The influence of biochar particle size and concentration on bulk density and maximum water holding capacity of sandy vs sandy loam soil in a column experiment

Biochar application to agricultural soils has been proposed as a way to increase crop production by improving soil chemical and physical properties. Liming potential and improved nutrient exchange on biochar surfaces are the most reported mechanisms. Wherever crops experience drought stress, improve...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Vol. 347; pp. 194 - 202
Main Authors Verheijen, Frank G.A., Zhuravel, Anna, Silva, Flávio C., Amaro, António, Ben-Hur, Meni, Keizer, Jan Jacob
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Biochar application to agricultural soils has been proposed as a way to increase crop production by improving soil chemical and physical properties. Liming potential and improved nutrient exchange on biochar surfaces are the most reported mechanisms. Wherever crops experience drought stress, improvements in soil water holding capacity (WHC) might also be an important mechanism. However, reported effects on soil structure and WHC are mixed. Therefore, we studied the effects of biochar on soil bulk density (BD) and WHC in a laboratory column study using two agricultural soils from Portugal: a sandy and a sandy loam soil. Mixed woody feedstock was pyrolysed at 620 °C, creating a wettable biochar that was used unsorted as well as sieved into large (2–4 mm) and small (0.05–1.00 mm) particles, mixed into the soils at 1, 5, 10 and 20% (by volume), and incubated for 10 days at field capacity to allow aggregation. Soil samples were analysed for BD and WHC using soil columns. We found biochar to decrease soil BD and increase maximum WHC, expressed as gravity-drained equilibrium water content, for both soils. The sandy soil was more responsive with significant effects at the lowest application rate (1%), while the sandy loam soil started to show significant effects at 5% biochar. Small biochar particles reduced the BD of sandy soil more, while large biochar particles caused a greater reduction in the BD of the sandy loam soil. The effect of biochar particle size on WHC was less clear, except for small particles at 20% volumetric concentration, which showed a 60% increase in gravimetric WHC. When expressed as total soil water storage (SWS), 20% biochar incorporation to 15 cm depth would increase the total SWS of sandy soil from 0.56 mm (control) to 0.83–0.91 (mm), and of the sandy loam soil from 0.56 to 0.79–0.96 (mm), depending on biochar particle size. Our results suggest that biochar particle sizes can be used to achieve specific effects in soils, while mechanisms and trade-offs (agro-economic and environmental) need further exploration. [Display omitted] •Small biochar particles reduced bulk density more for sandy than sandy loam soil.•Large biochar particles reduced bulk density more for sandy loam than sandy soil.•Small particles at 20% increased gravimetric water holding capacity by 60%.•The total soil water storage of sandy soil increased from 56 to 83–91 (mm).•The total soil water storage of sandy loam soil increased from 56 (mm) to 79–96 (mm).
AbstractList Biochar application to agricultural soils has been proposed as a way to increase crop production by improving soil chemical and physical properties. Liming potential and improved nutrient exchange on biochar surfaces are the most reported mechanisms. Wherever crops experience drought stress, improvements in soil water holding capacity (WHC) might also be an important mechanism. However, reported effects on soil structure and WHC are mixed. Therefore, we studied the effects of biochar on soil bulk density (BD) and WHC in a laboratory column study using two agricultural soils from Portugal: a sandy and a sandy loam soil. Mixed woody feedstock was pyrolysed at 620 °C, creating a wettable biochar that was used unsorted as well as sieved into large (2–4 mm) and small (0.05–1.00 mm) particles, mixed into the soils at 1, 5, 10 and 20% (by volume), and incubated for 10 days at field capacity to allow aggregation. Soil samples were analysed for BD and WHC using soil columns. We found biochar to decrease soil BD and increase maximum WHC, expressed as gravity-drained equilibrium water content, for both soils. The sandy soil was more responsive with significant effects at the lowest application rate (1%), while the sandy loam soil started to show significant effects at 5% biochar. Small biochar particles reduced the BD of sandy soil more, while large biochar particles caused a greater reduction in the BD of the sandy loam soil. The effect of biochar particle size on WHC was less clear, except for small particles at 20% volumetric concentration, which showed a 60% increase in gravimetric WHC. When expressed as total soil water storage (SWS), 20% biochar incorporation to 15 cm depth would increase the total SWS of sandy soil from 0.56 mm (control) to 0.83–0.91 (mm), and of the sandy loam soil from 0.56 to 0.79–0.96 (mm), depending on biochar particle size. Our results suggest that biochar particle sizes can be used to achieve specific effects in soils, while mechanisms and trade-offs (agro-economic and environmental) need further exploration. [Display omitted] •Small biochar particles reduced bulk density more for sandy than sandy loam soil.•Large biochar particles reduced bulk density more for sandy loam than sandy soil.•Small particles at 20% increased gravimetric water holding capacity by 60%.•The total soil water storage of sandy soil increased from 56 to 83–91 (mm).•The total soil water storage of sandy loam soil increased from 56 (mm) to 79–96 (mm).
Biochar application to agricultural soils has been proposed as a way to increase crop production by improving soil chemical and physical properties. Liming potential and improved nutrient exchange on biochar surfaces are the most reported mechanisms. Wherever crops experience drought stress, improvements in soil water holding capacity (WHC) might also be an important mechanism. However, reported effects on soil structure and WHC are mixed. Therefore, we studied the effects of biochar on soil bulk density (BD) and WHC in a laboratory column study using two agricultural soils from Portugal: a sandy and a sandy loam soil. Mixed woody feedstock was pyrolysed at 620 °C, creating a wettable biochar that was used unsorted as well as sieved into large (2–4 mm) and small (0.05–1.00 mm) particles, mixed into the soils at 1, 5, 10 and 20% (by volume), and incubated for 10 days at field capacity to allow aggregation. Soil samples were analysed for BD and WHC using soil columns.We found biochar to decrease soil BD and increase maximum WHC, expressed as gravity-drained equilibrium water content, for both soils. The sandy soil was more responsive with significant effects at the lowest application rate (1%), while the sandy loam soil started to show significant effects at 5% biochar. Small biochar particles reduced the BD of sandy soil more, while large biochar particles caused a greater reduction in the BD of the sandy loam soil. The effect of biochar particle size on WHC was less clear, except for small particles at 20% volumetric concentration, which showed a 60% increase in gravimetric WHC. When expressed as total soil water storage (SWS), 20% biochar incorporation to 15 cm depth would increase the total SWS of sandy soil from 0.56 mm (control) to 0.83–0.91 (mm), and of the sandy loam soil from 0.56 to 0.79–0.96 (mm), depending on biochar particle size. Our results suggest that biochar particle sizes can be used to achieve specific effects in soils, while mechanisms and trade-offs (agro-economic and environmental) need further exploration.
Author Zhuravel, Anna
Silva, Flávio C.
Keizer, Jan Jacob
Amaro, António
Ben-Hur, Meni
Verheijen, Frank G.A.
Author_xml – sequence: 1
  givenname: Frank G.A.
  surname: Verheijen
  fullname: Verheijen, Frank G.A.
  email: frankverheijen@gmail.com
  organization: University of Aveiro, Centre for Environmental and Marine Studies, Department of Environment and Planning, 3810-193 Aveiro, Portugal
– sequence: 2
  givenname: Anna
  orcidid: 0000-0002-6678-3322
  surname: Zhuravel
  fullname: Zhuravel, Anna
  organization: Institute of Soil water and Environmental Sciences, Volcani Institute, Bet Dagan, Israel
– sequence: 3
  givenname: Flávio C.
  surname: Silva
  fullname: Silva, Flávio C.
  organization: University of Aveiro, Centre for Environmental and Marine Studies, Department of Environment and Planning, 3810-193 Aveiro, Portugal
– sequence: 4
  givenname: António
  surname: Amaro
  fullname: Amaro, António
  organization: University of Aveiro, Centre for Environmental and Marine Studies, Department of Environment and Planning, 3810-193 Aveiro, Portugal
– sequence: 5
  givenname: Meni
  surname: Ben-Hur
  fullname: Ben-Hur, Meni
  organization: Institute of Soil water and Environmental Sciences, Volcani Institute, Bet Dagan, Israel
– sequence: 6
  givenname: Jan Jacob
  surname: Keizer
  fullname: Keizer, Jan Jacob
  organization: University of Aveiro, Centre for Environmental and Marine Studies, Department of Environment and Planning, 3810-193 Aveiro, Portugal
BookMark eNqFkc9u3CAQxlGVSt2kfYWKYy92AHvBK_XQKuo_KVIv6RnNwpBli8EFO832YfqsYbPppZdISID0-2bmm--cnMUUkZC3nLWccXm5b28xWcwjtILxTcu6lvX9C7LigxKNFOvNGVmxSjaKSf6KnJeyr1_FBFuRvzc7pD66sGA0SJOjW5_MDjKdIM_eBKTF_0EK0VKTKhLnDLNPkdazXcJPajEWPx8eiRHu_biM9DfMmOkuBevjLTUwgTkitXqp2IHeladHSDDSknyoM1CoHcIyRor3E2Y_1l6vyUsHoeCbp_uC_Pj86ebqa3P9_cu3q4_XjekUnxtnq1WUvQAl1wN0W8k6yVH0gzJgwJrB8F7BZg3AFDcOWO-MkA6U6d1gVXdB3p3qTjn9WrDMevTFYAgQMS1FC9Gpdcd6Jiv6_oSanErJ6HT19riSuhkfNGf6GIve63-x6GMsmnW6xlLl8j_5VK1CPjwv_HASYt3Dncesi_HH0KzPaGZtk3-uxAM9WLHx
CitedBy_id crossref_primary_10_1007_s11356_022_19609_w
crossref_primary_10_1080_00103624_2023_2177669
crossref_primary_10_1016_j_jia_2024_03_022
crossref_primary_10_1002_agj2_21040
crossref_primary_10_1016_S1002_0160_21_60041_3
crossref_primary_10_1016_j_geoderma_2023_116591
crossref_primary_10_1002_agj2_20630
crossref_primary_10_1007_s10661_021_09162_3
crossref_primary_10_3390_soilsystems4010009
crossref_primary_10_1007_s11368_021_03049_z
crossref_primary_10_1007_s42729_022_00767_2
crossref_primary_10_1007_s13399_024_05545_x
crossref_primary_10_3390_s20092444
crossref_primary_10_3390_su141711104
crossref_primary_10_1021_acssusresmgt_4c00174
crossref_primary_10_1016_j_scitotenv_2020_138866
crossref_primary_10_1016_j_scitotenv_2023_163263
crossref_primary_10_1186_s13765_024_00903_9
crossref_primary_10_1016_j_jenvman_2023_117305
crossref_primary_10_1016_j_scitotenv_2021_152638
crossref_primary_10_1007_s10333_021_00875_2
crossref_primary_10_1016_j_rcradv_2023_200173
crossref_primary_10_3390_app14219723
crossref_primary_10_1016_j_geoderma_2023_116639
crossref_primary_10_1007_s42729_023_01219_1
crossref_primary_10_1038_s41598_024_76082_w
crossref_primary_10_1111_gcbb_13083
crossref_primary_10_1139_cjss_2019_0004
crossref_primary_10_1007_s00344_022_10588_3
crossref_primary_10_1016_j_scienta_2022_111244
crossref_primary_10_1007_s11270_024_07433_6
crossref_primary_10_1016_j_scitotenv_2022_153566
crossref_primary_10_2166_wcc_2023_270
crossref_primary_10_1016_j_jclepro_2022_134173
crossref_primary_10_3390_app12084051
crossref_primary_10_1007_s13593_022_00773_9
crossref_primary_10_1080_00103624_2022_2112216
crossref_primary_10_1016_j_jobe_2024_109272
crossref_primary_10_1177_15280837231153661
crossref_primary_10_2139_ssrn_4100204
crossref_primary_10_3389_fpls_2024_1479925
crossref_primary_10_1007_s42729_021_00678_8
crossref_primary_10_3390_su16135727
crossref_primary_10_1002_nsg_12076
crossref_primary_10_1007_s42729_023_01208_4
crossref_primary_10_1080_15320383_2024_2328069
crossref_primary_10_32604_phyton_2025_059997
crossref_primary_10_3390_su13137230
crossref_primary_10_1016_j_scitotenv_2022_154520
crossref_primary_10_1016_j_jclepro_2021_128612
crossref_primary_10_1016_j_jclepro_2024_143532
crossref_primary_10_1016_j_jclepro_2024_143772
crossref_primary_10_1016_j_jece_2023_110009
crossref_primary_10_3389_fenvs_2022_949190
crossref_primary_10_1007_s11368_021_02913_2
crossref_primary_10_1017_S0014479722000497
crossref_primary_10_1051_bioconf_202515803010
crossref_primary_10_1111_sum_12965
crossref_primary_10_1007_s13399_024_05370_2
crossref_primary_10_1007_s42768_022_00114_2
crossref_primary_10_1177_17436753241311989
crossref_primary_10_3390_ma14061335
crossref_primary_10_1016_j_jhazmat_2020_124123
crossref_primary_10_1038_s43247_023_00948_6
crossref_primary_10_1016_j_jenvman_2023_117567
crossref_primary_10_1016_j_plaphy_2024_109197
crossref_primary_10_11118_actaun_2022_002
crossref_primary_10_3390_agriculture14122165
crossref_primary_10_1016_j_envres_2021_112440
crossref_primary_10_1021_acsomega_3c06233
crossref_primary_10_1016_j_ejsobi_2024_103680
crossref_primary_10_1039_D2VA00324D
crossref_primary_10_1016_j_scitotenv_2019_134878
crossref_primary_10_1080_23311932_2023_2294542
crossref_primary_10_3390_en17194861
crossref_primary_10_1007_s13762_022_04320_7
crossref_primary_10_1016_j_catena_2021_105267
crossref_primary_10_3390_agriculture10030062
crossref_primary_10_1007_s42729_022_00829_5
crossref_primary_10_1007_s11368_024_03741_w
crossref_primary_10_1007_s42773_023_00260_8
crossref_primary_10_1007_s42729_022_00822_y
crossref_primary_10_1016_j_chemosphere_2021_131274
crossref_primary_10_3390_plants13172534
crossref_primary_10_1016_j_still_2024_106282
crossref_primary_10_1007_s41748_022_00336_8
crossref_primary_10_1016_j_jenvman_2022_117199
crossref_primary_10_1016_j_jhazmat_2022_129668
crossref_primary_10_1016_j_rhisph_2021_100469
crossref_primary_10_1016_j_jenvman_2023_119658
crossref_primary_10_31545_intagr_144133
crossref_primary_10_3390_jof8040384
crossref_primary_10_1007_s11368_022_03361_2
crossref_primary_10_3390_agriculture11121293
crossref_primary_10_1016_j_rser_2021_111379
crossref_primary_10_1016_j_wmb_2023_10_004
crossref_primary_10_1007_s10668_023_03470_z
crossref_primary_10_1016_j_fcr_2022_108510
crossref_primary_10_3390_agronomy14071529
crossref_primary_10_1016_j_agwat_2023_108605
crossref_primary_10_1016_j_jaap_2022_105728
crossref_primary_10_2139_ssrn_4111410
crossref_primary_10_1016_j_rser_2025_115581
crossref_primary_10_3389_fenvs_2023_1114752
crossref_primary_10_1038_s41467_024_48289_y
crossref_primary_10_1002_cjce_23771
crossref_primary_10_3390_en16227645
crossref_primary_10_1002_ldr_4185
crossref_primary_10_1016_j_scitotenv_2021_149167
crossref_primary_10_3390_horticulturae6030037
crossref_primary_10_2139_ssrn_4645623
crossref_primary_10_1016_j_biteb_2023_101436
crossref_primary_10_1080_23311932_2023_2256136
crossref_primary_10_1590_1809_4430_eng_agric_v40n3p344_351_2020
crossref_primary_10_1016_j_cej_2021_131189
crossref_primary_10_1016_j_apsoil_2022_104526
crossref_primary_10_3390_su15118700
crossref_primary_10_1016_j_scitotenv_2020_144802
crossref_primary_10_1016_j_catena_2021_105284
crossref_primary_10_1038_s41598_025_88355_z
crossref_primary_10_1007_s11756_024_01702_9
crossref_primary_10_1007_s10854_022_07894_7
crossref_primary_10_3390_soilsystems8030082
crossref_primary_10_1007_s11368_025_03990_3
crossref_primary_10_1007_s42729_021_00442_y
crossref_primary_10_1016_j_biombioe_2024_107070
crossref_primary_10_3390_ma14216658
crossref_primary_10_1111_sum_12977
crossref_primary_10_1007_s42729_024_01861_3
crossref_primary_10_1016_j_catena_2022_106616
crossref_primary_10_1088_1755_1315_1162_1_012015
crossref_primary_10_1016_j_eja_2024_127168
crossref_primary_10_1038_s41598_024_70515_2
crossref_primary_10_1016_j_scp_2024_101604
crossref_primary_10_2478_johh_2023_0030
crossref_primary_10_3390_su16010414
crossref_primary_10_1002_jeq2_20331
crossref_primary_10_1080_19386362_2023_2227486
crossref_primary_10_2166_wcc_2024_072
crossref_primary_10_1007_s42729_024_01754_5
crossref_primary_10_1007_s13399_024_05338_2
crossref_primary_10_1016_j_jenvman_2021_113489
crossref_primary_10_1038_s41598_023_49919_z
crossref_primary_10_3390_su132413726
crossref_primary_10_1007_s13399_023_04079_y
crossref_primary_10_1007_s44246_024_00127_y
crossref_primary_10_1016_j_ecoleng_2021_106391
crossref_primary_10_1080_00103624_2022_2028812
crossref_primary_10_1111_sum_12649
crossref_primary_10_3389_fagro_2020_605655
crossref_primary_10_1007_s10333_022_00900_y
crossref_primary_10_1111_sum_12769
crossref_primary_10_3390_agriculture12071028
crossref_primary_10_1007_s00344_022_10832_w
crossref_primary_10_1007_s11356_023_25621_5
crossref_primary_10_1002_jeq2_20447
crossref_primary_10_1016_j_jece_2024_114561
crossref_primary_10_1038_s41598_025_94784_7
crossref_primary_10_32604_phyton_2025_058970
crossref_primary_10_1007_s13399_020_01226_7
crossref_primary_10_1016_j_geodrs_2024_e00910
crossref_primary_10_1021_acs_iecr_0c06278
crossref_primary_10_1016_j_geoderma_2021_115510
crossref_primary_10_1016_j_agee_2022_108233
crossref_primary_10_1002_ldr_5122
crossref_primary_10_3389_fenvs_2022_1036837
crossref_primary_10_3390_soilsystems8030069
crossref_primary_10_1016_j_geoderma_2019_114170
crossref_primary_10_1038_s41598_024_67766_4
crossref_primary_10_1002_agg2_20409
crossref_primary_10_1007_s42832_024_0267_x
Cites_doi 10.2134/agronj2010.0188
10.1007/s10646-014-1344-1
10.2307/1948629
10.1371/journal.pone.0179079
10.1111/ejss.12127
10.1038/ngeo2154
10.1016/j.geoderma.2013.12.022
10.1111/ejss.12079
10.2136/sssaj2010.0325
10.2134/agronj1999.00021962009100020016x
10.1590/S0100-204X2012000500012
10.1080/17583004.2014.913360
10.1016/j.jenvman.2010.06.013
10.1016/j.geoderma.2010.05.013
10.1002/hyp.6756
10.1097/SS.0b013e31824e5593
10.2134/jeq2011.0124
10.1071/SR9810275
10.1016/j.geoderma.2014.07.002
10.3846/16486897.2016.1239582
10.1016/j.chemosphere.2010.05.020
10.1016/j.eja.2017.09.003
10.1007/s11104-010-0464-5
10.1111/sum.12413
10.1515/intag-2016-0094
10.1016/j.biombioe.2012.01.033
10.1111/ejss.12081
10.1016/S0022-1694(01)00466-8
10.1080/00103624.2017.1383414
10.1016/j.agee.2010.12.005
10.1111/sum.12026
10.1111/gcbb.12191
10.1016/j.still.2015.08.002
10.1097/SS.0b013e3182482784
10.1016/j.biombioe.2014.03.059
10.1097/SS.0000000000000069
10.1016/S1002-0160(15)60041-8
10.1097/00010694-194907000-00007
10.1016/j.geoderma.2013.03.003
10.1061/9780784480434.060
10.1088/1748-9326/aa67bd
10.1002/ldr.2906
10.1111/gcbb.12076
10.1071/SR11102
10.1007/s11368-017-1763-8
10.1590/S0100-204X2012000500003
10.1021/jf9044217
10.1016/j.catena.2017.11.013
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.geoderma.2019.03.044
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-6259
EndPage 202
ExternalDocumentID 10_1016_j_geoderma_2019_03_044
S0016706118315702
GeographicLocations Portugal
GeographicLocations_xml – name: Portugal
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SAB
SDF
SDG
SES
SPC
SPCBC
SSA
SSE
SSZ
T5K
~02
~G-
29H
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
GROUPED_DOAJ
HLV
HMA
HMC
HVGLF
HZ~
H~9
K-O
OHT
R2-
SEN
SEP
SEW
SSH
VH1
WUQ
XPP
Y6R
ZMT
7S9
L.6
ID FETCH-LOGICAL-c371t-fd872e642a7658a3b60361e2487cacadc8c147a95aa071cfa04fc26fa7c4f8d73
IEDL.DBID .~1
ISSN 0016-7061
IngestDate Thu Jul 10 22:19:16 EDT 2025
Tue Jul 01 04:04:49 EDT 2025
Thu Apr 24 23:02:23 EDT 2025
Fri Feb 23 02:30:45 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords BD
C
Linear regression model
PAW
Soil physical properties
Biochar
MED
SWS
SOM
Available water capacity
WHC
Soil organic matter
OM
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c371t-fd872e642a7658a3b60361e2487cacadc8c147a95aa071cfa04fc26fa7c4f8d73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6678-3322
OpenAccessLink http://hdl.handle.net/10773/39873
PQID 2237530406
PQPubID 24069
PageCount 9
ParticipantIDs proquest_miscellaneous_2237530406
crossref_citationtrail_10_1016_j_geoderma_2019_03_044
crossref_primary_10_1016_j_geoderma_2019_03_044
elsevier_sciencedirect_doi_10_1016_j_geoderma_2019_03_044
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-08-01
2019-08-00
20190801
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-01
  day: 01
PublicationDecade 2010
PublicationTitle Geoderma
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Koide, Nguyen, Skinner, Dell, Peoples, Adler, Drohan (bb0135) 2015; 7
Hass, Gonzalez, Lima, Godwin, Halvorson, Boyer (bb0075) 2012; 41
Esmaeelnejad, Shorafa, Gorji, Hosseini (bb0060) 2017; 48
Novak, Watts (bb0165) 2013; 29
Verheijen, Montanarella, Bastos (bb0255) 2012; 47
Laird, Fleming, Davis, Horton, Wang, Karlen (bb0140) 2010; 158
Keizer, Doerr, Malvar, Ferreira, Pereira (bb0110) 2007; 21
Jin, J., Abera, K.A., Manahiloh, K.N., Imhoff, P., 2017. Experimental investigation of the effects of biochar on the hydraulic conductivity of soils. Geotechnical Special Publication (GSP 276), 549–558. DOI
Liu, Z., Dugan, B., Masiello, C.A., Gonnermann, H.M., 2017. Biochar particle size, shape, and porosity act together to influence soil water properties. PLoS One 12 (6), art. no. e0179079. doi
Masiello, Dugan, Brewer, Spokas, Novak, Liu (bb0160) 2015
Veihmeyer, Hendrickson (bb0245) 1949; 68
Zhang, Chen, You (bb0270) 2016; 26
Tammeorg, P., Bastos, A.C., Jeffery, S., Rees, F., Kern, J., Graber, E., Ventura, M., Kibblewhite, M., Amaro, A., Budai, A., Cordovil, C. M., Domene, X., Gardin, G., Gasco, G., Horak, J., Kammann, C., Kondrlova, E., Laird, D., Loureiro, S., Martins, M.A.S., Panzacchi, P., Prasad, M., Prodana, M., Puga, Ruysschaert, G., Sas-Paszt, L., Silva, F.C., Teixeira, W.G., Tonon, G., Vedove, G.D., Zavalloni, C., Glaser, B., Verheijen, F.G.A., 2017. Biochars in soils: towards the required level of scientific understanding. J. Environ. Eng. Landsc. Manag. 25(2), 192–207. doi
Lebrun, Miard, Nandillon, Hattab-Hambli, Scippa, Bourgerie, Morabito (bb0145) 2018; 18
Jones, Haynes, Phillips (bb0100) 2010; 91
Verheijen, Graber, Ameloot, Bastos, Sohi, Knicker (bb0260) 2014; 65
Jeffery, Verheijen, Bastos, Van Der Velde (bb0085) 2014; 6
.
Novak, Busscher, Watts, Amonette, Ippolito, Lima, Gaskin, Das, Steiner, Ahmedna, Rehrah, Schomberg (bb0170) 2012; 177
Briggs, Breiner, Graham (bb0040) 2012; 177
Streubel, Collins, Garcia-Perez, Tarara, Granatstein, Kruger (bb0210) 2011; 75
Daniells (bb0050) 2012; 50
Prendergast-Miller, Duvall, Sohi (bb0195) 2014; 65
Atkinson, Fitzgerald, Hipps (bb0025) 2010; 337
Tryon (bb0225) 1948
Ulyett, Sakrabani, Kibblewhite, Hann (bb0240) 2014; 65
Khademalrasoul, Naveed, Heckrath, Kumari, Wollesen De Jonge, Elsgaard, Vogel, Iversen (bb0120) 2014; 179
Liu, Han, Zhang (bb0150) 2012; 14
Ouyang, Wang, Tang, Yu, Zhang (bb0180) 2013; 13
Atkinson (bb0020) 2018; 34
Hardie, Clothier, Bound, Oliver, Close (bb0070) 2013; 376
Verheijen, Jeffery, Bastos, Van der Velde, Diafas (bb0250) 2010; 24099
Jeffery, Prodana, Bastos, van Groenigen, Hungate, Verheijen, A (bb0090) 2017; 12
Díaz-Zorita, Buschiazzo, Peinemann (bb0055) 1999; 91
Kinney, Masiello, Dugan, Hockaday, Dean, Zygourakis, Barnes (bb0130) 2012; 41
Graber, Frenkel, Jaiswal, Elad (bb0065) 2014; 5
Soinne, Hovi, Tammeorg, Turtola (bb0205) 2014; 219-220
Trifunovic, Gonzales, Ravi, Sharratt, Mohanty (bb0220) 2018; 29
Obia, Mulder, Martinsen, Cornelissen, Børresen (bb0175) 2016; 155
Peake, Reid, Tang (bb0185) 2014; 235-236
Abel, Peters, Trinks, Schonsky, Facklam, Wessolek (bb0005) 2013; 202-203
Abiven, Schmidt, Lehmann (bb0010) 2014; 7
Ahmed, Raghavan (bb0015) 2018; 32
Pereira, Heinemann, Madari, de Melo Carvalho, Kliemann, dos Santos (bb0190) 2012; 47
Karhu, Mattila, Bergström, Regina (bb0105) 2011; 140
Brockhoff, Christians, Killorn, Horton, Davis (bb0045) 2010; 102
Uchimiya, Lima, Klasson, Wartelle (bb0230) 2010; 80
Brewer, Chuang, Masiello, Gonnermann, Gao, Dugan, Driver, Panzacchi, Zygourakis, Davies (bb0035) 2014; 66
Bastos, Prodana, Abrantes, Keizer, Soares, Loureiro (bb0030) 2014; 23
Kerré, Willaert, Cornelis, Smolders (bb0115) 2017; 91
King (bb0125) 1981; 19
Wang, Stewart, Sun, Wang, Zheng (bb0265) 2018; 162
Schaap, Leij, Van Genuchten (bb0200) 2001; 251
Uchimiya, Lima, Thomas Klasson, Chang, Wartelle, Rodgers (bb0235) 2010; 58
Prendergast-Miller (10.1016/j.geoderma.2019.03.044_bb0195) 2014; 65
Jones (10.1016/j.geoderma.2019.03.044_bb0100) 2010; 91
Khademalrasoul (10.1016/j.geoderma.2019.03.044_bb0120) 2014; 179
Zhang (10.1016/j.geoderma.2019.03.044_bb0270) 2016; 26
Tryon (10.1016/j.geoderma.2019.03.044_bb0225) 1948
Abiven (10.1016/j.geoderma.2019.03.044_bb0010) 2014; 7
Ahmed (10.1016/j.geoderma.2019.03.044_bb0015) 2018; 32
Streubel (10.1016/j.geoderma.2019.03.044_bb0210) 2011; 75
Verheijen (10.1016/j.geoderma.2019.03.044_bb0250) 2010; 24099
Daniells (10.1016/j.geoderma.2019.03.044_bb0050) 2012; 50
Keizer (10.1016/j.geoderma.2019.03.044_bb0110) 2007; 21
Atkinson (10.1016/j.geoderma.2019.03.044_bb0025) 2010; 337
Peake (10.1016/j.geoderma.2019.03.044_bb0185) 2014; 235-236
10.1016/j.geoderma.2019.03.044_bb0095
Verheijen (10.1016/j.geoderma.2019.03.044_bb0255) 2012; 47
Masiello (10.1016/j.geoderma.2019.03.044_bb0160) 2015
Esmaeelnejad (10.1016/j.geoderma.2019.03.044_bb0060) 2017; 48
Jeffery (10.1016/j.geoderma.2019.03.044_bb0085) 2014; 6
Jeffery (10.1016/j.geoderma.2019.03.044_bb0090) 2017; 12
Kinney (10.1016/j.geoderma.2019.03.044_bb0130) 2012; 41
Bastos (10.1016/j.geoderma.2019.03.044_bb0030) 2014; 23
Graber (10.1016/j.geoderma.2019.03.044_bb0065) 2014; 5
Hass (10.1016/j.geoderma.2019.03.044_bb0075) 2012; 41
Koide (10.1016/j.geoderma.2019.03.044_bb0135) 2015; 7
Briggs (10.1016/j.geoderma.2019.03.044_bb0040) 2012; 177
Laird (10.1016/j.geoderma.2019.03.044_bb0140) 2010; 158
Abel (10.1016/j.geoderma.2019.03.044_bb0005) 2013; 202-203
Ouyang (10.1016/j.geoderma.2019.03.044_bb0180) 2013; 13
Liu (10.1016/j.geoderma.2019.03.044_bb0150) 2012; 14
Soinne (10.1016/j.geoderma.2019.03.044_bb0205) 2014; 219-220
Wang (10.1016/j.geoderma.2019.03.044_bb0265) 2018; 162
Uchimiya (10.1016/j.geoderma.2019.03.044_bb0230) 2010; 80
Karhu (10.1016/j.geoderma.2019.03.044_bb0105) 2011; 140
Obia (10.1016/j.geoderma.2019.03.044_bb0175) 2016; 155
Veihmeyer (10.1016/j.geoderma.2019.03.044_bb0245) 1949; 68
Hardie (10.1016/j.geoderma.2019.03.044_bb0070) 2013; 376
Novak (10.1016/j.geoderma.2019.03.044_bb0165) 2013; 29
Pereira (10.1016/j.geoderma.2019.03.044_bb0190) 2012; 47
Ulyett (10.1016/j.geoderma.2019.03.044_bb0240) 2014; 65
Trifunovic (10.1016/j.geoderma.2019.03.044_bb0220) 2018; 29
Verheijen (10.1016/j.geoderma.2019.03.044_bb0260) 2014; 65
10.1016/j.geoderma.2019.03.044_bb0155
cr-split#-10.1016/j.geoderma.2019.03.044_bb0215.2
Brockhoff (10.1016/j.geoderma.2019.03.044_bb0045) 2010; 102
Kerré (10.1016/j.geoderma.2019.03.044_bb0115) 2017; 91
Lebrun (10.1016/j.geoderma.2019.03.044_bb0145) 2018; 18
Díaz-Zorita (10.1016/j.geoderma.2019.03.044_bb0055) 1999; 91
Novak (10.1016/j.geoderma.2019.03.044_bb0170) 2012; 177
Uchimiya (10.1016/j.geoderma.2019.03.044_bb0235) 2010; 58
Brewer (10.1016/j.geoderma.2019.03.044_bb0035) 2014; 66
King (10.1016/j.geoderma.2019.03.044_bb0125) 1981; 19
Schaap (10.1016/j.geoderma.2019.03.044_bb0200) 2001; 251
cr-split#-10.1016/j.geoderma.2019.03.044_bb0215.1
Atkinson (10.1016/j.geoderma.2019.03.044_bb0020) 2018; 34
References_xml – reference: Tammeorg, P., Bastos, A.C., Jeffery, S., Rees, F., Kern, J., Graber, E., Ventura, M., Kibblewhite, M., Amaro, A., Budai, A., Cordovil, C. M., Domene, X., Gardin, G., Gasco, G., Horak, J., Kammann, C., Kondrlova, E., Laird, D., Loureiro, S., Martins, M.A.S., Panzacchi, P., Prasad, M., Prodana, M., Puga, Ruysschaert, G., Sas-Paszt, L., Silva, F.C., Teixeira, W.G., Tonon, G., Vedove, G.D., Zavalloni, C., Glaser, B., Verheijen, F.G.A., 2017. Biochars in soils: towards the required level of scientific understanding. J. Environ. Eng. Landsc. Manag. 25(2), 192–207. doi:
– volume: 5
  start-page: 169
  year: 2014
  end-page: 183
  ident: bb0065
  article-title: How may biochar influence severity of diseases caused by soilborne pathogens?
  publication-title: Carbon Management
– volume: 91
  start-page: 10
  year: 2017
  end-page: 15
  ident: bb0115
  article-title: Long-term presence of charcoal increases maize yield in Belgium due to increased soil water availability
  publication-title: Eur. J. Agron.
– start-page: 543
  year: 2015
  end-page: 562
  ident: bb0160
  publication-title: Biochar effects on soil hydrology
– volume: 19
  start-page: 275
  year: 1981
  end-page: 285
  ident: bb0125
  article-title: Comparison of methods for measuring severity of water repellence of sandy soils and assesment of some factors that affect its measurement (Australia)
  publication-title: Aust. J. Soil Res.
– volume: 48
  start-page: 1710
  year: 2017
  end-page: 1718
  ident: bb0060
  article-title: Impacts of woody biochar particle size on porosity and hydraulic conductivity of biochar-soil mixtures: an incubation study
  publication-title: Commun. Soil Sci. Plant Anal.
– volume: 12
  start-page: 1
  year: 2017
  end-page: 6
  ident: bb0090
  article-title: Biochar boosts tropical but not temperate yields
  publication-title: Environ. Res. Lett.
– volume: 7
  start-page: 1084
  year: 2015
  end-page: 1091
  ident: bb0135
  article-title: Biochar amendment of soil improves resilience to climate change
  publication-title: GCB Bioenergy
– volume: 47
  start-page: 716
  year: 2012
  end-page: 721
  ident: bb0190
  article-title: Transpiration response of upland rice to water deficit changed by different levels of eucalyptus biochar
  publication-title: Pesquisa Agropecuaria Brasileira
– volume: 29
  start-page: 98
  year: 2013
  end-page: 104
  ident: bb0165
  article-title: Augmenting soil water storage using uncharred switchgrass and pyrolyzed biochars
  publication-title: Soil Use Manag.
– volume: 179
  start-page: 273
  year: 2014
  end-page: 283
  ident: bb0120
  article-title: Biochar effects on soil aggregate properties under no-till maize
  publication-title: Soil Sci.
– volume: 80
  start-page: 935
  year: 2010
  end-page: 940
  ident: bb0230
  article-title: Contaminant immobilization and nutrient release by biochar soil amendment: roles of natural organic matter
  publication-title: Chemosphere
– volume: 6
  start-page: 176
  year: 2014
  end-page: 179
  ident: bb0085
  article-title: A comment on ‘Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis’: on the importance of accurate reporting in supporting a fast-moving research field with policy implications
  publication-title: GCB Bioenergy
– volume: 177
  start-page: 263
  year: 2012
  end-page: 268
  ident: bb0040
  article-title: Physical and chemical properties of Pinus ponderosa charcoal: implications for soil modification
  publication-title: Soil Sci.
– volume: 47
  start-page: 649
  year: 2012
  end-page: 653
  ident: bb0255
  article-title: Sustainability, certification, and regulation of biochar
  publication-title: Pesquisa Agropecuaria Brasileira
– volume: 13
  start-page: 991
  year: 2013
  end-page: 1002
  ident: bb0180
  article-title: Effects of biochar amendment on soil aggregates and hydraulic properties
  publication-title: J. Soil Sci. Plant Nutr.
– volume: 68
  start-page: 75
  year: 1949
  end-page: 94
  ident: bb0245
  article-title: Methods of measuring field capacity and permanent wilting percentage of soils
  publication-title: Soil Sci.
– volume: 235-236
  start-page: 182
  year: 2014
  end-page: 190
  ident: bb0185
  article-title: Quantifying the influence of biochar on the physical and hydrological properties of dissimilar soils
  publication-title: Geoderma
– volume: 219-220
  start-page: 162
  year: 2014
  end-page: 167
  ident: bb0205
  article-title: Effect of biochar on phosphorus sorption and clay soil aggregate stability
  publication-title: Geoderma
– volume: 91
  start-page: 2281
  year: 2010
  end-page: 2288
  ident: bb0100
  article-title: Effect of amendment of bauxite processing sand with organic materials on its chemical, physical and microbial properties
  publication-title: J. Environ. Manag.
– volume: 21
  start-page: 2317
  year: 2007
  end-page: 2324
  ident: bb0110
  article-title: Temporal and spatial variations in topsoil water repellency throughout a crop-rotation cycle on sandy soil in north-central Portugal
  publication-title: Hydrol. Process.
– volume: 26
  start-page: 265
  year: 2016
  end-page: 272
  ident: bb0270
  article-title: Biochar effect on water evaporation and hydraulic conductivity in sandy soil
  publication-title: Pedosphere
– volume: 65
  start-page: 22
  year: 2014
  end-page: 27
  ident: bb0260
  article-title: Biochars in soils: new insights and emerging research needs
  publication-title: Eur. J. Soil Sci.
– volume: 376
  start-page: 347
  year: 2013
  end-page: 361
  ident: bb0070
  article-title: Does biochar influence soil physical properties and soil water availability?
  publication-title: Plant Soil
– volume: 91
  start-page: 276
  year: 1999
  end-page: 279
  ident: bb0055
  article-title: Soil organic matter and wheat productivity in the semiarid argentine pampas
  publication-title: Agron. J.
– volume: 41
  start-page: 1096
  year: 2012
  end-page: 1106
  ident: bb0075
  article-title: Chicken manure biochar as liming and nutrient source for acid Appalachian soil
  publication-title: J. Environ. Qual.
– volume: 158
  start-page: 443
  year: 2010
  end-page: 449
  ident: bb0140
  article-title: Impact of biochar amendments on the quality of a typical Midwestern agricultural soil
  publication-title: Geoderma
– volume: 75
  start-page: 1402
  year: 2011
  end-page: 1413
  ident: bb0210
  article-title: Influence of contrasting biochar types on five soils at increasing rates of application
  publication-title: Soil Sci. Soc. Am. J.
– reference: Jin, J., Abera, K.A., Manahiloh, K.N., Imhoff, P., 2017. Experimental investigation of the effects of biochar on the hydraulic conductivity of soils. Geotechnical Special Publication (GSP 276), 549–558. DOI:
– volume: 155
  start-page: 35
  year: 2016
  end-page: 44
  ident: bb0175
  article-title: In situ effects of biochar on aggregation, water retention and porosity in light-textured tropical soils
  publication-title: Soil Tillage Res.
– volume: 202-203
  start-page: 183
  year: 2013
  end-page: 191
  ident: bb0005
  article-title: Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil
  publication-title: Geoderma
– volume: 24099
  year: 2010
  ident: bb0250
  article-title: Biochar application to soils. A critical scientific review of effects on soil properties, processes, and functions
  publication-title: EUR
– reference: Liu, Z., Dugan, B., Masiello, C.A., Gonnermann, H.M., 2017. Biochar particle size, shape, and porosity act together to influence soil water properties. PLoS One 12 (6), art. no. e0179079. doi:
– volume: 34
  start-page: 177
  year: 2018
  end-page: 186
  ident: bb0020
  article-title: How good is the evidence that soil-applied biochar improves water-holding capacity?
  publication-title: Soil Use Manag.
– volume: 41
  start-page: 34
  year: 2012
  end-page: 43
  ident: bb0130
  article-title: Hydrologic properties of biochars produced at different temperatures
  publication-title: Biomass Bioenergy
– volume: 18
  start-page: 2188
  year: 2018
  end-page: 2202
  ident: bb0145
  article-title: Eco-restoration of a mine technosol according to biochar particle size and dose application: study of soil physico-chemical properties and phytostabilization capacities of Salix viminalis
  publication-title: J. Soils Sediments
– volume: 32
  start-page: 1
  year: 2018
  end-page: 10
  ident: bb0015
  article-title: Influence of wood-derived biochar on the physico-mechanical and chemical characteristics of agricultural soils
  publication-title: International Agrophysics
– volume: 23
  start-page: 1784
  year: 2014
  end-page: 1793
  ident: bb0030
  article-title: Potential risk of biochar-amended soil to aquatic systems: an evaluation based on aquatic bioassays
  publication-title: Ecotoxicology
– volume: 14
  start-page: 975
  year: 2012
  end-page: 979
  ident: bb0150
  article-title: Effect of biochar on soil aggregates in the Loess Plateau: results from incubation experiments
  publication-title: Int. J. Agric. Biol.
– volume: 29
  start-page: 884
  year: 2018
  end-page: 893
  ident: bb0220
  article-title: Dynamic effects of biochar concentration and particle size on hydraulic properties of sand
  publication-title: Land Degrad. Dev.
– volume: 162
  start-page: 29
  year: 2018
  end-page: 39
  ident: bb0265
  article-title: Effects of biochar addition on evaporation in the five typical Loess Plateau soils
  publication-title: Catena
– volume: 65
  start-page: 96
  year: 2014
  end-page: 104
  ident: bb0240
  article-title: Impact of biochar addition on water retention, nitrification and carbon dioxide evolution from two sandy loam soils
  publication-title: Eur. J. Soil Sci.
– volume: 58
  start-page: 5538
  year: 2010
  end-page: 5544
  ident: bb0235
  article-title: Immobilization of heavy metal ions (CuII, CdII, NiII, and PbII) by broiler litter-derived biochars in water and soil
  publication-title: J. Agric. Food Chem.
– volume: 177
  start-page: 310
  year: 2012
  end-page: 320
  ident: bb0170
  article-title: Biochars impact on soil-moisture storage in an ultisol and two aridisols
  publication-title: Soil Sci.
– volume: 66
  start-page: 176
  year: 2014
  end-page: 185
  ident: bb0035
  article-title: New approaches to measuring biochar density and porosity
  publication-title: Biomass Bioenergy
– volume: 337
  start-page: 1
  year: 2010
  end-page: 18
  ident: bb0025
  article-title: Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review
  publication-title: Plant Soil
– volume: 251
  start-page: 163
  year: 2001
  end-page: 176
  ident: bb0200
  article-title: Rosetta: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions
  publication-title: J. Hydrol.
– volume: 7
  start-page: 326
  year: 2014
  end-page: 327
  ident: bb0010
  article-title: Biochar by design
  publication-title: Nat. Geosci.
– reference: .
– volume: 65
  start-page: 173
  year: 2014
  end-page: 185
  ident: bb0195
  article-title: Biochar-root interactions are mediated by biochar nutrient content and impacts on soil nutrient availability
  publication-title: Eur. J. Soil Sci.
– start-page: 81
  year: 1948
  end-page: 115
  ident: bb0225
  article-title: Effect of charcoal on certain physical, chemical, and biological properties of forest soils
  publication-title: Ecol. Monogr.
– volume: 140
  start-page: 309
  year: 2011
  end-page: 313
  ident: bb0105
  article-title: Biochar addition to agricultural soil increased CH4 uptake and water holding capacity - results from a short-term pilot field study
  publication-title: Agric. Ecosyst. Environ.
– volume: 102
  start-page: 1627
  year: 2010
  end-page: 1631
  ident: bb0045
  article-title: Physical and mineral-nutrition properties of sand-based turfgrass root zones amended with biochar
  publication-title: Agron. J.
– volume: 50
  start-page: 349
  year: 2012
  end-page: 359
  ident: bb0050
  article-title: Hardsetting soils: a review
  publication-title: Soil Research
– volume: 102
  start-page: 1627
  issue: 6
  year: 2010
  ident: 10.1016/j.geoderma.2019.03.044_bb0045
  article-title: Physical and mineral-nutrition properties of sand-based turfgrass root zones amended with biochar
  publication-title: Agron. J.
  doi: 10.2134/agronj2010.0188
– volume: 23
  start-page: 1784
  issue: 9
  year: 2014
  ident: 10.1016/j.geoderma.2019.03.044_bb0030
  article-title: Potential risk of biochar-amended soil to aquatic systems: an evaluation based on aquatic bioassays
  publication-title: Ecotoxicology
  doi: 10.1007/s10646-014-1344-1
– start-page: 81
  year: 1948
  ident: 10.1016/j.geoderma.2019.03.044_bb0225
  article-title: Effect of charcoal on certain physical, chemical, and biological properties of forest soils
  publication-title: Ecol. Monogr.
  doi: 10.2307/1948629
– ident: 10.1016/j.geoderma.2019.03.044_bb0155
  doi: 10.1371/journal.pone.0179079
– volume: 65
  start-page: 22
  issue: 1
  year: 2014
  ident: 10.1016/j.geoderma.2019.03.044_bb0260
  article-title: Biochars in soils: new insights and emerging research needs
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12127
– volume: 7
  start-page: 326
  year: 2014
  ident: 10.1016/j.geoderma.2019.03.044_bb0010
  article-title: Biochar by design
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo2154
– volume: 219-220
  start-page: 162
  year: 2014
  ident: 10.1016/j.geoderma.2019.03.044_bb0205
  article-title: Effect of biochar on phosphorus sorption and clay soil aggregate stability
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.12.022
– volume: 65
  start-page: 173
  issue: 1
  year: 2014
  ident: 10.1016/j.geoderma.2019.03.044_bb0195
  article-title: Biochar-root interactions are mediated by biochar nutrient content and impacts on soil nutrient availability
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12079
– volume: 75
  start-page: 1402
  issue: 4
  year: 2011
  ident: 10.1016/j.geoderma.2019.03.044_bb0210
  article-title: Influence of contrasting biochar types on five soils at increasing rates of application
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2010.0325
– volume: 91
  start-page: 276
  year: 1999
  ident: 10.1016/j.geoderma.2019.03.044_bb0055
  article-title: Soil organic matter and wheat productivity in the semiarid argentine pampas
  publication-title: Agron. J.
  doi: 10.2134/agronj1999.00021962009100020016x
– volume: 14
  start-page: 975
  issue: 6
  year: 2012
  ident: 10.1016/j.geoderma.2019.03.044_bb0150
  article-title: Effect of biochar on soil aggregates in the Loess Plateau: results from incubation experiments
  publication-title: Int. J. Agric. Biol.
– volume: 47
  start-page: 716
  issue: 5
  year: 2012
  ident: 10.1016/j.geoderma.2019.03.044_bb0190
  article-title: Transpiration response of upland rice to water deficit changed by different levels of eucalyptus biochar
  publication-title: Pesquisa Agropecuaria Brasileira
  doi: 10.1590/S0100-204X2012000500012
– volume: 5
  start-page: 169
  issue: 2
  year: 2014
  ident: 10.1016/j.geoderma.2019.03.044_bb0065
  article-title: How may biochar influence severity of diseases caused by soilborne pathogens?
  publication-title: Carbon Management
  doi: 10.1080/17583004.2014.913360
– volume: 91
  start-page: 2281
  issue: 11
  year: 2010
  ident: 10.1016/j.geoderma.2019.03.044_bb0100
  article-title: Effect of amendment of bauxite processing sand with organic materials on its chemical, physical and microbial properties
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2010.06.013
– volume: 158
  start-page: 443
  issue: 3–4
  year: 2010
  ident: 10.1016/j.geoderma.2019.03.044_bb0140
  article-title: Impact of biochar amendments on the quality of a typical Midwestern agricultural soil
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2010.05.013
– volume: 21
  start-page: 2317
  issue: 17
  year: 2007
  ident: 10.1016/j.geoderma.2019.03.044_bb0110
  article-title: Temporal and spatial variations in topsoil water repellency throughout a crop-rotation cycle on sandy soil in north-central Portugal
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.6756
– volume: 177
  start-page: 310
  issue: 5
  year: 2012
  ident: 10.1016/j.geoderma.2019.03.044_bb0170
  article-title: Biochars impact on soil-moisture storage in an ultisol and two aridisols
  publication-title: Soil Sci.
  doi: 10.1097/SS.0b013e31824e5593
– volume: 41
  start-page: 1096
  issue: 4
  year: 2012
  ident: 10.1016/j.geoderma.2019.03.044_bb0075
  article-title: Chicken manure biochar as liming and nutrient source for acid Appalachian soil
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2011.0124
– volume: 19
  start-page: 275
  issue: 4
  year: 1981
  ident: 10.1016/j.geoderma.2019.03.044_bb0125
  article-title: Comparison of methods for measuring severity of water repellence of sandy soils and assesment of some factors that affect its measurement (Australia)
  publication-title: Aust. J. Soil Res.
  doi: 10.1071/SR9810275
– volume: 235-236
  start-page: 182
  year: 2014
  ident: 10.1016/j.geoderma.2019.03.044_bb0185
  article-title: Quantifying the influence of biochar on the physical and hydrological properties of dissimilar soils
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.07.002
– ident: #cr-split#-10.1016/j.geoderma.2019.03.044_bb0215.2
  doi: 10.3846/16486897.2016.1239582
– start-page: 543
  year: 2015
  ident: 10.1016/j.geoderma.2019.03.044_bb0160
– volume: 80
  start-page: 935
  issue: 8
  year: 2010
  ident: 10.1016/j.geoderma.2019.03.044_bb0230
  article-title: Contaminant immobilization and nutrient release by biochar soil amendment: roles of natural organic matter
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2010.05.020
– ident: #cr-split#-10.1016/j.geoderma.2019.03.044_bb0215.1
  doi: 10.3846/16486897.2016.1239582
– volume: 91
  start-page: 10
  year: 2017
  ident: 10.1016/j.geoderma.2019.03.044_bb0115
  article-title: Long-term presence of charcoal increases maize yield in Belgium due to increased soil water availability
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2017.09.003
– volume: 337
  start-page: 1
  issue: 1
  year: 2010
  ident: 10.1016/j.geoderma.2019.03.044_bb0025
  article-title: Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review
  publication-title: Plant Soil
  doi: 10.1007/s11104-010-0464-5
– volume: 34
  start-page: 177
  issue: 2
  year: 2018
  ident: 10.1016/j.geoderma.2019.03.044_bb0020
  article-title: How good is the evidence that soil-applied biochar improves water-holding capacity?
  publication-title: Soil Use Manag.
  doi: 10.1111/sum.12413
– volume: 32
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.geoderma.2019.03.044_bb0015
  article-title: Influence of wood-derived biochar on the physico-mechanical and chemical characteristics of agricultural soils
  publication-title: International Agrophysics
  doi: 10.1515/intag-2016-0094
– volume: 41
  start-page: 34
  year: 2012
  ident: 10.1016/j.geoderma.2019.03.044_bb0130
  article-title: Hydrologic properties of biochars produced at different temperatures
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2012.01.033
– volume: 65
  start-page: 96
  issue: 1
  year: 2014
  ident: 10.1016/j.geoderma.2019.03.044_bb0240
  article-title: Impact of biochar addition on water retention, nitrification and carbon dioxide evolution from two sandy loam soils
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12081
– volume: 251
  start-page: 163
  issue: 3–4
  year: 2001
  ident: 10.1016/j.geoderma.2019.03.044_bb0200
  article-title: Rosetta: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions
  publication-title: J. Hydrol.
  doi: 10.1016/S0022-1694(01)00466-8
– volume: 13
  start-page: 991
  issue: 4
  year: 2013
  ident: 10.1016/j.geoderma.2019.03.044_bb0180
  article-title: Effects of biochar amendment on soil aggregates and hydraulic properties
  publication-title: J. Soil Sci. Plant Nutr.
– volume: 48
  start-page: 1710
  issue: 14
  year: 2017
  ident: 10.1016/j.geoderma.2019.03.044_bb0060
  article-title: Impacts of woody biochar particle size on porosity and hydraulic conductivity of biochar-soil mixtures: an incubation study
  publication-title: Commun. Soil Sci. Plant Anal.
  doi: 10.1080/00103624.2017.1383414
– volume: 140
  start-page: 309
  issue: 1–2
  year: 2011
  ident: 10.1016/j.geoderma.2019.03.044_bb0105
  article-title: Biochar addition to agricultural soil increased CH4 uptake and water holding capacity - results from a short-term pilot field study
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2010.12.005
– volume: 29
  start-page: 98
  issue: 1
  year: 2013
  ident: 10.1016/j.geoderma.2019.03.044_bb0165
  article-title: Augmenting soil water storage using uncharred switchgrass and pyrolyzed biochars
  publication-title: Soil Use Manag.
  doi: 10.1111/sum.12026
– volume: 7
  start-page: 1084
  issue: 5
  year: 2015
  ident: 10.1016/j.geoderma.2019.03.044_bb0135
  article-title: Biochar amendment of soil improves resilience to climate change
  publication-title: GCB Bioenergy
  doi: 10.1111/gcbb.12191
– volume: 155
  start-page: 35
  year: 2016
  ident: 10.1016/j.geoderma.2019.03.044_bb0175
  article-title: In situ effects of biochar on aggregation, water retention and porosity in light-textured tropical soils
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2015.08.002
– volume: 177
  start-page: 263
  issue: 4
  year: 2012
  ident: 10.1016/j.geoderma.2019.03.044_bb0040
  article-title: Physical and chemical properties of Pinus ponderosa charcoal: implications for soil modification
  publication-title: Soil Sci.
  doi: 10.1097/SS.0b013e3182482784
– volume: 66
  start-page: 176
  year: 2014
  ident: 10.1016/j.geoderma.2019.03.044_bb0035
  article-title: New approaches to measuring biochar density and porosity
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2014.03.059
– volume: 179
  start-page: 273
  issue: 6
  year: 2014
  ident: 10.1016/j.geoderma.2019.03.044_bb0120
  article-title: Biochar effects on soil aggregate properties under no-till maize
  publication-title: Soil Sci.
  doi: 10.1097/SS.0000000000000069
– volume: 26
  start-page: 265
  issue: 2
  year: 2016
  ident: 10.1016/j.geoderma.2019.03.044_bb0270
  article-title: Biochar effect on water evaporation and hydraulic conductivity in sandy soil
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(15)60041-8
– volume: 68
  start-page: 75
  year: 1949
  ident: 10.1016/j.geoderma.2019.03.044_bb0245
  article-title: Methods of measuring field capacity and permanent wilting percentage of soils
  publication-title: Soil Sci.
  doi: 10.1097/00010694-194907000-00007
– volume: 202-203
  start-page: 183
  year: 2013
  ident: 10.1016/j.geoderma.2019.03.044_bb0005
  article-title: Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.03.003
– ident: 10.1016/j.geoderma.2019.03.044_bb0095
  doi: 10.1061/9780784480434.060
– volume: 12
  start-page: 1
  issue: 5
  year: 2017
  ident: 10.1016/j.geoderma.2019.03.044_bb0090
  article-title: Biochar boosts tropical but not temperate yields
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/aa67bd
– volume: 29
  start-page: 884
  issue: 4
  year: 2018
  ident: 10.1016/j.geoderma.2019.03.044_bb0220
  article-title: Dynamic effects of biochar concentration and particle size on hydraulic properties of sand
  publication-title: Land Degrad. Dev.
  doi: 10.1002/ldr.2906
– volume: 6
  start-page: 176
  year: 2014
  ident: 10.1016/j.geoderma.2019.03.044_bb0085
  article-title: A comment on ‘Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis’: on the importance of accurate reporting in supporting a fast-moving research field with policy implications
  publication-title: GCB Bioenergy
  doi: 10.1111/gcbb.12076
– volume: 24099
  year: 2010
  ident: 10.1016/j.geoderma.2019.03.044_bb0250
  article-title: Biochar application to soils. A critical scientific review of effects on soil properties, processes, and functions
  publication-title: EUR
– volume: 50
  start-page: 349
  issue: 5
  year: 2012
  ident: 10.1016/j.geoderma.2019.03.044_bb0050
  article-title: Hardsetting soils: a review
  publication-title: Soil Research
  doi: 10.1071/SR11102
– volume: 18
  start-page: 2188
  issue: 6
  year: 2018
  ident: 10.1016/j.geoderma.2019.03.044_bb0145
  article-title: Eco-restoration of a mine technosol according to biochar particle size and dose application: study of soil physico-chemical properties and phytostabilization capacities of Salix viminalis
  publication-title: J. Soils Sediments
  doi: 10.1007/s11368-017-1763-8
– volume: 47
  start-page: 649
  issue: 5
  year: 2012
  ident: 10.1016/j.geoderma.2019.03.044_bb0255
  article-title: Sustainability, certification, and regulation of biochar
  publication-title: Pesquisa Agropecuaria Brasileira
  doi: 10.1590/S0100-204X2012000500003
– volume: 58
  start-page: 5538
  issue: 9
  year: 2010
  ident: 10.1016/j.geoderma.2019.03.044_bb0235
  article-title: Immobilization of heavy metal ions (CuII, CdII, NiII, and PbII) by broiler litter-derived biochars in water and soil
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf9044217
– volume: 162
  start-page: 29
  year: 2018
  ident: 10.1016/j.geoderma.2019.03.044_bb0265
  article-title: Effects of biochar addition on evaporation in the five typical Loess Plateau soils
  publication-title: Catena
  doi: 10.1016/j.catena.2017.11.013
– volume: 376
  start-page: 347
  issue: 1–2
  year: 2013
  ident: 10.1016/j.geoderma.2019.03.044_bb0070
  article-title: Does biochar influence soil physical properties and soil water availability?
  publication-title: Plant Soil
SSID ssj0017020
Score 2.6309795
Snippet Biochar application to agricultural soils has been proposed as a way to increase crop production by improving soil chemical and physical properties. Liming...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 194
SubjectTerms agricultural soils
application rate
Available water capacity
Biochar
bulk density
crop production
crops
feedstocks
field capacity
liming
Linear regression model
particle size
Portugal
sandy loam soils
sandy soils
soil density
Soil organic matter
Soil physical properties
soil sampling
soil structure
soil water
soil water retention
soil water storage
water content
water holding capacity
water stress
Title The influence of biochar particle size and concentration on bulk density and maximum water holding capacity of sandy vs sandy loam soil in a column experiment
URI https://dx.doi.org/10.1016/j.geoderma.2019.03.044
https://www.proquest.com/docview/2237530406
Volume 347
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDBaK7rIdhu6F9QkO2NVN5EiWcgyKFtmG9bQCvQmyLA3uEjuIk74O_Sn9rSVtuesGDD0M8MEPSpZFmqQgfiRjnzPui1TS1r8MKhHOigR1HgF8xNgHSvDECeD8_TSbnomv5_J8gx31WBgKq4y6v9PprbaOdwZxNgeLsiSML88UmiMUSi5Vm1BSCEVSfnj3GObB8UEHQ-FZQtRPUMIXyCMqONbmH-JdslMh_mWg_lLVrf052WKvo-MIk25sb9iGr96yV5Ofy5g8w79j98hzKPuqI1AHyMuaYFWwiJ8ETXnrwVYFOIIrVjFnLuCRr2e_oKBw9tVNSzG31-V8PYcr9EaXEHepwKFxdUSCvTdIdgOXTTyZ1XYOTV3OcAxg8Q2o9yr4XULgPTs7Of5xNE1i_YXEjRRfJaHQKvW4QLEK_RQ7yjM0d9ynuMZx1tnCaceFsmNpLToqLtihCC7NglVOBF2o0Qe2WdWV_8ggDdr6NNWFDkpop3Uuhz4vpM-lz1IXtpnsJ924mJycamTMTB-FdmF6ZhlilhmODDJrmw0e2y269BzPthj3PDV_CJpBG_Js20-9EBj8C2lrxVa-XjcGnSxc96FCzHb-o_9d9pKuuvjCPba5Wq79Pvo8q_ygFeoD9mLy5dv09AGolwWn
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDBaK9LDtMKx7YG23jgV6NRI5kqUcg2JF-sqpBXoTZFka3CV2ECfb2h-z3zoylrtuwNDDAB8M62FZpEkKJD8ydpRxX6SSXP8yqEQ4KxKUeZTgI0Y-EMATpwTny2k2uRZnN_Jmix13uTAUVhllfyvTN9I6PunH3ewvypJyfHmmUB0hU3KpCFBym9CpZI9tj0_PJ9MHZwK2tZkoPEtowKNE4VskE9Uc20AQ8RbvVIh_6ai_pPVGBZ28Yi-j7Qjjdnk7bMtXr9mL8ZdlxM_wb9hPJDuUXeERqAPkZU2ZVbCIXwVNee_BVgU4ylisImwu4JWvZ1-hoIj21d2mx9z-KOfrOXxHg3QJ0VEFDvWroy44e4Pd7uBbE29mtZ1DU5czXANYfAOKvgp-VxF4y65PPl8dT5JYgiFxQ8VXSSi0Sj2eUaxCU8UO8ww1HvcpHnOcdbZw2nGh7Ehai7aKC3YggkuzYJUTQRdq-I71qrry7xmkQVufprrQQQnttM7lwOeF9Ln0WerCLpPdphsX8cmpTMbMdIFot6YjliFimcHQILF2Wf9h3KJF6HhyxKijqfmD1wyqkSfHHnZMYPBHJO-KrXy9bgzaWXj0Q5mY7f3H_J_Ys8nV5YW5OJ2e77Pn1NKGG35gvdVy7T-iCbTKDyKL_wKKKAhY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+influence+of+biochar+particle+size+and+concentration+on+bulk+density+and+maximum+water+holding+capacity+of+sandy+vs+sandy+loam+soil+in+a+column+experiment&rft.jtitle=Geoderma&rft.au=Verheijen%2C+Frank+G.A.&rft.au=Zhuravel%2C+Anna&rft.au=Silva%2C+Fl%C3%A1vio+C.&rft.au=Amaro%2C+Ant%C3%B3nio&rft.date=2019-08-01&rft.issn=0016-7061&rft.volume=347&rft.spage=194&rft.epage=202&rft_id=info:doi/10.1016%2Fj.geoderma.2019.03.044&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_geoderma_2019_03_044
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon