
  article-title: KLRG1 impairs CD4+ T cell responses via p16ink4a and p27kip1 pathways: role in hepatitis B vaccine failure in individuals with hepatitis C virus infection
  publication-title: J. Immunol.
– volume: 18
  start-page: 1518
  year: 2012
  end-page: 1524
  article-title: Decline in miR‐181a expression with age impairs T cell receptor sensitivity by increasing DUSP6 activity
  publication-title: Nat. Med.
– volume: 186
  start-page: 3093
  year: 2011
  end-page: 3103
  article-title: Cross‐talk between programmed death‐1 and suppressor of cytokine signaling‐1 in ihibition of IL‐12 production by monocytes/macrophages in hepatitis C virus infection
  publication-title: J. Immunol.
– volume: 64
  start-page: 123
  year: 2010
  end-page: 141
  article-title: Viruses, microRNAs, and host interactions
  publication-title: Annu. Rev. Microbiol.
– volume: 13
  start-page: 1037
  year: 2006
  end-page: 1047
  article-title: Differential roles of p63 isoforms in epidermal development: selective genetic complementation in p63 null mice
  publication-title: Cell Death Differ.
– volume: 25
  start-page: 320
  year: 2015
  end-page: 341
  article-title: MicroRNA regulation of viral immunity, latency, and carcinogenesis of selected tumor viruses and HIV
  publication-title: Rev. Med. Virol.
– volume: 25
  start-page: 1852
  year: 2007
  end-page: 1857
  article-title: Senescence as an anticancer mechanism
  publication-title: J. Clin. Oncol.
– volume: 61
  start-page: 193
  year: 2013
  end-page: 201
  article-title: Immune exhaustion and immune senescence: two distinct pathways for HBV vaccine failure during HCV and/or HIV infection
  publication-title: Arch. Immunol. Ther. Exp. (Warsz.)
– volume: 92
  start-page: 9363
  year: 1995
  end-page: 9367
  article-title: A biomarker that identifies senescent human cells in culture and in aging skin in vivo
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 5
  start-page: 253
  year: 2010
  end-page: 295
  article-title: Mammalian sirtuins: biological insights and disease relevance
  publication-title: Annu. Rev. Pathol.
– volume: 109
  start-page: 1133
  year: 2012
  end-page: 1138
  article-title: p63‐microRNA feedback in keratinocyte senescence
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 88
  start-page: 6394
  year: 2014
  end-page: 6402
  article-title: Reduction of microRNA 122 expression in IFNL3 CT/TT carriers and during progression of fibrosis in patients with chronic hepatitis C
  publication-title: J. Virol.
– volume: 43
  start-page: 458
  year: 2013
  end-page: 467
  article-title: HCV‐infected hepatocytes drive CD4+CD25+Foxp3+ regulatory T‐cell development through the Tim‐3/Gal‐9 pathway
  publication-title: Eur. J. Immunol.
– year: 2016
  article-title: Hepatitis C disease burden in the United States in the era of oral direct‐acting antivirals
  publication-title: Hepatology
– volume: 88
  start-page: 7929
  year: 2014
  end-page: 7940
  article-title: Transcriptional suppression of miR‐181c by hepatitis C virus enhances homeobox A1 expression
  publication-title: J. Virol.
– volume: 88
  start-page: 2442
  year: 2014
  end-page: 2451
  article-title: Sirtuin 1 regulates hepatitis B virus transcription and replication by targeting transcription factor AP‐1
  publication-title: J. Virol.
– volume: 9
  start-page: 285
  year: 2010
  end-page: 290
  article-title: Aging and disease: connections to sirtuins
  publication-title: Aging Cell
– volume: 126
  start-page: 257
  year: 2006
  ident: 2023011801095855000_B22
  article-title: Sirtuins in aging and age-related disease
  publication-title: Cell
  doi: 10.1016/j.cell.2006.07.002
– volume: 107
  start-page: 14733
  year: 2010
  ident: 2023011801095855000_B28
  article-title: Cooperation of Tim-3 and PD-1 in CD8 T-cell exhaustion during chronic viral infection
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1009731107
– volume: 40
  start-page: 13
  year: 2014
  ident: 2023011801095855000_B1
  article-title: Immune responses to HCV and other hepatitis viruses
  publication-title: Immunity
  doi: 10.1016/j.immuni.2013.12.010
– year: 2016
  ident: 2023011801095855000_B3
  article-title: Clinical impact of the hepatitis C virus mutations in the era of directly acting antivirals
  publication-title: J. Med. Virol.
  doi: 10.1002/jmv.24527
– volume: 88
  start-page: 6394
  year: 2014
  ident: 2023011801095855000_B9
  article-title: Reduction of microRNA 122 expression in IFNL3 CT/TT carriers and during progression of fibrosis in patients with chronic hepatitis C
  publication-title: J. Virol.
  doi: 10.1128/JVI.00016-14
– volume: 13
  start-page: 1037
  year: 2006
  ident: 2023011801095855000_B19
  article-title: Differential roles of p63 isoforms in epidermal development: selective genetic complementation in p63 null mice
  publication-title: Cell Death Differ.
  doi: 10.1038/sj.cdd.4401926
– volume: 5
  start-page: 3555
  year: 2014
  ident: 2023011801095855000_B26
  article-title: The Menin-Bach2 axis is critical for regulating CD4 T-cell senescence and cytokine homeostasis
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4555
– volume: 61
  start-page: 1163
  year: 2015
  ident: 2023011801095855000_B10
  article-title: Hepatitis C virus–induced reduction in miR-181a impairs CD4+ T-cell responses via overexpression of DUSP6
  publication-title: Hepatology
  doi: 10.1002/hep.27634
– volume: 46
  start-page: 170
  year: 2016
  ident: 2023011801095855000_B16
  article-title: Peripheral loss of CD8+CD161++TCRVα7md2+ mucosal-associated invariant T cells in chronic hepatitis C virus-infected patients
  publication-title: Eur. J. Clin. Invest.
  doi: 10.1111/eci.12581
– volume: 109
  start-page: 1133
  year: 2012
  ident: 2023011801095855000_B21
  article-title: p63-microRNA feedback in keratinocyte senescence
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1112257109
– volume: 123
  start-page: 4121
  year: 2013
  ident: 2023011801095855000_B2
  article-title: Emerging concepts in immunity to hepatitis C virus infection
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI67714
– volume: 167
  start-page: 5264
  year: 2001
  ident: 2023011801095855000_B31
  article-title: Hepatitis C virus core protein inhibits human T lymphocyte responses by a complement-dependent regulatory pathway
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.167.9.5264
– volume: 88
  start-page: 7929
  year: 2014
  ident: 2023011801095855000_B8
  article-title: Transcriptional suppression of miR-181c by hepatitis C virus enhances homeobox A1 expression
  publication-title: J. Virol.
  doi: 10.1128/JVI.00787-14
– volume: 52
  start-page: 445
  year: 2014
  ident: 2023011801095855000_B6
  article-title: The role of microRNAs in hepatitis C virus replication and related liver diseases
  publication-title: J. Microbiol.
  doi: 10.1007/s12275-014-4267-x
– volume: 12
  start-page: 499
  year: 2013
  ident: 2023011801095855000_B24
  article-title: Antitumor effect of SIRT1 inhibition in human HCC tumor models in vitro and in vivo
  publication-title: Mol. Cancer Ther.
  doi: 10.1158/1535-7163.MCT-12-0700
– volume: 186
  start-page: 3093
  year: 2011
  ident: 2023011801095855000_B33
  article-title: Cross-talk between programmed death-1 and suppressor of cytokine signaling-1 in ihibition of IL-12 production by monocytes/macrophages in hepatitis C virus infection
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1002006
– volume: 64
  start-page: 123
  year: 2010
  ident: 2023011801095855000_B34
  article-title: Viruses, microRNAs, and host interactions
  publication-title: Annu. Rev. Microbiol.
  doi: 10.1146/annurev.micro.112408.134243
– volume: 18
  start-page: 1518
  year: 2012
  ident: 2023011801095855000_B11
  article-title: Decline in miR-181a expression with age impairs T cell receptor sensitivity by increasing DUSP6 activity
  publication-title: Nat. Med.
  doi: 10.1038/nm.2963
– volume: 89
  start-page: 535
  year: 2011
  ident: 2023011801095855000_B42
  article-title: PD-1 modulates regulatory T cells and suppresses T-cell responses in HCV-associated lymphoma
  publication-title: Immunol. Cell Biol.
  doi: 10.1038/icb.2010.121
– volume: 9
  start-page: 289
  year: 2011
  ident: 2023011801095855000_B15
  article-title: HIV infection-related premature immunosenescence: high rates of immune exhaustion after short time of infection
  publication-title: Curr. HIV Res.
  doi: 10.2174/157016211797636008
– volume: 19
  start-page: 1986
  year: 2005
  ident: 2023011801095855000_B20
  article-title: p63 deficiency activates a program of cellular senescence and leads to accelerated aging
  publication-title: Genes Dev.
  doi: 10.1101/gad.342305
– volume: 61
  start-page: 193
  year: 2013
  ident: 2023011801095855000_B12
  article-title: Immune exhaustion and immune senescence: two distinct pathways for HBV vaccine failure during HCV and/or HIV infection
  publication-title: Arch. Immunol. Ther. Exp. (Warsz.)
  doi: 10.1007/s00005-013-0219-0
– volume: 53
  start-page: 252
  year: 2010
  ident: 2023011801095855000_B14
  article-title: CD4+ T-lymphocyte telomere length is related to fibrosis stage, clinical outcome and treatment response in chronic hepatitis C virus infection
  publication-title: J. Hepatol.
  doi: 10.1016/j.jhep.2010.03.005
– volume: 71
  start-page: 4138
  year: 2011
  ident: 2023011801095855000_B23
  article-title: Sirtuin 1 is upregulated in a subset of hepatocellular carcinomas where it is essential for telomere maintenance and tumor cell growth
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-10-4274
– volume: 4
  start-page: 651
  year: 2006
  ident: 2023011801095855000_B35
  article-title: MicroRNAs: expression, avoidance and subversion by vertebrate viruses
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro1473
– volume: 92
  start-page: 9363
  year: 1995
  ident: 2023011801095855000_B18
  article-title: A biomarker that identifies senescent human cells in culture and in aging skin in vivo
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.92.20.9363
– volume: 125
  start-page: 197
  year: 2008
  ident: 2023011801095855000_B32
  article-title: Differential regulation of SOCS-1 signalling in B and T lymphocytes by hepatitis C virus core protein
  publication-title: Immunology
  doi: 10.1111/j.1365-2567.2008.02829.x
– volume: 40
  start-page: 2493
  year: 2010
  ident: 2023011801095855000_B27
  article-title: HCV-specific T cells in HCV/HIV co-infection show elevated frequencies of dual Tim-3/PD-1 expression that correlate with liver disease progression
  publication-title: Eur. J. Immunol.
  doi: 10.1002/eji.201040340
– volume: 88
  start-page: 2442
  year: 2014
  ident: 2023011801095855000_B25
  article-title: Sirtuin 1 regulates hepatitis B virus transcription and replication by targeting transcription factor AP-1
  publication-title: J. Virol.
  doi: 10.1128/JVI.02861-13
– volume: 25
  start-page: 1852
  year: 2007
  ident: 2023011801095855000_B37
  article-title: Senescence as an anticancer mechanism
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2006.10.3101
– volume: 56
  start-page: 1631
  year: 2012
  ident: 2023011801095855000_B7
  article-title: Hepatitis C virus-induced up-regulation of microRNA-155 promotes hepatocarcinogenesis by activating Wnt signaling
  publication-title: Hepatology
  doi: 10.1002/hep.25849
– volume: 45
  start-page: 466
  year: 2015
  ident: 2023011801095855000_B13
  article-title: Increased frequency of late-senescent T cells lacking CD127 in chronic hepatitis C disease
  publication-title: Eur. J. Clin. Invest.
  doi: 10.1111/eci.12429
– volume: 120
  start-page: 513
  year: 2005
  ident: 2023011801095855000_B36
  article-title: Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors
  publication-title: Cell
  doi: 10.1016/j.cell.2005.02.003
– volume: 9
  start-page: 285
  year: 2010
  ident: 2023011801095855000_B39
  article-title: Aging and disease: connections to sirtuins
  publication-title: Aging Cell
  doi: 10.1111/j.1474-9726.2010.00548.x
– volume: 5
  start-page: 253
  year: 2010
  ident: 2023011801095855000_B40
  article-title: Mammalian sirtuins: biological insights and disease relevance
  publication-title: Annu. Rev. Pathol.
  doi: 10.1146/annurev.pathol.4.110807.092250
– year: 2016
  ident: 2023011801095855000_B4
  article-title: Hepatitis C disease burden in the United States in the era of oral direct-acting antivirals
  publication-title: Hepatology
  doi: 10.1002/hep.28571
– volume: 31
  start-page: 9
  year: 2010
  ident: 2023011801095855000_B17
  article-title: Telomeres and telomerase in cancer
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/bgp268
– volume: 189
  start-page: 755
  year: 2012
  ident: 2023011801095855000_B29
  article-title: Tim-3 controls regulatory and effect or T cell balance during hepatitis C virus Infection
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1200162
– volume: 192
  start-page: 649
  year: 2014
  ident: 2023011801095855000_B30
  article-title: KLRG1 impairs CD4+ T cell responses via p16ink4a and p27kip1 pathways: role in hepatitis B vaccine failure in individuals with hepatitis C virus infection
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1302069
– volume: 11
  start-page: 1451
  year: 2009
  ident: 2023011801095855000_B38
  article-title: TAp63 induces senescence and suppresses tumorigenesis in vivo
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1988
– volume: 25
  start-page: 320
  year: 2015
  ident: 2023011801095855000_B5
  article-title: MicroRNA regulation of viral immunity, latency, and carcinogenesis of selected tumor viruses and HIV
  publication-title: Rev. Med. Virol.
  doi: 10.1002/rmv.1850
– volume: 43
  start-page: 458
  year: 2013
  ident: 2023011801095855000_B41
  article-title: HCV-infected hepatocytes drive CD4+CD25+Foxp3+ regulatory T-cell development through the Tim-3/Gal-9 pathway
  publication-title: Eur. J. Immunol.
  doi: 10.1002/eji.201242768
– reference: 20679213 - Proc Natl Acad Sci U S A. 2010 Aug 17;107(33):14733-8
– reference: 24789793 - J Virol. 2014 Jul;88(14):7929-40
– reference: 25721991 - Eur J Clin Invest. 2015 May;45(5):466-74
– reference: 20409078 - Aging Cell. 2010 Apr;9(2):285-90
– reference: 21527554 - Cancer Res. 2011 Jun 15;71(12):4138-49
– reference: 20462651 - J Hepatol. 2010 Aug;53(2):252-60
– reference: 26991255 - J Med Virol. 2016 Oct;88(10):1659-71
– reference: 24337749 - J Immunol. 2014 Jan 15;192(2):649-57
– reference: 19887512 - Carcinogenesis. 2010 Jan;31(1):9-18
– reference: 24084744 - J Clin Invest. 2013 Oct;123(10):4121-30
– reference: 21263070 - J Immunol. 2011 Mar 1;186(5):3093-103
– reference: 20078221 - Annu Rev Pathol. 2010;5:253-95
– reference: 17488983 - J Clin Oncol. 2007 May 10;25(14):1852-7
– reference: 23161469 - Eur J Immunol. 2013 Feb;43(2):458-67
– reference: 20477536 - Annu Rev Microbiol. 2010;64:123-41
– reference: 16107615 - Genes Dev. 2005 Sep 1;19(17):1986-99
– reference: 16912711 - Nat Rev Microbiol. 2006 Sep;4(9):651-9
– reference: 23339189 - Mol Cancer Ther. 2013 Apr;12(4):499-508
– reference: 24694524 - Nat Commun. 2014 Apr 02;5:3555
– reference: 24335313 - J Virol. 2014 Mar;88(5):2442-51
– reference: 20623550 - Eur J Immunol. 2010 Sep;40(9):2493-505
– reference: 7568133 - Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9363-7
– reference: 22228303 - Proc Natl Acad Sci U S A. 2012 Jan 24;109(4):1133-8
– reference: 16601749 - Cell Death Differ. 2006 Jun;13(6):1037-47
– reference: 11673541 - J Immunol. 2001 Nov 1;167(9):5264-72
– reference: 27015107 - Hepatology. 2016 Nov;64(5):1442-1450
– reference: 24439265 - Immunity. 2014 Jan 16;40(1):13-24
– reference: 15734683 - Cell. 2005 Feb 25;120(4):513-22
– reference: 18397267 - Immunology. 2008 Oct;125(2):197-207
– reference: 26258805 - Rev Med Virol. 2015 Sep;25(5):320-41
– reference: 25477247 - Hepatology. 2015 Apr;61(4):1163-73
– reference: 20975732 - Immunol Cell Biol. 2011 May;89(4):535-9
– reference: 23023500 - Nat Med. 2012 Oct;18(10):1518-24
– reference: 26681320 - Eur J Clin Invest. 2016 Feb;46(2):170-80
– reference: 19898465 - Nat Cell Biol. 2009 Dec;11(12):1451-7
– reference: 22706088 - J Immunol. 2012 Jul 15;189(2):755-66
– reference: 16873059 - Cell. 2006 Jul 28;126(2):257-68
– reference: 24672032 - J Virol. 2014 Jun;88(11):6394-402
– reference: 24871972 - J Microbiol. 2014 Jun;52(6):445-51
– reference: 23400275 - Arch Immunol Ther Exp (Warsz). 2013 Jun;61(3):193-201
– reference: 21916840 - Curr HIV Res. 2011 Jul;9(5):289-94
– reference: 22610915 - Hepatology. 2012 Nov;56(5):1631-40
SSID ssj0003260
Score 2.3591416
Snippet Acceleration of HCV infection‐associated T cell senescence is counter‐regulated by the ΔNp63‐miR181a‐Sirt1 pathway. T cell dysfunction has a crucial role in...
T cell dysfunction has a crucial role in establishing and maintaining viral persistence. We have previously shown a decline in miR-181a, which regulates CD4+ T...
T cell dysfunction has a crucial role in establishing and maintaining viral persistence. We have previously shown a decline in miR-181a, which regulates CD4 T...
Acceleration of HCV infection-associated T cell senescence is counter-regulated by the ΔNp63-miR181a-Sirt1 pathway. T cell dysfunction has a crucial role in...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1201
SubjectTerms Adult
Aged
Case-Control Studies
CD4-Positive T-Lymphocytes - immunology
Cellular Senescence
Female
Genes, Reporter
hepatitis C
Hepatitis C, Chronic - immunology
Humans
Interleukin-2 - biosynthesis
Interleukin-2 - genetics
Male
MicroRNAs - biosynthesis
MicroRNAs - genetics
MicroRNAs - physiology
microRNA‐181a
Middle Aged
Signal Transduction - immunology
Sirtuin 1
Sirtuin 1 - biosynthesis
Sirtuin 1 - genetics
Sirtuin 1 - physiology
T cell senescence
Telomere Shortening
transcription factor p63
Transcription Factors - biosynthesis
Transcription Factors - genetics
Transcription Factors - physiology
Transfection
Translational & Clinical Immunology
Tumor Suppressor Proteins - biosynthesis
Tumor Suppressor Proteins - genetics
Tumor Suppressor Proteins - physiology
Up-Regulation
Title Protection of CD4+ T cells from hepatitis C virus infection‐associated senescence via ΔNp63–miR‐181a–Sirt1 pathway
URI https://onlinelibrary.wiley.com/doi/abs/10.1189%2Fjlb.5A0316-119RR
https://www.ncbi.nlm.nih.gov/pubmed/27354409
https://www.proquest.com/docview/1826708745
https://pubmed.ncbi.nlm.nih.gov/PMC5069086
Volume 100
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLbKEBI3CDZg5U9GokgoSpdfN7nsymCaxoRKJ3oXOalNA106tcmmcsU7wIvwIjwET8LxT5J2HT_jJkpdx3LyfT7n2D7nGKFnHmGgx2lg0oAx0-PMN8NRQk2esJFj8dDzqYh3fnNE9o-9g6E_bDS-L3ktFXncTj5fGlfyP6hCGeAqomSvgGzVKBTAPeALV0AYrv-E8VuVZEHbfL2XXsvZNQaGWIyfq8CRMRMe03k6N3rGWTorau-rzKQaGTA550LiJXKQn6XUaPX2WqF3dErc0hfCPUn7JqhpWhW8S2e5LdKyjs_pytbwkok7YcWnabLImaFzPdXL1NNCCv-i9giSbgXA2OyDUZnX_TJ0JKvj0N7rFe7DUunqNQub6OC9WrSBHSNcMtSODFOiNwTR6xJ1sEklm3WVdHn7W0pa29ENMv1Tyex1jRCIhKofJ3Hb74IAE10J-_1a-5U7_heUYuWqKCdJQRhBC5FqIZItXEPXHZiZiEMzXg9rryKwhi2V-VW9YLkzHoQ7F_uwagmtTW_WvXSXZ0_S_BncRrc0qLirSHgHNVi2iba6Gc2nJwv8HEtPYonxJrqhDjhdbKHzmqF4yjEw1MADLPmJBT9xxU_cw5Kf-DJ-4pqfUIviH98EN39--VqyEm4lH7Hm4110_Gpv0Ns39VEfZuJ2HNtMOpTYnIAGoTa3QHxQeNjnNoktNwncgHKRWzCEGjR2YjuxXahFOpxzd8SDhLv30EY2zdg2wsQmFmeEBw5nnhWEAfU87hBQ6vEINJbbRDvlZ48SnQdfHMcyiX4HdRO9qJ44VTlg_lD3aYlkBIJafFCasWkxj8REvmOJ0yWa6L5CtmoN5hC-51lhE3VWMK8qiCTwq_9k6Vgmg_dFqvGANFFbsuOvHYwODnfF2HlwhZd6iG7Wo_gR2shnBXsMtngeP5Hs_wUwzdry
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Protection+of+CD4%2B+T+cells+from+hepatitis+C+virus+infection-associated+senescence+via+%CE%94Np63%E2%80%93miR-181a%E2%80%93Sirt1+pathway&rft.jtitle=Journal+of+leukocyte+biology&rft.au=Zhou%2C+Yun&rft.au=Li%2C+Guang+Y&rft.au=Ren%2C+Jun+P&rft.au=Wang%2C+Ling&rft.date=2016-11-01&rft.issn=0741-5400&rft.eissn=1938-3673&rft.volume=100&rft.issue=5&rft.spage=1201&rft.epage=1211&rft_id=info:doi/10.1189%2Fjlb.5A0316-119RR&rft.externalDBID=n%2Fa&rft.externalDocID=10_1189_jlb_5A0316_119RR
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0741-5400&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0741-5400&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0741-5400&client=summon