A generalization of truncated M-fractional derivative and applications to fractional differential equations

In this paper, our aim is to generalize the truncated M-fractional derivative which was recently introduced [Sousa and de Oliveira, A new truncated M-fractional derivative type unifying some fractional derivative types with classical properties, Inter. of Jour. Analy. and Appl., 16 (1), 83–96, 2018]...

Full description

Saved in:
Bibliographic Details
Published inApplied mathematics and nonlinear sciences Vol. 5; no. 1; pp. 171 - 188
Main Authors İlhan, Esin, Kıymaz, İ. Onur
Format Journal Article
LanguageEnglish
Published Beirut Sciendo 01.01.2020
De Gruyter Poland
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, our aim is to generalize the truncated M-fractional derivative which was recently introduced [Sousa and de Oliveira, A new truncated M-fractional derivative type unifying some fractional derivative types with classical properties, Inter. of Jour. Analy. and Appl., 16 (1), 83–96, 2018]. To do that, we used generalized M-series, which has a more general form than Mittag-Leffler and hypergeometric functions. We called this generalization as truncated ℳ-series fractional derivative. This new derivative generalizes several fractional derivatives and satisfies important properties of the integer-order derivatives. Finally, we obtain the analytical solutions of some ℳ-series fractional differential equations.
AbstractList In this paper, our aim is to generalize the truncated M-fractional derivative which was recently introduced [Sousa and de Oliveira, A new truncated M-fractional derivative type unifying some fractional derivative types with classical properties, Inter. of Jour. Analy. and Appl., 16 (1), 83–96, 2018]. To do that, we used generalized M-series, which has a more general form than Mittag-Leffler and hypergeometric functions. We called this generalization as truncated ℳ-series fractional derivative. This new derivative generalizes several fractional derivatives and satisfies important properties of the integer-order derivatives. Finally, we obtain the analytical solutions of some ℳ-series fractional differential equations.
Author İlhan, Esin
Kıymaz, İ. Onur
Author_xml – sequence: 1
  givenname: Esin
  surname: İlhan
  fullname: İlhan, Esin
  organization: Mucur Vocational School, Ahi Evran University, 40500, Kırşehir, Turkey
– sequence: 2
  givenname: İ. Onur
  surname: Kıymaz
  fullname: Kıymaz, İ. Onur
  email: iokiymaz@ahievran.edu.tr
  organization: Dept. of Mathematics, Faculty of Science, Ahi Evran University, 40100, Kırşehir, Turkey
BookMark eNp9kE1LxDAQhoMoqKs_wFvAc9dM0qa7F0HEL1C86DnMJhOJ1nZNUkV_ve2uoAh6ymR4nuHl3WWbbdcSYwcgprKsZ0f43KapFFJMYSqEAL3BdmRZlsVMV3rzx7zN9lN6HBCpQGktd9jTCX-gliI24QNz6FreeZ5j31rM5PhN4SPacY8NdxTD6wC9EsfWcVwum2BXUuK54z_J4D1FanMYPvTSr6E9tuWxSbT_9U7Y_fnZ3ellcX17cXV6cl1YVUMuPPpKlxXZkqjW5IDE3IOHmQSNslbeIeiFW6B1TtcLi0JUcuErNffzEVETdri-u4zdS08pm8euj0OuZBTMQSottRqoek3Z2KUUyRsb8ipojhgaA8KM5ZqxXDOWa8Csyh1M-GUuY3jG-P6vc7x23rDJFB09xP59GL6j_elWADWoT1DElwQ
CitedBy_id crossref_primary_10_1007_s11063_022_10809_6
crossref_primary_10_1186_s13662_020_03093_y
crossref_primary_10_1140_epjs_s11734_022_00457_1
crossref_primary_10_32604_cmc_2022_032087
crossref_primary_10_1016_j_rinp_2023_106272
crossref_primary_10_1186_s13660_021_02735_3
crossref_primary_10_1016_j_chaos_2021_111674
crossref_primary_10_3934_math_2021648
crossref_primary_10_3390_axioms11050234
crossref_primary_10_1007_s11082_023_05899_y
crossref_primary_10_2478_fcds_2021_0017
crossref_primary_10_1140_epjp_s13360_022_02525_w
crossref_primary_10_1002_mma_9228
crossref_primary_10_3934_math_2021251
crossref_primary_10_32604_cmc_2022_021462
crossref_primary_10_1002_num_22662
crossref_primary_10_1007_s40819_020_00911_5
crossref_primary_10_1016_j_asoc_2022_109975
crossref_primary_10_1140_epjp_s13360_024_05423_5
crossref_primary_10_1142_S0218348X21502509
crossref_primary_10_2478_amns_2022_2_0159
crossref_primary_10_3390_fractalfract6060333
crossref_primary_10_1007_s44196_021_00009_w
crossref_primary_10_1007_s40819_020_00923_1
crossref_primary_10_1016_j_aej_2020_08_044
crossref_primary_10_1016_j_rinp_2022_105198
crossref_primary_10_1007_s11082_025_08093_4
crossref_primary_10_1186_s13662_020_02951_z
crossref_primary_10_3934_mbe_2022030
crossref_primary_10_1007_s40995_020_00986_1
crossref_primary_10_1088_1402_4896_ac7174
crossref_primary_10_1109_ACCESS_2022_3217663
crossref_primary_10_1142_S0218348X22402678
crossref_primary_10_3390_axioms12060519
crossref_primary_10_1142_S0218348X22401107
crossref_primary_10_1155_2021_6640086
crossref_primary_10_1080_10236198_2021_1976770
crossref_primary_10_1016_j_rinp_2020_103330
crossref_primary_10_1016_j_joes_2021_09_006
crossref_primary_10_3390_sym15020361
crossref_primary_10_3390_fractalfract5010006
crossref_primary_10_1016_j_sciaf_2020_e00594
crossref_primary_10_32604_cmc_2022_028921
crossref_primary_10_1063_5_0085737
crossref_primary_10_3390_fractalfract7050350
crossref_primary_10_2478_amns_2021_1_00006
crossref_primary_10_32604_cmes_2021_014988
crossref_primary_10_3390_math10152719
crossref_primary_10_3390_fractalfract6100604
crossref_primary_10_1007_s11042_022_14270_4
crossref_primary_10_1007_s11082_022_03627_6
crossref_primary_10_1002_mma_7151
crossref_primary_10_1016_j_aej_2021_01_004
crossref_primary_10_3390_math11040975
crossref_primary_10_3390_sym13071159
crossref_primary_10_3934_math_20221101
crossref_primary_10_3934_math_2023126
crossref_primary_10_1140_epjp_s13360_022_02421_3
crossref_primary_10_2478_amns_2021_2_00093
crossref_primary_10_3934_mbe_2021268
crossref_primary_10_1016_j_padiff_2024_101011
crossref_primary_10_3390_fractalfract5040160
crossref_primary_10_3390_sym13122428
crossref_primary_10_11948_20230418
crossref_primary_10_3390_fractalfract8100593
crossref_primary_10_3390_axioms12060592
crossref_primary_10_1088_1402_4896_ad1e45
crossref_primary_10_1142_S0217984921502651
crossref_primary_10_1155_2021_5554280
crossref_primary_10_1016_j_rinp_2023_106776
crossref_primary_10_1016_j_rinp_2023_106777
crossref_primary_10_47000_tjmcs_999775
crossref_primary_10_1007_s11082_023_05528_8
crossref_primary_10_1142_S0218348X22402411
crossref_primary_10_3934_mmc_2022019
crossref_primary_10_1016_j_csite_2021_101193
crossref_primary_10_1155_2020_8819183
crossref_primary_10_1155_2021_2536720
crossref_primary_10_32604_cmc_2023_030996
crossref_primary_10_2478_amns_2022_2_0131
crossref_primary_10_3390_fractalfract6100553
crossref_primary_10_1002_mma_7022
crossref_primary_10_1016_j_aej_2023_12_052
crossref_primary_10_1016_j_padiff_2024_101001
crossref_primary_10_1007_s40096_021_00403_7
crossref_primary_10_1007_s11082_024_06663_6
crossref_primary_10_1016_j_aej_2021_04_020
crossref_primary_10_1016_j_rinp_2020_103551
crossref_primary_10_1142_S0217984921506284
crossref_primary_10_1155_2020_5063271
crossref_primary_10_1186_s13662_020_02822_7
crossref_primary_10_1002_mma_10807
crossref_primary_10_3390_fractalfract6050231
crossref_primary_10_1016_j_aej_2021_02_037
crossref_primary_10_1016_j_aej_2022_02_054
crossref_primary_10_11948_20230124
crossref_primary_10_1007_s00521_022_06998_9
crossref_primary_10_1371_journal_pone_0265064
crossref_primary_10_1142_S0218348X21400235
crossref_primary_10_32604_cmc_2023_031352
crossref_primary_10_1080_00207160_2021_1929940
crossref_primary_10_32604_cmc_2022_029432
crossref_primary_10_1155_2021_1426212
crossref_primary_10_1142_S0217984923500598
crossref_primary_10_3390_math11040835
crossref_primary_10_1142_S0218348X22400564
crossref_primary_10_2478_amns_2022_2_0182
crossref_primary_10_1186_s13662_021_03612_5
crossref_primary_10_1007_s40995_020_00976_3
crossref_primary_10_3390_axioms11090449
crossref_primary_10_1155_2022_3774123
crossref_primary_10_1016_j_imu_2022_101105
crossref_primary_10_32604_cmc_2022_027523
crossref_primary_10_1002_num_22622
crossref_primary_10_1002_num_22587
crossref_primary_10_1051_mmnp_2020046
crossref_primary_10_1016_j_chaos_2020_110096
crossref_primary_10_32604_cmc_2023_029046
crossref_primary_10_1140_epjp_s13360_022_02869_3
crossref_primary_10_32604_cmc_2023_032950
crossref_primary_10_32604_cmc_2023_034699
crossref_primary_10_2478_amns_2023_1_00438
crossref_primary_10_1155_2022_1724221
crossref_primary_10_1155_2023_9720612
crossref_primary_10_3390_fractalfract5040277
crossref_primary_10_3390_fractalfract6040184
crossref_primary_10_1155_2020_8815363
crossref_primary_10_1016_j_aej_2020_10_055
crossref_primary_10_3390_fractalfract7010063
crossref_primary_10_1007_s11182_022_02497_5
crossref_primary_10_1007_s00500_022_07359_3
crossref_primary_10_1186_s13662_021_03286_z
crossref_primary_10_1016_j_chaos_2020_110417
crossref_primary_10_1016_j_rinp_2021_105137
crossref_primary_10_2478_amns_2023_1_00032
crossref_primary_10_1007_s00521_024_10361_5
crossref_primary_10_1007_s40995_020_01042_8
crossref_primary_10_1155_2022_8419403
crossref_primary_10_1016_j_aej_2020_08_034
crossref_primary_10_1007_s12530_021_09413_1
crossref_primary_10_2478_amns_2022_2_0161
crossref_primary_10_3390_math11173792
crossref_primary_10_1007_s11082_023_05103_1
crossref_primary_10_3934_mbe_2022037
crossref_primary_10_1186_s13662_020_02831_6
crossref_primary_10_3390_sym14112322
crossref_primary_10_1080_00207160_2023_2248286
crossref_primary_10_1080_02286203_2023_2249640
crossref_primary_10_1109_ACCESS_2024_3417647
crossref_primary_10_1142_S0217984921502171
crossref_primary_10_1142_S0217984921505679
crossref_primary_10_1007_s40819_024_01727_3
crossref_primary_10_1016_j_chaos_2021_111347
crossref_primary_10_1016_j_cjph_2021_01_012
crossref_primary_10_1007_s11063_022_10963_x
crossref_primary_10_1155_2021_5568492
crossref_primary_10_1186_s13662_020_02935_z
crossref_primary_10_2478_amns_2022_2_0177
crossref_primary_10_1016_j_arabjc_2022_104493
crossref_primary_10_1002_mma_7178
crossref_primary_10_2478_amns_2022_2_0180
crossref_primary_10_2478_amns_2022_2_0181
crossref_primary_10_1016_j_rinp_2023_106602
crossref_primary_10_32604_cmc_2022_029437
crossref_primary_10_32604_cmc_2023_034362
crossref_primary_10_1016_j_rinp_2021_104104
crossref_primary_10_1063_5_0163991
crossref_primary_10_1016_j_arabjc_2023_104706
Cites_doi 10.22436/jnsa.009.06.14
10.1016/j.chaos.2017.03.022
10.1140/epjp/i2017-11293-3
10.18576/pfda/020204
10.2298/TSCI151224222Y
10.1186/s13662-018-1612-0
10.22436/jnsa.008.05.01
10.1515/ausm-2015-0009
10.1007/978-981-10-4337-6_11
10.1007/s00009-017-1046-z
10.1007/s40314-018-0639-x
10.2298/TSCI160111018A
10.1007/BF02403202
10.1007/978-3-662-43930-2
10.1016/j.cam.2014.01.002
ContentType Journal Article
Copyright 2020. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.2478/amns.2020.1.00016
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2444-8656
EndPage 188
ExternalDocumentID 10_2478_amns_2020_1_00016
10_2478_amns_2020_1_0001651171
GroupedDBID 9WM
AATOW
ABFKT
ADBLJ
AFKRA
AHGSO
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARCSS
BENPR
CCPQU
EBS
M~E
OK1
PHGZM
PHGZT
PIMPY
QD8
SLJYH
AAYXX
CITATION
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c371t-faf5645ec4ee76ed1e09f1f18216a273fda16bdbacdd67bca0052bf539f9216a3
IEDL.DBID BENPR
ISSN 2444-8656
IngestDate Mon Jun 30 11:42:33 EDT 2025
Thu Apr 24 23:10:02 EDT 2025
Tue Jul 01 03:14:25 EDT 2025
Thu Jul 10 10:36:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This work is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c371t-faf5645ec4ee76ed1e09f1f18216a273fda16bdbacdd67bca0052bf539f9216a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3191236263?pq-origsite=%requestingapplication%
PQID 3191236263
PQPubID 6761185
PageCount 18
ParticipantIDs proquest_journals_3191236263
crossref_citationtrail_10_2478_amns_2020_1_00016
crossref_primary_10_2478_amns_2020_1_00016
walterdegruyter_journals_10_2478_amns_2020_1_0001651171
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Beirut
PublicationPlace_xml – name: Beirut
PublicationTitle Applied mathematics and nonlinear sciences
PublicationYear 2020
Publisher Sciendo
De Gruyter Poland
Publisher_xml – name: Sciendo
– name: De Gruyter Poland
References 2025012704083001056_j_amns.2020.1.00016_ref_033_w2aab3b7d814b1b6b1ab2b1c33Aa
2025012704083001056_j_amns.2020.1.00016_ref_008_w2aab3b7d814b1b6b1ab2b1b8Aa
2025012704083001056_j_amns.2020.1.00016_ref_003_w2aab3b7d814b1b6b1ab2b1b3Aa
2025012704083001056_j_amns.2020.1.00016_ref_024_w2aab3b7d814b1b6b1ab2b1c24Aa
2025012704083001056_j_amns.2020.1.00016_ref_029_w2aab3b7d814b1b6b1ab2b1c29Aa
2025012704083001056_j_amns.2020.1.00016_ref_023_w2aab3b7d814b1b6b1ab2b1c23Aa
2025012704083001056_j_amns.2020.1.00016_ref_014_w2aab3b7d814b1b6b1ab2b1c14Aa
2025012704083001056_j_amns.2020.1.00016_ref_019_w2aab3b7d814b1b6b1ab2b1c19Aa
2025012704083001056_j_amns.2020.1.00016_ref_004_w2aab3b7d814b1b6b1ab2b1b4Aa
2025012704083001056_j_amns.2020.1.00016_ref_009_w2aab3b7d814b1b6b1ab2b1b9Aa
2025012704083001056_j_amns.2020.1.00016_ref_002_w2aab3b7d814b1b6b1ab2b1b2Aa
2025012704083001056_j_amns.2020.1.00016_ref_032_w2aab3b7d814b1b6b1ab2b1c32Aa
2025012704083001056_j_amns.2020.1.00016_ref_028_w2aab3b7d814b1b6b1ab2b1c28Aa
2025012704083001056_j_amns.2020.1.00016_ref_031_w2aab3b7d814b1b6b1ab2b1c31Aa
2025012704083001056_j_amns.2020.1.00016_ref_022_w2aab3b7d814b1b6b1ab2b1c22Aa
2025012704083001056_j_amns.2020.1.00016_ref_027_w2aab3b7d814b1b6b1ab2b1c27Aa
2025012704083001056_j_amns.2020.1.00016_ref_018_w2aab3b7d814b1b6b1ab2b1c18Aa
2025012704083001056_j_amns.2020.1.00016_ref_005_w2aab3b7d814b1b6b1ab2b1b5Aa
2025012704083001056_j_amns.2020.1.00016_ref_013_w2aab3b7d814b1b6b1ab2b1c13Aa
2025012704083001056_j_amns.2020.1.00016_ref_017_w2aab3b7d814b1b6b1ab2b1c17Aa
2025012704083001056_j_amns.2020.1.00016_ref_012_w2aab3b7d814b1b6b1ab2b1c12Aa
2025012704083001056_j_amns.2020.1.00016_ref_001_w2aab3b7d814b1b6b1ab2b1b1Aa
2025012704083001056_j_amns.2020.1.00016_ref_006_w2aab3b7d814b1b6b1ab2b1b6Aa
2025012704083001056_j_amns.2020.1.00016_ref_030_w2aab3b7d814b1b6b1ab2b1c30Aa
2025012704083001056_j_amns.2020.1.00016_ref_021_w2aab3b7d814b1b6b1ab2b1c21Aa
2025012704083001056_j_amns.2020.1.00016_ref_026_w2aab3b7d814b1b6b1ab2b1c26Aa
2025012704083001056_j_amns.2020.1.00016_ref_025_w2aab3b7d814b1b6b1ab2b1c25Aa
2025012704083001056_j_amns.2020.1.00016_ref_020_w2aab3b7d814b1b6b1ab2b1c20Aa
2025012704083001056_j_amns.2020.1.00016_ref_011_w2aab3b7d814b1b6b1ab2b1c11Aa
2025012704083001056_j_amns.2020.1.00016_ref_016_w2aab3b7d814b1b6b1ab2b1c16Aa
2025012704083001056_j_amns.2020.1.00016_ref_010_w2aab3b7d814b1b6b1ab2b1c10Aa
2025012704083001056_j_amns.2020.1.00016_ref_015_w2aab3b7d814b1b6b1ab2b1c15Aa
2025012704083001056_j_amns.2020.1.00016_ref_007_w2aab3b7d814b1b6b1ab2b1b7Aa
References_xml – ident: 2025012704083001056_j_amns.2020.1.00016_ref_006_w2aab3b7d814b1b6b1ab2b1b6Aa
– ident: 2025012704083001056_j_amns.2020.1.00016_ref_027_w2aab3b7d814b1b6b1ab2b1c27Aa
– ident: 2025012704083001056_j_amns.2020.1.00016_ref_009_w2aab3b7d814b1b6b1ab2b1b9Aa
– ident: 2025012704083001056_j_amns.2020.1.00016_ref_018_w2aab3b7d814b1b6b1ab2b1c18Aa
  doi: 10.22436/jnsa.009.06.14
– ident: 2025012704083001056_j_amns.2020.1.00016_ref_001_w2aab3b7d814b1b6b1ab2b1b1Aa
– ident: 2025012704083001056_j_amns.2020.1.00016_ref_020_w2aab3b7d814b1b6b1ab2b1c20Aa
– ident: 2025012704083001056_j_amns.2020.1.00016_ref_005_w2aab3b7d814b1b6b1ab2b1b5Aa
  doi: 10.1016/j.chaos.2017.03.022
– ident: 2025012704083001056_j_amns.2020.1.00016_ref_013_w2aab3b7d814b1b6b1ab2b1c13Aa
  doi: 10.1140/epjp/i2017-11293-3
– ident: 2025012704083001056_j_amns.2020.1.00016_ref_015_w2aab3b7d814b1b6b1ab2b1c15Aa
  doi: 10.18576/pfda/020204
– ident: 2025012704083001056_j_amns.2020.1.00016_ref_033_w2aab3b7d814b1b6b1ab2b1c33Aa
  doi: 10.2298/TSCI151224222Y
– ident: 2025012704083001056_j_amns.2020.1.00016_ref_016_w2aab3b7d814b1b6b1ab2b1c16Aa
– ident: 2025012704083001056_j_amns.2020.1.00016_ref_011_w2aab3b7d814b1b6b1ab2b1c11Aa
  doi: 10.1186/s13662-018-1612-0
– ident: 2025012704083001056_j_amns.2020.1.00016_ref_003_w2aab3b7d814b1b6b1ab2b1b3Aa
  doi: 10.22436/jnsa.008.05.01
– ident: 2025012704083001056_j_amns.2020.1.00016_ref_008_w2aab3b7d814b1b6b1ab2b1b8Aa
– ident: 2025012704083001056_j_amns.2020.1.00016_ref_007_w2aab3b7d814b1b6b1ab2b1b7Aa
  doi: 10.1515/ausm-2015-0009
– ident: 2025012704083001056_j_amns.2020.1.00016_ref_024_w2aab3b7d814b1b6b1ab2b1c24Aa
– ident: 2025012704083001056_j_amns.2020.1.00016_ref_019_w2aab3b7d814b1b6b1ab2b1c19Aa
  doi: 10.1007/978-981-10-4337-6_11
– ident: 2025012704083001056_j_amns.2020.1.00016_ref_021_w2aab3b7d814b1b6b1ab2b1c21Aa
– ident: 2025012704083001056_j_amns.2020.1.00016_ref_028_w2aab3b7d814b1b6b1ab2b1c28Aa
  doi: 10.1007/s00009-017-1046-z
– ident: 2025012704083001056_j_amns.2020.1.00016_ref_010_w2aab3b7d814b1b6b1ab2b1c10Aa
– ident: 2025012704083001056_j_amns.2020.1.00016_ref_022_w2aab3b7d814b1b6b1ab2b1c22Aa
– ident: 2025012704083001056_j_amns.2020.1.00016_ref_002_w2aab3b7d814b1b6b1ab2b1b2Aa
– ident: 2025012704083001056_j_amns.2020.1.00016_ref_030_w2aab3b7d814b1b6b1ab2b1c30Aa
  doi: 10.1007/s40314-018-0639-x
– ident: 2025012704083001056_j_amns.2020.1.00016_ref_004_w2aab3b7d814b1b6b1ab2b1b4Aa
  doi: 10.2298/TSCI160111018A
– ident: 2025012704083001056_j_amns.2020.1.00016_ref_032_w2aab3b7d814b1b6b1ab2b1c32Aa
  doi: 10.1007/BF02403202
– ident: 2025012704083001056_j_amns.2020.1.00016_ref_012_w2aab3b7d814b1b6b1ab2b1c12Aa
  doi: 10.1007/978-3-662-43930-2
– ident: 2025012704083001056_j_amns.2020.1.00016_ref_025_w2aab3b7d814b1b6b1ab2b1c25Aa
– ident: 2025012704083001056_j_amns.2020.1.00016_ref_017_w2aab3b7d814b1b6b1ab2b1c17Aa
  doi: 10.1016/j.cam.2014.01.002
– ident: 2025012704083001056_j_amns.2020.1.00016_ref_026_w2aab3b7d814b1b6b1ab2b1c26Aa
– ident: 2025012704083001056_j_amns.2020.1.00016_ref_023_w2aab3b7d814b1b6b1ab2b1c23Aa
– ident: 2025012704083001056_j_amns.2020.1.00016_ref_029_w2aab3b7d814b1b6b1ab2b1c29Aa
– ident: 2025012704083001056_j_amns.2020.1.00016_ref_031_w2aab3b7d814b1b6b1ab2b1c31Aa
– ident: 2025012704083001056_j_amns.2020.1.00016_ref_014_w2aab3b7d814b1b6b1ab2b1c14Aa
SSID ssj0002313662
Score 2.5146468
Snippet In this paper, our aim is to generalize the truncated M-fractional derivative which was recently introduced [Sousa and de Oliveira, A new truncated...
SourceID proquest
crossref
walterdegruyter
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 171
SubjectTerms 26A33
33E20
34A08
alternative fractional derivative
conformable fractional derivative
M-series
Truncated M-fractional derivative
Title A generalization of truncated M-fractional derivative and applications to fractional differential equations
URI https://www.degruyter.com/doi/10.2478/amns.2020.1.00016
https://www.proquest.com/docview/3191236263
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagLCzlLcpLHpiQDHEeTjKhgooQUhFCVLBFjn1moKSPBBD_nnPi0oIE-9lDvvPd57v4O0KOPQg4xDJiyqQpC5XnMUzDHkshjFKQSQjG1iH7t-J6EN48RU-u4Fa63ypnMbEO1HqkbI38DF3FCoX4IjgfT5idGmW7q26ExjJZwRCcJC2yctG7vbv_rrIgewmE8Jt2ph_GyZl8LaxKt4_B4rQmPD8T0pxltj_qfrWG5-nbZzXrj9Zp52qdtB1fpN0G4A2yBMUmWXPckbqTWW6Rly59bhSk3cNKOjK0mr5ZzVc07DMzbZ4w4GYave69FvymstB0sYdNqxFdtHTjUzAMDClMGlnwcpsMrnoPl9fMDVJgKoh5xYw0VjQGVAgQC9AcvNRwg1cLLiTyF6MlF7nOpdJaxLmStlicmyhITWpNgh3SKkYF7BJqjNSJtiJnkQ4jlafg5zk3ke8B-mTid4g3-5qZcirjdtjFMMPbhgUgswBkFoCM151v0SEn30vGjcTGf8YHM4gyd9rKbO4bHRL_gm1u9eeeyDljvvf_xvtk1S5pii8HpIUAwiHSkSo_wqj62D9ynvcFlr3kbA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB3R5dBe6LfYloIP5YLkEjuJszlUFS2gpbCrqgKJW-rYYw5AFnZDEX-qv7HjxGGhUrlxH8_BM555nrHfAHyMMBaY6ZQbl-c8MVHEKQ1HPMckzVEPEnS-Djkaq-FR8v04PV6AP91fGP-ssouJTaC2E-Nr5JvkKp4oRKr4y8Ul91OjfHe1G6HRusU-3lzTlW32eW-b7Lsu5e7O4bchD1MFuIkzUXOnnWdQQZMgZgqtwCh3whHOFkpTMndWC1XaUhtrVVYa7SunpUvj3OVeJCa9T2AxiVUke7D4dWf84-dtVYfQUqyUbNunMskGm_q88qzgkoLTpwZg3U-Ac1S7dN30xy2eTK9u6q4f26S53RewFPAp22od6iUsYPUKngesykIkmL2G0y120jJWh4-cbOJYPb3yHLMkOOJu2n6ZIGWWvPx3QzDOdGXZ3Z45qyfsrmQY10Jh54zhZUtDPnsDR4-yxW-hV00qXAbmnLYD60nVUpukpsxRlqVwqYyQzsBA9iHqdrMwgdXcD9c4K-h24w1QeAMU3gCFaDrtqg8bt0suWkqPh4RXOhMV4XTPirkv9iH7x2xzqf_qJIybiXcPK16Dp8PD0UFxsDfefw_P_PK28LMCPTImfiAoVJerwf8Y_Hpsl_8Lm2YiSA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3PTxQxFH5BSIwX_AGGRdQe4EJSmXZm2u3Bw0ZcFxAwURJuQ2f6ykGchd1Bwp_jf-rrTBfQqAcT7q9N0--9vq997VeA9QRTgdrmvPLG8KxKEk5pOOEGs9yg7Wfowznk_oEaHWW7x_nxHPyYvYVp133XViu3zp1vrypnur9lv9VBXFtSjL9peUq8R7mH11e0S5u-3dkmSDekHL7_8m7E40cCvEq1aLi3PoimYJUhaoVOYGK88ESthbKUv72zQpWutJVzSpeVDYelpc9T400wSanfB7CgcyMpiBYGow-fD28OcoggpUrJrmL657H-mvNuieziVVsSd3g6ubxuZiXYNrMNn8BipKRs0PnQU5jD-hk8jvSUxeCfLsHXATvtRKrj20029qyZXAZZWTLc537SvZKgzhw59vdWU5zZ2rG7ZXLWjNldy_hDC600ZwwvOuXx6TIc3csUP4f5elzjCjDvreu7oKOWuyyvSoOyLIXPZYLk9n3Zg2Q2m0UVhczDfxpnBW1oAgBFAKAIABSiLa6rHmzeNDnvVDz-Zbw2g6iIAT0taKUKOjVSpT3Qv8F2a_XXPonWarH63y1fw8NP28Pi487B3gt4lOpwBy7jQq3BPMGML4kXNeWr6JkMTu47GH4CDpgi9A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+generalization+of+truncated+M-fractional+derivative+and+applications+to+fractional+differential+equations&rft.jtitle=Applied+mathematics+and+nonlinear+sciences&rft.au=%C4%B0lhan%2C+Esin&rft.au=K%C4%B1ymaz%2C+%C4%B0.+Onur&rft.date=2020-01-01&rft.pub=Sciendo&rft.eissn=2444-8656&rft.volume=5&rft.issue=1&rft.spage=171&rft.epage=188&rft_id=info:doi/10.2478%2Famns.2020.1.00016&rft.externalDBID=n%2Fa&rft.externalDocID=10_2478_amns_2020_1_0001651171
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2444-8656&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2444-8656&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2444-8656&client=summon