Estimates on moments of the solutions to stochastic differential equations with respect to martingales in the plane
Let M = { M z , z ϵ R 2 +} be a two-parameter strong martingale, A be a two-parameter increasing process on R 2 + = [0, + ∞) × [0, + ∞). Consider the following stochastic differential equations in the plane: X z = X 0 + ∞ R z a(ξ,X) dM ξ + ∞ R z b(ξ,X) dA ξ for z ϵ R 2 +. Under some assumptions on t...
Saved in:
Published in | Stochastic processes and their applications Vol. 62; no. 2; pp. 263 - 276 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.07.1996
Elsevier |
Series | Stochastic Processes and their Applications |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Let
M = {
M
z
,
z
ϵ
R
2
+} be a two-parameter strong martingale, A be a two-parameter increasing process on
R
2
+ = [0, + ∞) × [0, + ∞). Consider the following stochastic differential equations in the plane:
X
z = X
0 +
∞
R
z
a(ξ,X)
dM
ξ +
∞
R
z
b(ξ,X)
dA
ξ
for
z
ϵ
R
2
+. Under some assumptions on the coefficients a, b and the integrators M, A, we prove the existence and uniqueness of solutions for the equations, and obtain some estimates on moments of solution. |
---|---|
AbstractList | Let M = {Mz, z [epsilon] R2+} be a two-parameter strong martingale, A be a two-parameter increasing process on R2+ = [0, + [infinity]) x [0, + [infinity]). Consider the following stochastic differential equations in the plane: for z [epsilon] R2+. Under some assumptions on the coefficients a, b and the integrators M, A, we prove the existence and uniqueness of solutions for the equations, and obtain some estimates on moments of solution. Let M = { M z , z ϵ R 2 +} be a two-parameter strong martingale, A be a two-parameter increasing process on R 2 + = [0, + ∞) × [0, + ∞). Consider the following stochastic differential equations in the plane: X z = X 0 + ∞ R z a(ξ,X) dM ξ + ∞ R z b(ξ,X) dA ξ for z ϵ R 2 +. Under some assumptions on the coefficients a, b and the integrators M, A, we prove the existence and uniqueness of solutions for the equations, and obtain some estimates on moments of solution. |
Author | Liang, Zong-xia Zheng, Ming-li |
Author_xml | – sequence: 1 givenname: Zong-xia surname: Liang fullname: Liang, Zong-xia – sequence: 2 givenname: Ming-li surname: Zheng fullname: Zheng, Ming-li |
BackLink | http://econpapers.repec.org/article/eeespapps/v_3a62_3ay_3a1996_3ai_3a2_3ap_3a263-276.htm$$DView record in RePEc |
BookMark | eNp9UE1PHSEUJY1N-rT-Axcs62IqMAzz2JgYo62NiZs26Y7w4NJHMwMjoMZ_3zt9jcsu7gc355xwzjE5SjkBIWecfeaMqwvWM9lJLvUnrc4ZY8PY6Xdkw7ej7gTTP4_I5g3ygRzX-htBXAi-IfWmtjjbBpXmROc8Q2q4Btr2QGuenlrMqdKWaW3Z7S2iHfUxBCiIjHai8PhkD6CX2Pa0QF3AtZUx29Ji-mUnFI_pr-Iy2QQfyftgpwqn_-YJ-XF78_36a3f_8OXu-uq-c_3IW-dHraxmw-C2Xim983x0A3fOSWk940PvHOMexFaADmqnVBBB-AByJ-XAhO1PiDzoupJrLRDMUtBreTWcmTU4s6Zi1lSMxscanNFI-3agFUAnbxwAdGaXpZpn01slsL1icY3U3kas9bSsU_VGjMrs24xilwcxQKPPEYqpLkJy4GPBmIzP8f-_-QO6OZLu |
CitedBy_id | crossref_primary_10_1016_j_jmaa_2019_123773 crossref_primary_10_1016_S0304_4149_01_00088_6 crossref_primary_10_1007_s11118_007_9038_4 crossref_primary_10_1016_S0304_4149_99_00040_X crossref_primary_10_1515_156939703771891851 crossref_primary_10_1080_07362990008809693 crossref_primary_10_1007_BF02580407 crossref_primary_10_1080_07362994_2014_970277 crossref_primary_10_1080_07362994_2022_2144890 crossref_primary_10_1080_07362994_2015_1089516 |
Cites_doi | 10.1016/0304-4149(78)90031-5 10.1214/aop/1176996028 10.2140/pjm.1981.97.217 10.1007/BF02392100 10.1214/aop/1176995718 10.1214/aop/1176993510 |
ContentType | Journal Article |
Copyright | 1996 |
Copyright_xml | – notice: 1996 |
DBID | 6I. AAFTH DKI X2L AAYXX CITATION |
DOI | 10.1016/0304-4149(96)00057-9 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access RePEc IDEAS RePEc CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DKI name: RePEc IDEAS url: http://ideas.repec.org/ sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1879-209X |
EndPage | 276 |
ExternalDocumentID | 10_1016_0304_4149_96_00057_9 eeespapps_v_3a62_3ay_3a1996_3ai_3a2_3ap_3a263_276_htm 0304414996000579 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1OL 1RT 1~. 1~5 29Q 3R3 4.4 457 4G. 5VS 63O 6I. 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO ABAOU ABEFU ABFNM ABFRF ABJNI ABMAC ABUCO ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADIYS ADMUD AEBSH AEFWE AEKER AENEX AEXQZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 E3Z EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HAMUX HVGLF HX~ HZ~ IHE IXB J1W KOM LY1 M26 M41 MHUIS MO0 N9A NCXOZ O-L O9- OAUVE OHT OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SEW SPC SPCBC SSB SSD SSW SSZ T5K TN5 UNMZH WH7 WUQ XFK XPP ZMT ~G- 0R 1 8P ADACO ADALY DKI G- HX HZ IPNFZ K M STF X X2L 0SF AAXKI AAYXX ADVLN AFJKZ AKRWK CITATION |
ID | FETCH-LOGICAL-c371t-d796a9055c8d669bd17c51ccc44ad0153cc01de282e9f6b66f2f2dfe4b44502a3 |
IEDL.DBID | .~1 |
ISSN | 0304-4149 |
IngestDate | Thu Sep 26 18:04:58 EDT 2024 Wed Aug 18 03:10:07 EDT 2021 Fri Feb 23 02:21:04 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | 60H20 Two-parameter Ito's formula Two-parameter stochastic differential equation 60H15 Gronwall's inequality Two-parameter strong martingale |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c371t-d796a9055c8d669bd17c51ccc44ad0153cc01de282e9f6b66f2f2dfe4b44502a3 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/0304414996000579 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1016_0304_4149_96_00057_9 repec_primary_eeespapps_v_3a62_3ay_3a1996_3ai_3a2_3ap_3a263_276_htm elsevier_sciencedirect_doi_10_1016_0304_4149_96_00057_9 |
PublicationCentury | 1900 |
PublicationDate | 1996-07-01 |
PublicationDateYYYYMMDD | 1996-07-01 |
PublicationDate_xml | – month: 07 year: 1996 text: 1996-07-01 day: 01 |
PublicationDecade | 1990 |
PublicationSeriesTitle | Stochastic Processes and their Applications |
PublicationTitle | Stochastic processes and their applications |
PublicationYear | 1996 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Reid (BIB6) 1983; 11 Chevalier (BIB2) 1982; 106 Nie (BIB4) 1987; 2 Wong, Zakai (BIB8) 1977; 5 Merzbach, Zakai (BIB5) 1980; 53 Wong, Zakai (BIB9) 1978; 6 Yeh (BIB10) 1981; 97 Ikeda, Watanabe (BIB3) 1981 Cairoli, Walsh (BIB1) 1975; 134 Wong, Zakai (BIB7) 1976; 4 Yeh (10.1016/0304-4149(96)00057-9_BIB10) 1981; 97 Wong (10.1016/0304-4149(96)00057-9_BIB7) 1976; 4 Merzbach (10.1016/0304-4149(96)00057-9_BIB5) 1980; 53 Wong (10.1016/0304-4149(96)00057-9_BIB8) 1977; 5 Chevalier (10.1016/0304-4149(96)00057-9_BIB2) 1982; 106 Reid (10.1016/0304-4149(96)00057-9_BIB6) 1983; 11 Ikeda (10.1016/0304-4149(96)00057-9_BIB3) 1981 Cairoli (10.1016/0304-4149(96)00057-9_BIB1) 1975; 134 Nie (10.1016/0304-4149(96)00057-9_BIB4) 1987; 2 Wong (10.1016/0304-4149(96)00057-9_BIB9) 1978; 6 |
References_xml | – volume: 134 start-page: 111 year: 1975 end-page: 183 ident: BIB1 article-title: Stochastic integral in the plane publication-title: Acta Math. contributor: fullname: Walsh – year: 1981 ident: BIB3 article-title: Stochastic Differential Equations and Diffusion Processes contributor: fullname: Watanabe – volume: 2 start-page: 222 year: 1987 end-page: 227 ident: BIB4 article-title: The existence and uniqueness of solutions for S.D.E. in the plane publication-title: Appl. Math. J. Chinese Univ. contributor: fullname: Nie – volume: 4 start-page: 570 year: 1976 end-page: 586 ident: BIB7 article-title: Weak martingales and stochastic integrals in the plane publication-title: Ann. Probab. contributor: fullname: Zakai – volume: 11 start-page: 656 year: 1983 end-page: 668 ident: BIB6 article-title: Estimate on moments of the solutions to S.D.E. in the plane publication-title: Ann. Probab. contributor: fullname: Reid – volume: 106 start-page: 19 year: 1982 end-page: 62 ident: BIB2 article-title: Martingales continues a deux parametres publication-title: Bull.Sc.Math. contributor: fullname: Chevalier – volume: 97 start-page: 217 year: 1981 end-page: 247 ident: BIB10 article-title: Existence of strong solutions for stochastic differential equations in the plane publication-title: Pacific. J. Math. contributor: fullname: Yeh – volume: 5 start-page: 770 year: 1977 end-page: 778 ident: BIB8 article-title: An extension of stochastic integrals in the plane publication-title: Ann. Probab. contributor: fullname: Zakai – volume: 6 start-page: 339 year: 1978 end-page: 349 ident: BIB9 article-title: Differentiation formulas for stochastic integral in the plane publication-title: Stochastic Process. Appl. contributor: fullname: Zakai – volume: 53 start-page: 263 year: 1980 end-page: 269 ident: BIB5 publication-title: Predictable and dual predictable projections of two-parameter stochastic processes contributor: fullname: Zakai – volume: 6 start-page: 339 year: 1978 ident: 10.1016/0304-4149(96)00057-9_BIB9 article-title: Differentiation formulas for stochastic integral in the plane publication-title: Stochastic Process. Appl. doi: 10.1016/0304-4149(78)90031-5 contributor: fullname: Wong – volume: 4 start-page: 570 year: 1976 ident: 10.1016/0304-4149(96)00057-9_BIB7 article-title: Weak martingales and stochastic integrals in the plane publication-title: Ann. Probab. doi: 10.1214/aop/1176996028 contributor: fullname: Wong – volume: 97 start-page: 217 year: 1981 ident: 10.1016/0304-4149(96)00057-9_BIB10 article-title: Existence of strong solutions for stochastic differential equations in the plane publication-title: Pacific. J. Math. doi: 10.2140/pjm.1981.97.217 contributor: fullname: Yeh – volume: 2 start-page: 222 year: 1987 ident: 10.1016/0304-4149(96)00057-9_BIB4 article-title: The existence and uniqueness of solutions for S.D.E. in the plane publication-title: Appl. Math. J. Chinese Univ. contributor: fullname: Nie – volume: 134 start-page: 111 year: 1975 ident: 10.1016/0304-4149(96)00057-9_BIB1 article-title: Stochastic integral in the plane publication-title: Acta Math. doi: 10.1007/BF02392100 contributor: fullname: Cairoli – volume: 5 start-page: 770 year: 1977 ident: 10.1016/0304-4149(96)00057-9_BIB8 article-title: An extension of stochastic integrals in the plane publication-title: Ann. Probab. doi: 10.1214/aop/1176995718 contributor: fullname: Wong – volume: 11 start-page: 656 year: 1983 ident: 10.1016/0304-4149(96)00057-9_BIB6 article-title: Estimate on moments of the solutions to S.D.E. in the plane publication-title: Ann. Probab. doi: 10.1214/aop/1176993510 contributor: fullname: Reid – year: 1981 ident: 10.1016/0304-4149(96)00057-9_BIB3 contributor: fullname: Ikeda – volume: 53 start-page: 263 year: 1980 ident: 10.1016/0304-4149(96)00057-9_BIB5 publication-title: Predictable and dual predictable projections of two-parameter stochastic processes contributor: fullname: Merzbach – volume: 106 start-page: 19 year: 1982 ident: 10.1016/0304-4149(96)00057-9_BIB2 article-title: Martingales continues a deux parametres publication-title: Bull.Sc.Math. contributor: fullname: Chevalier |
SSID | ssj0001221 |
Score | 1.5395364 |
Snippet | Let
M = {
M
z
,
z
ϵ
R
2
+} be a two-parameter strong martingale, A be a two-parameter increasing process on
R
2
+ = [0, + ∞) × [0, + ∞). Consider the following... Let M = {Mz, z [epsilon] R2+} be a two-parameter strong martingale, A be a two-parameter increasing process on R2+ = [0, + [infinity]) x [0, + [infinity]).... |
SourceID | crossref repec elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 263 |
SubjectTerms | 60H15 60H15 60H20 Two-parameter stochastic differential equation Two-parameter strong martingale Two-parameter Ito's formula Gronwall's inequality 60H20 Gronwall's inequality Two-parameter Ito's formula Two-parameter stochastic differential equation Two-parameter strong martingale |
Title | Estimates on moments of the solutions to stochastic differential equations with respect to martingales in the plane |
URI | https://dx.doi.org/10.1016/0304-4149(96)00057-9 http://econpapers.repec.org/article/eeespapps/v_3a62_3ay_3a1996_3ai_3a2_3ap_3a263-276.htm |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQe4ED4ilaoPKhBziYTeJH1sd2abXLthVCFO3NchxbXambpE1A4sJvZ8ZJlnJAlTjEIzl-aewZj5NvxoQcwqLhQWnJbKodEyErmdViyjhXVmSF1blEB-fzCzW_FJ9WcnXHFwZhlYPu73V61NZDzmTg5qRZryf4T0-AfQ8mePSoRAd2GWXzw68_KI80i65XWJhh6dF7LlWTbd47rd7HNpj-1-60e-sb7-7sPKdPyOPBZKRH_aiekge-ekYenW_jrbbPSXsCkrpBs5HWFd3U0W-N1oFCGbpdXbSrKdh67spicGY63o0CMn5N_U0f87ul-GWWwiEcXTCxxiYGGsCNpKXrKrbYIEL2Bbk8Pfk6m7PhOgXmeJ52rMy1sjqR0k1LpXRRprmTqXNOCFuCVcCdS9LSwxnM66AKpUIGUxe8KISQSWb5S7JT1ZV_Raj2skT5lVOwaELioIr3ydSrwBUPWbJH2MhG0_RRM8wIJ0O2G2S70YioA7YbvUfykdfmr9k3oNjvqTmLU7PtBgbS4hVprflhuFUZJD_hQbA1kDU8mNUgVdxkuTJX3Wb_v_t_TR72OG4E8L4hO93td_8WzJSuOIgL8YDsHh1_W54hnX05-4x0sZxfwNuPywWki9Xxb6MB6Ns |
link.rule.ids | 315,783,787,3515,4018,4511,24130,27583,27938,27939,45599,45677,45693,45888 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYKHAqHqqWgbp8-cICD2SR-ZH2sEGjbspxA4mY5ji1WYpOUBCQu_e2dcZItPaBKPTiRLL80Ho8_J9-MCTkApeFBaclsqh0TISuZ1WLGOFdWZIXVuUQH58WFml-J79fy-okvDNIqB9vf2_RorYec6SDNabNcTvGfngB8DxA8elRukC2B4bNAp49__aF5pFn0vcLSDIuP7nOpmq7zDrU6io0w_dz2tHXnG--ebD1nr8mrATPSr_2w3pAXvtolO4t1wNX2LWlPYamuEDfSuqKrOjqu0TpQKEPX6kW7mgLYczcWozPT8XIUWOS31P_sg363FD_NUjiFow8m1ljFSAO4k7R0WcUWG6TI7pGrs9PLkzkb7lNgjudpx8pcK6sTKd2sVEoXZZo7mTrnhLAlwALuXJKWHg5hXgdVKBUymLvgRSGETDLL98lmVVf-HaHayxIXsJwBpAmJgyreJzOvAlc8ZMmEsFGMpunDZpiRT4ZiNyh2o5FSB2I3ekLyUdbmr-k3YNn_UfMkTs26GxhIi3ektebBcKsyeDxCQrY1vJaQMKvBt-Imy5W56Vbv_7v_L-Tl_HJxbs6_Xfz4QLZ7UjeyeT-Sze7u3n8CzNIVn6NS_gbvLeVY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimates+on+moments+of+the+solutions+to+stochastic+differential+equations+with+respect+to+martingales+in+the+plane&rft.jtitle=Stochastic+processes+and+their+applications&rft.au=Liang%2C+Zong-xia&rft.au=Zheng%2C+Ming-li&rft.date=1996-07-01&rft.pub=Elsevier+B.V&rft.issn=0304-4149&rft.eissn=1879-209X&rft.volume=62&rft.issue=2&rft.spage=263&rft.epage=276&rft_id=info:doi/10.1016%2F0304-4149%2896%2900057-9&rft.externalDocID=0304414996000579 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4149&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4149&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4149&client=summon |