A degenerate chemotaxis system with flux limitation: Maximally extended solutions and absence of gradient blow-up

This paper aims at providing a first step toward a qualitative theory for a new class of chemotaxis models derived from the celebrated Keller-Segel system, with the main novelty being that diffusion is nonlinear with flux delimiter features. More precisely, as a prototypical representative of this c...

Full description

Saved in:
Bibliographic Details
Published inCommunications in partial differential equations Vol. 42; no. 3; pp. 436 - 473
Main Authors Bellomo, Nicola, Winkler, Michael
Format Journal Article
LanguageEnglish
Published Philadelphia Taylor & Francis 04.03.2017
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper aims at providing a first step toward a qualitative theory for a new class of chemotaxis models derived from the celebrated Keller-Segel system, with the main novelty being that diffusion is nonlinear with flux delimiter features. More precisely, as a prototypical representative of this class we study radially symmetric solutions of the parabolic-elliptic system under the initial condition and no-flux boundary conditions in balls Ω⊂ℝ n , where χ>0 and . The main results assert the existence of a unique classical solution, extensible in time up to a maximal T max ∈(0,∞] which has the property that The proof of this is mainly based on comparison methods, which first relate pointwise lower and upper bounds for the spatial gradient u r to L ∞ bounds for u and to upper bounds for ; second, another comparison argument involving nonlocal nonlinearities provides an appropriate control of z + in terms of bounds for u and |u r |, with suitably mild dependence on the latter. As a consequence of (⋆), by means of suitable a priori estimates, it is moreover shown that the above solutions are global and bounded when either with if χ>1 and m c : = ∞ if χ≤1. That these conditions are essentially optimal will be shown in a forthcoming paper in which (⋆) will be used to derive complementary results on the occurrence of solutions blowing up in finite time with respect to the norm of u in L ∞ (Ω).
AbstractList This paper aims at providing a first step toward a qualitative theory for a new class of chemotaxis models derived from the celebrated Keller-Segel system, with the main novelty being that diffusion is nonlinear with flux delimiter features. More precisely, as a prototypical representative of this class we study radially symmetric solutions of the parabolic-elliptic system under the initial condition and no-flux boundary conditions in balls Ω⊂ℝ n , where χ>0 and . The main results assert the existence of a unique classical solution, extensible in time up to a maximal T max ∈(0,∞] which has the property that The proof of this is mainly based on comparison methods, which first relate pointwise lower and upper bounds for the spatial gradient u r to L ∞ bounds for u and to upper bounds for ; second, another comparison argument involving nonlocal nonlinearities provides an appropriate control of z + in terms of bounds for u and |u r |, with suitably mild dependence on the latter. As a consequence of (⋆), by means of suitable a priori estimates, it is moreover shown that the above solutions are global and bounded when either with if χ>1 and m c : = ∞ if χ≤1. That these conditions are essentially optimal will be shown in a forthcoming paper in which (⋆) will be used to derive complementary results on the occurrence of solutions blowing up in finite time with respect to the norm of u in L ∞ (Ω).
This paper aims at providing a first step toward a qualitative theory for a new class of chemotaxis models derived from the celebrated Keller-Segel system, with the main novelty being that diffusion is nonlinear with flux delimiter features. More precisely, as a prototypical representative of this class we study radially symmetric solutions of the parabolic-elliptic system [Formula omitted.] under the initial condition [Formula omitted.] and no-flux boundary conditions in balls Ω⊂Rn, where χ>0 and [Formula omitted.] . The main results assert the existence of a unique classical solution, extensible in time up to a maximal Tmax[element of](0,∞] which has the property that The proof of this is mainly based on comparison methods, which first relate pointwise lower and upper bounds for the spatial gradient ur to L∞ bounds for u and to upper bounds for [Formula omitted.] ; second, another comparison argument involving nonlocal nonlinearities provides an appropriate control of z+ in terms of bounds for u and |ur|, with suitably mild dependence on the latter. As a consequence of (*), by means of suitable a priori estimates, it is moreover shown that the above solutions are global and bounded when either [Formula omitted.] with [Formula omitted.] if χ>1 and mc: = ∞ if χ[less-than or equal to]1. That these conditions are essentially optimal will be shown in a forthcoming paper in which (*) will be used to derive complementary results on the occurrence of solutions blowing up in finite time with respect to the norm of u in L∞(Ω).
This paper aims at providing a first step toward a qualitative theory for a new class of chemotaxis models derived from the celebrated Keller-Segel system, with the main novelty being that diffusion is nonlinear with flux delimiter features. More precisely, as a prototypical representative of this class we study radially symmetric solutions of the parabolic-elliptic system [Image omitted.] under the initial condition [Image omitted.] and no-flux boundary conditions in balls Omega sub(R) super(n) where chi >0 and [Image omitted.]. The main results assert the existence of a unique classical solution, extensible in time up to a maximal T sub(max)[isin](0, infinity ] which has the property that The proof of this is mainly based on comparison methods, which first relate pointwise lower and upper bounds for the spatial gradient u sub(r) to L super( infinity ) bounds for u and to upper bounds for [Image omitted.]; second, another comparison argument involving nonlocal nonlinearities provides an appropriate control of z sub(+) in terms of bounds for u and |u sub(r)|, with suitably mild dependence on the latter. As a consequence of ([sstarf]), by means of suitable a priori estimates, it is moreover shown that the above solutions are global and bounded when either [Image omitted.] with [Image omitted.] if chi >1 and m sub(c): = infinity if chi less than or equal to 1. That these conditions are essentially optimal will be shown in a forthcoming paper in which ([sstarf]) will be used to derive complementary results on the occurrence of solutions blowing up in finite time with respect to the norm of u in L super( infinity )( Omega ).
Author Winkler, Michael
Bellomo, Nicola
Author_xml – sequence: 1
  givenname: Nicola
  surname: Bellomo
  fullname: Bellomo, Nicola
  organization: Department of Mathematics, Faculty of Sciences, King Abdulaziz University
– sequence: 2
  givenname: Michael
  surname: Winkler
  fullname: Winkler, Michael
  email: michael.winkler@math.uni-paderborn.de
  organization: Institut für Mathematik, Universität Paderborn
BookMark eNqFkU1v1DAQhi1UJLaFn4BkiQuXLP6InQQuVBVfUhEXOFu2M25dOfbWdrS7_76Jdrn0AKc5zPOMRu97iS5iioDQW0q2lPTkA-GSCE7YlhEqt5R1HePdC7ShgrOmpZxfoM3KNCv0Cl2W8kAI7dnQbtDjNR7hDiJkXQHbe5hS1QdfcDmWChPe-3qPXZgPOPjJV119ih_xzwWZdAhHDIcKcYQRlxTmdVmwjiPWpkC0gJPDd1mPHmLFJqR9M-9eo5dOhwJvzvMK_fn65ffN9-b217cfN9e3jeUdrY0TjghBYJTCgrRC6n4wAMaCGWiruR5AmJa1ZgAuwUlpJTdUj70xuu86ya_Q-9PdXU6PM5SqJl8shKAjpLkoOpCWUdm23YK-e4Y-pDnH5TtF-04sCRI2LJQ4UTanUjI4tctLCvmoKFFrEepvEWotQp2LWLxPzzx7DrJm7cN_7c8n20eX8qT3KYdRVX0MKbuso_VF8X-feAK7t6Us
CitedBy_id crossref_primary_10_1007_s00033_024_02320_w
crossref_primary_10_1142_S0218202518500239
crossref_primary_10_1007_s00245_019_09575_0
crossref_primary_10_1002_mana_202000403
crossref_primary_10_1016_j_jde_2021_02_004
crossref_primary_10_58997_ejde_2020_122
crossref_primary_10_14232_ejqtde_2019_1_31
crossref_primary_10_1007_s00033_023_02134_2
crossref_primary_10_1142_S0218202523500458
crossref_primary_10_1111_sapm_12440
crossref_primary_10_3390_e19100525
crossref_primary_10_1007_s10013_019_00381_3
crossref_primary_10_1016_j_nonrwa_2024_104215
crossref_primary_10_1016_j_aml_2022_108299
crossref_primary_10_1090_btran_17
crossref_primary_10_3390_sym12111870
crossref_primary_10_1080_03605302_2017_1294179
crossref_primary_10_1142_S0218202519020019
crossref_primary_10_1007_s10440_020_00374_2
crossref_primary_10_1088_1361_6544_aac760
crossref_primary_10_1142_S021820251840002X
crossref_primary_10_1007_s10440_019_00275_z
crossref_primary_10_1016_j_nonrwa_2024_104132
crossref_primary_10_1142_S0218202522500166
crossref_primary_10_1016_j_nonrwa_2021_103485
crossref_primary_10_1142_S0218202525400020
crossref_primary_10_1142_S0218202520020029
crossref_primary_10_1142_S1793524520500291
crossref_primary_10_3934_dcdss_2022045
crossref_primary_10_1016_j_jmaa_2022_126376
crossref_primary_10_1088_1361_6544_aaaa0e
crossref_primary_10_1016_j_jde_2019_05_026
crossref_primary_10_1142_S0218202518020025
crossref_primary_10_1007_s00208_018_1722_8
crossref_primary_10_1016_j_jde_2019_08_013
crossref_primary_10_1080_03605302_2021_1975132
crossref_primary_10_1002_mana_201700172
crossref_primary_10_1142_S0218202522500154
crossref_primary_10_1016_j_physa_2019_122593
crossref_primary_10_1016_j_plrev_2017_09_004
crossref_primary_10_1016_j_jde_2018_01_040
crossref_primary_10_1016_j_physd_2021_132989
crossref_primary_10_1142_S0218202523500318
crossref_primary_10_1002_mma_9050
crossref_primary_10_1142_S0218202520500244
crossref_primary_10_1080_00036811_2022_2158820
crossref_primary_10_1142_S0218202518400092
crossref_primary_10_1016_j_jmaa_2023_127398
crossref_primary_10_1063_1_5040958
crossref_primary_10_1142_S0218202523500392
crossref_primary_10_3934_cpaa_2021133
crossref_primary_10_1016_j_nonrwa_2023_103985
crossref_primary_10_1007_s10440_024_00699_2
crossref_primary_10_1112_plms_12425
crossref_primary_10_1142_S0218202524500337
crossref_primary_10_1007_s00030_023_00874_8
crossref_primary_10_1140_epjp_i2019_12740_9
crossref_primary_10_1016_j_aml_2021_107505
crossref_primary_10_1142_S0218202519400062
crossref_primary_10_1007_s10440_024_00653_2
crossref_primary_10_1016_j_na_2023_113305
crossref_primary_10_1142_S021820251950026X
crossref_primary_10_1007_s10440_021_00427_0
crossref_primary_10_1142_S0218202517500579
crossref_primary_10_1142_S0218202523500045
crossref_primary_10_1016_j_na_2024_113527
crossref_primary_10_1016_j_jde_2023_01_004
crossref_primary_10_1365_s13291_019_00210_z
crossref_primary_10_1142_S0218202520400060
crossref_primary_10_1142_S0218202523400067
crossref_primary_10_3934_dcds_2020376
crossref_primary_10_1016_j_nonrwa_2020_103257
crossref_primary_10_1137_17M1150475
crossref_primary_10_1016_j_camwa_2019_05_018
crossref_primary_10_1016_j_jmaa_2018_04_002
Cites_doi 10.1142/S0218202510004568
10.1016/j.matpur.2013.01.020
10.1016/0022-5193(70)90092-5
10.4310/jdg/1214446559
10.1007/s00205-006-0428-3
10.1002/mma.319
10.1016/j.mcm.2007.06.005
10.1093/acprof:oso/9780198569039.001.0001
10.1142/S021820251550044X
10.1007/s00220-009-0936-8
10.1007/s00332-009-9044-3
10.1007/s00205-005-0358-5
10.1016/j.jde.2010.02.008
10.1512/iumj.2008.57.3337
10.1007/s00285-008-0201-3
10.2307/2154167
10.1016/j.na.2009.07.045
10.1007/BFb0072687
10.1090/S0002-9947-1992-1046835-6
10.1137/050637923
10.3934/dcds.2015.35.1891
10.1016/0022-5193(71)90050-6
10.1002/mma.3149
ContentType Journal Article
Copyright 2017 Taylor & Francis 2017
2017 Taylor & Francis
Copyright_xml – notice: 2017 Taylor & Francis 2017
– notice: 2017 Taylor & Francis
DBID AAYXX
CITATION
7SC
8FD
H8D
JQ2
L7M
L~C
L~D
DOI 10.1080/03605302.2016.1277237
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Aerospace Database
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1532-4133
EndPage 473
ExternalDocumentID 4317925771
10_1080_03605302_2016_1277237
1277237
Genre Article
GrantInformation_xml – fundername: National Science Foundation
  grantid: DMS-1160569
GroupedDBID -~X
.7F
.QJ
0BK
0R~
29F
2DF
30N
4.4
5GY
5VS
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AHDZW
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
EJD
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
N9A
NA5
NY~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TWF
UPT
UT5
UU3
ZGOLN
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
AMVHM
CITATION
7SC
8FD
H8D
JQ2
L7M
L~C
L~D
TASJS
ID FETCH-LOGICAL-c371t-f5f0550ed65ce6c56a89beebceb914a3a9e5b424b9e36ef66c63b1ad8bba87763
ISSN 0360-5302
IngestDate Tue Aug 05 11:12:30 EDT 2025
Wed Aug 13 07:14:31 EDT 2025
Tue Jul 01 03:00:52 EDT 2025
Thu Apr 24 22:53:45 EDT 2025
Wed Dec 25 09:04:52 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c371t-f5f0550ed65ce6c56a89beebceb914a3a9e5b424b9e36ef66c63b1ad8bba87763
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1875133029
PQPubID 186205
PageCount 38
ParticipantIDs crossref_primary_10_1080_03605302_2016_1277237
proquest_journals_1875133029
informaworld_taylorfrancis_310_1080_03605302_2016_1277237
proquest_miscellaneous_1904216447
crossref_citationtrail_10_1080_03605302_2016_1277237
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-03-04
PublicationDateYYYYMMDD 2017-03-04
PublicationDate_xml – month: 03
  year: 2017
  text: 2017-03-04
  day: 04
PublicationDecade 2010
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Communications in partial differential equations
PublicationYear 2017
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References Andreu F. (CIT0001) 2012; 250
Osaki K. (CIT0028) 2001; 44
CIT0030
CIT0032
CIT0031
CIT0012
CIT0011
CIT0033
Bertsch M. (CIT0010) 1992; 7
Evans L.C. (CIT0016) 1991; 33
Angenent S.B. (CIT0004) 1996; 9
Horstmann D. (CIT0021) 2003; 105
Bellomo N. (CIT0007) 2012
CIT0014
CIT0013
CIT0015
CIT0018
CIT0017
CIT0020
CIT0023
CIT0022
Nagai T. (CIT0027) 1997; 40
CIT0003
CIT0025
CIT0002
Herrero M.A. (CIT0019) 1997; 24
CIT0024
CIT0005
CIT0026
CIT0029
CIT0006
CIT0009
CIT0008
References_xml – ident: CIT0006
  doi: 10.1142/S0218202510004568
– ident: CIT0033
  doi: 10.1016/j.matpur.2013.01.020
– ident: CIT0023
  doi: 10.1016/0022-5193(70)90092-5
– volume: 24
  start-page: 633
  year: 1997
  ident: CIT0019
  publication-title: Ann. Scuola Normale Superiore Pisa
– ident: CIT0009
– volume: 33
  start-page: 635
  year: 1991
  ident: CIT0016
  publication-title: J. Diff. Geometry
  doi: 10.4310/jdg/1214446559
– ident: CIT0003
  doi: 10.1007/s00205-006-0428-3
– ident: CIT0031
  doi: 10.1002/mma.319
– ident: CIT0014
  doi: 10.1016/j.mcm.2007.06.005
– ident: CIT0030
  doi: 10.1093/acprof:oso/9780198569039.001.0001
– ident: CIT0008
  doi: 10.1142/S021820251550044X
– volume: 9
  start-page: 865
  year: 1996
  ident: CIT0004
  publication-title: Diff. Int. Eq.
– ident: CIT0025
  doi: 10.1007/s00220-009-0936-8
– volume-title: On the asymptotic theory from microscopic to macroscopic tissue models: An overview with perspectives. Math. Models Methods Appl. Sci.
  year: 2012
  ident: CIT0007
– volume: 40
  start-page: 411
  year: 1997
  ident: CIT0027
  publication-title: Funkcialaj Ekvacioj
– ident: CIT0011
  doi: 10.1007/s00332-009-9044-3
– ident: CIT0002
  doi: 10.1007/s00205-005-0358-5
– ident: CIT0032
  doi: 10.1016/j.jde.2010.02.008
– ident: CIT0029
  doi: 10.1512/iumj.2008.57.3337
– ident: CIT0020
  doi: 10.1007/s00285-008-0201-3
– ident: CIT0017
  doi: 10.2307/2154167
– ident: CIT0015
  doi: 10.1016/j.na.2009.07.045
– volume: 250
  start-page: 2807
  year: 2012
  ident: CIT0001
  publication-title: J. Diff. Eq.
– volume: 44
  start-page: 441
  year: 2001
  ident: CIT0028
  publication-title: Funkcialaj Ekvacioj
– ident: CIT0005
  doi: 10.1007/BFb0072687
– volume: 105
  start-page: 103
  year: 2003
  ident: CIT0021
  publication-title: Jber. Dt. Math. V.
– ident: CIT0022
  doi: 10.1090/S0002-9947-1992-1046835-6
– ident: CIT0012
  doi: 10.1137/050637923
– ident: CIT0013
  doi: 10.3934/dcds.2015.35.1891
– ident: CIT0026
– ident: CIT0024
  doi: 10.1016/0022-5193(71)90050-6
– volume: 7
  start-page: 89
  year: 1992
  ident: CIT0010
  publication-title: Prog. Nonlinear Diff. Eq. Appl.
– ident: CIT0018
  doi: 10.1002/mma.3149
SSID ssj0018294
Score 2.4774213
Snippet This paper aims at providing a first step toward a qualitative theory for a new class of chemotaxis models derived from the celebrated Keller-Segel system,...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 436
SubjectTerms Blowing
Chemotaxis
degenerate diffusion
Flux
flux limitation
Mathematical models
Nonlinearity
Norms
Optimization
Partial differential equations
Primary: 35K65
Secondary: 35B45
Upper bounds
Title A degenerate chemotaxis system with flux limitation: Maximally extended solutions and absence of gradient blow-up
URI https://www.tandfonline.com/doi/abs/10.1080/03605302.2016.1277237
https://www.proquest.com/docview/1875133029
https://www.proquest.com/docview/1904216447
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZK9wIHxFOUXZCRuEWp6thxY24VD1VI5dQVKy6RnTgIqdvsbhOx7B_gbzOOH8nSlZbHJcrLder5MuNxZr5B6HVJOS1hoh-XlCYxkyqLAcoMvJRMChPOyAuT77z6xJfH7ONJejIa_RxELbWNmhZXN-aV_ItU4RzI1WTJ_oVkw4_CCdgH-cIWJAzbP5LxIirB6Te80Y2OYPRh2OXlt52jZ7ZrrNWmvYw2Jo0pxHGs4KZTudn8iPwSeBSe05K3ql33wsNE8utFFxPWmAj377FbpvLMBsPkEhuPbh6y--xjy650B_q8HSwLupyg-rQOQOwtAzjGLjNxGM7vFiXA0JmorH5Rcr1XH2Sg1iifxaZWkbVAXu0CUIilxPB6mSUD_NGBkmWUD-w1s6VQ9kyBi52E3kxnJoiPT0kCzoQlmfmNZdtduYMOzE4yRgeL5bsvn8MHqSwRjonMPrxPBjM07Td1cW2ac40Ed8_odzOZ9QN037kgeGHx9BCN9PYRurcK_L27x-h8gXtk4R5Z2CILG2RhgyzcI-sNDrjCHlc44AoDrrDDFa4r7HGFHa6eoOMP79dvl7ErzhEXdE6auEqrGXi3uuRpoXmRcpkJpbUqtBKESSqFThVLmBKacl1xXnCqiCwzpWQ2B6v2FI239VY_Q1iaGgCSyZJrmGzCUcaJSjVLqQCFQZIJYn4s88L9J1NAZZMTT3DrRJAbEeROBBM0Dc3OLHXLbQ3EUFB506G4sgDO6S1tj7xUc6chdjnJ5qZ80iwRE_QqXAb9bT7Kya2uW7hHgNkk4JXMn_9H94fobv8aHqFxc9HqFzBbbtRLh-RfqQ-9Sg
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V9gAcoDwqFtpiJK5Z1rHjxNwqRLV97J5aqTfLdpwKke6WbiIKv56ZvNRSVT30GMWT2J7xeGY8_gbgcy6UyNHQj3Ih4khal0UoyhK9lMxqSmdUnu47z-ZqeioPz5KzG3dhKK2SfOiiBYpodDUtbgpG9ylxX1DrTqjaDWVmqTGP0UIU6RPYSLRKqYqBmMyHk4Qs1h2E1CQimv4Wz32fubU_3UIvvaOtmy1o_yX4vvNt5snPcV25sf_7H67j40a3CS86C5XttSL1CtbC4jU8nw3wrqs38GuP5eG8AayuAkO2I7_t9Y8Va3GhGQV3WVHW16yk-1MN87-yGTa5sGX5h_WRdzYIPsPuMutWpGfYsmDnV00qWsVcufwd1Zdv4XT_-8m3adTVboi8SHkVFUkxQecn5CrxQflE2Uy7EJwPTnNphdUhcTKWTgehQqGUV8Jxm2fO2SxFpbcF64vlIrwDZgki3kqbq4C2CD5lirskyERolCcej0D2HDO-GxPV1ygN7_FPuxk1NKOmm9ERjAeyyxbZ4yECfVMcTNWEVIq2_okRD9Bu97JjOiWxMhx9RS6wqR7Bp-E1Lm86s7GLsKyxjUatii6tTN8_4vcf4en0ZHZsjg_mRx_gWUymCeXRyW1Yr67qsIOGVeV2m5XzD4q5FFM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9wwDLc2JqHtYQwY2m1sBInX3i5Nmmv2hsZObHAnHkDiLUraFE0rdzfaamx__ex-iQ8hHnisGrdJ7Dh2Yv8MsJcKJVI09INUiDCQ1sUBirJELyW2msIZVUL5ztOZOjyTP86jLpqwaMMqyYfOGqCIWlfT4l6mWRcR9xmV7oiK3VBglhryEA1EMX4OLxSBh1MWx2jWXyTEoW4RpEYB0XRJPA995tb2dAu89J6yrnegyRq4ru9N4MmvYVW6YfLvDqzjkwb3Bl639inbbwRqHZ75-Qa8mvbgrsUm_N5nqb-o4apLz5DpyG17_bNgDSo0o6NdluXVNcspe6pm_Rc2xSaXNs__su7cnfViz7C3zLqCtAxbZOziqg5EK5nLF3-CavkWzibfTr8eBm3lhiARY14GWZSN0PXxqYoSr5JI2Vg7713inebSCqt95GQonfZC-UypRAnHbRo7Z-MxqrwtWJkv5v4dMEsA8VbaVHm0RPApVtxFXkZCozTxcACyY5hJ2jFRdY3c8A79tJ1RQzNq2hkdwLAnWza4Ho8R6JvSYMr6QCVrqp8Y8Qjtdic6plURheHoKXKBTfUAdvvXuLjpxsbO_aLCNhp1Kjq0cvz-Cb_fgdWTg4k5_j47-gAvQ7JLKIhObsNKeVX5j2hVle5TvW7-AwoyEvc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+degenerate+chemotaxis+system+with+flux+limitation%3A+Maximally+extended+solutions+and+absence+of+gradient+blow-up&rft.jtitle=Communications+in+partial+differential+equations&rft.au=Bellomo%2C+Nicola&rft.au=Winkler%2C+Michael&rft.date=2017-03-04&rft.pub=Taylor+%26+Francis&rft.issn=0360-5302&rft.eissn=1532-4133&rft.volume=42&rft.issue=3&rft.spage=436&rft.epage=473&rft_id=info:doi/10.1080%2F03605302.2016.1277237&rft.externalDocID=1277237
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5302&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5302&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5302&client=summon