Novel Ensemble Landslide Predictive Models Based on the Hyperpipes Algorithm: A Case Study in the Nam Dam Commune, Vietnam
Development of landslide predictive models with strong prediction power has become a major focus of many researchers. This study describes the first application of the Hyperpipes (HP) algorithm for the development of the five novel ensemble models that combine the HP algorithm and the AdaBoost (AB),...
Saved in:
Published in | Applied sciences Vol. 10; no. 11; p. 3710 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
MDPI AG
01.06.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Development of landslide predictive models with strong prediction power has become a major focus of many researchers. This study describes the first application of the Hyperpipes (HP) algorithm for the development of the five novel ensemble models that combine the HP algorithm and the AdaBoost (AB), Bagging (B), Dagging, Decorate, and Real AdaBoost (RAB) ensemble techniques for mapping the spatial variability of landslide susceptibility in the Nam Dan commune, Ha Giang province, Vietnam. Information on 76 historical landslides and ten geo-environmental factors (slope degree, slope aspect, elevation, topographic wetness index, curvature, weathering crust, geology, river density, fault density, and distance from roads) were used for the construction of the training and validation datasets that are the prerequisites for building and testing the proposed models. Using different performance metrics (i.e., the area under the receiver operating characteristic curve (AUC), negative predictive value, positive predictive value, accuracy, sensitivity, specificity, root mean square error, and Kappa), we verified the proficiency of all five ensemble learning techniques in increasing the fitness and predictive powers of the base HP model. Based on the AUC values derived from the models, the ensemble ABHP model that yielded an AUC value of 0.922 was identified as the most efficient model for mapping the landslide susceptibility in the Nam Dan commune, followed by RABHP (AUC = 0.919), BHP (AUC = 0.909), Dagging-HP (AUC = 0.897), Decorate-HP (AUC = 0.865), and the single HP model (AUC = 0.856), respectively. The novel ensemble models proposed for the Nam Dan commune and the resultant susceptibility maps can aid land-use planners in the development of efficient mitigation strategies in response to destructive landslides. |
---|---|
AbstractList | Development of landslide predictive models with strong prediction power has become a major focus of many researchers. This study describes the first application of the Hyperpipes (HP) algorithm for the development of the five novel ensemble models that combine the HP algorithm and the AdaBoost (AB), Bagging (B), Dagging, Decorate, and Real AdaBoost (RAB) ensemble techniques for mapping the spatial variability of landslide susceptibility in the Nam Dan commune, Ha Giang province, Vietnam. Information on 76 historical landslides and ten geo-environmental factors (slope degree, slope aspect, elevation, topographic wetness index, curvature, weathering crust, geology, river density, fault density, and distance from roads) were used for the construction of the training and validation datasets that are the prerequisites for building and testing the proposed models. Using different performance metrics (i.e., the area under the receiver operating characteristic curve (AUC), negative predictive value, positive predictive value, accuracy, sensitivity, specificity, root mean square error, and Kappa), we verified the proficiency of all five ensemble learning techniques in increasing the fitness and predictive powers of the base HP model. Based on the AUC values derived from the models, the ensemble ABHP model that yielded an AUC value of 0.922 was identified as the most efficient model for mapping the landslide susceptibility in the Nam Dan commune, followed by RABHP (AUC = 0.919), BHP (AUC = 0.909), Dagging-HP (AUC = 0.897), Decorate-HP (AUC = 0.865), and the single HP model (AUC = 0.856), respectively. The novel ensemble models proposed for the Nam Dan commune and the resultant susceptibility maps can aid land-use planners in the development of efficient mitigation strategies in response to destructive landslides. Development of landslide predictive models with strong prediction power has become a major focus of many researchers. This study describes the first application of the Hyperpipes (HP) algorithm for the development of the five novel ensemble models that combine the HP algorithm and the AdaBoost (AB), Bagging (B), Dagging, Decorate, and Real AdaBoost (RAB) ensemble techniques for mapping the spatial variability of landslide susceptibility in the Nam Dan commune, Ha Giang province, Vietnam. Information on 76 historical landslides and ten geo-environmental factors (slope degree, slope aspect, elevation, topographic wetness index, curvature, weathering crust, geology, river density, fault density, and distance from roads) were used for the construction of the training and validation datasets that are the prerequisites for building and testing the proposed models. Using different performance metrics (i.e., the area under the receiver operating characteristic curve (AUC), negative predictive value, positive predictive value, accuracy, sensitivity, specificity, root mean square error, and Kappa), we verified the proficiency of all five ensemble learning techniques in increasing the fitness and predictive powers of the base HP model. Based on the AUC values derived from the models, the ensemble ABHP model that yielded an AUC value of 0.922 was identified as the most efficient model for mapping the landslide susceptibility in the Nam Dan commune, followed by RABHP (AUC = 0.919), BHP (AUC = 0.909), Dagging-HP (AUC = 0.897), Decorate-HP (AUC = 0.865), and the single HP model (AUC = 0.856), respectively. The novel ensemble models proposed for the Nam Dan commune and the resultant susceptibility maps can aid land-use planners in the development of efficient mitigation strategies in response to destructive landslides. Keywords: AdaBoost; Bagging; Dagging; Decorate; Real AdaBoost; ensemble modeling; machine learning |
Audience | Academic |
Author | Minh, Duc Dao Nguyen, Duc Anh Pham, Binh Thai Al-Ansari, Nadhir Le, Hiep Van Jaafari, Abolfazl Prakash, Indra Tran, Quoc Cuong Van, Duc Tung Minh, Duc Do Tran, Trung Hieu Ho, Lanh Si Nguyen, Duy Huu |
Author_xml | – sequence: 1 givenname: Quoc Cuong orcidid: 0000-0001-7472-2151 surname: Tran fullname: Tran, Quoc Cuong – sequence: 2 givenname: Duc Do surname: Minh fullname: Minh, Duc Do – sequence: 3 givenname: Abolfazl orcidid: 0000-0002-3441-6560 surname: Jaafari fullname: Jaafari, Abolfazl – sequence: 4 givenname: Nadhir orcidid: 0000-0002-6790-2653 surname: Al-Ansari fullname: Al-Ansari, Nadhir – sequence: 5 givenname: Duc Dao surname: Minh fullname: Minh, Duc Dao – sequence: 6 givenname: Duc Tung surname: Van fullname: Van, Duc Tung – sequence: 7 givenname: Duc Anh surname: Nguyen fullname: Nguyen, Duc Anh – sequence: 8 givenname: Trung Hieu surname: Tran fullname: Tran, Trung Hieu – sequence: 9 givenname: Lanh Si surname: Ho fullname: Ho, Lanh Si – sequence: 10 givenname: Duy Huu surname: Nguyen fullname: Nguyen, Duy Huu – sequence: 11 givenname: Indra orcidid: 0000-0002-4309-0187 surname: Prakash fullname: Prakash, Indra – sequence: 12 givenname: Hiep Van surname: Le fullname: Le, Hiep Van – sequence: 13 givenname: Binh Thai orcidid: 0000-0001-9707-840X surname: Pham fullname: Pham, Binh Thai |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-79019$$DView record from Swedish Publication Index |
BookMark | eNptkV9PHCEUxSeNTWrVp34B3usqDMsw9G262mqy_kna-jph4LJiGJgAq9l--qLTNLYphFxyc87v5ua8r_Z88FBVHwg-oVTgUzlNBBNCOcFvqv0a82ZBl4Tvvfq_q45SesDlCEJbgvern9fhERw69wnGwQFaS6-TsxrQbQRtVbaPgK6CBpfQZ5lAo-BRvgd0sZsgTnaChDq3CdHm-_ET6tCqiNC3vNU7ZGfltRzRWXmrMI5bD8fozkL2cjys3hrpEhz9rgfVjy_n31cXi_XN18tVt16oskpeDAJTqhUXgmvMQNSNVIoTwyk2QtK6XWIhagZcN6YxwLDhS0aFalqjocUNPaguZ64O8qGfoh1l3PVB2v6lEeKmlzFb5aBXpq4NxawFwpcAcpCqboCxgUOrB4ML63hmpSeYtsNftDN7173QXN72XGAiivxklm9koVtvQo5SlathtKrEZ2zpdw0tS7SMkWL4OBtUDClFMH8mENw_p9y_SrmoyT9qZbPMNvgyxrr_en4BQfur-g |
CitedBy_id | crossref_primary_10_1007_s11069_024_06844_2 crossref_primary_10_3390_su14084668 crossref_primary_10_1016_j_asr_2024_03_038 crossref_primary_10_1016_j_pce_2022_103272 crossref_primary_10_1007_s12145_023_01182_6 crossref_primary_10_1007_s12145_022_00925_1 crossref_primary_10_1029_2023EA003338 crossref_primary_10_1016_j_pce_2022_103235 crossref_primary_10_1007_s12145_023_01144_y crossref_primary_10_3390_sym12121954 crossref_primary_10_3389_fenvs_2022_897254 crossref_primary_10_1016_j_jhydrol_2021_126500 crossref_primary_10_1080_17538947_2020_1860145 crossref_primary_10_1007_s10064_022_02657_4 crossref_primary_10_17491_jgsi_2024_174002 crossref_primary_10_1080_10106049_2021_1914746 crossref_primary_10_1016_j_gsf_2020_11_003 crossref_primary_10_1016_j_pce_2024_103563 crossref_primary_10_3390_rs13224515 crossref_primary_10_1016_j_catena_2020_104805 crossref_primary_10_1016_j_cageo_2022_105242 crossref_primary_10_1155_2021_9934732 crossref_primary_10_1007_s11269_023_03684_w crossref_primary_10_1016_j_pce_2024_103741 crossref_primary_10_32604_cmes_2024_056576 crossref_primary_10_1016_j_pce_2023_103503 crossref_primary_10_1088_1755_1315_731_1_012028 crossref_primary_10_1016_j_heliyon_2024_e25259 crossref_primary_10_1007_s12145_024_01587_x crossref_primary_10_1080_10106049_2020_1837262 crossref_primary_10_3389_feart_2022_1057796 crossref_primary_10_1007_s12524_024_02055_1 crossref_primary_10_1016_j_gsf_2020_09_007 crossref_primary_10_1007_s40098_024_01032_2 crossref_primary_10_3390_su13115877 crossref_primary_10_1080_10106049_2022_2087751 crossref_primary_10_3390_w13020241 crossref_primary_10_1007_s11356_022_24660_8 crossref_primary_10_1007_s12517_021_09005_y crossref_primary_10_1007_s11269_021_02957_6 crossref_primary_10_1016_j_gsf_2021_101154 crossref_primary_10_1007_s40808_022_01384_9 crossref_primary_10_1016_j_ejrh_2021_100848 crossref_primary_10_1080_10106049_2022_2136268 |
Cites_doi | 10.1016/j.earscirev.2019.03.019 10.17485/ijst/2018/v11i12/99745 10.1007/s12665-016-6374-y 10.1080/10106049.2018.1499820 10.15625/0866-7187/42/3/14952 10.1007/s10661-019-7362-y 10.1186/1471-2105-13-139 10.1080/03610918.2011.589732 10.3390/app10072469 10.1016/j.earscirev.2018.02.013 10.3390/f10020157 10.1007/s10346-016-0711-9 10.1016/j.scitotenv.2018.01.266 10.3390/app8122540 10.1016/j.ecoinf.2017.12.006 10.1016/j.catena.2013.11.014 10.1007/s10346-015-0657-3 10.1007/s10064-017-1034-3 10.1016/j.scitotenv.2018.11.235 10.1080/2150704X.2020.1716409 10.1007/s12665-016-5919-4 10.9790/0661-0142732 10.3390/app10010016 10.1016/j.envsoft.2016.06.020 10.3390/rs11080931 10.1007/3-540-59119-2_166 10.1016/j.geomorph.2018.04.010 10.1023/A:1022631118932 10.1007/s12665-017-7207-3 10.1130/G33217.1 10.1016/j.asoc.2010.06.012 10.3390/e21020106 10.1016/j.cageo.2012.08.023 10.1023/A:1007614523901 10.1007/s12665-019-8562-z 10.3390/app10031107 10.1007/s10064-018-1259-9 10.1016/j.gsf.2019.03.009 10.1016/j.catena.2016.03.028 10.1007/s12665-017-6839-7 10.3390/su10103376 10.1016/B978-0-12-815998-9.00017-8 10.1016/j.envsoft.2017.06.012 10.1007/978-3-540-69970-5_31 10.1016/j.landusepol.2015.04.010 10.1007/s13137-014-0062-4 10.1002/ldr.3255 10.1016/j.jenvman.2019.06.102 10.1016/j.catena.2016.09.007 10.3390/ijerph17072473 10.1007/s10706-017-0264-2 10.3390/e20110884 10.3390/su11247118 10.1016/j.catena.2018.01.005 10.1016/j.catena.2018.12.033 10.1016/j.inffus.2004.04.001 10.3390/f10090743 10.3837/tiis.2013.11.010 10.3390/sym12030325 10.3390/f11040421 10.1016/j.chemolab.2013.08.003 10.1080/19475705.2017.1401560 10.1007/s12145-018-0354-6 10.20944/preprints201608.0032.v1 10.5194/nhess-13-2815-2013 10.1145/1656274.1656278 10.3390/app10062039 10.1016/j.agrformet.2018.12.015 10.1007/s12665-016-5400-4 10.3390/s18082464 10.1007/s12665-017-6981-2 10.1016/j.eswa.2011.01.042 10.1016/j.jenvman.2018.03.089 10.1007/s10346-015-0576-3 10.1080/19475705.2010.532975 10.1007/s10064-018-1256-z 10.1016/j.geomorph.2015.06.001 10.1016/j.catena.2018.01.012 10.1007/s10346-014-0466-0 10.3390/s19163590 10.1007/s12040-016-0686-x 10.1007/978-3-319-77377-3_13 10.1080/10106049.2017.1404143 10.1080/10286608.2019.1568418 10.1007/s10064-018-1401-8 10.1016/j.scitotenv.2019.01.221 10.1007/BF00058655 10.3390/s18113777 10.1007/s11269-018-2102-6 10.1016/j.eswa.2016.06.005 10.1016/j.compag.2019.104929 10.1016/j.catena.2019.03.017 10.1080/10106049.2020.1737972 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2020 MDPI AG |
Copyright_xml | – notice: COPYRIGHT 2020 MDPI AG |
DBID | AAYXX CITATION ADTPV AOWAS D8T ZZAVC DOA |
DOI | 10.3390/app10113710 |
DatabaseName | CrossRef SwePub SwePub Articles SWEPUB Freely available online SwePub Articles full text DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 2076-3417 |
ExternalDocumentID | oai_doaj_org_article_cf22f3058e174eeabac26e55b7e8dbf0 oai_DiVA_org_ltu_79019 A638408551 10_3390_app10113710 |
GeographicLocations | Vietnam |
GeographicLocations_xml | – name: Vietnam |
GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS PMFND ADTPV AOWAS D8T IPNFZ RIG ZZAVC PUEGO |
ID | FETCH-LOGICAL-c371t-b9033dc7997d05e926acc71f730f9a328409925e7d6f6fe50f74539c68fde8063 |
IEDL.DBID | DOA |
ISSN | 2076-3417 |
IngestDate | Wed Aug 27 01:21:00 EDT 2025 Thu Aug 21 06:34:17 EDT 2025 Tue Jun 10 20:15:08 EDT 2025 Tue Jul 01 03:14:14 EDT 2025 Thu Apr 24 22:59:24 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c371t-b9033dc7997d05e926acc71f730f9a328409925e7d6f6fe50f74539c68fde8063 |
ORCID | 0000-0002-6790-2653 0000-0001-7472-2151 0000-0002-4309-0187 0000-0001-9707-840X 0000-0002-3441-6560 |
OpenAccessLink | https://doaj.org/article/cf22f3058e174eeabac26e55b7e8dbf0 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_cf22f3058e174eeabac26e55b7e8dbf0 swepub_primary_oai_DiVA_org_ltu_79019 gale_infotracacademiconefile_A638408551 crossref_primary_10_3390_app10113710 crossref_citationtrail_10_3390_app10113710 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-06-01 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Applied sciences |
PublicationYear | 2020 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Smusz (ref_68) 2013; 128 ref_94 ref_92 ref_91 Jaafari (ref_64) 2017; 38 ref_90 ref_13 ref_12 Azareh (ref_19) 2019; 655 ref_98 ref_97 ref_96 Miraki (ref_47) 2019; 33 Onan (ref_81) 2016; 62 ref_18 Gong (ref_76) 2016; 84 ref_17 Shahabi (ref_8) 2014; 115 Sun (ref_72) 2011; 38 Intrieri (ref_3) 2019; 193 Jaafari (ref_40) 2018; 77 ref_20 Pradhan (ref_25) 2013; 51 ref_28 Jaafari (ref_15) 2019; 266 Jaafari (ref_95) 2015; 47 Unold (ref_69) 2011; 11 Pham (ref_36) 2018; 11 ref_71 ref_70 Hall (ref_51) 2009; 11 Pham (ref_38) 2017; 35 ref_79 ref_78 ref_77 ref_73 Abedini (ref_22) 2019; 78 Chen (ref_37) 2017; 8 Melville (ref_84) 2005; 6 ref_83 ref_82 ref_80 Jaafari (ref_24) 2019; 175 Nicu (ref_55) 2018; 314 ref_88 Catani (ref_65) 2013; 13 Can (ref_63) 2019; 78 Mousavi (ref_6) 2011; 2 Althuwaynee (ref_43) 2014; 11 Valavi (ref_34) 2018; 217 Sharma (ref_7) 2019; 78 ref_50 Wang (ref_26) 2019; 247 Abedini (ref_32) 2018; 34 ref_58 ref_56 Petley (ref_1) 2012; 40 ref_53 Pham (ref_93) 2018; 35 ref_52 Pham (ref_74) 2017; 149 Khosravi (ref_14) 2018; 627 Chen (ref_23) 2019; 78 Minaei (ref_5) 2019; 12 Shirzadi (ref_45) 2017; 76 Shirzadi (ref_39) 2019; 178 Schapire (ref_86) 1999; 37 Jaafari (ref_60) 2015; 6 Adhvaryu (ref_85) 2012; 1 Holte (ref_66) 1993; 11 ref_67 Van (ref_59) 2016; 13 Wang (ref_61) 2016; 125 Trigila (ref_54) 2015; 249 Dou (ref_27) 2019; 662 Chen (ref_11) 2019; 34 Liu (ref_87) 2011; 40 Razavizadeh (ref_9) 2017; 76 Rahmati (ref_21) 2019; 10 ref_33 ref_30 Pham (ref_57) 2015; 4 Ilia (ref_10) 2016; 13 Hong (ref_48) 2018; 163 Piciullo (ref_4) 2018; 179 ref_46 Chen (ref_35) 2019; 78 Chen (ref_29) 2018; 164 ref_44 Zhang (ref_62) 2016; 142 ref_42 ref_41 Taheri (ref_16) 2019; 30 Hong (ref_49) 2017; 76 Jaafari (ref_89) 2018; 43 ref_2 Breiman (ref_75) 1996; 24 Chapi (ref_31) 2017; 95 |
References_xml | – volume: 193 start-page: 333 year: 2019 ident: ref_3 article-title: Forecasting the time of failure of landslides at slope-scale: A literature review publication-title: Earth Sci. Rev. doi: 10.1016/j.earscirev.2019.03.019 – volume: 11 start-page: 1 year: 2018 ident: ref_36 article-title: Machine learning methods of kernel logistic regression and classification and regression trees for landslide susceptibility assessment at part of Himalayan area, India publication-title: Indian J. Sci. Technol. doi: 10.17485/ijst/2018/v11i12/99745 – volume: 76 start-page: 60 year: 2017 ident: ref_45 article-title: Shallow landslide susceptibility assessment using a novel hybrid intelligence approach publication-title: Environ. Earth Sci. doi: 10.1007/s12665-016-6374-y – ident: ref_80 – volume: 34 start-page: 1427 year: 2018 ident: ref_32 article-title: A novel hybrid approach of bayesian logistic regression and its ensembles for landslide susceptibility assessment publication-title: Geocarto Int. doi: 10.1080/10106049.2018.1499820 – ident: ref_33 doi: 10.15625/0866-7187/42/3/14952 – ident: ref_92 doi: 10.1007/s10661-019-7362-y – ident: ref_70 doi: 10.1186/1471-2105-13-139 – volume: 40 start-page: 1548 year: 2011 ident: ref_87 article-title: Three categories customer churn prediction based on the adjusted real adaboost publication-title: Commun. Stat. Simul. Comput. doi: 10.1080/03610918.2011.589732 – ident: ref_91 doi: 10.3390/app10072469 – volume: 179 start-page: 228 year: 2018 ident: ref_4 article-title: Territorial early warning systems for rainfall-induced landslides publication-title: Earth Sci. Rev. doi: 10.1016/j.earscirev.2018.02.013 – ident: ref_42 doi: 10.3390/f10020157 – ident: ref_53 doi: 10.1007/s10346-016-0711-9 – volume: 627 start-page: 744 year: 2018 ident: ref_14 article-title: A comparative assessment of decision trees algorithms for flash flood susceptibility modeling at Haraz watershed, northern Iran publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.01.266 – ident: ref_78 doi: 10.3390/app8122540 – volume: 43 start-page: 200 year: 2018 ident: ref_89 article-title: Wildfire spatial pattern analysis in the Zagros Mountains, Iran: A comparative study of decision tree based classifiers publication-title: Ecol. Inform. doi: 10.1016/j.ecoinf.2017.12.006 – volume: 115 start-page: 55 year: 2014 ident: ref_8 article-title: Landslide susceptibility mapping at central Zab basin, Iran: A comparison between analytical hierarchy process, frequency ratio and logistic regression models publication-title: Catena doi: 10.1016/j.catena.2013.11.014 – volume: 13 start-page: 1285 year: 2016 ident: ref_59 article-title: Landslide susceptibility mapping by combining the analytical hierarchy process and weighted linear combination methods: A case study in the upper Lo River catchment (Vietnam) publication-title: Landslides doi: 10.1007/s10346-015-0657-3 – volume: 78 start-page: 89 year: 2019 ident: ref_63 article-title: Landslide susceptibility mapping at Ovacık-Karabük (Turkey) using different artificial neural network models: Comparison of training algorithms publication-title: Bull. Eng. Geol. Environ. doi: 10.1007/s10064-017-1034-3 – volume: 655 start-page: 684 year: 2019 ident: ref_19 article-title: Modelling gully-erosion susceptibility in a semi-arid region, Iran: Investigation of applicability of certainty factor and maximum entropy models publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.11.235 – ident: ref_46 doi: 10.1080/2150704X.2020.1716409 – ident: ref_73 doi: 10.1007/s12665-016-5919-4 – volume: 1 start-page: 27 year: 2012 ident: ref_85 article-title: A review on diverse ensemble methods for classification publication-title: IOSR J. Comput. Eng. doi: 10.9790/0661-0142732 – ident: ref_83 doi: 10.3390/app10010016 – volume: 84 start-page: 290 year: 2016 ident: ref_76 article-title: Prediction of daily maximum ozone threshold exceedances by preprocessing and ensemble artificial intelligence techniques: Case study of Hong Kong publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2016.06.020 – ident: ref_41 doi: 10.3390/rs11080931 – ident: ref_71 doi: 10.1007/3-540-59119-2_166 – volume: 314 start-page: 27 year: 2018 ident: ref_55 article-title: GIS-based evaluation of diagnostic areas in landslide susceptibility analysis of Bahluieț River Basin (Moldavian Plateau, NE Romania). Are Neolithic sites in danger? publication-title: Geomorphology doi: 10.1016/j.geomorph.2018.04.010 – ident: ref_97 – volume: 11 start-page: 63 year: 1993 ident: ref_66 article-title: Very simple classification rules perform well on most commonly used datasets publication-title: Mach. Learn. doi: 10.1023/A:1022631118932 – volume: 77 start-page: 42 year: 2018 ident: ref_40 article-title: LiDAR-supported prediction of slope failures using an integrated ensemble weights-of-evidence and analytical hierarchy process publication-title: Environ. Earth Sci. doi: 10.1007/s12665-017-7207-3 – volume: 40 start-page: 927 year: 2012 ident: ref_1 article-title: Global patterns of loss of life from landslides publication-title: Geology doi: 10.1130/G33217.1 – volume: 38 start-page: 107 year: 2017 ident: ref_64 article-title: Spatial prediction of slope failures in support of forestry operations safety publication-title: Croat. J. For. Eng. – volume: 11 start-page: 1965 year: 2011 ident: ref_69 article-title: Mining fuzzy rules using an Artificial Immune System with fuzzy partition learning publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2010.06.012 – ident: ref_77 doi: 10.3390/e21020106 – volume: 51 start-page: 350 year: 2013 ident: ref_25 article-title: A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2012.08.023 – volume: 37 start-page: 297 year: 1999 ident: ref_86 article-title: Improved boosting algorithms using confidence-rated predictions publication-title: Mach. Learn. doi: 10.1023/A:1007614523901 – volume: 78 start-page: 560 year: 2019 ident: ref_22 article-title: A comparative study of support vector machine and logistic model tree classifiers for shallow landslide susceptibility modeling publication-title: Environ. Earth Sci. doi: 10.1007/s12665-019-8562-z – ident: ref_67 – ident: ref_13 doi: 10.3390/app10031107 – volume: 78 start-page: 2431 year: 2019 ident: ref_7 article-title: A comparative assessment of information value, frequency ratio and analytical hierarchy process models for landslide susceptibility mapping of a Himalayan watershed, India publication-title: Bull. Eng. Geol. Environ. doi: 10.1007/s10064-018-1259-9 – volume: 10 start-page: 2167 year: 2019 ident: ref_21 article-title: SWPT: An automated GIS-based tool for prioritization of sub-watersheds based on morphometric and topo-hydrological factors publication-title: Geosci. Front. doi: 10.1016/j.gsf.2019.03.009 – volume: 142 start-page: 233 year: 2016 ident: ref_62 article-title: Integration of the statistical index method and the analytic hierarchy process technique for the assessment of landslide susceptibility in Huizhou, China publication-title: Catena doi: 10.1016/j.catena.2016.03.028 – volume: 76 start-page: 499 year: 2017 ident: ref_9 article-title: Mapping landslide susceptibility with frequency ratio, statistical index, and weights of evidence models: A case study in northern Iran publication-title: Environ. Earth Sci. doi: 10.1007/s12665-017-6839-7 – ident: ref_18 doi: 10.3390/su10103376 – ident: ref_17 doi: 10.1016/B978-0-12-815998-9.00017-8 – volume: 95 start-page: 229 year: 2017 ident: ref_31 article-title: A novel hybrid artificial intelligence approach for flood susceptibility assessment publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2017.06.012 – ident: ref_2 doi: 10.1007/978-3-540-69970-5_31 – volume: 47 start-page: 198 year: 2015 ident: ref_95 article-title: Planning road networks in landslide-prone areas: A case study from the northern forests of Iran publication-title: Land Use Policy doi: 10.1016/j.landusepol.2015.04.010 – volume: 6 start-page: 343 year: 2015 ident: ref_60 article-title: Modeling erosion and sediment delivery from unpaved roads in the north mountainous forest of Iran publication-title: GEM Int. J. Geomath. doi: 10.1007/s13137-014-0062-4 – volume: 30 start-page: 730 year: 2019 ident: ref_16 article-title: Sinkhole susceptibility mapping: A comparison between Bayes-based machine learning algorithms publication-title: Land Degrad. Dev. doi: 10.1002/ldr.3255 – volume: 247 start-page: 712 year: 2019 ident: ref_26 article-title: Flood susceptibility mapping in dingnan county (China) using adaptive neuro-fuzzy inference system with biogeography based optimization and imperialistic competitive algorithm publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2019.06.102 – volume: 149 start-page: 52 year: 2017 ident: ref_74 article-title: Hybrid integration of Multilayer Perceptron Neural Networks and machine learning ensembles for landslide susceptibility assessment at Himalayan area (India) using GIS publication-title: Catena doi: 10.1016/j.catena.2016.09.007 – ident: ref_94 doi: 10.3390/ijerph17072473 – volume: 35 start-page: 2597 year: 2017 ident: ref_38 article-title: Landslide susceptibility assessment using bagging ensemble based alternating decision trees, logistic regression and J48 decision trees methods: A comparative study publication-title: Geotech. Geol. Eng. doi: 10.1007/s10706-017-0264-2 – ident: ref_28 doi: 10.3390/e20110884 – ident: ref_82 doi: 10.3390/su11247118 – volume: 163 start-page: 399 year: 2018 ident: ref_48 article-title: Landslide susceptibility mapping using J48 Decision Tree with AdaBoost, Bagging and Rotation Forest ensembles in the Guangchang area (China) publication-title: Catena doi: 10.1016/j.catena.2018.01.005 – volume: 175 start-page: 430 year: 2019 ident: ref_24 article-title: Meta optimization of an adaptive neuro-fuzzy inference system with grey wolf optimizer and biogeography-based optimization algorithms for spatial prediction of landslide susceptibility publication-title: Catena doi: 10.1016/j.catena.2018.12.033 – volume: 6 start-page: 99 year: 2005 ident: ref_84 article-title: Creating diversity in ensembles using artificial data publication-title: Inf. Fusion doi: 10.1016/j.inffus.2004.04.001 – ident: ref_44 doi: 10.3390/f10090743 – ident: ref_88 doi: 10.3837/tiis.2013.11.010 – ident: ref_58 doi: 10.3390/sym12030325 – ident: ref_79 doi: 10.3390/f11040421 – volume: 4 start-page: 338 year: 2015 ident: ref_57 article-title: Landslide susceptibility assessment at a part of Uttarakhand Himalaya, India using GIS–based statistical approach of frequency ratio method publication-title: Int. J. Eng. Res. Technol. – volume: 128 start-page: 89 year: 2013 ident: ref_68 article-title: A multidimensional analysis of machine learning methods performance in the classification of bioactive compounds publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2013.08.003 – volume: 8 start-page: 1955 year: 2017 ident: ref_37 article-title: A novel hybrid artificial intelligence approach based on the rotation forest ensemble and naïve Bayes tree classifiers for a landslide susceptibility assessment in Langao County, China publication-title: Geomat. Nat. Hazards Risk doi: 10.1080/19475705.2017.1401560 – volume: 12 start-page: 1 year: 2019 ident: ref_5 article-title: Big data in geohazard; pattern mining and large scale analysis of landslides in Iran publication-title: Earth Sci. Inform. doi: 10.1007/s12145-018-0354-6 – ident: ref_30 doi: 10.20944/preprints201608.0032.v1 – volume: 13 start-page: 2815 year: 2013 ident: ref_65 article-title: Landslide susceptibility estimation by random forests technique: Sensitivity and scaling issues publication-title: Nat. Hazards Earth Syst. Sci. doi: 10.5194/nhess-13-2815-2013 – volume: 11 start-page: 10 year: 2009 ident: ref_51 article-title: The WEKA data mining software: An update publication-title: Acm Sigkdd Explor. Newsl. doi: 10.1145/1656274.1656278 – ident: ref_98 doi: 10.3390/app10062039 – volume: 266 start-page: 198 year: 2019 ident: ref_15 article-title: Hybrid artificial intelligence models based on a neuro-fuzzy system and metaheuristic optimization algorithms for spatial prediction of wildfire probability publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2018.12.015 – ident: ref_12 doi: 10.1007/s12665-016-5400-4 – ident: ref_20 doi: 10.3390/s18082464 – volume: 76 start-page: 652 year: 2017 ident: ref_49 article-title: A novel hybrid integration model using support vector machines and random subspace for weather-triggered landslide susceptibility assessment in the Wuning area (China) publication-title: Environ. Earth Sci. doi: 10.1007/s12665-017-6981-2 – volume: 38 start-page: 9305 year: 2011 ident: ref_72 article-title: AdaBoost ensemble for financial distress prediction: An empirical comparison with data from Chinese listed companies publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.01.042 – volume: 217 start-page: 1 year: 2018 ident: ref_34 article-title: Novel forecasting approaches using combination of machine learning and statistical models for flood susceptibility mapping publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2018.03.089 – volume: 13 start-page: 379 year: 2016 ident: ref_10 article-title: Applying weight of evidence method and sensitivity analysis to produce a landslide susceptibility map publication-title: Landslides doi: 10.1007/s10346-015-0576-3 – volume: 2 start-page: 33 year: 2011 ident: ref_6 article-title: GIS-based spatial prediction of landslide susceptibility using logistic regression model publication-title: Geomat. Nat. Hazards Risk doi: 10.1080/19475705.2010.532975 – volume: 78 start-page: 247 year: 2019 ident: ref_23 article-title: Spatial prediction of landslide susceptibility using data mining-based kernel logistic regression, naive Bayes and RBFNetwork models for the Long County area (China) publication-title: Bull. Eng. Geol. Environ. doi: 10.1007/s10064-018-1256-z – volume: 249 start-page: 119 year: 2015 ident: ref_54 article-title: Comparison of Logistic Regression and Random Forests techniques for shallow landslide susceptibility assessment in Giampilieri (NE Sicily, Italy) publication-title: Geomorphology doi: 10.1016/j.geomorph.2015.06.001 – volume: 164 start-page: 135 year: 2018 ident: ref_29 article-title: GIS-based landslide susceptibility evaluation using a novel hybrid integration approach of bivariate statistical based random forest method publication-title: Catena doi: 10.1016/j.catena.2018.01.012 – volume: 11 start-page: 1063 year: 2014 ident: ref_43 article-title: A novel ensemble decision tree-based CHi-squared Automatic Interaction Detection (CHAID) and multivariate logistic regression models in landslide susceptibility mapping publication-title: Landslides doi: 10.1007/s10346-014-0466-0 – ident: ref_56 doi: 10.3390/s19163590 – volume: 125 start-page: 645 year: 2016 ident: ref_61 article-title: A comparative study on the landslide susceptibility mapping using evidential belief function and weights of evidence models publication-title: J. Earth Syst. Sci. doi: 10.1007/s12040-016-0686-x – ident: ref_52 doi: 10.1007/978-3-319-77377-3_13 – volume: 34 start-page: 348 year: 2019 ident: ref_11 article-title: Landslide susceptibility assessment using evidential belief function, certainty factor and frequency ratio model at Baxie River basin, NW China publication-title: Geocarto Int. doi: 10.1080/10106049.2017.1404143 – volume: 35 start-page: 139 year: 2018 ident: ref_93 article-title: Landslide susceptibility modelling using different advanced decision trees methods publication-title: Civ. Eng. Environ. Syst. doi: 10.1080/10286608.2019.1568418 – volume: 78 start-page: 4397 year: 2019 ident: ref_35 article-title: Novel hybrid artificial intelligence approach of bivariate statistical-methods-based kernel logistic regression classifier for landslide susceptibility modeling publication-title: Bull. Eng. Geol. Environ. doi: 10.1007/s10064-018-1401-8 – volume: 662 start-page: 332 year: 2019 ident: ref_27 article-title: Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island, Japan publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.01.221 – volume: 24 start-page: 123 year: 1996 ident: ref_75 article-title: Bagging predictors publication-title: Mach. Learn. doi: 10.1007/BF00058655 – ident: ref_50 doi: 10.3390/s18113777 – volume: 33 start-page: 281 year: 2019 ident: ref_47 article-title: Mapping Groundwater Potential Using a Novel Hybrid Intelligence Approach publication-title: Water Resour. Manag. doi: 10.1007/s11269-018-2102-6 – volume: 62 start-page: 1 year: 2016 ident: ref_81 article-title: A multiobjective weighted voting ensemble classifier based on differential evolution algorithm for text sentiment classification publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2016.06.005 – ident: ref_96 doi: 10.1016/j.compag.2019.104929 – volume: 178 start-page: 172 year: 2019 ident: ref_39 article-title: Uncertainties of prediction accuracy in shallow landslide modeling: Sample size and raster resolution publication-title: Catena doi: 10.1016/j.catena.2019.03.017 – ident: ref_90 doi: 10.1080/10106049.2020.1737972 |
SSID | ssj0000913810 |
Score | 2.3629277 |
Snippet | Development of landslide predictive models with strong prediction power has become a major focus of many researchers. This study describes the first... |
SourceID | doaj swepub gale crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 3710 |
SubjectTerms | AdaBoost Algorithms Bagging Dagging Dams Decorate ensemble modeling Geoteknik Landslides Machine learning Prediction theory Real AdaBoost Safety and security measures Soil Mechanics Vietnam |
Title | Novel Ensemble Landslide Predictive Models Based on the Hyperpipes Algorithm: A Case Study in the Nam Dam Commune, Vietnam |
URI | https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-79019 https://doaj.org/article/cf22f3058e174eeabac26e55b7e8dbf0 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQucAB0QJioVQ-FPEQEXk5sbll261WCFYVolVvkR_jEimbXe2mleDXM5OEVSohceGQSzSyHc94PF_s-YaxYydjn9g0DbyLEKCgvwtM4tAZRjo1oY1DSCnB-esim1-kn6_E1ajUF90J6-mB-4n7aH2MrYVCAsbOANpoG2cghMlBOuM7tI573ghMdT5YRURd1SfkJYjr6TwYrS9KcsqVHW1BHVP_zh_foQvttpizx-zREBvyoh_TPrsHzQF7OGIMPGD7w1rc8rcDYfS7J-zXYnULNZ81W1iaGvgXSt-tKwf8fEPnMOTROBU9q7d8iruW46uGY-DH5whCN-tqjc0V9fVqU7U_lp94wU9QiNMNw5-86iUXeslP8enzSeADv6ygbfTyKbs4m30_mQdDTYXA4qe3gVFhkjibK5W7UICKM21tHnlc6F7pJCa8p2IBuct85kGEPk9FomwmvQOJ8cwzttesGnjOuNBOOon4zWEYZqXQJlQAXlK2LNpFOmHv_0xzaQfCcap7UZcIPEgn5UgnE3a8E173PBt_F5uSvnYiRI7dvUCTKQeTKf9lMhP2hrRd0hLGAVk9ZCLgZxEZVlmgTyLiNxFN2OveIO50eFpdFl2HdXtT5hhQqRf_Y1gv2YOYwHz3i-eQ7bWbG3iFEU9rjtj96Wxx_u2oM_Lfiq8BXA |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+Ensemble+Landslide+Predictive+Models+Based+on+the+Hyperpipes+Algorithm&rft.jtitle=Applied+sciences&rft.au=Tran%2C+Quoc+Cuong&rft.au=Minh%2C+Duc+Do&rft.au=Jaafari%2C+Abolfazl&rft.au=Al-Ansari%2C+Nadhir&rft.date=2020-06-01&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=10&rft.issue=11&rft_id=info:doi/10.3390%2Fapp10113710&rft.externalDocID=oai_DiVA_org_ltu_79019 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |