Novel Ensemble Landslide Predictive Models Based on the Hyperpipes Algorithm: A Case Study in the Nam Dam Commune, Vietnam

Development of landslide predictive models with strong prediction power has become a major focus of many researchers. This study describes the first application of the Hyperpipes (HP) algorithm for the development of the five novel ensemble models that combine the HP algorithm and the AdaBoost (AB),...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 10; no. 11; p. 3710
Main Authors Tran, Quoc Cuong, Minh, Duc Do, Jaafari, Abolfazl, Al-Ansari, Nadhir, Minh, Duc Dao, Van, Duc Tung, Nguyen, Duc Anh, Tran, Trung Hieu, Ho, Lanh Si, Nguyen, Duy Huu, Prakash, Indra, Le, Hiep Van, Pham, Binh Thai
Format Journal Article
LanguageEnglish
Published MDPI AG 01.06.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Development of landslide predictive models with strong prediction power has become a major focus of many researchers. This study describes the first application of the Hyperpipes (HP) algorithm for the development of the five novel ensemble models that combine the HP algorithm and the AdaBoost (AB), Bagging (B), Dagging, Decorate, and Real AdaBoost (RAB) ensemble techniques for mapping the spatial variability of landslide susceptibility in the Nam Dan commune, Ha Giang province, Vietnam. Information on 76 historical landslides and ten geo-environmental factors (slope degree, slope aspect, elevation, topographic wetness index, curvature, weathering crust, geology, river density, fault density, and distance from roads) were used for the construction of the training and validation datasets that are the prerequisites for building and testing the proposed models. Using different performance metrics (i.e., the area under the receiver operating characteristic curve (AUC), negative predictive value, positive predictive value, accuracy, sensitivity, specificity, root mean square error, and Kappa), we verified the proficiency of all five ensemble learning techniques in increasing the fitness and predictive powers of the base HP model. Based on the AUC values derived from the models, the ensemble ABHP model that yielded an AUC value of 0.922 was identified as the most efficient model for mapping the landslide susceptibility in the Nam Dan commune, followed by RABHP (AUC = 0.919), BHP (AUC = 0.909), Dagging-HP (AUC = 0.897), Decorate-HP (AUC = 0.865), and the single HP model (AUC = 0.856), respectively. The novel ensemble models proposed for the Nam Dan commune and the resultant susceptibility maps can aid land-use planners in the development of efficient mitigation strategies in response to destructive landslides.
AbstractList Development of landslide predictive models with strong prediction power has become a major focus of many researchers. This study describes the first application of the Hyperpipes (HP) algorithm for the development of the five novel ensemble models that combine the HP algorithm and the AdaBoost (AB), Bagging (B), Dagging, Decorate, and Real AdaBoost (RAB) ensemble techniques for mapping the spatial variability of landslide susceptibility in the Nam Dan commune, Ha Giang province, Vietnam. Information on 76 historical landslides and ten geo-environmental factors (slope degree, slope aspect, elevation, topographic wetness index, curvature, weathering crust, geology, river density, fault density, and distance from roads) were used for the construction of the training and validation datasets that are the prerequisites for building and testing the proposed models. Using different performance metrics (i.e., the area under the receiver operating characteristic curve (AUC), negative predictive value, positive predictive value, accuracy, sensitivity, specificity, root mean square error, and Kappa), we verified the proficiency of all five ensemble learning techniques in increasing the fitness and predictive powers of the base HP model. Based on the AUC values derived from the models, the ensemble ABHP model that yielded an AUC value of 0.922 was identified as the most efficient model for mapping the landslide susceptibility in the Nam Dan commune, followed by RABHP (AUC = 0.919), BHP (AUC = 0.909), Dagging-HP (AUC = 0.897), Decorate-HP (AUC = 0.865), and the single HP model (AUC = 0.856), respectively. The novel ensemble models proposed for the Nam Dan commune and the resultant susceptibility maps can aid land-use planners in the development of efficient mitigation strategies in response to destructive landslides.
Development of landslide predictive models with strong prediction power has become a major focus of many researchers. This study describes the first application of the Hyperpipes (HP) algorithm for the development of the five novel ensemble models that combine the HP algorithm and the AdaBoost (AB), Bagging (B), Dagging, Decorate, and Real AdaBoost (RAB) ensemble techniques for mapping the spatial variability of landslide susceptibility in the Nam Dan commune, Ha Giang province, Vietnam. Information on 76 historical landslides and ten geo-environmental factors (slope degree, slope aspect, elevation, topographic wetness index, curvature, weathering crust, geology, river density, fault density, and distance from roads) were used for the construction of the training and validation datasets that are the prerequisites for building and testing the proposed models. Using different performance metrics (i.e., the area under the receiver operating characteristic curve (AUC), negative predictive value, positive predictive value, accuracy, sensitivity, specificity, root mean square error, and Kappa), we verified the proficiency of all five ensemble learning techniques in increasing the fitness and predictive powers of the base HP model. Based on the AUC values derived from the models, the ensemble ABHP model that yielded an AUC value of 0.922 was identified as the most efficient model for mapping the landslide susceptibility in the Nam Dan commune, followed by RABHP (AUC = 0.919), BHP (AUC = 0.909), Dagging-HP (AUC = 0.897), Decorate-HP (AUC = 0.865), and the single HP model (AUC = 0.856), respectively. The novel ensemble models proposed for the Nam Dan commune and the resultant susceptibility maps can aid land-use planners in the development of efficient mitigation strategies in response to destructive landslides. Keywords: AdaBoost; Bagging; Dagging; Decorate; Real AdaBoost; ensemble modeling; machine learning
Audience Academic
Author Minh, Duc Dao
Nguyen, Duc Anh
Pham, Binh Thai
Al-Ansari, Nadhir
Le, Hiep Van
Jaafari, Abolfazl
Prakash, Indra
Tran, Quoc Cuong
Van, Duc Tung
Minh, Duc Do
Tran, Trung Hieu
Ho, Lanh Si
Nguyen, Duy Huu
Author_xml – sequence: 1
  givenname: Quoc Cuong
  orcidid: 0000-0001-7472-2151
  surname: Tran
  fullname: Tran, Quoc Cuong
– sequence: 2
  givenname: Duc Do
  surname: Minh
  fullname: Minh, Duc Do
– sequence: 3
  givenname: Abolfazl
  orcidid: 0000-0002-3441-6560
  surname: Jaafari
  fullname: Jaafari, Abolfazl
– sequence: 4
  givenname: Nadhir
  orcidid: 0000-0002-6790-2653
  surname: Al-Ansari
  fullname: Al-Ansari, Nadhir
– sequence: 5
  givenname: Duc Dao
  surname: Minh
  fullname: Minh, Duc Dao
– sequence: 6
  givenname: Duc Tung
  surname: Van
  fullname: Van, Duc Tung
– sequence: 7
  givenname: Duc Anh
  surname: Nguyen
  fullname: Nguyen, Duc Anh
– sequence: 8
  givenname: Trung Hieu
  surname: Tran
  fullname: Tran, Trung Hieu
– sequence: 9
  givenname: Lanh Si
  surname: Ho
  fullname: Ho, Lanh Si
– sequence: 10
  givenname: Duy Huu
  surname: Nguyen
  fullname: Nguyen, Duy Huu
– sequence: 11
  givenname: Indra
  orcidid: 0000-0002-4309-0187
  surname: Prakash
  fullname: Prakash, Indra
– sequence: 12
  givenname: Hiep Van
  surname: Le
  fullname: Le, Hiep Van
– sequence: 13
  givenname: Binh Thai
  orcidid: 0000-0001-9707-840X
  surname: Pham
  fullname: Pham, Binh Thai
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-79019$$DView record from Swedish Publication Index
BookMark eNptkV9PHCEUxSeNTWrVp34B3usqDMsw9G262mqy_kna-jph4LJiGJgAq9l--qLTNLYphFxyc87v5ua8r_Z88FBVHwg-oVTgUzlNBBNCOcFvqv0a82ZBl4Tvvfq_q45SesDlCEJbgvern9fhERw69wnGwQFaS6-TsxrQbQRtVbaPgK6CBpfQZ5lAo-BRvgd0sZsgTnaChDq3CdHm-_ET6tCqiNC3vNU7ZGfltRzRWXmrMI5bD8fozkL2cjys3hrpEhz9rgfVjy_n31cXi_XN18tVt16oskpeDAJTqhUXgmvMQNSNVIoTwyk2QtK6XWIhagZcN6YxwLDhS0aFalqjocUNPaguZ64O8qGfoh1l3PVB2v6lEeKmlzFb5aBXpq4NxawFwpcAcpCqboCxgUOrB4ML63hmpSeYtsNftDN7173QXN72XGAiivxklm9koVtvQo5SlathtKrEZ2zpdw0tS7SMkWL4OBtUDClFMH8mENw_p9y_SrmoyT9qZbPMNvgyxrr_en4BQfur-g
CitedBy_id crossref_primary_10_1007_s11069_024_06844_2
crossref_primary_10_3390_su14084668
crossref_primary_10_1016_j_asr_2024_03_038
crossref_primary_10_1016_j_pce_2022_103272
crossref_primary_10_1007_s12145_023_01182_6
crossref_primary_10_1007_s12145_022_00925_1
crossref_primary_10_1029_2023EA003338
crossref_primary_10_1016_j_pce_2022_103235
crossref_primary_10_1007_s12145_023_01144_y
crossref_primary_10_3390_sym12121954
crossref_primary_10_3389_fenvs_2022_897254
crossref_primary_10_1016_j_jhydrol_2021_126500
crossref_primary_10_1080_17538947_2020_1860145
crossref_primary_10_1007_s10064_022_02657_4
crossref_primary_10_17491_jgsi_2024_174002
crossref_primary_10_1080_10106049_2021_1914746
crossref_primary_10_1016_j_gsf_2020_11_003
crossref_primary_10_1016_j_pce_2024_103563
crossref_primary_10_3390_rs13224515
crossref_primary_10_1016_j_catena_2020_104805
crossref_primary_10_1016_j_cageo_2022_105242
crossref_primary_10_1155_2021_9934732
crossref_primary_10_1007_s11269_023_03684_w
crossref_primary_10_1016_j_pce_2024_103741
crossref_primary_10_32604_cmes_2024_056576
crossref_primary_10_1016_j_pce_2023_103503
crossref_primary_10_1088_1755_1315_731_1_012028
crossref_primary_10_1016_j_heliyon_2024_e25259
crossref_primary_10_1007_s12145_024_01587_x
crossref_primary_10_1080_10106049_2020_1837262
crossref_primary_10_3389_feart_2022_1057796
crossref_primary_10_1007_s12524_024_02055_1
crossref_primary_10_1016_j_gsf_2020_09_007
crossref_primary_10_1007_s40098_024_01032_2
crossref_primary_10_3390_su13115877
crossref_primary_10_1080_10106049_2022_2087751
crossref_primary_10_3390_w13020241
crossref_primary_10_1007_s11356_022_24660_8
crossref_primary_10_1007_s12517_021_09005_y
crossref_primary_10_1007_s11269_021_02957_6
crossref_primary_10_1016_j_gsf_2021_101154
crossref_primary_10_1007_s40808_022_01384_9
crossref_primary_10_1016_j_ejrh_2021_100848
crossref_primary_10_1080_10106049_2022_2136268
Cites_doi 10.1016/j.earscirev.2019.03.019
10.17485/ijst/2018/v11i12/99745
10.1007/s12665-016-6374-y
10.1080/10106049.2018.1499820
10.15625/0866-7187/42/3/14952
10.1007/s10661-019-7362-y
10.1186/1471-2105-13-139
10.1080/03610918.2011.589732
10.3390/app10072469
10.1016/j.earscirev.2018.02.013
10.3390/f10020157
10.1007/s10346-016-0711-9
10.1016/j.scitotenv.2018.01.266
10.3390/app8122540
10.1016/j.ecoinf.2017.12.006
10.1016/j.catena.2013.11.014
10.1007/s10346-015-0657-3
10.1007/s10064-017-1034-3
10.1016/j.scitotenv.2018.11.235
10.1080/2150704X.2020.1716409
10.1007/s12665-016-5919-4
10.9790/0661-0142732
10.3390/app10010016
10.1016/j.envsoft.2016.06.020
10.3390/rs11080931
10.1007/3-540-59119-2_166
10.1016/j.geomorph.2018.04.010
10.1023/A:1022631118932
10.1007/s12665-017-7207-3
10.1130/G33217.1
10.1016/j.asoc.2010.06.012
10.3390/e21020106
10.1016/j.cageo.2012.08.023
10.1023/A:1007614523901
10.1007/s12665-019-8562-z
10.3390/app10031107
10.1007/s10064-018-1259-9
10.1016/j.gsf.2019.03.009
10.1016/j.catena.2016.03.028
10.1007/s12665-017-6839-7
10.3390/su10103376
10.1016/B978-0-12-815998-9.00017-8
10.1016/j.envsoft.2017.06.012
10.1007/978-3-540-69970-5_31
10.1016/j.landusepol.2015.04.010
10.1007/s13137-014-0062-4
10.1002/ldr.3255
10.1016/j.jenvman.2019.06.102
10.1016/j.catena.2016.09.007
10.3390/ijerph17072473
10.1007/s10706-017-0264-2
10.3390/e20110884
10.3390/su11247118
10.1016/j.catena.2018.01.005
10.1016/j.catena.2018.12.033
10.1016/j.inffus.2004.04.001
10.3390/f10090743
10.3837/tiis.2013.11.010
10.3390/sym12030325
10.3390/f11040421
10.1016/j.chemolab.2013.08.003
10.1080/19475705.2017.1401560
10.1007/s12145-018-0354-6
10.20944/preprints201608.0032.v1
10.5194/nhess-13-2815-2013
10.1145/1656274.1656278
10.3390/app10062039
10.1016/j.agrformet.2018.12.015
10.1007/s12665-016-5400-4
10.3390/s18082464
10.1007/s12665-017-6981-2
10.1016/j.eswa.2011.01.042
10.1016/j.jenvman.2018.03.089
10.1007/s10346-015-0576-3
10.1080/19475705.2010.532975
10.1007/s10064-018-1256-z
10.1016/j.geomorph.2015.06.001
10.1016/j.catena.2018.01.012
10.1007/s10346-014-0466-0
10.3390/s19163590
10.1007/s12040-016-0686-x
10.1007/978-3-319-77377-3_13
10.1080/10106049.2017.1404143
10.1080/10286608.2019.1568418
10.1007/s10064-018-1401-8
10.1016/j.scitotenv.2019.01.221
10.1007/BF00058655
10.3390/s18113777
10.1007/s11269-018-2102-6
10.1016/j.eswa.2016.06.005
10.1016/j.compag.2019.104929
10.1016/j.catena.2019.03.017
10.1080/10106049.2020.1737972
ContentType Journal Article
Copyright COPYRIGHT 2020 MDPI AG
Copyright_xml – notice: COPYRIGHT 2020 MDPI AG
DBID AAYXX
CITATION
ADTPV
AOWAS
D8T
ZZAVC
DOA
DOI 10.3390/app10113710
DatabaseName CrossRef
SwePub
SwePub Articles
SWEPUB Freely available online
SwePub Articles full text
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_cf22f3058e174eeabac26e55b7e8dbf0
oai_DiVA_org_ltu_79019
A638408551
10_3390_app10113710
GeographicLocations Vietnam
GeographicLocations_xml – name: Vietnam
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
PMFND
ADTPV
AOWAS
D8T
IPNFZ
RIG
ZZAVC
PUEGO
ID FETCH-LOGICAL-c371t-b9033dc7997d05e926acc71f730f9a328409925e7d6f6fe50f74539c68fde8063
IEDL.DBID DOA
ISSN 2076-3417
IngestDate Wed Aug 27 01:21:00 EDT 2025
Thu Aug 21 06:34:17 EDT 2025
Tue Jun 10 20:15:08 EDT 2025
Tue Jul 01 03:14:14 EDT 2025
Thu Apr 24 22:59:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c371t-b9033dc7997d05e926acc71f730f9a328409925e7d6f6fe50f74539c68fde8063
ORCID 0000-0002-6790-2653
0000-0001-7472-2151
0000-0002-4309-0187
0000-0001-9707-840X
0000-0002-3441-6560
OpenAccessLink https://doaj.org/article/cf22f3058e174eeabac26e55b7e8dbf0
ParticipantIDs doaj_primary_oai_doaj_org_article_cf22f3058e174eeabac26e55b7e8dbf0
swepub_primary_oai_DiVA_org_ltu_79019
gale_infotracacademiconefile_A638408551
crossref_primary_10_3390_app10113710
crossref_citationtrail_10_3390_app10113710
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationTitle Applied sciences
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Smusz (ref_68) 2013; 128
ref_94
ref_92
ref_91
Jaafari (ref_64) 2017; 38
ref_90
ref_13
ref_12
Azareh (ref_19) 2019; 655
ref_98
ref_97
ref_96
Miraki (ref_47) 2019; 33
Onan (ref_81) 2016; 62
ref_18
Gong (ref_76) 2016; 84
ref_17
Shahabi (ref_8) 2014; 115
Sun (ref_72) 2011; 38
Intrieri (ref_3) 2019; 193
Jaafari (ref_40) 2018; 77
ref_20
Pradhan (ref_25) 2013; 51
ref_28
Jaafari (ref_15) 2019; 266
Jaafari (ref_95) 2015; 47
Unold (ref_69) 2011; 11
Pham (ref_36) 2018; 11
ref_71
ref_70
Hall (ref_51) 2009; 11
Pham (ref_38) 2017; 35
ref_79
ref_78
ref_77
ref_73
Abedini (ref_22) 2019; 78
Chen (ref_37) 2017; 8
Melville (ref_84) 2005; 6
ref_83
ref_82
ref_80
Jaafari (ref_24) 2019; 175
Nicu (ref_55) 2018; 314
ref_88
Catani (ref_65) 2013; 13
Can (ref_63) 2019; 78
Mousavi (ref_6) 2011; 2
Althuwaynee (ref_43) 2014; 11
Valavi (ref_34) 2018; 217
Sharma (ref_7) 2019; 78
ref_50
Wang (ref_26) 2019; 247
Abedini (ref_32) 2018; 34
ref_58
ref_56
Petley (ref_1) 2012; 40
ref_53
Pham (ref_93) 2018; 35
ref_52
Pham (ref_74) 2017; 149
Khosravi (ref_14) 2018; 627
Chen (ref_23) 2019; 78
Minaei (ref_5) 2019; 12
Shirzadi (ref_45) 2017; 76
Shirzadi (ref_39) 2019; 178
Schapire (ref_86) 1999; 37
Jaafari (ref_60) 2015; 6
Adhvaryu (ref_85) 2012; 1
Holte (ref_66) 1993; 11
ref_67
Van (ref_59) 2016; 13
Wang (ref_61) 2016; 125
Trigila (ref_54) 2015; 249
Dou (ref_27) 2019; 662
Chen (ref_11) 2019; 34
Liu (ref_87) 2011; 40
Razavizadeh (ref_9) 2017; 76
Rahmati (ref_21) 2019; 10
ref_33
ref_30
Pham (ref_57) 2015; 4
Ilia (ref_10) 2016; 13
Hong (ref_48) 2018; 163
Piciullo (ref_4) 2018; 179
ref_46
Chen (ref_35) 2019; 78
Chen (ref_29) 2018; 164
ref_44
Zhang (ref_62) 2016; 142
ref_42
ref_41
Taheri (ref_16) 2019; 30
Hong (ref_49) 2017; 76
Jaafari (ref_89) 2018; 43
ref_2
Breiman (ref_75) 1996; 24
Chapi (ref_31) 2017; 95
References_xml – volume: 193
  start-page: 333
  year: 2019
  ident: ref_3
  article-title: Forecasting the time of failure of landslides at slope-scale: A literature review
  publication-title: Earth Sci. Rev.
  doi: 10.1016/j.earscirev.2019.03.019
– volume: 11
  start-page: 1
  year: 2018
  ident: ref_36
  article-title: Machine learning methods of kernel logistic regression and classification and regression trees for landslide susceptibility assessment at part of Himalayan area, India
  publication-title: Indian J. Sci. Technol.
  doi: 10.17485/ijst/2018/v11i12/99745
– volume: 76
  start-page: 60
  year: 2017
  ident: ref_45
  article-title: Shallow landslide susceptibility assessment using a novel hybrid intelligence approach
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-016-6374-y
– ident: ref_80
– volume: 34
  start-page: 1427
  year: 2018
  ident: ref_32
  article-title: A novel hybrid approach of bayesian logistic regression and its ensembles for landslide susceptibility assessment
  publication-title: Geocarto Int.
  doi: 10.1080/10106049.2018.1499820
– ident: ref_33
  doi: 10.15625/0866-7187/42/3/14952
– ident: ref_92
  doi: 10.1007/s10661-019-7362-y
– ident: ref_70
  doi: 10.1186/1471-2105-13-139
– volume: 40
  start-page: 1548
  year: 2011
  ident: ref_87
  article-title: Three categories customer churn prediction based on the adjusted real adaboost
  publication-title: Commun. Stat. Simul. Comput.
  doi: 10.1080/03610918.2011.589732
– ident: ref_91
  doi: 10.3390/app10072469
– volume: 179
  start-page: 228
  year: 2018
  ident: ref_4
  article-title: Territorial early warning systems for rainfall-induced landslides
  publication-title: Earth Sci. Rev.
  doi: 10.1016/j.earscirev.2018.02.013
– ident: ref_42
  doi: 10.3390/f10020157
– ident: ref_53
  doi: 10.1007/s10346-016-0711-9
– volume: 627
  start-page: 744
  year: 2018
  ident: ref_14
  article-title: A comparative assessment of decision trees algorithms for flash flood susceptibility modeling at Haraz watershed, northern Iran
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.01.266
– ident: ref_78
  doi: 10.3390/app8122540
– volume: 43
  start-page: 200
  year: 2018
  ident: ref_89
  article-title: Wildfire spatial pattern analysis in the Zagros Mountains, Iran: A comparative study of decision tree based classifiers
  publication-title: Ecol. Inform.
  doi: 10.1016/j.ecoinf.2017.12.006
– volume: 115
  start-page: 55
  year: 2014
  ident: ref_8
  article-title: Landslide susceptibility mapping at central Zab basin, Iran: A comparison between analytical hierarchy process, frequency ratio and logistic regression models
  publication-title: Catena
  doi: 10.1016/j.catena.2013.11.014
– volume: 13
  start-page: 1285
  year: 2016
  ident: ref_59
  article-title: Landslide susceptibility mapping by combining the analytical hierarchy process and weighted linear combination methods: A case study in the upper Lo River catchment (Vietnam)
  publication-title: Landslides
  doi: 10.1007/s10346-015-0657-3
– volume: 78
  start-page: 89
  year: 2019
  ident: ref_63
  article-title: Landslide susceptibility mapping at Ovacık-Karabük (Turkey) using different artificial neural network models: Comparison of training algorithms
  publication-title: Bull. Eng. Geol. Environ.
  doi: 10.1007/s10064-017-1034-3
– volume: 655
  start-page: 684
  year: 2019
  ident: ref_19
  article-title: Modelling gully-erosion susceptibility in a semi-arid region, Iran: Investigation of applicability of certainty factor and maximum entropy models
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.11.235
– ident: ref_46
  doi: 10.1080/2150704X.2020.1716409
– ident: ref_73
  doi: 10.1007/s12665-016-5919-4
– volume: 1
  start-page: 27
  year: 2012
  ident: ref_85
  article-title: A review on diverse ensemble methods for classification
  publication-title: IOSR J. Comput. Eng.
  doi: 10.9790/0661-0142732
– ident: ref_83
  doi: 10.3390/app10010016
– volume: 84
  start-page: 290
  year: 2016
  ident: ref_76
  article-title: Prediction of daily maximum ozone threshold exceedances by preprocessing and ensemble artificial intelligence techniques: Case study of Hong Kong
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2016.06.020
– ident: ref_41
  doi: 10.3390/rs11080931
– ident: ref_71
  doi: 10.1007/3-540-59119-2_166
– volume: 314
  start-page: 27
  year: 2018
  ident: ref_55
  article-title: GIS-based evaluation of diagnostic areas in landslide susceptibility analysis of Bahluieț River Basin (Moldavian Plateau, NE Romania). Are Neolithic sites in danger?
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2018.04.010
– ident: ref_97
– volume: 11
  start-page: 63
  year: 1993
  ident: ref_66
  article-title: Very simple classification rules perform well on most commonly used datasets
  publication-title: Mach. Learn.
  doi: 10.1023/A:1022631118932
– volume: 77
  start-page: 42
  year: 2018
  ident: ref_40
  article-title: LiDAR-supported prediction of slope failures using an integrated ensemble weights-of-evidence and analytical hierarchy process
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-017-7207-3
– volume: 40
  start-page: 927
  year: 2012
  ident: ref_1
  article-title: Global patterns of loss of life from landslides
  publication-title: Geology
  doi: 10.1130/G33217.1
– volume: 38
  start-page: 107
  year: 2017
  ident: ref_64
  article-title: Spatial prediction of slope failures in support of forestry operations safety
  publication-title: Croat. J. For. Eng.
– volume: 11
  start-page: 1965
  year: 2011
  ident: ref_69
  article-title: Mining fuzzy rules using an Artificial Immune System with fuzzy partition learning
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2010.06.012
– ident: ref_77
  doi: 10.3390/e21020106
– volume: 51
  start-page: 350
  year: 2013
  ident: ref_25
  article-title: A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2012.08.023
– volume: 37
  start-page: 297
  year: 1999
  ident: ref_86
  article-title: Improved boosting algorithms using confidence-rated predictions
  publication-title: Mach. Learn.
  doi: 10.1023/A:1007614523901
– volume: 78
  start-page: 560
  year: 2019
  ident: ref_22
  article-title: A comparative study of support vector machine and logistic model tree classifiers for shallow landslide susceptibility modeling
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-019-8562-z
– ident: ref_67
– ident: ref_13
  doi: 10.3390/app10031107
– volume: 78
  start-page: 2431
  year: 2019
  ident: ref_7
  article-title: A comparative assessment of information value, frequency ratio and analytical hierarchy process models for landslide susceptibility mapping of a Himalayan watershed, India
  publication-title: Bull. Eng. Geol. Environ.
  doi: 10.1007/s10064-018-1259-9
– volume: 10
  start-page: 2167
  year: 2019
  ident: ref_21
  article-title: SWPT: An automated GIS-based tool for prioritization of sub-watersheds based on morphometric and topo-hydrological factors
  publication-title: Geosci. Front.
  doi: 10.1016/j.gsf.2019.03.009
– volume: 142
  start-page: 233
  year: 2016
  ident: ref_62
  article-title: Integration of the statistical index method and the analytic hierarchy process technique for the assessment of landslide susceptibility in Huizhou, China
  publication-title: Catena
  doi: 10.1016/j.catena.2016.03.028
– volume: 76
  start-page: 499
  year: 2017
  ident: ref_9
  article-title: Mapping landslide susceptibility with frequency ratio, statistical index, and weights of evidence models: A case study in northern Iran
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-017-6839-7
– ident: ref_18
  doi: 10.3390/su10103376
– ident: ref_17
  doi: 10.1016/B978-0-12-815998-9.00017-8
– volume: 95
  start-page: 229
  year: 2017
  ident: ref_31
  article-title: A novel hybrid artificial intelligence approach for flood susceptibility assessment
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2017.06.012
– ident: ref_2
  doi: 10.1007/978-3-540-69970-5_31
– volume: 47
  start-page: 198
  year: 2015
  ident: ref_95
  article-title: Planning road networks in landslide-prone areas: A case study from the northern forests of Iran
  publication-title: Land Use Policy
  doi: 10.1016/j.landusepol.2015.04.010
– volume: 6
  start-page: 343
  year: 2015
  ident: ref_60
  article-title: Modeling erosion and sediment delivery from unpaved roads in the north mountainous forest of Iran
  publication-title: GEM Int. J. Geomath.
  doi: 10.1007/s13137-014-0062-4
– volume: 30
  start-page: 730
  year: 2019
  ident: ref_16
  article-title: Sinkhole susceptibility mapping: A comparison between Bayes-based machine learning algorithms
  publication-title: Land Degrad. Dev.
  doi: 10.1002/ldr.3255
– volume: 247
  start-page: 712
  year: 2019
  ident: ref_26
  article-title: Flood susceptibility mapping in dingnan county (China) using adaptive neuro-fuzzy inference system with biogeography based optimization and imperialistic competitive algorithm
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2019.06.102
– volume: 149
  start-page: 52
  year: 2017
  ident: ref_74
  article-title: Hybrid integration of Multilayer Perceptron Neural Networks and machine learning ensembles for landslide susceptibility assessment at Himalayan area (India) using GIS
  publication-title: Catena
  doi: 10.1016/j.catena.2016.09.007
– ident: ref_94
  doi: 10.3390/ijerph17072473
– volume: 35
  start-page: 2597
  year: 2017
  ident: ref_38
  article-title: Landslide susceptibility assessment using bagging ensemble based alternating decision trees, logistic regression and J48 decision trees methods: A comparative study
  publication-title: Geotech. Geol. Eng.
  doi: 10.1007/s10706-017-0264-2
– ident: ref_28
  doi: 10.3390/e20110884
– ident: ref_82
  doi: 10.3390/su11247118
– volume: 163
  start-page: 399
  year: 2018
  ident: ref_48
  article-title: Landslide susceptibility mapping using J48 Decision Tree with AdaBoost, Bagging and Rotation Forest ensembles in the Guangchang area (China)
  publication-title: Catena
  doi: 10.1016/j.catena.2018.01.005
– volume: 175
  start-page: 430
  year: 2019
  ident: ref_24
  article-title: Meta optimization of an adaptive neuro-fuzzy inference system with grey wolf optimizer and biogeography-based optimization algorithms for spatial prediction of landslide susceptibility
  publication-title: Catena
  doi: 10.1016/j.catena.2018.12.033
– volume: 6
  start-page: 99
  year: 2005
  ident: ref_84
  article-title: Creating diversity in ensembles using artificial data
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2004.04.001
– ident: ref_44
  doi: 10.3390/f10090743
– ident: ref_88
  doi: 10.3837/tiis.2013.11.010
– ident: ref_58
  doi: 10.3390/sym12030325
– ident: ref_79
  doi: 10.3390/f11040421
– volume: 4
  start-page: 338
  year: 2015
  ident: ref_57
  article-title: Landslide susceptibility assessment at a part of Uttarakhand Himalaya, India using GIS–based statistical approach of frequency ratio method
  publication-title: Int. J. Eng. Res. Technol.
– volume: 128
  start-page: 89
  year: 2013
  ident: ref_68
  article-title: A multidimensional analysis of machine learning methods performance in the classification of bioactive compounds
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2013.08.003
– volume: 8
  start-page: 1955
  year: 2017
  ident: ref_37
  article-title: A novel hybrid artificial intelligence approach based on the rotation forest ensemble and naïve Bayes tree classifiers for a landslide susceptibility assessment in Langao County, China
  publication-title: Geomat. Nat. Hazards Risk
  doi: 10.1080/19475705.2017.1401560
– volume: 12
  start-page: 1
  year: 2019
  ident: ref_5
  article-title: Big data in geohazard; pattern mining and large scale analysis of landslides in Iran
  publication-title: Earth Sci. Inform.
  doi: 10.1007/s12145-018-0354-6
– ident: ref_30
  doi: 10.20944/preprints201608.0032.v1
– volume: 13
  start-page: 2815
  year: 2013
  ident: ref_65
  article-title: Landslide susceptibility estimation by random forests technique: Sensitivity and scaling issues
  publication-title: Nat. Hazards Earth Syst. Sci.
  doi: 10.5194/nhess-13-2815-2013
– volume: 11
  start-page: 10
  year: 2009
  ident: ref_51
  article-title: The WEKA data mining software: An update
  publication-title: Acm Sigkdd Explor. Newsl.
  doi: 10.1145/1656274.1656278
– ident: ref_98
  doi: 10.3390/app10062039
– volume: 266
  start-page: 198
  year: 2019
  ident: ref_15
  article-title: Hybrid artificial intelligence models based on a neuro-fuzzy system and metaheuristic optimization algorithms for spatial prediction of wildfire probability
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2018.12.015
– ident: ref_12
  doi: 10.1007/s12665-016-5400-4
– ident: ref_20
  doi: 10.3390/s18082464
– volume: 76
  start-page: 652
  year: 2017
  ident: ref_49
  article-title: A novel hybrid integration model using support vector machines and random subspace for weather-triggered landslide susceptibility assessment in the Wuning area (China)
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-017-6981-2
– volume: 38
  start-page: 9305
  year: 2011
  ident: ref_72
  article-title: AdaBoost ensemble for financial distress prediction: An empirical comparison with data from Chinese listed companies
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.01.042
– volume: 217
  start-page: 1
  year: 2018
  ident: ref_34
  article-title: Novel forecasting approaches using combination of machine learning and statistical models for flood susceptibility mapping
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2018.03.089
– volume: 13
  start-page: 379
  year: 2016
  ident: ref_10
  article-title: Applying weight of evidence method and sensitivity analysis to produce a landslide susceptibility map
  publication-title: Landslides
  doi: 10.1007/s10346-015-0576-3
– volume: 2
  start-page: 33
  year: 2011
  ident: ref_6
  article-title: GIS-based spatial prediction of landslide susceptibility using logistic regression model
  publication-title: Geomat. Nat. Hazards Risk
  doi: 10.1080/19475705.2010.532975
– volume: 78
  start-page: 247
  year: 2019
  ident: ref_23
  article-title: Spatial prediction of landslide susceptibility using data mining-based kernel logistic regression, naive Bayes and RBFNetwork models for the Long County area (China)
  publication-title: Bull. Eng. Geol. Environ.
  doi: 10.1007/s10064-018-1256-z
– volume: 249
  start-page: 119
  year: 2015
  ident: ref_54
  article-title: Comparison of Logistic Regression and Random Forests techniques for shallow landslide susceptibility assessment in Giampilieri (NE Sicily, Italy)
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2015.06.001
– volume: 164
  start-page: 135
  year: 2018
  ident: ref_29
  article-title: GIS-based landslide susceptibility evaluation using a novel hybrid integration approach of bivariate statistical based random forest method
  publication-title: Catena
  doi: 10.1016/j.catena.2018.01.012
– volume: 11
  start-page: 1063
  year: 2014
  ident: ref_43
  article-title: A novel ensemble decision tree-based CHi-squared Automatic Interaction Detection (CHAID) and multivariate logistic regression models in landslide susceptibility mapping
  publication-title: Landslides
  doi: 10.1007/s10346-014-0466-0
– ident: ref_56
  doi: 10.3390/s19163590
– volume: 125
  start-page: 645
  year: 2016
  ident: ref_61
  article-title: A comparative study on the landslide susceptibility mapping using evidential belief function and weights of evidence models
  publication-title: J. Earth Syst. Sci.
  doi: 10.1007/s12040-016-0686-x
– ident: ref_52
  doi: 10.1007/978-3-319-77377-3_13
– volume: 34
  start-page: 348
  year: 2019
  ident: ref_11
  article-title: Landslide susceptibility assessment using evidential belief function, certainty factor and frequency ratio model at Baxie River basin, NW China
  publication-title: Geocarto Int.
  doi: 10.1080/10106049.2017.1404143
– volume: 35
  start-page: 139
  year: 2018
  ident: ref_93
  article-title: Landslide susceptibility modelling using different advanced decision trees methods
  publication-title: Civ. Eng. Environ. Syst.
  doi: 10.1080/10286608.2019.1568418
– volume: 78
  start-page: 4397
  year: 2019
  ident: ref_35
  article-title: Novel hybrid artificial intelligence approach of bivariate statistical-methods-based kernel logistic regression classifier for landslide susceptibility modeling
  publication-title: Bull. Eng. Geol. Environ.
  doi: 10.1007/s10064-018-1401-8
– volume: 662
  start-page: 332
  year: 2019
  ident: ref_27
  article-title: Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island, Japan
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.01.221
– volume: 24
  start-page: 123
  year: 1996
  ident: ref_75
  article-title: Bagging predictors
  publication-title: Mach. Learn.
  doi: 10.1007/BF00058655
– ident: ref_50
  doi: 10.3390/s18113777
– volume: 33
  start-page: 281
  year: 2019
  ident: ref_47
  article-title: Mapping Groundwater Potential Using a Novel Hybrid Intelligence Approach
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-018-2102-6
– volume: 62
  start-page: 1
  year: 2016
  ident: ref_81
  article-title: A multiobjective weighted voting ensemble classifier based on differential evolution algorithm for text sentiment classification
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.06.005
– ident: ref_96
  doi: 10.1016/j.compag.2019.104929
– volume: 178
  start-page: 172
  year: 2019
  ident: ref_39
  article-title: Uncertainties of prediction accuracy in shallow landslide modeling: Sample size and raster resolution
  publication-title: Catena
  doi: 10.1016/j.catena.2019.03.017
– ident: ref_90
  doi: 10.1080/10106049.2020.1737972
SSID ssj0000913810
Score 2.3629277
Snippet Development of landslide predictive models with strong prediction power has become a major focus of many researchers. This study describes the first...
SourceID doaj
swepub
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 3710
SubjectTerms AdaBoost
Algorithms
Bagging
Dagging
Dams
Decorate
ensemble modeling
Geoteknik
Landslides
Machine learning
Prediction theory
Real AdaBoost
Safety and security measures
Soil Mechanics
Vietnam
Title Novel Ensemble Landslide Predictive Models Based on the Hyperpipes Algorithm: A Case Study in the Nam Dam Commune, Vietnam
URI https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-79019
https://doaj.org/article/cf22f3058e174eeabac26e55b7e8dbf0
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQucAB0QJioVQ-FPEQEXk5sbll261WCFYVolVvkR_jEimbXe2mleDXM5OEVSohceGQSzSyHc94PF_s-YaxYydjn9g0DbyLEKCgvwtM4tAZRjo1oY1DSCnB-esim1-kn6_E1ajUF90J6-mB-4n7aH2MrYVCAsbOANpoG2cghMlBOuM7tI573ghMdT5YRURd1SfkJYjr6TwYrS9KcsqVHW1BHVP_zh_foQvttpizx-zREBvyoh_TPrsHzQF7OGIMPGD7w1rc8rcDYfS7J-zXYnULNZ81W1iaGvgXSt-tKwf8fEPnMOTROBU9q7d8iruW46uGY-DH5whCN-tqjc0V9fVqU7U_lp94wU9QiNMNw5-86iUXeslP8enzSeADv6ygbfTyKbs4m30_mQdDTYXA4qe3gVFhkjibK5W7UICKM21tHnlc6F7pJCa8p2IBuct85kGEPk9FomwmvQOJ8cwzttesGnjOuNBOOon4zWEYZqXQJlQAXlK2LNpFOmHv_0xzaQfCcap7UZcIPEgn5UgnE3a8E173PBt_F5uSvnYiRI7dvUCTKQeTKf9lMhP2hrRd0hLGAVk9ZCLgZxEZVlmgTyLiNxFN2OveIO50eFpdFl2HdXtT5hhQqRf_Y1gv2YOYwHz3i-eQ7bWbG3iFEU9rjtj96Wxx_u2oM_Lfiq8BXA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+Ensemble+Landslide+Predictive+Models+Based+on+the+Hyperpipes+Algorithm&rft.jtitle=Applied+sciences&rft.au=Tran%2C+Quoc+Cuong&rft.au=Minh%2C+Duc+Do&rft.au=Jaafari%2C+Abolfazl&rft.au=Al-Ansari%2C+Nadhir&rft.date=2020-06-01&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=10&rft.issue=11&rft_id=info:doi/10.3390%2Fapp10113710&rft.externalDocID=oai_DiVA_org_ltu_79019
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon