A degenerate chemotaxis system with flux limitation: Maximally extended solutions and absence of gradient blow-up
This paper aims at providing a first step toward a qualitative theory for a new class of chemotaxis models derived from the celebrated Keller-Segel system, with the main novelty being that diffusion is nonlinear with flux delimiter features. More precisely, as a prototypical representative of this c...
Saved in:
Published in | Communications in partial differential equations Vol. 42; no. 3; pp. 436 - 473 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
Taylor & Francis
04.03.2017
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper aims at providing a first step toward a qualitative theory for a new class of chemotaxis models derived from the celebrated Keller-Segel system, with the main novelty being that diffusion is nonlinear with flux delimiter features. More precisely, as a prototypical representative of this class we study radially symmetric solutions of the parabolic-elliptic system
under the initial condition
and no-flux boundary conditions in balls Ω⊂ℝ
n
, where χ>0 and
.
The main results assert the existence of a unique classical solution, extensible in time up to a maximal T
max
∈(0,∞] which has the property that
The proof of this is mainly based on comparison methods, which first relate pointwise lower and upper bounds for the spatial gradient u
r
to L
∞
bounds for u and to upper bounds for
; second, another comparison argument involving nonlocal nonlinearities provides an appropriate control of z
+
in terms of bounds for u and |u
r
|, with suitably mild dependence on the latter.
As a consequence of (⋆), by means of suitable a priori estimates, it is moreover shown that the above solutions are global and bounded when either
with
if χ>1 and m
c
: = ∞ if χ≤1.
That these conditions are essentially optimal will be shown in a forthcoming paper in which (⋆) will be used to derive complementary results on the occurrence of solutions blowing up in finite time with respect to the norm of u in L
∞
(Ω). |
---|---|
AbstractList | This paper aims at providing a first step toward a qualitative theory for a new class of chemotaxis models derived from the celebrated Keller-Segel system, with the main novelty being that diffusion is nonlinear with flux delimiter features. More precisely, as a prototypical representative of this class we study radially symmetric solutions of the parabolic-elliptic system
under the initial condition
and no-flux boundary conditions in balls Ω⊂ℝ
n
, where χ>0 and
.
The main results assert the existence of a unique classical solution, extensible in time up to a maximal T
max
∈(0,∞] which has the property that
The proof of this is mainly based on comparison methods, which first relate pointwise lower and upper bounds for the spatial gradient u
r
to L
∞
bounds for u and to upper bounds for
; second, another comparison argument involving nonlocal nonlinearities provides an appropriate control of z
+
in terms of bounds for u and |u
r
|, with suitably mild dependence on the latter.
As a consequence of (⋆), by means of suitable a priori estimates, it is moreover shown that the above solutions are global and bounded when either
with
if χ>1 and m
c
: = ∞ if χ≤1.
That these conditions are essentially optimal will be shown in a forthcoming paper in which (⋆) will be used to derive complementary results on the occurrence of solutions blowing up in finite time with respect to the norm of u in L
∞
(Ω). This paper aims at providing a first step toward a qualitative theory for a new class of chemotaxis models derived from the celebrated Keller-Segel system, with the main novelty being that diffusion is nonlinear with flux delimiter features. More precisely, as a prototypical representative of this class we study radially symmetric solutions of the parabolic-elliptic system [Formula omitted.] under the initial condition [Formula omitted.] and no-flux boundary conditions in balls Ω⊂Rn, where χ>0 and [Formula omitted.] . The main results assert the existence of a unique classical solution, extensible in time up to a maximal Tmax[element of](0,∞] which has the property that The proof of this is mainly based on comparison methods, which first relate pointwise lower and upper bounds for the spatial gradient ur to L∞ bounds for u and to upper bounds for [Formula omitted.] ; second, another comparison argument involving nonlocal nonlinearities provides an appropriate control of z+ in terms of bounds for u and |ur|, with suitably mild dependence on the latter. As a consequence of (*), by means of suitable a priori estimates, it is moreover shown that the above solutions are global and bounded when either [Formula omitted.] with [Formula omitted.] if χ>1 and mc: = ∞ if χ[less-than or equal to]1. That these conditions are essentially optimal will be shown in a forthcoming paper in which (*) will be used to derive complementary results on the occurrence of solutions blowing up in finite time with respect to the norm of u in L∞(Ω). This paper aims at providing a first step toward a qualitative theory for a new class of chemotaxis models derived from the celebrated Keller-Segel system, with the main novelty being that diffusion is nonlinear with flux delimiter features. More precisely, as a prototypical representative of this class we study radially symmetric solutions of the parabolic-elliptic system [Image omitted.] under the initial condition [Image omitted.] and no-flux boundary conditions in balls Omega sub(R) super(n) where chi >0 and [Image omitted.]. The main results assert the existence of a unique classical solution, extensible in time up to a maximal T sub(max)[isin](0, infinity ] which has the property that The proof of this is mainly based on comparison methods, which first relate pointwise lower and upper bounds for the spatial gradient u sub(r) to L super( infinity ) bounds for u and to upper bounds for [Image omitted.]; second, another comparison argument involving nonlocal nonlinearities provides an appropriate control of z sub(+) in terms of bounds for u and |u sub(r)|, with suitably mild dependence on the latter. As a consequence of ([sstarf]), by means of suitable a priori estimates, it is moreover shown that the above solutions are global and bounded when either [Image omitted.] with [Image omitted.] if chi >1 and m sub(c): = infinity if chi less than or equal to 1. That these conditions are essentially optimal will be shown in a forthcoming paper in which ([sstarf]) will be used to derive complementary results on the occurrence of solutions blowing up in finite time with respect to the norm of u in L super( infinity )( Omega ). |
Author | Winkler, Michael Bellomo, Nicola |
Author_xml | – sequence: 1 givenname: Nicola surname: Bellomo fullname: Bellomo, Nicola organization: Department of Mathematics, Faculty of Sciences, King Abdulaziz University – sequence: 2 givenname: Michael surname: Winkler fullname: Winkler, Michael email: michael.winkler@math.uni-paderborn.de organization: Institut für Mathematik, Universität Paderborn |
BookMark | eNqFkU1v1DAQhi1UJLaFn4BkiQuXLP6InQQuVBVfUhEXOFu2M25dOfbWdrS7_76Jdrn0AKc5zPOMRu97iS5iioDQW0q2lPTkA-GSCE7YlhEqt5R1HePdC7ShgrOmpZxfoM3KNCv0Cl2W8kAI7dnQbtDjNR7hDiJkXQHbe5hS1QdfcDmWChPe-3qPXZgPOPjJV119ih_xzwWZdAhHDIcKcYQRlxTmdVmwjiPWpkC0gJPDd1mPHmLFJqR9M-9eo5dOhwJvzvMK_fn65ffN9-b217cfN9e3jeUdrY0TjghBYJTCgrRC6n4wAMaCGWiruR5AmJa1ZgAuwUlpJTdUj70xuu86ya_Q-9PdXU6PM5SqJl8shKAjpLkoOpCWUdm23YK-e4Y-pDnH5TtF-04sCRI2LJQ4UTanUjI4tctLCvmoKFFrEepvEWotQp2LWLxPzzx7DrJm7cN_7c8n20eX8qT3KYdRVX0MKbuso_VF8X-feAK7t6Us |
CitedBy_id | crossref_primary_10_1007_s00033_024_02320_w crossref_primary_10_1142_S0218202518500239 crossref_primary_10_1007_s00245_019_09575_0 crossref_primary_10_1002_mana_202000403 crossref_primary_10_1016_j_jde_2021_02_004 crossref_primary_10_58997_ejde_2020_122 crossref_primary_10_14232_ejqtde_2019_1_31 crossref_primary_10_1007_s00033_023_02134_2 crossref_primary_10_1142_S0218202523500458 crossref_primary_10_1111_sapm_12440 crossref_primary_10_3390_e19100525 crossref_primary_10_1007_s10013_019_00381_3 crossref_primary_10_1016_j_nonrwa_2024_104215 crossref_primary_10_1016_j_aml_2022_108299 crossref_primary_10_1090_btran_17 crossref_primary_10_3390_sym12111870 crossref_primary_10_1080_03605302_2017_1294179 crossref_primary_10_1142_S0218202519020019 crossref_primary_10_1007_s10440_020_00374_2 crossref_primary_10_1088_1361_6544_aac760 crossref_primary_10_1142_S021820251840002X crossref_primary_10_1007_s10440_019_00275_z crossref_primary_10_1016_j_nonrwa_2024_104132 crossref_primary_10_1142_S0218202522500166 crossref_primary_10_1016_j_nonrwa_2021_103485 crossref_primary_10_1142_S0218202525400020 crossref_primary_10_1142_S0218202520020029 crossref_primary_10_1142_S1793524520500291 crossref_primary_10_3934_dcdss_2022045 crossref_primary_10_1016_j_jmaa_2022_126376 crossref_primary_10_1088_1361_6544_aaaa0e crossref_primary_10_1016_j_jde_2019_05_026 crossref_primary_10_1142_S0218202518020025 crossref_primary_10_1007_s00208_018_1722_8 crossref_primary_10_1016_j_jde_2019_08_013 crossref_primary_10_1080_03605302_2021_1975132 crossref_primary_10_1002_mana_201700172 crossref_primary_10_1142_S0218202522500154 crossref_primary_10_1016_j_physa_2019_122593 crossref_primary_10_1016_j_plrev_2017_09_004 crossref_primary_10_1016_j_jde_2018_01_040 crossref_primary_10_1016_j_physd_2021_132989 crossref_primary_10_1142_S0218202523500318 crossref_primary_10_1002_mma_9050 crossref_primary_10_1142_S0218202520500244 crossref_primary_10_1080_00036811_2022_2158820 crossref_primary_10_1142_S0218202518400092 crossref_primary_10_1016_j_jmaa_2023_127398 crossref_primary_10_1063_1_5040958 crossref_primary_10_1142_S0218202523500392 crossref_primary_10_3934_cpaa_2021133 crossref_primary_10_1016_j_nonrwa_2023_103985 crossref_primary_10_1007_s10440_024_00699_2 crossref_primary_10_1112_plms_12425 crossref_primary_10_1142_S0218202524500337 crossref_primary_10_1007_s00030_023_00874_8 crossref_primary_10_1140_epjp_i2019_12740_9 crossref_primary_10_1016_j_aml_2021_107505 crossref_primary_10_1142_S0218202519400062 crossref_primary_10_1007_s10440_024_00653_2 crossref_primary_10_1016_j_na_2023_113305 crossref_primary_10_1142_S021820251950026X crossref_primary_10_1007_s10440_021_00427_0 crossref_primary_10_1142_S0218202517500579 crossref_primary_10_1142_S0218202523500045 crossref_primary_10_1016_j_na_2024_113527 crossref_primary_10_1016_j_jde_2023_01_004 crossref_primary_10_1365_s13291_019_00210_z crossref_primary_10_1142_S0218202520400060 crossref_primary_10_1142_S0218202523400067 crossref_primary_10_3934_dcds_2020376 crossref_primary_10_1016_j_nonrwa_2020_103257 crossref_primary_10_1137_17M1150475 crossref_primary_10_1016_j_camwa_2019_05_018 crossref_primary_10_1016_j_jmaa_2018_04_002 |
Cites_doi | 10.1142/S0218202510004568 10.1016/j.matpur.2013.01.020 10.1016/0022-5193(70)90092-5 10.4310/jdg/1214446559 10.1007/s00205-006-0428-3 10.1002/mma.319 10.1016/j.mcm.2007.06.005 10.1093/acprof:oso/9780198569039.001.0001 10.1142/S021820251550044X 10.1007/s00220-009-0936-8 10.1007/s00332-009-9044-3 10.1007/s00205-005-0358-5 10.1016/j.jde.2010.02.008 10.1512/iumj.2008.57.3337 10.1007/s00285-008-0201-3 10.2307/2154167 10.1016/j.na.2009.07.045 10.1007/BFb0072687 10.1090/S0002-9947-1992-1046835-6 10.1137/050637923 10.3934/dcds.2015.35.1891 10.1016/0022-5193(71)90050-6 10.1002/mma.3149 |
ContentType | Journal Article |
Copyright | 2017 Taylor & Francis 2017 2017 Taylor & Francis |
Copyright_xml | – notice: 2017 Taylor & Francis 2017 – notice: 2017 Taylor & Francis |
DBID | AAYXX CITATION 7SC 8FD H8D JQ2 L7M L~C L~D |
DOI | 10.1080/03605302.2016.1277237 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Aerospace Database Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1532-4133 |
EndPage | 473 |
ExternalDocumentID | 4317925771 10_1080_03605302_2016_1277237 1277237 |
Genre | Article |
GrantInformation_xml | – fundername: National Science Foundation grantid: DMS-1160569 |
GroupedDBID | -~X .7F .QJ 0BK 0R~ 29F 2DF 30N 4.4 5GY 5VS AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AHDZW AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBS EJD E~A E~B GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z N9A NA5 NY~ O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ TWF UPT UT5 UU3 ZGOLN ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV AMVHM CITATION 7SC 8FD H8D JQ2 L7M L~C L~D TASJS |
ID | FETCH-LOGICAL-c371t-f5f0550ed65ce6c56a89beebceb914a3a9e5b424b9e36ef66c63b1ad8bba87763 |
ISSN | 0360-5302 |
IngestDate | Tue Aug 05 11:12:30 EDT 2025 Wed Aug 13 07:14:31 EDT 2025 Tue Jul 01 03:00:52 EDT 2025 Thu Apr 24 22:53:45 EDT 2025 Wed Dec 25 09:04:52 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c371t-f5f0550ed65ce6c56a89beebceb914a3a9e5b424b9e36ef66c63b1ad8bba87763 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 1875133029 |
PQPubID | 186205 |
PageCount | 38 |
ParticipantIDs | crossref_primary_10_1080_03605302_2016_1277237 proquest_journals_1875133029 informaworld_taylorfrancis_310_1080_03605302_2016_1277237 proquest_miscellaneous_1904216447 crossref_citationtrail_10_1080_03605302_2016_1277237 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-03-04 |
PublicationDateYYYYMMDD | 2017-03-04 |
PublicationDate_xml | – month: 03 year: 2017 text: 2017-03-04 day: 04 |
PublicationDecade | 2010 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | Communications in partial differential equations |
PublicationYear | 2017 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | Andreu F. (CIT0001) 2012; 250 Osaki K. (CIT0028) 2001; 44 CIT0030 CIT0032 CIT0031 CIT0012 CIT0011 CIT0033 Bertsch M. (CIT0010) 1992; 7 Evans L.C. (CIT0016) 1991; 33 Angenent S.B. (CIT0004) 1996; 9 Horstmann D. (CIT0021) 2003; 105 Bellomo N. (CIT0007) 2012 CIT0014 CIT0013 CIT0015 CIT0018 CIT0017 CIT0020 CIT0023 CIT0022 Nagai T. (CIT0027) 1997; 40 CIT0003 CIT0025 CIT0002 Herrero M.A. (CIT0019) 1997; 24 CIT0024 CIT0005 CIT0026 CIT0029 CIT0006 CIT0009 CIT0008 |
References_xml | – ident: CIT0006 doi: 10.1142/S0218202510004568 – ident: CIT0033 doi: 10.1016/j.matpur.2013.01.020 – ident: CIT0023 doi: 10.1016/0022-5193(70)90092-5 – volume: 24 start-page: 633 year: 1997 ident: CIT0019 publication-title: Ann. Scuola Normale Superiore Pisa – ident: CIT0009 – volume: 33 start-page: 635 year: 1991 ident: CIT0016 publication-title: J. Diff. Geometry doi: 10.4310/jdg/1214446559 – ident: CIT0003 doi: 10.1007/s00205-006-0428-3 – ident: CIT0031 doi: 10.1002/mma.319 – ident: CIT0014 doi: 10.1016/j.mcm.2007.06.005 – ident: CIT0030 doi: 10.1093/acprof:oso/9780198569039.001.0001 – ident: CIT0008 doi: 10.1142/S021820251550044X – volume: 9 start-page: 865 year: 1996 ident: CIT0004 publication-title: Diff. Int. Eq. – ident: CIT0025 doi: 10.1007/s00220-009-0936-8 – volume-title: On the asymptotic theory from microscopic to macroscopic tissue models: An overview with perspectives. Math. Models Methods Appl. Sci. year: 2012 ident: CIT0007 – volume: 40 start-page: 411 year: 1997 ident: CIT0027 publication-title: Funkcialaj Ekvacioj – ident: CIT0011 doi: 10.1007/s00332-009-9044-3 – ident: CIT0002 doi: 10.1007/s00205-005-0358-5 – ident: CIT0032 doi: 10.1016/j.jde.2010.02.008 – ident: CIT0029 doi: 10.1512/iumj.2008.57.3337 – ident: CIT0020 doi: 10.1007/s00285-008-0201-3 – ident: CIT0017 doi: 10.2307/2154167 – ident: CIT0015 doi: 10.1016/j.na.2009.07.045 – volume: 250 start-page: 2807 year: 2012 ident: CIT0001 publication-title: J. Diff. Eq. – volume: 44 start-page: 441 year: 2001 ident: CIT0028 publication-title: Funkcialaj Ekvacioj – ident: CIT0005 doi: 10.1007/BFb0072687 – volume: 105 start-page: 103 year: 2003 ident: CIT0021 publication-title: Jber. Dt. Math. V. – ident: CIT0022 doi: 10.1090/S0002-9947-1992-1046835-6 – ident: CIT0012 doi: 10.1137/050637923 – ident: CIT0013 doi: 10.3934/dcds.2015.35.1891 – ident: CIT0026 – ident: CIT0024 doi: 10.1016/0022-5193(71)90050-6 – volume: 7 start-page: 89 year: 1992 ident: CIT0010 publication-title: Prog. Nonlinear Diff. Eq. Appl. – ident: CIT0018 doi: 10.1002/mma.3149 |
SSID | ssj0018294 |
Score | 2.4774213 |
Snippet | This paper aims at providing a first step toward a qualitative theory for a new class of chemotaxis models derived from the celebrated Keller-Segel system,... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 436 |
SubjectTerms | Blowing Chemotaxis degenerate diffusion Flux flux limitation Mathematical models Nonlinearity Norms Optimization Partial differential equations Primary: 35K65 Secondary: 35B45 Upper bounds |
Title | A degenerate chemotaxis system with flux limitation: Maximally extended solutions and absence of gradient blow-up |
URI | https://www.tandfonline.com/doi/abs/10.1080/03605302.2016.1277237 https://www.proquest.com/docview/1875133029 https://www.proquest.com/docview/1904216447 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZK9wIHxFOUXZCRuEWp6thxY24VD1VI5dQVKy6RnTgIqdvsbhOx7B_gbzOOH8nSlZbHJcrLder5MuNxZr5B6HVJOS1hoh-XlCYxkyqLAcoMvJRMChPOyAuT77z6xJfH7ONJejIa_RxELbWNmhZXN-aV_ItU4RzI1WTJ_oVkw4_CCdgH-cIWJAzbP5LxIirB6Te80Y2OYPRh2OXlt52jZ7ZrrNWmvYw2Jo0pxHGs4KZTudn8iPwSeBSe05K3ql33wsNE8utFFxPWmAj377FbpvLMBsPkEhuPbh6y--xjy650B_q8HSwLupyg-rQOQOwtAzjGLjNxGM7vFiXA0JmorH5Rcr1XH2Sg1iifxaZWkbVAXu0CUIilxPB6mSUD_NGBkmWUD-w1s6VQ9kyBi52E3kxnJoiPT0kCzoQlmfmNZdtduYMOzE4yRgeL5bsvn8MHqSwRjonMPrxPBjM07Td1cW2ac40Ed8_odzOZ9QN037kgeGHx9BCN9PYRurcK_L27x-h8gXtk4R5Z2CILG2RhgyzcI-sNDrjCHlc44AoDrrDDFa4r7HGFHa6eoOMP79dvl7ErzhEXdE6auEqrGXi3uuRpoXmRcpkJpbUqtBKESSqFThVLmBKacl1xXnCqiCwzpWQ2B6v2FI239VY_Q1iaGgCSyZJrmGzCUcaJSjVLqQCFQZIJYn4s88L9J1NAZZMTT3DrRJAbEeROBBM0Dc3OLHXLbQ3EUFB506G4sgDO6S1tj7xUc6chdjnJ5qZ80iwRE_QqXAb9bT7Kya2uW7hHgNkk4JXMn_9H94fobv8aHqFxc9HqFzBbbtRLh-RfqQ-9Sg |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V9gAcoDwqFtpiJK5Z1rHjxNwqRLV97J5aqTfLdpwKke6WbiIKv56ZvNRSVT30GMWT2J7xeGY8_gbgcy6UyNHQj3Ih4khal0UoyhK9lMxqSmdUnu47z-ZqeioPz5KzG3dhKK2SfOiiBYpodDUtbgpG9ylxX1DrTqjaDWVmqTGP0UIU6RPYSLRKqYqBmMyHk4Qs1h2E1CQimv4Wz32fubU_3UIvvaOtmy1o_yX4vvNt5snPcV25sf_7H67j40a3CS86C5XttSL1CtbC4jU8nw3wrqs38GuP5eG8AayuAkO2I7_t9Y8Va3GhGQV3WVHW16yk-1MN87-yGTa5sGX5h_WRdzYIPsPuMutWpGfYsmDnV00qWsVcufwd1Zdv4XT_-8m3adTVboi8SHkVFUkxQecn5CrxQflE2Uy7EJwPTnNphdUhcTKWTgehQqGUV8Jxm2fO2SxFpbcF64vlIrwDZgki3kqbq4C2CD5lirskyERolCcej0D2HDO-GxPV1ygN7_FPuxk1NKOmm9ERjAeyyxbZ4yECfVMcTNWEVIq2_okRD9Bu97JjOiWxMhx9RS6wqR7Bp-E1Lm86s7GLsKyxjUatii6tTN8_4vcf4en0ZHZsjg_mRx_gWUymCeXRyW1Yr67qsIOGVeV2m5XzD4q5FFM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9wwDLc2JqHtYQwY2m1sBInX3i5Nmmv2hsZObHAnHkDiLUraFE0rdzfaamx__ex-iQ8hHnisGrdJ7Dh2Yv8MsJcKJVI09INUiDCQ1sUBirJELyW2msIZVUL5ztOZOjyTP86jLpqwaMMqyYfOGqCIWlfT4l6mWRcR9xmV7oiK3VBglhryEA1EMX4OLxSBh1MWx2jWXyTEoW4RpEYB0XRJPA995tb2dAu89J6yrnegyRq4ru9N4MmvYVW6YfLvDqzjkwb3Bl639inbbwRqHZ75-Qa8mvbgrsUm_N5nqb-o4apLz5DpyG17_bNgDSo0o6NdluXVNcspe6pm_Rc2xSaXNs__su7cnfViz7C3zLqCtAxbZOziqg5EK5nLF3-CavkWzibfTr8eBm3lhiARY14GWZSN0PXxqYoSr5JI2Vg7713inebSCqt95GQonfZC-UypRAnHbRo7Z-MxqrwtWJkv5v4dMEsA8VbaVHm0RPApVtxFXkZCozTxcACyY5hJ2jFRdY3c8A79tJ1RQzNq2hkdwLAnWza4Ho8R6JvSYMr6QCVrqp8Y8Qjtdic6plURheHoKXKBTfUAdvvXuLjpxsbO_aLCNhp1Kjq0cvz-Cb_fgdWTg4k5_j47-gAvQ7JLKIhObsNKeVX5j2hVle5TvW7-AwoyEvc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+degenerate+chemotaxis+system+with+flux+limitation%3A+Maximally+extended+solutions+and+absence+of+gradient+blow-up&rft.jtitle=Communications+in+partial+differential+equations&rft.au=Bellomo%2C+Nicola&rft.au=Winkler%2C+Michael&rft.date=2017-03-04&rft.pub=Taylor+%26+Francis&rft.issn=0360-5302&rft.eissn=1532-4133&rft.volume=42&rft.issue=3&rft.spage=436&rft.epage=473&rft_id=info:doi/10.1080%2F03605302.2016.1277237&rft.externalDocID=1277237 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5302&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5302&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5302&client=summon |