What can lattices do for experimental designs?
Let x 1:=((x 1)iϵI)ϵ R′ be a finite data set weighted by n 1:=((n 1)iϵI)ϵ R′ (reflecting a previous derivation or is constant), F: = {A,B,…} be a set of factors which index partitions of 1 (denoted by A, B…) together with ‘experimental dimensions’ (subjects' ages…), the experimental design be D...
Saved in:
Published in | Mathematical social sciences Vol. 11; no. 3; pp. 243 - 281 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.06.1986
Elsevier |
Series | Mathematical Social Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Let
x
1:=((x
1)iϵI)ϵ
R′
be a finite data set weighted by
n
1:=((n
1)iϵI)ϵ
R′
(reflecting a previous derivation or is constant),
F: = {A,B,…}
be a set of factors which index partitions of 1 (denoted by
A,
B…) together with ‘experimental dimensions’ (subjects' ages…), the experimental design be
D
F: = Im(I → X
FF), (
P
1,⩽,∨,∧,I,1)
and (Q
⊥,⩽,∨∨⊥, 0.1)
denote the lattices of partition on
I and of ortho-projections in
R
1 〈x
1 | y
1〉: = Σ
1ϵ1n
1x
1y
1. F := {Fϵ
P/
all
Fϵ
F∼
; the effect ascribed to
Aϵ
F
is evaluated through
mA(x
1: (〈
x
̄
u〉
1)
ja
where each
a is the
A-class containing
i,
(
x
a)
1: =
1
n
a
∑
jϵa
n
jx
1, n
a: =
∑
jϵa
n.
Let
cA: =
mA1 −
m1
ϵQ
⊥, the map
c:
F · Q
⊥, A →cA
established a connection
P
1 = ⇆ [0,cI]
which makes precise the link between the set theoretical description of an experiment and its analysis linear framework.
A, B ϵ
P
1
are said loccally orthogonal (LO) iff
n
a≥
b
=
n
a
n
b
,
n
u
(all
u
ϵ
A ∨
B, all
a,
b, ⊆
u); then the relative interaction
ca ·
cB: =
cA ∨
B
acA ∧
cB) (called interaction, denoted by
cA ·
cB whenever
A ∧
B = 1 is a sum of partial interactions:
cA ·
cB⊕⊥
uϵ
A ∧
cA/
u ·
cB/
u with
A/
u: = {
a
ϵ
A/
a ⊆
u}. Any (pairwise) LO-subset
A ⊆
P
1
induces (by
c) a commutative Boolean subalgebra
Q(
X) ⊆
Q
1, whose atoms give the
c∨
X canonical ⊕⊥- decomposition according to
X. Let
F
generate an LO-design iff the generated sublattice (by ∨ and V)
P(
F) ⊆
P
1
is LO; using the Möbius function of if
P
(
F
), ⩾), the
9I canonical ⊕⊥-decomposition is easily calculated and labelled with formulae: its terms are expressible as
n-ary(relative) interactions between ·-irreducible terms associated with the projective intervals of
P(
F)
. A concrete example from psychology is discussed. |
---|---|
AbstractList | Let
x
1:=((x
1)iϵI)ϵ
R′
be a finite data set weighted by
n
1:=((n
1)iϵI)ϵ
R′
(reflecting a previous derivation or is constant),
F: = {A,B,…}
be a set of factors which index partitions of 1 (denoted by
A,
B…) together with ‘experimental dimensions’ (subjects' ages…), the experimental design be
D
F: = Im(I → X
FF), (
P
1,⩽,∨,∧,I,1)
and (Q
⊥,⩽,∨∨⊥, 0.1)
denote the lattices of partition on
I and of ortho-projections in
R
1 〈x
1 | y
1〉: = Σ
1ϵ1n
1x
1y
1. F := {Fϵ
P/
all
Fϵ
F∼
; the effect ascribed to
Aϵ
F
is evaluated through
mA(x
1: (〈
x
̄
u〉
1)
ja
where each
a is the
A-class containing
i,
(
x
a)
1: =
1
n
a
∑
jϵa
n
jx
1, n
a: =
∑
jϵa
n.
Let
cA: =
mA1 −
m1
ϵQ
⊥, the map
c:
F · Q
⊥, A →cA
established a connection
P
1 = ⇆ [0,cI]
which makes precise the link between the set theoretical description of an experiment and its analysis linear framework.
A, B ϵ
P
1
are said loccally orthogonal (LO) iff
n
a≥
b
=
n
a
n
b
,
n
u
(all
u
ϵ
A ∨
B, all
a,
b, ⊆
u); then the relative interaction
ca ·
cB: =
cA ∨
B
acA ∧
cB) (called interaction, denoted by
cA ·
cB whenever
A ∧
B = 1 is a sum of partial interactions:
cA ·
cB⊕⊥
uϵ
A ∧
cA/
u ·
cB/
u with
A/
u: = {
a
ϵ
A/
a ⊆
u}. Any (pairwise) LO-subset
A ⊆
P
1
induces (by
c) a commutative Boolean subalgebra
Q(
X) ⊆
Q
1, whose atoms give the
c∨
X canonical ⊕⊥- decomposition according to
X. Let
F
generate an LO-design iff the generated sublattice (by ∨ and V)
P(
F) ⊆
P
1
is LO; using the Möbius function of if
P
(
F
), ⩾), the
9I canonical ⊕⊥-decomposition is easily calculated and labelled with formulae: its terms are expressible as
n-ary(relative) interactions between ·-irreducible terms associated with the projective intervals of
P(
F)
. A concrete example from psychology is discussed. |
Author | Duquenne, V. |
Author_xml | – sequence: 1 givenname: V. surname: Duquenne fullname: Duquenne, V. organization: CNRS and Groupe Mathématiques et Psychologie, Université R. Descartes, 12 rue Cujas, 75005 Paris, France |
BackLink | http://econpapers.repec.org/article/eeematsoc/v_3a11_3ay_3a1986_3ai_3a3_3ap_3a243-281.htm$$DView record in RePEc |
BookMark | eNqFkD1PwzAURS1UJNrCP2DICEOKPxLHYQChik9VYgExWq79TI3SJLKtiv57HAoMDDDc9zz4Hj2dCRq1XQsIHRM8I5jws5QyL0TNTwQ_rTGmIi_20JiIqs4ZIWKExj9fDtAkhDeMcUUxGaPZy0rFTKs2a1SMTkPITJfZzmfw3oN3a2ijajIDwb224fIQ7VvVBDj62lP0fHP9NL_LF4-39_OrRa5ZRWKaAgOrmDU1aAY103xp8FILU5UKl1ZTyyvgRmBsqwKWJVVQlNQITm1thWFT9LDjeuhByz4dovxWAsBaxdBpuZFMEZLGdnjUgqflUlhKn0ILJqkgchXXCXa-g2nfheDBSu2iiq5ro1eukQTLQaMcHMnBkUy4T42ySOXiV_n7mH9qF7saJEsbB14G7aDVYJwHHaXp3N-ADxGtiuY |
CitedBy_id | crossref_primary_10_1090_tran_8507 crossref_primary_10_3390_ma18051059 crossref_primary_10_1016_S0165_4896_03_00072_6 crossref_primary_10_1111_j_2517_6161_1991_tb01808_x crossref_primary_10_1016_S0304_3975_98_00279_5 |
Cites_doi | 10.32917/hmj/1557281060 10.1007/BF00531932 10.1215/S0012-7094-42-00942-6 10.1016/S0021-9800(66)80009-1 10.32917/hmj/1557367273 |
ContentType | Journal Article |
Copyright | 1986 |
Copyright_xml | – notice: 1986 |
DBID | AAYXX CITATION DKI X2L |
DOI | 10.1016/0165-4896(86)90028-4 |
DatabaseName | CrossRef RePEc IDEAS RePEc |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DKI name: RePEc IDEAS url: http://ideas.repec.org/ sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics Social Sciences (General) |
EISSN | 1879-3118 |
EndPage | 281 |
ExternalDocumentID | eeematsoc_v_3a11_3ay_3a1986_3ai_3a3_3ap_3a243_281_htm 10_1016_0165_4896_86_90028_4 0165489686900284 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29M 3R3 4.4 457 4G. 5GY 5VS 63O 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AACTN AAEDT AAEDW AAFFL AAIAV AAIKJ AAKOC AALRI AAOAW AAPFB AAQFI AAQXK AARIN AAXUO ABAOU ABFNM ABFRF ABIVO ABJNI ABMAC ABTAH ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACHQT ACRLP ACROA ADBBV ADEZE ADFHU ADGUI ADIYS ADMUD AEBSH AEFWE AEKER AENEX AEYQN AFFNX AFKWA AFODL AFTJW AGHFR AGTHC AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIIAU AIKHN AITUG AJBFU AJOXV AJWLA ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM ARUGR ASPBG AVWKF AXJTR AXLSJ AZFZN BEHZQ BEZPJ BGSCR BKOJK BLXMC BNTGB BPUDD BULVW BZJEE CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HAMUX HMB HMJ HMY HVGLF HZ~ IHE IXIXF J1W KOM LPU LY5 M26 M3Y M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SEB SEE SES SEW SME SPC SPCBC SSB SSD SSF SSS SSW SSZ T5K TN5 UNMZH WUQ YK3 ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 08R AALMO ABPIF ABPTK ABQIS DKI X2L |
ID | FETCH-LOGICAL-c371t-c380e373fd9ec3e93c6bd0bc8d75a05fc2f67e6d800f74eb52ae452d862f9f8d3 |
ISSN | 0165-4896 |
IngestDate | Wed Jul 12 01:47:34 EDT 2023 Tue Jul 01 01:52:34 EDT 2025 Thu Apr 24 23:07:51 EDT 2025 Fri Feb 23 02:33:35 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | canonical decomposition permutable partitions modular lattices analysis of variance projective interval Experimental design Möbius function |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c371t-c380e373fd9ec3e93c6bd0bc8d75a05fc2f67e6d800f74eb52ae452d862f9f8d3 |
PageCount | 39 |
ParticipantIDs | repec_primary_eeematsoc_v_3a11_3ay_3a1986_3ai_3a3_3ap_3a243_281_htm crossref_citationtrail_10_1016_0165_4896_86_90028_4 crossref_primary_10_1016_0165_4896_86_90028_4 elsevier_sciencedirect_doi_10_1016_0165_4896_86_90028_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 1900 |
PublicationDate | 1986-06-01 |
PublicationDateYYYYMMDD | 1986-06-01 |
PublicationDate_xml | – month: 06 year: 1986 text: 1986-06-01 day: 01 |
PublicationDecade | 1980 |
PublicationSeriesTitle | Mathematical Social Sciences |
PublicationTitle | Mathematical social sciences |
PublicationYear | 1986 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Fisher (BIB15) 1948 Green (BIB16) 1982 Cochran (BIB6) 1980 Dembowsky (BIB9) 1968 Dubreil, Dubreil-Jacotin (BIB10) 1939; 18 Duquenne, Monjardet (BIB14) 1982; 80 Ogasawara, Takahashi, Ogasawara, Takahashi (BIB22) 1953; 16 Lepine, Lepine (BIB19) 1977; 33 Rota (BIB24) 1964; 2 Bachelard (BIB1) 1949 Beauvillain, Duquenne (BIB3) 1982; 55 Barbut, Monjardet (BIB2) 1970 Maeda, Maeda (BIB20) 1970 Cochran, Cox (BIB7) 1957 Crapo (BIB8) 1966; 1 Nelder (BIB21) 1965; 283 Ore (BIB23) 1942; 9 Duquenne (BIB12) 1977 Halmos (BIB17) 1974 Duquenne (BIB13) 1980 Beauvillain, Grainger (BIB4) 1984 Lee (BIB18) 1975 Birkhoff (BIB5) 1967 Duquenne (BIB11) 1976; 19 Lepine (10.1016/0165-4896(86)90028-4_BIB19_1) 1977; 33 Fisher (10.1016/0165-4896(86)90028-4_BIB15) 1948 Crapo (10.1016/0165-4896(86)90028-4_BIB8) 1966; 1 Bachelard (10.1016/0165-4896(86)90028-4_BIB1) 1949 Ogasawara (10.1016/0165-4896(86)90028-4_BIB22_1) 1953; 16 Barbut (10.1016/0165-4896(86)90028-4_BIB2) 1970 Dembowsky (10.1016/0165-4896(86)90028-4_BIB9) 1968 Ore (10.1016/0165-4896(86)90028-4_BIB23) 1942; 9 Nelder (10.1016/0165-4896(86)90028-4_BIB21) 1965; 283 Cochran (10.1016/0165-4896(86)90028-4_BIB6) 1980 Duquenne (10.1016/0165-4896(86)90028-4_BIB12) 1977 Green (10.1016/0165-4896(86)90028-4_BIB16) 1982 Halmos (10.1016/0165-4896(86)90028-4_BIB17) 1974 Rota (10.1016/0165-4896(86)90028-4_BIB24) 1964; 2 Duquenne (10.1016/0165-4896(86)90028-4_BIB11) 1976; 19 Beauvillain (10.1016/0165-4896(86)90028-4_BIB4) 1984 Beauvillain (10.1016/0165-4896(86)90028-4_BIB3) 1982; 55 Birkhoff (10.1016/0165-4896(86)90028-4_BIB5) 1967 Lepine (10.1016/0165-4896(86)90028-4_BIB19_2) 1977; 33 Ogasawara (10.1016/0165-4896(86)90028-4_BIB22_2) 1953; 17 Dubreil (10.1016/0165-4896(86)90028-4_BIB10) 1939; 18 Duquenne (10.1016/0165-4896(86)90028-4_BIB13) 1980 Lee (10.1016/0165-4896(86)90028-4_BIB18) 1975 Duquenne (10.1016/0165-4896(86)90028-4_BIB14) 1982; 80 Cochran (10.1016/0165-4896(86)90028-4_BIB7) 1957 Maeda (10.1016/0165-4896(86)90028-4_BIB20) 1970 |
References_xml | – year: 1970 ident: BIB20 article-title: Theory of Symmetric Lattices – volume: 16 start-page: 457 year: 1953 end-page: 470 ident: BIB22 article-title: Orthogonality relation in the analysis of variance I & II publication-title: Set. Hiroshima Univ. – volume: 18 start-page: 63 year: 1939 end-page: 95 ident: BIB10 article-title: Théorie algébrique des relations dèquivalence publication-title: J. de Mathematiques – year: 1970 ident: BIB2 article-title: Ordre et Classification T, 1 & 2 – start-page: 555 year: 1982 end-page: 581 ident: BIB16 article-title: The Möbius function of a partially ordered set publication-title: Ordered Sets – volume: 19 start-page: 109 year: 1976 end-page: 111 ident: BIB11 article-title: Un programme de description de données publication-title: Cahiers de Psychologie – volume: 283 start-page: 147 year: 1965 end-page: 178 ident: BIB21 article-title: The analysis of randomized experiments with orthogonal block structure I & II publication-title: Proc. Roy. Soc. London – volume: 2 start-page: 340 year: 1964 end-page: 368 ident: BIB24 article-title: On the foundations of combinatorial theory I: Theery of Mobius function publication-title: Zeit. Fur. W. – year: 1984 ident: BIB4 article-title: Lexical access and context effects in bilinguals evidence for autonomous processing – year: 1968 ident: BIB9 article-title: Finite Geometries – year: 1975 ident: BIB18 article-title: Experimental Design and Analysis – year: 1957 ident: BIB7 article-title: Experimental Designs – volume: 1 start-page: 126 year: 1966 end-page: 131 ident: BIB8 article-title: The Möbius function of a lattice publication-title: J. Combinatorial Theory – volume: 9 start-page: 573 year: 1942 end-page: 627 ident: BIB23 article-title: Theory of equivalence relations publication-title: Duke Math. J. – year: 1967 ident: BIB5 article-title: Lattice Theory – volume: 55 start-page: 9 year: 1982 end-page: 43 ident: BIB3 article-title: Programmation, planification et analyse des resultats d'une experimenta sur l'accès lexical en situation interlangues publication-title: Informatique et Sci. Hum. – year: 1980 ident: BIB6 article-title: The philosophy underlying the design of experimenta of contributions to Statistics – volume: 33 start-page: 5 year: 1977 end-page: 26 ident: BIB19 article-title: Facteurs et plans I & II publication-title: Math. Sci. Hum. – year: 1948 ident: BIB15 article-title: The Design of Experiments – year: 1980 ident: BIB13 article-title: Quelques aspects algébriques du traitement de données planitiers – start-page: 297 year: 1977 end-page: 302 ident: BIB12 article-title: Représentation optimale d'un plan quasi-complet publication-title: Analyse des donnes et Informatique – year: 1949 ident: BIB1 article-title: Le Nouvel Esprit Scientifique – volume: 80 start-page: 5 year: 1982 end-page: 10 ident: BIB14 article-title: Relations binaires entre partitions publication-title: Math. Sci. Hum. – year: 1974 ident: BIB17 article-title: Finite-Dimensional Vector Spaces – volume: 19 start-page: 109 year: 1976 ident: 10.1016/0165-4896(86)90028-4_BIB11 article-title: Un programme de description de données publication-title: Cahiers de Psychologie – volume: 55 start-page: 9 year: 1982 ident: 10.1016/0165-4896(86)90028-4_BIB3 article-title: Programmation, planification et analyse des resultats d'une experimenta sur l'accès lexical en situation interlangues publication-title: Informatique et Sci. Hum. – year: 1984 ident: 10.1016/0165-4896(86)90028-4_BIB4 – volume: 17 start-page: 27 year: 1953 ident: 10.1016/0165-4896(86)90028-4_BIB22_2 article-title: Orthogonality relation in the analysis of variance I & II publication-title: J. Set. Hiroshima Univ. doi: 10.32917/hmj/1557281060 – start-page: 297 year: 1977 ident: 10.1016/0165-4896(86)90028-4_BIB12 article-title: Représentation optimale d'un plan quasi-complet – volume: 33 start-page: 5 year: 1977 ident: 10.1016/0165-4896(86)90028-4_BIB19_1 article-title: Facteurs et plans I & II publication-title: Math. Sci. Hum. – volume: 283 start-page: 147 year: 1965 ident: 10.1016/0165-4896(86)90028-4_BIB21 article-title: The analysis of randomized experiments with orthogonal block structure I & II – year: 1948 ident: 10.1016/0165-4896(86)90028-4_BIB15 – year: 1980 ident: 10.1016/0165-4896(86)90028-4_BIB13 – year: 1970 ident: 10.1016/0165-4896(86)90028-4_BIB20 – volume: 2 start-page: 340 year: 1964 ident: 10.1016/0165-4896(86)90028-4_BIB24 article-title: On the foundations of combinatorial theory I: Theery of Mobius function publication-title: Zeit. Fur. W. doi: 10.1007/BF00531932 – year: 1968 ident: 10.1016/0165-4896(86)90028-4_BIB9 – year: 1949 ident: 10.1016/0165-4896(86)90028-4_BIB1 – volume: 80 start-page: 5 year: 1982 ident: 10.1016/0165-4896(86)90028-4_BIB14 article-title: Relations binaires entre partitions publication-title: Math. Sci. Hum. – year: 1975 ident: 10.1016/0165-4896(86)90028-4_BIB18 – volume: 33 start-page: 5 year: 1977 ident: 10.1016/0165-4896(86)90028-4_BIB19_2 article-title: Facteurs et plans I & II publication-title: Math. Sci. Hum. – year: 1957 ident: 10.1016/0165-4896(86)90028-4_BIB7 – start-page: 555 year: 1982 ident: 10.1016/0165-4896(86)90028-4_BIB16 article-title: The Möbius function of a partially ordered set – volume: 9 start-page: 573 year: 1942 ident: 10.1016/0165-4896(86)90028-4_BIB23 article-title: Theory of equivalence relations publication-title: Duke Math. J. doi: 10.1215/S0012-7094-42-00942-6 – year: 1970 ident: 10.1016/0165-4896(86)90028-4_BIB2 – year: 1967 ident: 10.1016/0165-4896(86)90028-4_BIB5 – volume: 18 start-page: 63 year: 1939 ident: 10.1016/0165-4896(86)90028-4_BIB10 article-title: Théorie algébrique des relations dèquivalence publication-title: J. de Mathematiques – year: 1974 ident: 10.1016/0165-4896(86)90028-4_BIB17 – volume: 1 start-page: 126 year: 1966 ident: 10.1016/0165-4896(86)90028-4_BIB8 article-title: The Möbius function of a lattice publication-title: J. Combinatorial Theory doi: 10.1016/S0021-9800(66)80009-1 – volume: 16 start-page: 457 year: 1953 ident: 10.1016/0165-4896(86)90028-4_BIB22_1 article-title: Orthogonality relation in the analysis of variance I & II publication-title: Set. Hiroshima Univ. doi: 10.32917/hmj/1557367273 – year: 1980 ident: 10.1016/0165-4896(86)90028-4_BIB6 |
SSID | ssj0007201 |
Score | 1.2912704 |
Snippet | Let
x
1:=((x
1)iϵI)ϵ
R′
be a finite data set weighted by
n
1:=((n
1)iϵI)ϵ
R′
(reflecting a previous derivation or is constant),
F: = {A,B,…}
be a set of... |
SourceID | repec crossref elsevier |
SourceType | Index Database Enrichment Source Publisher |
StartPage | 243 |
SubjectTerms | analysis of variance canonical decomposition direct meet representation Experimental design formulae for canonical decompositions modular lattices Möbius function permutable partitions projective interval |
Title | What can lattices do for experimental designs? |
URI | https://dx.doi.org/10.1016/0165-4896(86)90028-4 http://econpapers.repec.org/article/eeematsoc/v_3a11_3ay_3a1986_3ai_3a3_3ap_3a243-281.htm |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZg91IOCBYQS2nlA4dWVZYkdmznVFUVqLAqB9SK3izHD1Gp7K66KVL76zuOnYfKo5RDvJG1caJ8nz0zzjwQesdVrjh3LjGcs4TaSidKqzJxhDhapJTqpkzn8Rd2dEo_nxVnfT3HJrqkrmb65rdxJf-DKvQBrj5K9gHIdoNCB5wDvtACwtD-E8Y-77Z329q7ULV3YlvvmWXI4T3M228aJ431HRe-4y5fq48YCTvnURz2teavvJ91dIad9RsEWSlY78jU7hmyIqEiFI7tFr1sAC4ZrmAha1IUhnmop_LLOhtM_m5kUIb9dyCQbM1mXS9b2u_pd0RO5wjY-pj5kaQfSQomm1EkfYzGOej--QiND-Zfv807AcvzNJSZjHdvIyIz9r7r2xFsNz7NnzSO8aVdWT3QJk6eoafRDMAHAdPn6JFdTNCTHpP1BE1D5DSOq-8a78QU4bsTtOFthJBi-wWaeRpgoAFuaYDNEgMN8JAGONJg_yU6_fjh5PAoiWUwEk14VkMrUks4caa0mtiSaFaZtNLC8EKlhdO5Y9wyA6q_4zDbilxZWuQGbFVXOmHIKzRaLBf2NcKcqkoz7TRXglqRKmoznVnhrUrQvN0UkfZVSR1zxPtSJRfyb0BNUdJdtQo5Uu75P29RkJHYQX-TQK97rjxsQOtuY61HBSaJ_CmJAluWqGt_AtMAfs7hIHCs4ABeS2Cz_F7_ePPA591EG_28eotG9eWV3QJVtK62IzW3wRibf7oFepx_aw |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=What+can+lattices+do+for+experimental+designs%3F&rft.jtitle=Mathematical+social+sciences&rft.au=Duquenne%2C+V.&rft.date=1986-06-01&rft.issn=0165-4896&rft.volume=11&rft.issue=3&rft.spage=243&rft.epage=281&rft_id=info:doi/10.1016%2F0165-4896%2886%2990028-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_0165_4896_86_90028_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-4896&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-4896&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-4896&client=summon |