Morphology-design and semiconducting characteristics of zinc oxide nanostructures under microwave irradiation

Microwave irradiation (2.45 GHz) was used to synthesize nano-structured ZnO. The main precursors used were Zn(NO 3 ) 2 .6H 2 O and NaOH with molar ratio of Zn 2+ :OH − = 1:15. The powers for microwave heating were selected at 320 and 480 watts with 10 min synthesis time and 5s/15s on/off step. The c...

Full description

Saved in:
Bibliographic Details
Published inIntegrated ferroelectrics Vol. 177; no. 1; pp. 90 - 102
Main Authors Sooksaen, Pat, Chuankrerkkul, Nutthita
Format Journal Article
LanguageEnglish
Published Philadelphia Taylor & Francis 02.01.2017
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Microwave irradiation (2.45 GHz) was used to synthesize nano-structured ZnO. The main precursors used were Zn(NO 3 ) 2 .6H 2 O and NaOH with molar ratio of Zn 2+ :OH − = 1:15. The powers for microwave heating were selected at 320 and 480 watts with 10 min synthesis time and 5s/15s on/off step. The charged particles vibrating in the electric field formed nuclei and grew in the temperature gradient in the solution leading to crystal growth in different directions. This study investigated the formation of nanostructured ZnO by microwave heating method using polyethylene glycols (MW = 1500 and MW = 4000), sugar and cassava starch as structure-directing agents. All the synthesized microwave conditions gave single phase of ZnO with wurtzite structure. The size of ZnO nanocrystals increased with increasing microwave power and the optical band gap energy values varied between 3.10 and 3.24 eV. Photocatalytic behavior of ZnO was studied through photodegradation of methylene blue. The highest photodegradation rate in this investigation was from PEG1500 modified nanostructured ZnO where they developed into fine rod-like particles.
AbstractList Microwave irradiation (2.45 GHz) was used to synthesize nano-structured ZnO. The main precursors used were Zn(NO sub(3)) sub(2).6H sub(2)O and NaOH with molar ratio of Zn super(2+):OH super(-) = 1:15. The powers for microwave heating were selected at 320 and 480 watts with 10 min synthesis time and 5s/15s on/off step. The charged particles vibrating in the electric field formed nuclei and grew in the temperature gradient in the solution leading to crystal growth in different directions. This study investigated the formation of nanostructured ZnO by microwave heating method using polyethylene glycols (MW = 1500 and MW = 4000), sugar and cassava starch as structure-directing agents. All the synthesized microwave conditions gave single phase of ZnO with wurtzite structure. The size of ZnO nanocrystals increased with increasing microwave power and the optical band gap energy values varied between 3.10 and 3.24 eV. Photocatalytic behavior of ZnO was studied through photodegradation of methylene blue. The highest photodegradation rate in this investigation was from PEG1500 modified nanostructured ZnO where they developed into fine rod-like particles.
Microwave irradiation (2.45 GHz) was used to synthesize nano-structured ZnO. The main precursors used were Zn(NO3)2.6H2O and NaOH with molar ratio of Zn2+:OH- = 1:15. The powers for microwave heating were selected at 320 and 480 watts with 10 min synthesis time and 5s/15s on/off step. The charged particles vibrating in the electric field formed nuclei and grew in the temperature gradient in the solution leading to crystal growth in different directions. This study investigated the formation of nanostructured ZnO by microwave heating method using polyethylene glycols (MW = 1500 and MW = 4000), sugar and cassava starch as structure-directing agents. All the synthesized microwave conditions gave single phase of ZnO with wurtzite structure. The size of ZnO nanocrystals increased with increasing microwave power and the optical band gap energy values varied between 3.10 and 3.24 eV. Photocatalytic behavior of ZnO was studied through photodegradation of methylene blue. The highest photodegradation rate in this investigation was from PEG1500 modified nanostructured ZnO where they developed into fine rod-like particles.
Microwave irradiation (2.45 GHz) was used to synthesize nano-structured ZnO. The main precursors used were Zn(NO 3 ) 2 .6H 2 O and NaOH with molar ratio of Zn 2+ :OH − = 1:15. The powers for microwave heating were selected at 320 and 480 watts with 10 min synthesis time and 5s/15s on/off step. The charged particles vibrating in the electric field formed nuclei and grew in the temperature gradient in the solution leading to crystal growth in different directions. This study investigated the formation of nanostructured ZnO by microwave heating method using polyethylene glycols (MW = 1500 and MW = 4000), sugar and cassava starch as structure-directing agents. All the synthesized microwave conditions gave single phase of ZnO with wurtzite structure. The size of ZnO nanocrystals increased with increasing microwave power and the optical band gap energy values varied between 3.10 and 3.24 eV. Photocatalytic behavior of ZnO was studied through photodegradation of methylene blue. The highest photodegradation rate in this investigation was from PEG1500 modified nanostructured ZnO where they developed into fine rod-like particles.
Author Sooksaen, Pat
Chuankrerkkul, Nutthita
Author_xml – sequence: 1
  givenname: Pat
  surname: Sooksaen
  fullname: Sooksaen, Pat
  email: sooksaen_p@su.ac.th
  organization: Center of Excellence for Petroleum, Petrochemicals and Advanced Materials, Chulalongkorn University
– sequence: 2
  givenname: Nutthita
  surname: Chuankrerkkul
  fullname: Chuankrerkkul, Nutthita
  organization: Metallurgy and Materials Science Research Institute, Chulalongkorn University
BookMark eNp9kU1vFDEMhiNUJNrCT0CKxIXLLHHmI8kNVPElFXGBc-RJMttUM8nizFCWX09WWy4cONmynveV7feKXaScAmMvQexAaPEGRK-7XqudFKB2IHUPpnvCLmEQqtGdNhe1r0xzgp6xq1LuhYC2V8MlW75kOtzlOe-PjQ8l7hPH5HkJS3Q5-c2tMe25u0NCtwaKZY2u8Dzx3zE5nn9FH3jClMtKld0oFL4lH4hXPeUH_Bl4JEIfcY05PWdPJ5xLePFYr9n3D--_3Xxqbr9-_Hzz7rZxrYK1carViDDBaIYRUDiQvZN1Ir1ALb3WRoztoDoJwRnjjdcOcRh7dFrKsWuv2euz74Hyjy2U1S6xuDDPmELeigUjOjBGGFXRV_-g93mjVLezoJUZ6pdMX6n-TNWjSqEw2QPFBeloQdhTCPZvCPYUgn0MoerennUxTZkWfMg0e7vicc40ESYXi23_b_EHmiuShQ
CitedBy_id crossref_primary_10_3390_nano10061086
Cites_doi 10.1016/j.jallcom.2011.11.118
10.1016/j.ceramint.2015.11.044
10.1016/j.scriptamat.2008.02.044
10.1016/j.ssc.2005.09.023
10.1016/j.matlet.2007.05.072
10.1016/j.ceramint.2009.07.027
10.1016/j.cej.2010.01.052
10.3762/bjnano.4.87
10.4236/aces.2011.11002
10.1016/j.matchemphys.2008.05.065
10.1016/j.jallcom.2011.03.157
10.1016/j.matlet.2007.05.004
10.1126/science.281.5379.969
10.1016/j.matchemphys.2010.09.038
10.1016/j.ultsonch.2009.10.017
10.1016/j.matlet.2008.10.008
10.1016/j.jallcom.2009.11.033
10.1016/j.powtec.2004.05.007
10.1016/j.colsurfa.2012.11.001
10.1016/j.ceramint.2013.02.076
10.1016/j.mseb.2008.05.014
10.1016/j.apt.2010.07.002
ContentType Journal Article
Copyright 2017 Taylor & Francis Group, LLC 2017
2017 Taylor & Francis Group, LLC
Copyright_xml – notice: 2017 Taylor & Francis Group, LLC 2017
– notice: 2017 Taylor & Francis Group, LLC
DBID AAYXX
CITATION
7QQ
7SP
7SR
8FD
JG9
L7M
DOI 10.1080/10584587.2017.1285194
DatabaseName CrossRef
Ceramic Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Ceramic Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Materials Research Database
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1607-8489
EndPage 102
ExternalDocumentID 4321058477
10_1080_10584587_2017_1285194
1285194
Genre Original Articles
Feature
GroupedDBID .7F
.QJ
0BK
0R~
29J
30N
4.4
5GY
5VS
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACGOD
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEGYZ
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFWLO
AGDLA
AGMYJ
AHDZW
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
C5L
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
EJD
E~A
E~B
GCUZY
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
M4Z
NA5
NZ-
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TEN
TEX
TFL
TFT
TFW
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
AAYXX
CITATION
7QQ
7SP
7SR
8FD
JG9
L7M
ID FETCH-LOGICAL-c371t-c738aa1f1b96b1a0c125c2aa12d0a82d8890b367421ec99d9d8caa6b5ac822b43
ISSN 1058-4587
IngestDate Fri Oct 25 05:07:10 EDT 2024
Thu Oct 10 20:03:11 EDT 2024
Fri Aug 23 01:09:02 EDT 2024
Mon Oct 07 12:28:51 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c371t-c738aa1f1b96b1a0c125c2aa12d0a82d8890b367421ec99d9d8caa6b5ac822b43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1879657695
PQPubID 53148
PageCount 13
ParticipantIDs crossref_primary_10_1080_10584587_2017_1285194
proquest_journals_1879657695
informaworld_taylorfrancis_310_1080_10584587_2017_1285194
proquest_miscellaneous_1904199097
PublicationCentury 2000
PublicationDate 2017-01-02
PublicationDateYYYYMMDD 2017-01-02
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-01-02
  day: 02
PublicationDecade 2010
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Integrated ferroelectrics
PublicationYear 2017
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References cit0011
cit0012
Zak A. K. (cit0014); 24
Cho S. (cit0010); 112
cit0019
cit0017
cit0018
cit0015
cit0016
cit0022
cit0001
cit0023
cit0021
Abdul Rahman I. (cit0026)
Kantan S. (cit0020); 3
cit0008
cit0009
cit0006
cit0007
cit0004
cit0005
cit0027
cit0002
BeMiller J. (cit0013)
cit0024
cit0003
cit0025
References_xml – ident: cit0017
  doi: 10.1016/j.jallcom.2011.11.118
– ident: cit0007
  doi: 10.1016/j.ceramint.2015.11.044
– ident: cit0009
  doi: 10.1016/j.scriptamat.2008.02.044
– ident: cit0006
  doi: 10.1016/j.ssc.2005.09.023
– ident: cit0003
  doi: 10.1016/j.matlet.2007.05.072
– ident: cit0005
  doi: 10.1016/j.ceramint.2009.07.027
– volume: 112
  start-page: 12769
  ident: cit0010
  publication-title: J Phys Chem.
  contributor:
    fullname: Cho S.
– volume: 24
  start-page: 618
  issue: 3
  ident: cit0014
  publication-title: Adv Powder Technol.
  contributor:
    fullname: Zak A. K.
– ident: cit0022
  doi: 10.1016/j.cej.2010.01.052
– volume: 3
  start-page: 350
  issue: 4
  ident: cit0020
  publication-title: Adv Mater Lett.
  contributor:
    fullname: Kantan S.
– ident: cit0021
  doi: 10.3762/bjnano.4.87
– ident: cit0027
  doi: 10.4236/aces.2011.11002
– ident: cit0001
  doi: 10.1016/j.matchemphys.2008.05.065
– ident: cit0024
  doi: 10.1016/j.jallcom.2011.03.157
– ident: cit0026
  publication-title: Journal of Nanotechnology.
  contributor:
    fullname: Abdul Rahman I.
– ident: cit0002
  doi: 10.1016/j.matlet.2007.05.004
– start-page: 149
  volume-title: Starch: Chemistry and Technology
  ident: cit0013
  contributor:
    fullname: BeMiller J.
– ident: cit0019
  doi: 10.1126/science.281.5379.969
– ident: cit0008
  doi: 10.1016/j.matchemphys.2010.09.038
– ident: cit0016
  doi: 10.1016/j.ultsonch.2009.10.017
– ident: cit0004
  doi: 10.1016/j.matlet.2008.10.008
– ident: cit0011
  doi: 10.1016/j.jallcom.2009.11.033
– ident: cit0012
  doi: 10.1016/j.powtec.2004.05.007
– ident: cit0015
  doi: 10.1016/j.colsurfa.2012.11.001
– ident: cit0025
  doi: 10.1016/j.ceramint.2013.02.076
– ident: cit0018
  doi: 10.1016/j.mseb.2008.05.014
– ident: cit0023
  doi: 10.1016/j.apt.2010.07.002
SSID ssj0013576
Score 2.1302423
Snippet Microwave irradiation (2.45 GHz) was used to synthesize nano-structured ZnO. The main precursors used were Zn(NO 3 ) 2 .6H 2 O and NaOH with molar ratio of Zn...
Microwave irradiation (2.45 GHz) was used to synthesize nano-structured ZnO. The main precursors used were Zn(NO3)2.6H2O and NaOH with molar ratio of Zn2+:OH-...
Microwave irradiation (2.45 GHz) was used to synthesize nano-structured ZnO. The main precursors used were Zn(NO sub(3)) sub(2).6H sub(2)O and NaOH with molar...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Publisher
StartPage 90
SubjectTerms band gap
Ferroelectrics
Heating
Irradiation
microwave
Microwaves
Nanostructure
Nanostructured ceramics
Nuclear power generation
Photodegradation
Synthesis
Zinc oxide
Zinc oxides
Title Morphology-design and semiconducting characteristics of zinc oxide nanostructures under microwave irradiation
URI https://www.tandfonline.com/doi/abs/10.1080/10584587.2017.1285194
https://www.proquest.com/docview/1879657695
https://search.proquest.com/docview/1904199097
Volume 177
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdK9wIPiE9RGMhIvFUpceIk9uM0NlVoG0i0ouIlcmxHK9USlCYC7Q_g7-Zsp2m6Tny9RJXTWundL3dn-3d3CL1h4INkSKgXC-57VIUa3jnCvEgowWId5Rk12cjnF_F0Tt8vosVg8LPHWmrqbCKvb80r-R-twhjo1WTJ_oNmu0lhAD6DfuEKGobrX-n4vAQp2X1xT1kmhj0KWBu-e1mYQq42o_ZGSWaIDq-XhRyXP5ZKjwtRlK6GbAMLb9sVtxpfGZbed9OXaFlVpnhBp72vW-K7LTKhxrmuqtI10-kR5z9B7L4WzqR9FB215viyEcWq0tVq1TgudlMb9qPobz6QxG4-bJeqs70-ID0ykjGnfsQ8GrUuVbux2Ae_SF3joM4Gt71c-mBzFtU1E90z9I4ZaeY30xuKXjIBVwvxKN16ts1p_sWH9HR-dpbOThaz3bvWkVOTx2SOi5M76CAAg8WG6OBo-u7L5-15VGTbFHb_Z5MLxvy3tz7DTpSzUwN3z-fbQGb2AN1vVyD4yMHpIRro4hG616tL-Rhd7QELA7DwLrDwDWDhMscGWNgCC-8CC1tg4Q5YuAesJ2h-ejI7nnptXw5PhgmpPZmETAiSk4zHGRG-hCBZBjASKF-wQDHG_SyMExoQLTlXXDEpRJxFQkI4mtHwKRoWZaGfIaxyHskwgkWBhpW-zDIV5DwnNJE55TTnIzTZyDH95sqvpKStarsRfGoEn7aCHyHel3ZaW4TmDpxp-IffHm5Uk7Zv-TolLOExaJ9HI_S6uw022BysiUKXDXyH-5RAWMeT57-f4gW6u32LDtEQtKBfQlBbZ69axP0CFw6l6Q
link.rule.ids 315,783,787,27938,27939,60220,61009
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOUAP5a1uKWAkrlnFiZ3YR4SoFujuqZV6s_yUVqgJ2u62qL-emTxgF4Q49BQptvPwzHgenvkM8F6hDvIlF1lldZ6JUEaUOa4yaYNVVZTJCapGni-q2bn4ciEvtmphKK2SfOjUA0V0azUJNwWjx5Q4vKLalKqmzKx6iissmiHiPjyoqGyUyjjyxe-dBNkdMEdDMhozVvH86zE7-mkHvfSv1bpTQSePwY8f32eefJtu1m7qb__Adbzb3z2Bg8FCZR96lnoK92LzDPa3cAufw-W8RfJ0AfksdCkgDF_HrijRvm0IQRa7Mb-LBc3axG6XjWftj2WIrLFN24PXbtDjZ1TLtmKXlB54Y68jW65WhJpAbPMCzk8-nX2cZcO5DZkva77OfF0qa3niTleO29yjEeULvFOE3KoiKKVzV1bolPPotQ46KG9t5aT1aK44Ub6EvaZt4iGwkLT0pUSjMaIn6J0LRdKJi9onoUXSE5iO1DLfe3gOwwfU03EeDc2jGeZxAnqbpmbdxUVSf4iJKf8z9nhkADNI-pWh09or5DEtJ_DuVzPKKG282Ca2G-yjc8FR7ev66A6vfwsPZ2fzU3P6efH1FTyipi4WVBzDHpIrvkbraO3edOz_Ez2mBMc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LixQxEC50BdGDb3F01Qhee-h0ku7kKOqwPnbw4IK3kCcMst3LPFT211vVD91RxMOeGjpJP1KVVFXy5SuAlxptUBBcFrUzZSGjSDjmuC6Ui07XSWUv6TTy8bI-OpHvv6gJTbgZYZUUQ-eBKKKfq2lwn8U8IeLwilZT6YaAWc0cJ1j0QuRVuIaeQEmKLcrl740E1eeXoyYFtZkO8fzrMXvmaY-89K_JurdAi9vgp28fgCdf57utn4fzP2gdL_Vzd-DW6J-yV4NC3YUrqb0HNy-wFt6H0-MOhdMvxxexB4AwfBvbEMy-a4k_FquxsM8EzbrMzldtYN2PVUysdW03UNfuMN5ndJJtzU4JHPjdfUtstV4TZwIpzQM4Wbz9_PqoGLM2FEE0fFuERmjneObe1J67MqALFSq8U8XS6SpqbUovagzJeQrGRBN1cK72ygV0VrwUD-Gg7dr0CFjMRgWh0GVMGAcG72OVTeayCVkamc0M5pOw7NlAzmH5yHk69aOlfrRjP87AXBSp3farInlIYWLFf9oeTvK34zjfWMrVXqOKGTWDF7-KcYTStotrU7fDOqaUHI2-aR5f4vXP4fqnNwv78d3ywxO4QSX9QlB1CAcorfQUXaOtf9Yr_088ygN9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Morphology-design+and+semiconducting+characteristics+of+zinc+oxide+nanostructures+under+microwave+irradiation&rft.jtitle=Integrated+ferroelectrics&rft.au=Sooksaen%2C+Pat&rft.au=Chuankrerkkul%2C+Nutthita&rft.date=2017-01-02&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=1058-4587&rft.eissn=1607-8489&rft.volume=177&rft.issue=1&rft.spage=90&rft_id=info:doi/10.1080%2F10584587.2017.1285194&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4321058477
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1058-4587&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1058-4587&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1058-4587&client=summon