The influence of biochar particle size and concentration on bulk density and maximum water holding capacity of sandy vs sandy loam soil in a column experiment
Biochar application to agricultural soils has been proposed as a way to increase crop production by improving soil chemical and physical properties. Liming potential and improved nutrient exchange on biochar surfaces are the most reported mechanisms. Wherever crops experience drought stress, improve...
Saved in:
Published in | Geoderma Vol. 347; pp. 194 - 202 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.08.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Biochar application to agricultural soils has been proposed as a way to increase crop production by improving soil chemical and physical properties. Liming potential and improved nutrient exchange on biochar surfaces are the most reported mechanisms. Wherever crops experience drought stress, improvements in soil water holding capacity (WHC) might also be an important mechanism. However, reported effects on soil structure and WHC are mixed. Therefore, we studied the effects of biochar on soil bulk density (BD) and WHC in a laboratory column study using two agricultural soils from Portugal: a sandy and a sandy loam soil. Mixed woody feedstock was pyrolysed at 620 °C, creating a wettable biochar that was used unsorted as well as sieved into large (2–4 mm) and small (0.05–1.00 mm) particles, mixed into the soils at 1, 5, 10 and 20% (by volume), and incubated for 10 days at field capacity to allow aggregation. Soil samples were analysed for BD and WHC using soil columns.
We found biochar to decrease soil BD and increase maximum WHC, expressed as gravity-drained equilibrium water content, for both soils. The sandy soil was more responsive with significant effects at the lowest application rate (1%), while the sandy loam soil started to show significant effects at 5% biochar. Small biochar particles reduced the BD of sandy soil more, while large biochar particles caused a greater reduction in the BD of the sandy loam soil. The effect of biochar particle size on WHC was less clear, except for small particles at 20% volumetric concentration, which showed a 60% increase in gravimetric WHC. When expressed as total soil water storage (SWS), 20% biochar incorporation to 15 cm depth would increase the total SWS of sandy soil from 0.56 mm (control) to 0.83–0.91 (mm), and of the sandy loam soil from 0.56 to 0.79–0.96 (mm), depending on biochar particle size. Our results suggest that biochar particle sizes can be used to achieve specific effects in soils, while mechanisms and trade-offs (agro-economic and environmental) need further exploration.
[Display omitted]
•Small biochar particles reduced bulk density more for sandy than sandy loam soil.•Large biochar particles reduced bulk density more for sandy loam than sandy soil.•Small particles at 20% increased gravimetric water holding capacity by 60%.•The total soil water storage of sandy soil increased from 56 to 83–91 (mm).•The total soil water storage of sandy loam soil increased from 56 (mm) to 79–96 (mm). |
---|---|
AbstractList | Biochar application to agricultural soils has been proposed as a way to increase crop production by improving soil chemical and physical properties. Liming potential and improved nutrient exchange on biochar surfaces are the most reported mechanisms. Wherever crops experience drought stress, improvements in soil water holding capacity (WHC) might also be an important mechanism. However, reported effects on soil structure and WHC are mixed. Therefore, we studied the effects of biochar on soil bulk density (BD) and WHC in a laboratory column study using two agricultural soils from Portugal: a sandy and a sandy loam soil. Mixed woody feedstock was pyrolysed at 620 °C, creating a wettable biochar that was used unsorted as well as sieved into large (2–4 mm) and small (0.05–1.00 mm) particles, mixed into the soils at 1, 5, 10 and 20% (by volume), and incubated for 10 days at field capacity to allow aggregation. Soil samples were analysed for BD and WHC using soil columns.
We found biochar to decrease soil BD and increase maximum WHC, expressed as gravity-drained equilibrium water content, for both soils. The sandy soil was more responsive with significant effects at the lowest application rate (1%), while the sandy loam soil started to show significant effects at 5% biochar. Small biochar particles reduced the BD of sandy soil more, while large biochar particles caused a greater reduction in the BD of the sandy loam soil. The effect of biochar particle size on WHC was less clear, except for small particles at 20% volumetric concentration, which showed a 60% increase in gravimetric WHC. When expressed as total soil water storage (SWS), 20% biochar incorporation to 15 cm depth would increase the total SWS of sandy soil from 0.56 mm (control) to 0.83–0.91 (mm), and of the sandy loam soil from 0.56 to 0.79–0.96 (mm), depending on biochar particle size. Our results suggest that biochar particle sizes can be used to achieve specific effects in soils, while mechanisms and trade-offs (agro-economic and environmental) need further exploration.
[Display omitted]
•Small biochar particles reduced bulk density more for sandy than sandy loam soil.•Large biochar particles reduced bulk density more for sandy loam than sandy soil.•Small particles at 20% increased gravimetric water holding capacity by 60%.•The total soil water storage of sandy soil increased from 56 to 83–91 (mm).•The total soil water storage of sandy loam soil increased from 56 (mm) to 79–96 (mm). Biochar application to agricultural soils has been proposed as a way to increase crop production by improving soil chemical and physical properties. Liming potential and improved nutrient exchange on biochar surfaces are the most reported mechanisms. Wherever crops experience drought stress, improvements in soil water holding capacity (WHC) might also be an important mechanism. However, reported effects on soil structure and WHC are mixed. Therefore, we studied the effects of biochar on soil bulk density (BD) and WHC in a laboratory column study using two agricultural soils from Portugal: a sandy and a sandy loam soil. Mixed woody feedstock was pyrolysed at 620 °C, creating a wettable biochar that was used unsorted as well as sieved into large (2–4 mm) and small (0.05–1.00 mm) particles, mixed into the soils at 1, 5, 10 and 20% (by volume), and incubated for 10 days at field capacity to allow aggregation. Soil samples were analysed for BD and WHC using soil columns.We found biochar to decrease soil BD and increase maximum WHC, expressed as gravity-drained equilibrium water content, for both soils. The sandy soil was more responsive with significant effects at the lowest application rate (1%), while the sandy loam soil started to show significant effects at 5% biochar. Small biochar particles reduced the BD of sandy soil more, while large biochar particles caused a greater reduction in the BD of the sandy loam soil. The effect of biochar particle size on WHC was less clear, except for small particles at 20% volumetric concentration, which showed a 60% increase in gravimetric WHC. When expressed as total soil water storage (SWS), 20% biochar incorporation to 15 cm depth would increase the total SWS of sandy soil from 0.56 mm (control) to 0.83–0.91 (mm), and of the sandy loam soil from 0.56 to 0.79–0.96 (mm), depending on biochar particle size. Our results suggest that biochar particle sizes can be used to achieve specific effects in soils, while mechanisms and trade-offs (agro-economic and environmental) need further exploration. |
Author | Zhuravel, Anna Silva, Flávio C. Keizer, Jan Jacob Amaro, António Ben-Hur, Meni Verheijen, Frank G.A. |
Author_xml | – sequence: 1 givenname: Frank G.A. surname: Verheijen fullname: Verheijen, Frank G.A. email: frankverheijen@gmail.com organization: University of Aveiro, Centre for Environmental and Marine Studies, Department of Environment and Planning, 3810-193 Aveiro, Portugal – sequence: 2 givenname: Anna orcidid: 0000-0002-6678-3322 surname: Zhuravel fullname: Zhuravel, Anna organization: Institute of Soil water and Environmental Sciences, Volcani Institute, Bet Dagan, Israel – sequence: 3 givenname: Flávio C. surname: Silva fullname: Silva, Flávio C. organization: University of Aveiro, Centre for Environmental and Marine Studies, Department of Environment and Planning, 3810-193 Aveiro, Portugal – sequence: 4 givenname: António surname: Amaro fullname: Amaro, António organization: University of Aveiro, Centre for Environmental and Marine Studies, Department of Environment and Planning, 3810-193 Aveiro, Portugal – sequence: 5 givenname: Meni surname: Ben-Hur fullname: Ben-Hur, Meni organization: Institute of Soil water and Environmental Sciences, Volcani Institute, Bet Dagan, Israel – sequence: 6 givenname: Jan Jacob surname: Keizer fullname: Keizer, Jan Jacob organization: University of Aveiro, Centre for Environmental and Marine Studies, Department of Environment and Planning, 3810-193 Aveiro, Portugal |
BookMark | eNqFkc9u3CAQxlGVSt2kfYWKYy92AHvBK_XQKuo_KVIv6RnNwpBli8EFO832YfqsYbPppZdISID0-2bmm--cnMUUkZC3nLWccXm5b28xWcwjtILxTcu6lvX9C7LigxKNFOvNGVmxSjaKSf6KnJeyr1_FBFuRvzc7pD66sGA0SJOjW5_MDjKdIM_eBKTF_0EK0VKTKhLnDLNPkdazXcJPajEWPx8eiRHu_biM9DfMmOkuBevjLTUwgTkitXqp2IHeladHSDDSknyoM1CoHcIyRor3E2Y_1l6vyUsHoeCbp_uC_Pj86ebqa3P9_cu3q4_XjekUnxtnq1WUvQAl1wN0W8k6yVH0gzJgwJrB8F7BZg3AFDcOWO-MkA6U6d1gVXdB3p3qTjn9WrDMevTFYAgQMS1FC9Gpdcd6Jiv6_oSanErJ6HT19riSuhkfNGf6GIve63-x6GMsmnW6xlLl8j_5VK1CPjwv_HASYt3Dncesi_HH0KzPaGZtk3-uxAM9WLHx |
CitedBy_id | crossref_primary_10_1007_s11356_022_19609_w crossref_primary_10_1080_00103624_2023_2177669 crossref_primary_10_1016_j_jia_2024_03_022 crossref_primary_10_1002_agj2_21040 crossref_primary_10_1016_S1002_0160_21_60041_3 crossref_primary_10_1016_j_geoderma_2023_116591 crossref_primary_10_1002_agj2_20630 crossref_primary_10_1007_s10661_021_09162_3 crossref_primary_10_3390_soilsystems4010009 crossref_primary_10_1007_s11368_021_03049_z crossref_primary_10_1007_s42729_022_00767_2 crossref_primary_10_1007_s13399_024_05545_x crossref_primary_10_3390_s20092444 crossref_primary_10_3390_su141711104 crossref_primary_10_1021_acssusresmgt_4c00174 crossref_primary_10_1016_j_scitotenv_2020_138866 crossref_primary_10_1016_j_scitotenv_2023_163263 crossref_primary_10_1186_s13765_024_00903_9 crossref_primary_10_1016_j_jenvman_2023_117305 crossref_primary_10_1016_j_scitotenv_2021_152638 crossref_primary_10_1007_s10333_021_00875_2 crossref_primary_10_1016_j_rcradv_2023_200173 crossref_primary_10_3390_app14219723 crossref_primary_10_1016_j_geoderma_2023_116639 crossref_primary_10_1007_s42729_023_01219_1 crossref_primary_10_1038_s41598_024_76082_w crossref_primary_10_1111_gcbb_13083 crossref_primary_10_1139_cjss_2019_0004 crossref_primary_10_1007_s00344_022_10588_3 crossref_primary_10_1016_j_scienta_2022_111244 crossref_primary_10_1007_s11270_024_07433_6 crossref_primary_10_1016_j_scitotenv_2022_153566 crossref_primary_10_2166_wcc_2023_270 crossref_primary_10_1016_j_jclepro_2022_134173 crossref_primary_10_3390_app12084051 crossref_primary_10_1007_s13593_022_00773_9 crossref_primary_10_1080_00103624_2022_2112216 crossref_primary_10_1016_j_jobe_2024_109272 crossref_primary_10_1177_15280837231153661 crossref_primary_10_2139_ssrn_4100204 crossref_primary_10_3389_fpls_2024_1479925 crossref_primary_10_1007_s42729_021_00678_8 crossref_primary_10_3390_su16135727 crossref_primary_10_1002_nsg_12076 crossref_primary_10_1007_s42729_023_01208_4 crossref_primary_10_1080_15320383_2024_2328069 crossref_primary_10_32604_phyton_2025_059997 crossref_primary_10_3390_su13137230 crossref_primary_10_1016_j_scitotenv_2022_154520 crossref_primary_10_1016_j_jclepro_2021_128612 crossref_primary_10_1016_j_jclepro_2024_143532 crossref_primary_10_1016_j_jclepro_2024_143772 crossref_primary_10_1016_j_jece_2023_110009 crossref_primary_10_3389_fenvs_2022_949190 crossref_primary_10_1007_s11368_021_02913_2 crossref_primary_10_1017_S0014479722000497 crossref_primary_10_1051_bioconf_202515803010 crossref_primary_10_1111_sum_12965 crossref_primary_10_1007_s13399_024_05370_2 crossref_primary_10_1007_s42768_022_00114_2 crossref_primary_10_1177_17436753241311989 crossref_primary_10_3390_ma14061335 crossref_primary_10_1016_j_jhazmat_2020_124123 crossref_primary_10_1038_s43247_023_00948_6 crossref_primary_10_1016_j_jenvman_2023_117567 crossref_primary_10_1016_j_plaphy_2024_109197 crossref_primary_10_11118_actaun_2022_002 crossref_primary_10_3390_agriculture14122165 crossref_primary_10_1016_j_envres_2021_112440 crossref_primary_10_1021_acsomega_3c06233 crossref_primary_10_1016_j_ejsobi_2024_103680 crossref_primary_10_1039_D2VA00324D crossref_primary_10_1016_j_scitotenv_2019_134878 crossref_primary_10_1080_23311932_2023_2294542 crossref_primary_10_3390_en17194861 crossref_primary_10_1007_s13762_022_04320_7 crossref_primary_10_1016_j_catena_2021_105267 crossref_primary_10_3390_agriculture10030062 crossref_primary_10_1007_s42729_022_00829_5 crossref_primary_10_1007_s11368_024_03741_w crossref_primary_10_1007_s42773_023_00260_8 crossref_primary_10_1007_s42729_022_00822_y crossref_primary_10_1016_j_chemosphere_2021_131274 crossref_primary_10_3390_plants13172534 crossref_primary_10_1016_j_still_2024_106282 crossref_primary_10_1007_s41748_022_00336_8 crossref_primary_10_1016_j_jenvman_2022_117199 crossref_primary_10_1016_j_jhazmat_2022_129668 crossref_primary_10_1016_j_rhisph_2021_100469 crossref_primary_10_1016_j_jenvman_2023_119658 crossref_primary_10_31545_intagr_144133 crossref_primary_10_3390_jof8040384 crossref_primary_10_1007_s11368_022_03361_2 crossref_primary_10_3390_agriculture11121293 crossref_primary_10_1016_j_rser_2021_111379 crossref_primary_10_1016_j_wmb_2023_10_004 crossref_primary_10_1007_s10668_023_03470_z crossref_primary_10_1016_j_fcr_2022_108510 crossref_primary_10_3390_agronomy14071529 crossref_primary_10_1016_j_agwat_2023_108605 crossref_primary_10_1016_j_jaap_2022_105728 crossref_primary_10_2139_ssrn_4111410 crossref_primary_10_1016_j_rser_2025_115581 crossref_primary_10_3389_fenvs_2023_1114752 crossref_primary_10_1038_s41467_024_48289_y crossref_primary_10_1002_cjce_23771 crossref_primary_10_3390_en16227645 crossref_primary_10_1002_ldr_4185 crossref_primary_10_1016_j_scitotenv_2021_149167 crossref_primary_10_3390_horticulturae6030037 crossref_primary_10_2139_ssrn_4645623 crossref_primary_10_1016_j_biteb_2023_101436 crossref_primary_10_1080_23311932_2023_2256136 crossref_primary_10_1590_1809_4430_eng_agric_v40n3p344_351_2020 crossref_primary_10_1016_j_cej_2021_131189 crossref_primary_10_1016_j_apsoil_2022_104526 crossref_primary_10_3390_su15118700 crossref_primary_10_1016_j_scitotenv_2020_144802 crossref_primary_10_1016_j_catena_2021_105284 crossref_primary_10_1038_s41598_025_88355_z crossref_primary_10_1007_s11756_024_01702_9 crossref_primary_10_1007_s10854_022_07894_7 crossref_primary_10_3390_soilsystems8030082 crossref_primary_10_1007_s11368_025_03990_3 crossref_primary_10_1007_s42729_021_00442_y crossref_primary_10_1016_j_biombioe_2024_107070 crossref_primary_10_3390_ma14216658 crossref_primary_10_1111_sum_12977 crossref_primary_10_1007_s42729_024_01861_3 crossref_primary_10_1016_j_catena_2022_106616 crossref_primary_10_1088_1755_1315_1162_1_012015 crossref_primary_10_1016_j_eja_2024_127168 crossref_primary_10_1038_s41598_024_70515_2 crossref_primary_10_1016_j_scp_2024_101604 crossref_primary_10_2478_johh_2023_0030 crossref_primary_10_3390_su16010414 crossref_primary_10_1002_jeq2_20331 crossref_primary_10_1080_19386362_2023_2227486 crossref_primary_10_2166_wcc_2024_072 crossref_primary_10_1007_s42729_024_01754_5 crossref_primary_10_1007_s13399_024_05338_2 crossref_primary_10_1016_j_jenvman_2021_113489 crossref_primary_10_1038_s41598_023_49919_z crossref_primary_10_3390_su132413726 crossref_primary_10_1007_s13399_023_04079_y crossref_primary_10_1007_s44246_024_00127_y crossref_primary_10_1016_j_ecoleng_2021_106391 crossref_primary_10_1080_00103624_2022_2028812 crossref_primary_10_1111_sum_12649 crossref_primary_10_3389_fagro_2020_605655 crossref_primary_10_1007_s10333_022_00900_y crossref_primary_10_1111_sum_12769 crossref_primary_10_3390_agriculture12071028 crossref_primary_10_1007_s00344_022_10832_w crossref_primary_10_1007_s11356_023_25621_5 crossref_primary_10_1002_jeq2_20447 crossref_primary_10_1016_j_jece_2024_114561 crossref_primary_10_1038_s41598_025_94784_7 crossref_primary_10_32604_phyton_2025_058970 crossref_primary_10_1007_s13399_020_01226_7 crossref_primary_10_1016_j_geodrs_2024_e00910 crossref_primary_10_1021_acs_iecr_0c06278 crossref_primary_10_1016_j_geoderma_2021_115510 crossref_primary_10_1016_j_agee_2022_108233 crossref_primary_10_1002_ldr_5122 crossref_primary_10_3389_fenvs_2022_1036837 crossref_primary_10_3390_soilsystems8030069 crossref_primary_10_1016_j_geoderma_2019_114170 crossref_primary_10_1038_s41598_024_67766_4 crossref_primary_10_1002_agg2_20409 crossref_primary_10_1007_s42832_024_0267_x |
Cites_doi | 10.2134/agronj2010.0188 10.1007/s10646-014-1344-1 10.2307/1948629 10.1371/journal.pone.0179079 10.1111/ejss.12127 10.1038/ngeo2154 10.1016/j.geoderma.2013.12.022 10.1111/ejss.12079 10.2136/sssaj2010.0325 10.2134/agronj1999.00021962009100020016x 10.1590/S0100-204X2012000500012 10.1080/17583004.2014.913360 10.1016/j.jenvman.2010.06.013 10.1016/j.geoderma.2010.05.013 10.1002/hyp.6756 10.1097/SS.0b013e31824e5593 10.2134/jeq2011.0124 10.1071/SR9810275 10.1016/j.geoderma.2014.07.002 10.3846/16486897.2016.1239582 10.1016/j.chemosphere.2010.05.020 10.1016/j.eja.2017.09.003 10.1007/s11104-010-0464-5 10.1111/sum.12413 10.1515/intag-2016-0094 10.1016/j.biombioe.2012.01.033 10.1111/ejss.12081 10.1016/S0022-1694(01)00466-8 10.1080/00103624.2017.1383414 10.1016/j.agee.2010.12.005 10.1111/sum.12026 10.1111/gcbb.12191 10.1016/j.still.2015.08.002 10.1097/SS.0b013e3182482784 10.1016/j.biombioe.2014.03.059 10.1097/SS.0000000000000069 10.1016/S1002-0160(15)60041-8 10.1097/00010694-194907000-00007 10.1016/j.geoderma.2013.03.003 10.1061/9780784480434.060 10.1088/1748-9326/aa67bd 10.1002/ldr.2906 10.1111/gcbb.12076 10.1071/SR11102 10.1007/s11368-017-1763-8 10.1590/S0100-204X2012000500003 10.1021/jf9044217 10.1016/j.catena.2017.11.013 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. |
Copyright_xml | – notice: 2019 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.geoderma.2019.03.044 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-6259 |
EndPage | 202 |
ExternalDocumentID | 10_1016_j_geoderma_2019_03_044 S0016706118315702 |
GeographicLocations | Portugal |
GeographicLocations_xml | – name: Portugal |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SAB SDF SDG SES SPC SPCBC SSA SSE SSZ T5K ~02 ~G- 29H AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 K-O OHT R2- SEN SEP SEW SSH VH1 WUQ XPP Y6R ZMT 7S9 L.6 |
ID | FETCH-LOGICAL-c371t-fd872e642a7658a3b60361e2487cacadc8c147a95aa071cfa04fc26fa7c4f8d73 |
IEDL.DBID | .~1 |
ISSN | 0016-7061 |
IngestDate | Thu Jul 10 22:19:16 EDT 2025 Tue Jul 01 04:04:49 EDT 2025 Thu Apr 24 23:02:23 EDT 2025 Fri Feb 23 02:30:45 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | BD C Linear regression model PAW Soil physical properties Biochar MED SWS SOM Available water capacity WHC Soil organic matter OM |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c371t-fd872e642a7658a3b60361e2487cacadc8c147a95aa071cfa04fc26fa7c4f8d73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-6678-3322 |
OpenAccessLink | http://hdl.handle.net/10773/39873 |
PQID | 2237530406 |
PQPubID | 24069 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2237530406 crossref_citationtrail_10_1016_j_geoderma_2019_03_044 crossref_primary_10_1016_j_geoderma_2019_03_044 elsevier_sciencedirect_doi_10_1016_j_geoderma_2019_03_044 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-08-01 2019-08-00 20190801 |
PublicationDateYYYYMMDD | 2019-08-01 |
PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Geoderma |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Koide, Nguyen, Skinner, Dell, Peoples, Adler, Drohan (bb0135) 2015; 7 Hass, Gonzalez, Lima, Godwin, Halvorson, Boyer (bb0075) 2012; 41 Esmaeelnejad, Shorafa, Gorji, Hosseini (bb0060) 2017; 48 Novak, Watts (bb0165) 2013; 29 Verheijen, Montanarella, Bastos (bb0255) 2012; 47 Laird, Fleming, Davis, Horton, Wang, Karlen (bb0140) 2010; 158 Keizer, Doerr, Malvar, Ferreira, Pereira (bb0110) 2007; 21 Jin, J., Abera, K.A., Manahiloh, K.N., Imhoff, P., 2017. Experimental investigation of the effects of biochar on the hydraulic conductivity of soils. Geotechnical Special Publication (GSP 276), 549–558. DOI Liu, Z., Dugan, B., Masiello, C.A., Gonnermann, H.M., 2017. Biochar particle size, shape, and porosity act together to influence soil water properties. PLoS One 12 (6), art. no. e0179079. doi Masiello, Dugan, Brewer, Spokas, Novak, Liu (bb0160) 2015 Veihmeyer, Hendrickson (bb0245) 1949; 68 Zhang, Chen, You (bb0270) 2016; 26 Tammeorg, P., Bastos, A.C., Jeffery, S., Rees, F., Kern, J., Graber, E., Ventura, M., Kibblewhite, M., Amaro, A., Budai, A., Cordovil, C. M., Domene, X., Gardin, G., Gasco, G., Horak, J., Kammann, C., Kondrlova, E., Laird, D., Loureiro, S., Martins, M.A.S., Panzacchi, P., Prasad, M., Prodana, M., Puga, Ruysschaert, G., Sas-Paszt, L., Silva, F.C., Teixeira, W.G., Tonon, G., Vedove, G.D., Zavalloni, C., Glaser, B., Verheijen, F.G.A., 2017. Biochars in soils: towards the required level of scientific understanding. J. Environ. Eng. Landsc. Manag. 25(2), 192–207. doi Lebrun, Miard, Nandillon, Hattab-Hambli, Scippa, Bourgerie, Morabito (bb0145) 2018; 18 Jones, Haynes, Phillips (bb0100) 2010; 91 Verheijen, Graber, Ameloot, Bastos, Sohi, Knicker (bb0260) 2014; 65 Jeffery, Verheijen, Bastos, Van Der Velde (bb0085) 2014; 6 . Novak, Busscher, Watts, Amonette, Ippolito, Lima, Gaskin, Das, Steiner, Ahmedna, Rehrah, Schomberg (bb0170) 2012; 177 Briggs, Breiner, Graham (bb0040) 2012; 177 Streubel, Collins, Garcia-Perez, Tarara, Granatstein, Kruger (bb0210) 2011; 75 Daniells (bb0050) 2012; 50 Prendergast-Miller, Duvall, Sohi (bb0195) 2014; 65 Atkinson, Fitzgerald, Hipps (bb0025) 2010; 337 Tryon (bb0225) 1948 Ulyett, Sakrabani, Kibblewhite, Hann (bb0240) 2014; 65 Khademalrasoul, Naveed, Heckrath, Kumari, Wollesen De Jonge, Elsgaard, Vogel, Iversen (bb0120) 2014; 179 Liu, Han, Zhang (bb0150) 2012; 14 Ouyang, Wang, Tang, Yu, Zhang (bb0180) 2013; 13 Atkinson (bb0020) 2018; 34 Hardie, Clothier, Bound, Oliver, Close (bb0070) 2013; 376 Verheijen, Jeffery, Bastos, Van der Velde, Diafas (bb0250) 2010; 24099 Jeffery, Prodana, Bastos, van Groenigen, Hungate, Verheijen, A (bb0090) 2017; 12 Díaz-Zorita, Buschiazzo, Peinemann (bb0055) 1999; 91 Kinney, Masiello, Dugan, Hockaday, Dean, Zygourakis, Barnes (bb0130) 2012; 41 Graber, Frenkel, Jaiswal, Elad (bb0065) 2014; 5 Soinne, Hovi, Tammeorg, Turtola (bb0205) 2014; 219-220 Trifunovic, Gonzales, Ravi, Sharratt, Mohanty (bb0220) 2018; 29 Obia, Mulder, Martinsen, Cornelissen, Børresen (bb0175) 2016; 155 Peake, Reid, Tang (bb0185) 2014; 235-236 Abel, Peters, Trinks, Schonsky, Facklam, Wessolek (bb0005) 2013; 202-203 Abiven, Schmidt, Lehmann (bb0010) 2014; 7 Ahmed, Raghavan (bb0015) 2018; 32 Pereira, Heinemann, Madari, de Melo Carvalho, Kliemann, dos Santos (bb0190) 2012; 47 Karhu, Mattila, Bergström, Regina (bb0105) 2011; 140 Brockhoff, Christians, Killorn, Horton, Davis (bb0045) 2010; 102 Uchimiya, Lima, Klasson, Wartelle (bb0230) 2010; 80 Brewer, Chuang, Masiello, Gonnermann, Gao, Dugan, Driver, Panzacchi, Zygourakis, Davies (bb0035) 2014; 66 Bastos, Prodana, Abrantes, Keizer, Soares, Loureiro (bb0030) 2014; 23 Kerré, Willaert, Cornelis, Smolders (bb0115) 2017; 91 King (bb0125) 1981; 19 Wang, Stewart, Sun, Wang, Zheng (bb0265) 2018; 162 Schaap, Leij, Van Genuchten (bb0200) 2001; 251 Uchimiya, Lima, Thomas Klasson, Chang, Wartelle, Rodgers (bb0235) 2010; 58 Prendergast-Miller (10.1016/j.geoderma.2019.03.044_bb0195) 2014; 65 Jones (10.1016/j.geoderma.2019.03.044_bb0100) 2010; 91 Khademalrasoul (10.1016/j.geoderma.2019.03.044_bb0120) 2014; 179 Zhang (10.1016/j.geoderma.2019.03.044_bb0270) 2016; 26 Tryon (10.1016/j.geoderma.2019.03.044_bb0225) 1948 Abiven (10.1016/j.geoderma.2019.03.044_bb0010) 2014; 7 Ahmed (10.1016/j.geoderma.2019.03.044_bb0015) 2018; 32 Streubel (10.1016/j.geoderma.2019.03.044_bb0210) 2011; 75 Verheijen (10.1016/j.geoderma.2019.03.044_bb0250) 2010; 24099 Daniells (10.1016/j.geoderma.2019.03.044_bb0050) 2012; 50 Keizer (10.1016/j.geoderma.2019.03.044_bb0110) 2007; 21 Atkinson (10.1016/j.geoderma.2019.03.044_bb0025) 2010; 337 Peake (10.1016/j.geoderma.2019.03.044_bb0185) 2014; 235-236 10.1016/j.geoderma.2019.03.044_bb0095 Verheijen (10.1016/j.geoderma.2019.03.044_bb0255) 2012; 47 Masiello (10.1016/j.geoderma.2019.03.044_bb0160) 2015 Esmaeelnejad (10.1016/j.geoderma.2019.03.044_bb0060) 2017; 48 Jeffery (10.1016/j.geoderma.2019.03.044_bb0085) 2014; 6 Jeffery (10.1016/j.geoderma.2019.03.044_bb0090) 2017; 12 Kinney (10.1016/j.geoderma.2019.03.044_bb0130) 2012; 41 Bastos (10.1016/j.geoderma.2019.03.044_bb0030) 2014; 23 Graber (10.1016/j.geoderma.2019.03.044_bb0065) 2014; 5 Hass (10.1016/j.geoderma.2019.03.044_bb0075) 2012; 41 Koide (10.1016/j.geoderma.2019.03.044_bb0135) 2015; 7 Briggs (10.1016/j.geoderma.2019.03.044_bb0040) 2012; 177 Laird (10.1016/j.geoderma.2019.03.044_bb0140) 2010; 158 Abel (10.1016/j.geoderma.2019.03.044_bb0005) 2013; 202-203 Ouyang (10.1016/j.geoderma.2019.03.044_bb0180) 2013; 13 Liu (10.1016/j.geoderma.2019.03.044_bb0150) 2012; 14 Soinne (10.1016/j.geoderma.2019.03.044_bb0205) 2014; 219-220 Wang (10.1016/j.geoderma.2019.03.044_bb0265) 2018; 162 Uchimiya (10.1016/j.geoderma.2019.03.044_bb0230) 2010; 80 Karhu (10.1016/j.geoderma.2019.03.044_bb0105) 2011; 140 Obia (10.1016/j.geoderma.2019.03.044_bb0175) 2016; 155 Veihmeyer (10.1016/j.geoderma.2019.03.044_bb0245) 1949; 68 Hardie (10.1016/j.geoderma.2019.03.044_bb0070) 2013; 376 Novak (10.1016/j.geoderma.2019.03.044_bb0165) 2013; 29 Pereira (10.1016/j.geoderma.2019.03.044_bb0190) 2012; 47 Ulyett (10.1016/j.geoderma.2019.03.044_bb0240) 2014; 65 Trifunovic (10.1016/j.geoderma.2019.03.044_bb0220) 2018; 29 Verheijen (10.1016/j.geoderma.2019.03.044_bb0260) 2014; 65 10.1016/j.geoderma.2019.03.044_bb0155 cr-split#-10.1016/j.geoderma.2019.03.044_bb0215.2 Brockhoff (10.1016/j.geoderma.2019.03.044_bb0045) 2010; 102 Kerré (10.1016/j.geoderma.2019.03.044_bb0115) 2017; 91 Lebrun (10.1016/j.geoderma.2019.03.044_bb0145) 2018; 18 Díaz-Zorita (10.1016/j.geoderma.2019.03.044_bb0055) 1999; 91 Novak (10.1016/j.geoderma.2019.03.044_bb0170) 2012; 177 Uchimiya (10.1016/j.geoderma.2019.03.044_bb0235) 2010; 58 Brewer (10.1016/j.geoderma.2019.03.044_bb0035) 2014; 66 King (10.1016/j.geoderma.2019.03.044_bb0125) 1981; 19 Schaap (10.1016/j.geoderma.2019.03.044_bb0200) 2001; 251 cr-split#-10.1016/j.geoderma.2019.03.044_bb0215.1 Atkinson (10.1016/j.geoderma.2019.03.044_bb0020) 2018; 34 |
References_xml | – reference: Tammeorg, P., Bastos, A.C., Jeffery, S., Rees, F., Kern, J., Graber, E., Ventura, M., Kibblewhite, M., Amaro, A., Budai, A., Cordovil, C. M., Domene, X., Gardin, G., Gasco, G., Horak, J., Kammann, C., Kondrlova, E., Laird, D., Loureiro, S., Martins, M.A.S., Panzacchi, P., Prasad, M., Prodana, M., Puga, Ruysschaert, G., Sas-Paszt, L., Silva, F.C., Teixeira, W.G., Tonon, G., Vedove, G.D., Zavalloni, C., Glaser, B., Verheijen, F.G.A., 2017. Biochars in soils: towards the required level of scientific understanding. J. Environ. Eng. Landsc. Manag. 25(2), 192–207. doi: – volume: 5 start-page: 169 year: 2014 end-page: 183 ident: bb0065 article-title: How may biochar influence severity of diseases caused by soilborne pathogens? publication-title: Carbon Management – volume: 91 start-page: 10 year: 2017 end-page: 15 ident: bb0115 article-title: Long-term presence of charcoal increases maize yield in Belgium due to increased soil water availability publication-title: Eur. J. Agron. – start-page: 543 year: 2015 end-page: 562 ident: bb0160 publication-title: Biochar effects on soil hydrology – volume: 19 start-page: 275 year: 1981 end-page: 285 ident: bb0125 article-title: Comparison of methods for measuring severity of water repellence of sandy soils and assesment of some factors that affect its measurement (Australia) publication-title: Aust. J. Soil Res. – volume: 48 start-page: 1710 year: 2017 end-page: 1718 ident: bb0060 article-title: Impacts of woody biochar particle size on porosity and hydraulic conductivity of biochar-soil mixtures: an incubation study publication-title: Commun. Soil Sci. Plant Anal. – volume: 12 start-page: 1 year: 2017 end-page: 6 ident: bb0090 article-title: Biochar boosts tropical but not temperate yields publication-title: Environ. Res. Lett. – volume: 7 start-page: 1084 year: 2015 end-page: 1091 ident: bb0135 article-title: Biochar amendment of soil improves resilience to climate change publication-title: GCB Bioenergy – volume: 47 start-page: 716 year: 2012 end-page: 721 ident: bb0190 article-title: Transpiration response of upland rice to water deficit changed by different levels of eucalyptus biochar publication-title: Pesquisa Agropecuaria Brasileira – volume: 29 start-page: 98 year: 2013 end-page: 104 ident: bb0165 article-title: Augmenting soil water storage using uncharred switchgrass and pyrolyzed biochars publication-title: Soil Use Manag. – volume: 179 start-page: 273 year: 2014 end-page: 283 ident: bb0120 article-title: Biochar effects on soil aggregate properties under no-till maize publication-title: Soil Sci. – volume: 80 start-page: 935 year: 2010 end-page: 940 ident: bb0230 article-title: Contaminant immobilization and nutrient release by biochar soil amendment: roles of natural organic matter publication-title: Chemosphere – volume: 6 start-page: 176 year: 2014 end-page: 179 ident: bb0085 article-title: A comment on ‘Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis’: on the importance of accurate reporting in supporting a fast-moving research field with policy implications publication-title: GCB Bioenergy – volume: 177 start-page: 263 year: 2012 end-page: 268 ident: bb0040 article-title: Physical and chemical properties of Pinus ponderosa charcoal: implications for soil modification publication-title: Soil Sci. – volume: 47 start-page: 649 year: 2012 end-page: 653 ident: bb0255 article-title: Sustainability, certification, and regulation of biochar publication-title: Pesquisa Agropecuaria Brasileira – volume: 13 start-page: 991 year: 2013 end-page: 1002 ident: bb0180 article-title: Effects of biochar amendment on soil aggregates and hydraulic properties publication-title: J. Soil Sci. Plant Nutr. – volume: 68 start-page: 75 year: 1949 end-page: 94 ident: bb0245 article-title: Methods of measuring field capacity and permanent wilting percentage of soils publication-title: Soil Sci. – volume: 235-236 start-page: 182 year: 2014 end-page: 190 ident: bb0185 article-title: Quantifying the influence of biochar on the physical and hydrological properties of dissimilar soils publication-title: Geoderma – volume: 219-220 start-page: 162 year: 2014 end-page: 167 ident: bb0205 article-title: Effect of biochar on phosphorus sorption and clay soil aggregate stability publication-title: Geoderma – volume: 91 start-page: 2281 year: 2010 end-page: 2288 ident: bb0100 article-title: Effect of amendment of bauxite processing sand with organic materials on its chemical, physical and microbial properties publication-title: J. Environ. Manag. – volume: 21 start-page: 2317 year: 2007 end-page: 2324 ident: bb0110 article-title: Temporal and spatial variations in topsoil water repellency throughout a crop-rotation cycle on sandy soil in north-central Portugal publication-title: Hydrol. Process. – volume: 26 start-page: 265 year: 2016 end-page: 272 ident: bb0270 article-title: Biochar effect on water evaporation and hydraulic conductivity in sandy soil publication-title: Pedosphere – volume: 65 start-page: 22 year: 2014 end-page: 27 ident: bb0260 article-title: Biochars in soils: new insights and emerging research needs publication-title: Eur. J. Soil Sci. – volume: 376 start-page: 347 year: 2013 end-page: 361 ident: bb0070 article-title: Does biochar influence soil physical properties and soil water availability? publication-title: Plant Soil – volume: 91 start-page: 276 year: 1999 end-page: 279 ident: bb0055 article-title: Soil organic matter and wheat productivity in the semiarid argentine pampas publication-title: Agron. J. – volume: 41 start-page: 1096 year: 2012 end-page: 1106 ident: bb0075 article-title: Chicken manure biochar as liming and nutrient source for acid Appalachian soil publication-title: J. Environ. Qual. – volume: 158 start-page: 443 year: 2010 end-page: 449 ident: bb0140 article-title: Impact of biochar amendments on the quality of a typical Midwestern agricultural soil publication-title: Geoderma – volume: 75 start-page: 1402 year: 2011 end-page: 1413 ident: bb0210 article-title: Influence of contrasting biochar types on five soils at increasing rates of application publication-title: Soil Sci. Soc. Am. J. – reference: Jin, J., Abera, K.A., Manahiloh, K.N., Imhoff, P., 2017. Experimental investigation of the effects of biochar on the hydraulic conductivity of soils. Geotechnical Special Publication (GSP 276), 549–558. DOI: – volume: 155 start-page: 35 year: 2016 end-page: 44 ident: bb0175 article-title: In situ effects of biochar on aggregation, water retention and porosity in light-textured tropical soils publication-title: Soil Tillage Res. – volume: 202-203 start-page: 183 year: 2013 end-page: 191 ident: bb0005 article-title: Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil publication-title: Geoderma – volume: 24099 year: 2010 ident: bb0250 article-title: Biochar application to soils. A critical scientific review of effects on soil properties, processes, and functions publication-title: EUR – reference: Liu, Z., Dugan, B., Masiello, C.A., Gonnermann, H.M., 2017. Biochar particle size, shape, and porosity act together to influence soil water properties. PLoS One 12 (6), art. no. e0179079. doi: – volume: 34 start-page: 177 year: 2018 end-page: 186 ident: bb0020 article-title: How good is the evidence that soil-applied biochar improves water-holding capacity? publication-title: Soil Use Manag. – volume: 41 start-page: 34 year: 2012 end-page: 43 ident: bb0130 article-title: Hydrologic properties of biochars produced at different temperatures publication-title: Biomass Bioenergy – volume: 18 start-page: 2188 year: 2018 end-page: 2202 ident: bb0145 article-title: Eco-restoration of a mine technosol according to biochar particle size and dose application: study of soil physico-chemical properties and phytostabilization capacities of Salix viminalis publication-title: J. Soils Sediments – volume: 32 start-page: 1 year: 2018 end-page: 10 ident: bb0015 article-title: Influence of wood-derived biochar on the physico-mechanical and chemical characteristics of agricultural soils publication-title: International Agrophysics – volume: 23 start-page: 1784 year: 2014 end-page: 1793 ident: bb0030 article-title: Potential risk of biochar-amended soil to aquatic systems: an evaluation based on aquatic bioassays publication-title: Ecotoxicology – volume: 14 start-page: 975 year: 2012 end-page: 979 ident: bb0150 article-title: Effect of biochar on soil aggregates in the Loess Plateau: results from incubation experiments publication-title: Int. J. Agric. Biol. – volume: 29 start-page: 884 year: 2018 end-page: 893 ident: bb0220 article-title: Dynamic effects of biochar concentration and particle size on hydraulic properties of sand publication-title: Land Degrad. Dev. – volume: 162 start-page: 29 year: 2018 end-page: 39 ident: bb0265 article-title: Effects of biochar addition on evaporation in the five typical Loess Plateau soils publication-title: Catena – volume: 65 start-page: 96 year: 2014 end-page: 104 ident: bb0240 article-title: Impact of biochar addition on water retention, nitrification and carbon dioxide evolution from two sandy loam soils publication-title: Eur. J. Soil Sci. – volume: 58 start-page: 5538 year: 2010 end-page: 5544 ident: bb0235 article-title: Immobilization of heavy metal ions (CuII, CdII, NiII, and PbII) by broiler litter-derived biochars in water and soil publication-title: J. Agric. Food Chem. – volume: 177 start-page: 310 year: 2012 end-page: 320 ident: bb0170 article-title: Biochars impact on soil-moisture storage in an ultisol and two aridisols publication-title: Soil Sci. – volume: 66 start-page: 176 year: 2014 end-page: 185 ident: bb0035 article-title: New approaches to measuring biochar density and porosity publication-title: Biomass Bioenergy – volume: 337 start-page: 1 year: 2010 end-page: 18 ident: bb0025 article-title: Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review publication-title: Plant Soil – volume: 251 start-page: 163 year: 2001 end-page: 176 ident: bb0200 article-title: Rosetta: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions publication-title: J. Hydrol. – volume: 7 start-page: 326 year: 2014 end-page: 327 ident: bb0010 article-title: Biochar by design publication-title: Nat. Geosci. – reference: . – volume: 65 start-page: 173 year: 2014 end-page: 185 ident: bb0195 article-title: Biochar-root interactions are mediated by biochar nutrient content and impacts on soil nutrient availability publication-title: Eur. J. Soil Sci. – start-page: 81 year: 1948 end-page: 115 ident: bb0225 article-title: Effect of charcoal on certain physical, chemical, and biological properties of forest soils publication-title: Ecol. Monogr. – volume: 140 start-page: 309 year: 2011 end-page: 313 ident: bb0105 article-title: Biochar addition to agricultural soil increased CH4 uptake and water holding capacity - results from a short-term pilot field study publication-title: Agric. Ecosyst. Environ. – volume: 102 start-page: 1627 year: 2010 end-page: 1631 ident: bb0045 article-title: Physical and mineral-nutrition properties of sand-based turfgrass root zones amended with biochar publication-title: Agron. J. – volume: 50 start-page: 349 year: 2012 end-page: 359 ident: bb0050 article-title: Hardsetting soils: a review publication-title: Soil Research – volume: 102 start-page: 1627 issue: 6 year: 2010 ident: 10.1016/j.geoderma.2019.03.044_bb0045 article-title: Physical and mineral-nutrition properties of sand-based turfgrass root zones amended with biochar publication-title: Agron. J. doi: 10.2134/agronj2010.0188 – volume: 23 start-page: 1784 issue: 9 year: 2014 ident: 10.1016/j.geoderma.2019.03.044_bb0030 article-title: Potential risk of biochar-amended soil to aquatic systems: an evaluation based on aquatic bioassays publication-title: Ecotoxicology doi: 10.1007/s10646-014-1344-1 – start-page: 81 year: 1948 ident: 10.1016/j.geoderma.2019.03.044_bb0225 article-title: Effect of charcoal on certain physical, chemical, and biological properties of forest soils publication-title: Ecol. Monogr. doi: 10.2307/1948629 – ident: 10.1016/j.geoderma.2019.03.044_bb0155 doi: 10.1371/journal.pone.0179079 – volume: 65 start-page: 22 issue: 1 year: 2014 ident: 10.1016/j.geoderma.2019.03.044_bb0260 article-title: Biochars in soils: new insights and emerging research needs publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12127 – volume: 7 start-page: 326 year: 2014 ident: 10.1016/j.geoderma.2019.03.044_bb0010 article-title: Biochar by design publication-title: Nat. Geosci. doi: 10.1038/ngeo2154 – volume: 219-220 start-page: 162 year: 2014 ident: 10.1016/j.geoderma.2019.03.044_bb0205 article-title: Effect of biochar on phosphorus sorption and clay soil aggregate stability publication-title: Geoderma doi: 10.1016/j.geoderma.2013.12.022 – volume: 65 start-page: 173 issue: 1 year: 2014 ident: 10.1016/j.geoderma.2019.03.044_bb0195 article-title: Biochar-root interactions are mediated by biochar nutrient content and impacts on soil nutrient availability publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12079 – volume: 75 start-page: 1402 issue: 4 year: 2011 ident: 10.1016/j.geoderma.2019.03.044_bb0210 article-title: Influence of contrasting biochar types on five soils at increasing rates of application publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2010.0325 – volume: 91 start-page: 276 year: 1999 ident: 10.1016/j.geoderma.2019.03.044_bb0055 article-title: Soil organic matter and wheat productivity in the semiarid argentine pampas publication-title: Agron. J. doi: 10.2134/agronj1999.00021962009100020016x – volume: 14 start-page: 975 issue: 6 year: 2012 ident: 10.1016/j.geoderma.2019.03.044_bb0150 article-title: Effect of biochar on soil aggregates in the Loess Plateau: results from incubation experiments publication-title: Int. J. Agric. Biol. – volume: 47 start-page: 716 issue: 5 year: 2012 ident: 10.1016/j.geoderma.2019.03.044_bb0190 article-title: Transpiration response of upland rice to water deficit changed by different levels of eucalyptus biochar publication-title: Pesquisa Agropecuaria Brasileira doi: 10.1590/S0100-204X2012000500012 – volume: 5 start-page: 169 issue: 2 year: 2014 ident: 10.1016/j.geoderma.2019.03.044_bb0065 article-title: How may biochar influence severity of diseases caused by soilborne pathogens? publication-title: Carbon Management doi: 10.1080/17583004.2014.913360 – volume: 91 start-page: 2281 issue: 11 year: 2010 ident: 10.1016/j.geoderma.2019.03.044_bb0100 article-title: Effect of amendment of bauxite processing sand with organic materials on its chemical, physical and microbial properties publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2010.06.013 – volume: 158 start-page: 443 issue: 3–4 year: 2010 ident: 10.1016/j.geoderma.2019.03.044_bb0140 article-title: Impact of biochar amendments on the quality of a typical Midwestern agricultural soil publication-title: Geoderma doi: 10.1016/j.geoderma.2010.05.013 – volume: 21 start-page: 2317 issue: 17 year: 2007 ident: 10.1016/j.geoderma.2019.03.044_bb0110 article-title: Temporal and spatial variations in topsoil water repellency throughout a crop-rotation cycle on sandy soil in north-central Portugal publication-title: Hydrol. Process. doi: 10.1002/hyp.6756 – volume: 177 start-page: 310 issue: 5 year: 2012 ident: 10.1016/j.geoderma.2019.03.044_bb0170 article-title: Biochars impact on soil-moisture storage in an ultisol and two aridisols publication-title: Soil Sci. doi: 10.1097/SS.0b013e31824e5593 – volume: 41 start-page: 1096 issue: 4 year: 2012 ident: 10.1016/j.geoderma.2019.03.044_bb0075 article-title: Chicken manure biochar as liming and nutrient source for acid Appalachian soil publication-title: J. Environ. Qual. doi: 10.2134/jeq2011.0124 – volume: 19 start-page: 275 issue: 4 year: 1981 ident: 10.1016/j.geoderma.2019.03.044_bb0125 article-title: Comparison of methods for measuring severity of water repellence of sandy soils and assesment of some factors that affect its measurement (Australia) publication-title: Aust. J. Soil Res. doi: 10.1071/SR9810275 – volume: 235-236 start-page: 182 year: 2014 ident: 10.1016/j.geoderma.2019.03.044_bb0185 article-title: Quantifying the influence of biochar on the physical and hydrological properties of dissimilar soils publication-title: Geoderma doi: 10.1016/j.geoderma.2014.07.002 – ident: #cr-split#-10.1016/j.geoderma.2019.03.044_bb0215.2 doi: 10.3846/16486897.2016.1239582 – start-page: 543 year: 2015 ident: 10.1016/j.geoderma.2019.03.044_bb0160 – volume: 80 start-page: 935 issue: 8 year: 2010 ident: 10.1016/j.geoderma.2019.03.044_bb0230 article-title: Contaminant immobilization and nutrient release by biochar soil amendment: roles of natural organic matter publication-title: Chemosphere doi: 10.1016/j.chemosphere.2010.05.020 – ident: #cr-split#-10.1016/j.geoderma.2019.03.044_bb0215.1 doi: 10.3846/16486897.2016.1239582 – volume: 91 start-page: 10 year: 2017 ident: 10.1016/j.geoderma.2019.03.044_bb0115 article-title: Long-term presence of charcoal increases maize yield in Belgium due to increased soil water availability publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2017.09.003 – volume: 337 start-page: 1 issue: 1 year: 2010 ident: 10.1016/j.geoderma.2019.03.044_bb0025 article-title: Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review publication-title: Plant Soil doi: 10.1007/s11104-010-0464-5 – volume: 34 start-page: 177 issue: 2 year: 2018 ident: 10.1016/j.geoderma.2019.03.044_bb0020 article-title: How good is the evidence that soil-applied biochar improves water-holding capacity? publication-title: Soil Use Manag. doi: 10.1111/sum.12413 – volume: 32 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.geoderma.2019.03.044_bb0015 article-title: Influence of wood-derived biochar on the physico-mechanical and chemical characteristics of agricultural soils publication-title: International Agrophysics doi: 10.1515/intag-2016-0094 – volume: 41 start-page: 34 year: 2012 ident: 10.1016/j.geoderma.2019.03.044_bb0130 article-title: Hydrologic properties of biochars produced at different temperatures publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2012.01.033 – volume: 65 start-page: 96 issue: 1 year: 2014 ident: 10.1016/j.geoderma.2019.03.044_bb0240 article-title: Impact of biochar addition on water retention, nitrification and carbon dioxide evolution from two sandy loam soils publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12081 – volume: 251 start-page: 163 issue: 3–4 year: 2001 ident: 10.1016/j.geoderma.2019.03.044_bb0200 article-title: Rosetta: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions publication-title: J. Hydrol. doi: 10.1016/S0022-1694(01)00466-8 – volume: 13 start-page: 991 issue: 4 year: 2013 ident: 10.1016/j.geoderma.2019.03.044_bb0180 article-title: Effects of biochar amendment on soil aggregates and hydraulic properties publication-title: J. Soil Sci. Plant Nutr. – volume: 48 start-page: 1710 issue: 14 year: 2017 ident: 10.1016/j.geoderma.2019.03.044_bb0060 article-title: Impacts of woody biochar particle size on porosity and hydraulic conductivity of biochar-soil mixtures: an incubation study publication-title: Commun. Soil Sci. Plant Anal. doi: 10.1080/00103624.2017.1383414 – volume: 140 start-page: 309 issue: 1–2 year: 2011 ident: 10.1016/j.geoderma.2019.03.044_bb0105 article-title: Biochar addition to agricultural soil increased CH4 uptake and water holding capacity - results from a short-term pilot field study publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2010.12.005 – volume: 29 start-page: 98 issue: 1 year: 2013 ident: 10.1016/j.geoderma.2019.03.044_bb0165 article-title: Augmenting soil water storage using uncharred switchgrass and pyrolyzed biochars publication-title: Soil Use Manag. doi: 10.1111/sum.12026 – volume: 7 start-page: 1084 issue: 5 year: 2015 ident: 10.1016/j.geoderma.2019.03.044_bb0135 article-title: Biochar amendment of soil improves resilience to climate change publication-title: GCB Bioenergy doi: 10.1111/gcbb.12191 – volume: 155 start-page: 35 year: 2016 ident: 10.1016/j.geoderma.2019.03.044_bb0175 article-title: In situ effects of biochar on aggregation, water retention and porosity in light-textured tropical soils publication-title: Soil Tillage Res. doi: 10.1016/j.still.2015.08.002 – volume: 177 start-page: 263 issue: 4 year: 2012 ident: 10.1016/j.geoderma.2019.03.044_bb0040 article-title: Physical and chemical properties of Pinus ponderosa charcoal: implications for soil modification publication-title: Soil Sci. doi: 10.1097/SS.0b013e3182482784 – volume: 66 start-page: 176 year: 2014 ident: 10.1016/j.geoderma.2019.03.044_bb0035 article-title: New approaches to measuring biochar density and porosity publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2014.03.059 – volume: 179 start-page: 273 issue: 6 year: 2014 ident: 10.1016/j.geoderma.2019.03.044_bb0120 article-title: Biochar effects on soil aggregate properties under no-till maize publication-title: Soil Sci. doi: 10.1097/SS.0000000000000069 – volume: 26 start-page: 265 issue: 2 year: 2016 ident: 10.1016/j.geoderma.2019.03.044_bb0270 article-title: Biochar effect on water evaporation and hydraulic conductivity in sandy soil publication-title: Pedosphere doi: 10.1016/S1002-0160(15)60041-8 – volume: 68 start-page: 75 year: 1949 ident: 10.1016/j.geoderma.2019.03.044_bb0245 article-title: Methods of measuring field capacity and permanent wilting percentage of soils publication-title: Soil Sci. doi: 10.1097/00010694-194907000-00007 – volume: 202-203 start-page: 183 year: 2013 ident: 10.1016/j.geoderma.2019.03.044_bb0005 article-title: Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil publication-title: Geoderma doi: 10.1016/j.geoderma.2013.03.003 – ident: 10.1016/j.geoderma.2019.03.044_bb0095 doi: 10.1061/9780784480434.060 – volume: 12 start-page: 1 issue: 5 year: 2017 ident: 10.1016/j.geoderma.2019.03.044_bb0090 article-title: Biochar boosts tropical but not temperate yields publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/aa67bd – volume: 29 start-page: 884 issue: 4 year: 2018 ident: 10.1016/j.geoderma.2019.03.044_bb0220 article-title: Dynamic effects of biochar concentration and particle size on hydraulic properties of sand publication-title: Land Degrad. Dev. doi: 10.1002/ldr.2906 – volume: 6 start-page: 176 year: 2014 ident: 10.1016/j.geoderma.2019.03.044_bb0085 article-title: A comment on ‘Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis’: on the importance of accurate reporting in supporting a fast-moving research field with policy implications publication-title: GCB Bioenergy doi: 10.1111/gcbb.12076 – volume: 24099 year: 2010 ident: 10.1016/j.geoderma.2019.03.044_bb0250 article-title: Biochar application to soils. A critical scientific review of effects on soil properties, processes, and functions publication-title: EUR – volume: 50 start-page: 349 issue: 5 year: 2012 ident: 10.1016/j.geoderma.2019.03.044_bb0050 article-title: Hardsetting soils: a review publication-title: Soil Research doi: 10.1071/SR11102 – volume: 18 start-page: 2188 issue: 6 year: 2018 ident: 10.1016/j.geoderma.2019.03.044_bb0145 article-title: Eco-restoration of a mine technosol according to biochar particle size and dose application: study of soil physico-chemical properties and phytostabilization capacities of Salix viminalis publication-title: J. Soils Sediments doi: 10.1007/s11368-017-1763-8 – volume: 47 start-page: 649 issue: 5 year: 2012 ident: 10.1016/j.geoderma.2019.03.044_bb0255 article-title: Sustainability, certification, and regulation of biochar publication-title: Pesquisa Agropecuaria Brasileira doi: 10.1590/S0100-204X2012000500003 – volume: 58 start-page: 5538 issue: 9 year: 2010 ident: 10.1016/j.geoderma.2019.03.044_bb0235 article-title: Immobilization of heavy metal ions (CuII, CdII, NiII, and PbII) by broiler litter-derived biochars in water and soil publication-title: J. Agric. Food Chem. doi: 10.1021/jf9044217 – volume: 162 start-page: 29 year: 2018 ident: 10.1016/j.geoderma.2019.03.044_bb0265 article-title: Effects of biochar addition on evaporation in the five typical Loess Plateau soils publication-title: Catena doi: 10.1016/j.catena.2017.11.013 – volume: 376 start-page: 347 issue: 1–2 year: 2013 ident: 10.1016/j.geoderma.2019.03.044_bb0070 article-title: Does biochar influence soil physical properties and soil water availability? publication-title: Plant Soil |
SSID | ssj0017020 |
Score | 2.6309795 |
Snippet | Biochar application to agricultural soils has been proposed as a way to increase crop production by improving soil chemical and physical properties. Liming... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 194 |
SubjectTerms | agricultural soils application rate Available water capacity Biochar bulk density crop production crops feedstocks field capacity liming Linear regression model particle size Portugal sandy loam soils sandy soils soil density Soil organic matter Soil physical properties soil sampling soil structure soil water soil water retention soil water storage water content water holding capacity water stress |
Title | The influence of biochar particle size and concentration on bulk density and maximum water holding capacity of sandy vs sandy loam soil in a column experiment |
URI | https://dx.doi.org/10.1016/j.geoderma.2019.03.044 https://www.proquest.com/docview/2237530406 |
Volume | 347 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDBaK7rIdhu6F9QkO2NVN5EiWcgyKFtmG9bQCvQmyLA3uEjuIk74O_Sn9rSVtuesGDD0M8MEPSpZFmqQgfiRjnzPui1TS1r8MKhHOigR1HgF8xNgHSvDECeD8_TSbnomv5_J8gx31WBgKq4y6v9PprbaOdwZxNgeLsiSML88UmiMUSi5Vm1BSCEVSfnj3GObB8UEHQ-FZQtRPUMIXyCMqONbmH-JdslMh_mWg_lLVrf052WKvo-MIk25sb9iGr96yV5Ofy5g8w79j98hzKPuqI1AHyMuaYFWwiJ8ETXnrwVYFOIIrVjFnLuCRr2e_oKBw9tVNSzG31-V8PYcr9EaXEHepwKFxdUSCvTdIdgOXTTyZ1XYOTV3OcAxg8Q2o9yr4XULgPTs7Of5xNE1i_YXEjRRfJaHQKvW4QLEK_RQ7yjM0d9ynuMZx1tnCaceFsmNpLToqLtihCC7NglVOBF2o0Qe2WdWV_8ggDdr6NNWFDkpop3Uuhz4vpM-lz1IXtpnsJ924mJycamTMTB-FdmF6ZhlilhmODDJrmw0e2y269BzPthj3PDV_CJpBG_Js20-9EBj8C2lrxVa-XjcGnSxc96FCzHb-o_9d9pKuuvjCPba5Wq79Pvo8q_ygFeoD9mLy5dv09AGolwWn |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDBaK9LDtMKx7YG23jgV6NRI5kqUcg2JF-sqpBXoTZFka3CV2ECfb2h-z3zoylrtuwNDDAB8M62FZpEkKJD8ydpRxX6SSXP8yqEQ4KxKUeZTgI0Y-EMATpwTny2k2uRZnN_Jmix13uTAUVhllfyvTN9I6PunH3ewvypJyfHmmUB0hU3KpCFBym9CpZI9tj0_PJ9MHZwK2tZkoPEtowKNE4VskE9Uc20AQ8RbvVIh_6ai_pPVGBZ28Yi-j7Qjjdnk7bMtXr9mL8ZdlxM_wb9hPJDuUXeERqAPkZU2ZVbCIXwVNee_BVgU4ylisImwu4JWvZ1-hoIj21d2mx9z-KOfrOXxHg3QJ0VEFDvWroy44e4Pd7uBbE29mtZ1DU5czXANYfAOKvgp-VxF4y65PPl8dT5JYgiFxQ8VXSSi0Sj2eUaxCU8UO8ww1HvcpHnOcdbZw2nGh7Ehai7aKC3YggkuzYJUTQRdq-I71qrry7xmkQVufprrQQQnttM7lwOeF9Ln0WerCLpPdphsX8cmpTMbMdIFot6YjliFimcHQILF2Wf9h3KJF6HhyxKijqfmD1wyqkSfHHnZMYPBHJO-KrXy9bgzaWXj0Q5mY7f3H_J_Ys8nV5YW5OJ2e77Pn1NKGG35gvdVy7T-iCbTKDyKL_wKKKAhY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+influence+of+biochar+particle+size+and+concentration+on+bulk+density+and+maximum+water+holding+capacity+of+sandy+vs+sandy+loam+soil+in+a+column+experiment&rft.jtitle=Geoderma&rft.au=Verheijen%2C+Frank+G.A.&rft.au=Zhuravel%2C+Anna&rft.au=Silva%2C+Fl%C3%A1vio+C.&rft.au=Amaro%2C+Ant%C3%B3nio&rft.date=2019-08-01&rft.issn=0016-7061&rft.volume=347&rft.spage=194&rft.epage=202&rft_id=info:doi/10.1016%2Fj.geoderma.2019.03.044&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_geoderma_2019_03_044 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |