Epitaxial growth of oriented prussian blue analogue derived well-aligned CoFe2O4 thin film for efficient oxygen evolution reaction

We first developed a well-aligned mesoporous CoFe2O4 thin film from surface epitaxial growth of oriented CoFe-based prussian blue analogue thin film (CoFe-PBA thin film) for efficient electrocatalytic OER. CoFe-PBA thin film with preferred [100] orientation is first prepared on the substrate surface...

Full description

Saved in:
Bibliographic Details
Published inApplied catalysis. B, Environmental Vol. 245; pp. 1 - 9
Main Authors Lei, Song, Li, Qiao-Hong, Kang, Yao, Gu, Zhi-Gang, Zhang, Jian
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 15.05.2019
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We first developed a well-aligned mesoporous CoFe2O4 thin film from surface epitaxial growth of oriented CoFe-based prussian blue analogue thin film (CoFe-PBA thin film) for efficient electrocatalytic OER. CoFe-PBA thin film with preferred [100] orientation is first prepared on the substrate surface by employing liquid-phase epitaxial method without any structure-directing surfactants. After thermal pyrolysis, such CoFe-PBA thin film was transformed into well-aligned mesoporous CoFe2O4 thin film with remarkable catalytic performance and durable stability. This study provides an effective paradigm for preparing binder-free, self-support and low-cost spinel oxide electrocatalyst for efficient OER derived from surface epitaxial growth of oriented PBA thin film. [Display omitted] •Epitaxial growth of oriented prussian blue analogue derived a bimetallic oxide film.•Obtained CoFe2O4 film has higher electrocatalytic OER than commercial RuO2.•Homogeneous and continuous bimetallic oxide film increased the OER performance.•Synergistic effect of Co and Fe promote the low-cost and high-efficient OER. The development of cost-effective, high-efficiency, and non-noble metal based electrocatalysts for oxygen evolution reaction (OER) is considered to be the most pivotal portion for electrochemical water splitting to generate renewable energy. Herein, well-aligned mesoporous CoFe2O4 thin film is first developed from surface epitaxial growth of oriented CoFe-based prussian blue analogue thin film (CoFe-PBA thin film) for efficient electrocatalytic OER. CoFe-PBA thin film with preferred [100] orientation is first prepared on the substrate surface by employing liquid phase epitaxial method without any structure-directing surfactants. After thermal pyrolysis, such CoFe-PBA thin film was transformed into well-aligned mesoporous CoFe2O4 thin film. Interestingly, the self-support CoFe2O4 thin film electrode with the mass loading of 1.6 mg cm−2 delivers an oxygen evolution current density of 10 mA cm−2 at an overpotential of 266 mV and exhibits durable stability in 1 M KOH aqueous solution. The remarkable and stable catalytic performance of the CoFe2O4 thin film can be mainly owing to the mesoporous structure of CoFe2O4, efficient charge/electron transfer, the numerous exposed active sites, and the well-structured configuration of the electrode. Hence, this work provides an effective paradigm for preparing binder-free, self-support, and low-cost spinel oxide electrocatalyst for efficient OER derived from surface epitaxial growth of oriented PBA thin film.
AbstractList The development of cost-effective, high-efficiency, and non-noble metal based electrocatalysts for oxygen evolution reaction (OER) is considered to be the most pivotal portion for electrochemical water splitting to generate renewable energy. Herein, well-aligned mesoporous CoFe2O4 thin film is first developed from surface epitaxial growth of oriented CoFe-based prussian blue analogue thin film (CoFe-PBA thin film) for efficient electrocatalytic OER. CoFe-PBA thin film with preferred [100] orientation is first prepared on the substrate surface by employing liquid phase epitaxial method without any structure-directing surfactants. After thermal pyrolysis, such CoFe-PBA thin film was transformed into well-aligned mesoporous CoFe2O4 thin film. Interestingly, the self-support CoFe2O4 thin film electrode with the mass loading of 1.6 mg cm−2 delivers an oxygen evolution current density of 10 mA cm−2 at an overpotential of 266 mV and exhibits durable stability in 1 M KOH aqueous solution. The remarkable and stable catalytic performance of the CoFe2O4 thin film can be mainly owing to the mesoporous structure of CoFe2O4, efficient charge/electron transfer, the numerous exposed active sites, and the well-structured configuration of the electrode. Hence, this work provides an effective paradigm for preparing binder-free, self-support, and low-cost spinel oxide electrocatalyst for efficient OER derived from surface epitaxial growth of oriented PBA thin film.
We first developed a well-aligned mesoporous CoFe2O4 thin film from surface epitaxial growth of oriented CoFe-based prussian blue analogue thin film (CoFe-PBA thin film) for efficient electrocatalytic OER. CoFe-PBA thin film with preferred [100] orientation is first prepared on the substrate surface by employing liquid-phase epitaxial method without any structure-directing surfactants. After thermal pyrolysis, such CoFe-PBA thin film was transformed into well-aligned mesoporous CoFe2O4 thin film with remarkable catalytic performance and durable stability. This study provides an effective paradigm for preparing binder-free, self-support and low-cost spinel oxide electrocatalyst for efficient OER derived from surface epitaxial growth of oriented PBA thin film. [Display omitted] •Epitaxial growth of oriented prussian blue analogue derived a bimetallic oxide film.•Obtained CoFe2O4 film has higher electrocatalytic OER than commercial RuO2.•Homogeneous and continuous bimetallic oxide film increased the OER performance.•Synergistic effect of Co and Fe promote the low-cost and high-efficient OER. The development of cost-effective, high-efficiency, and non-noble metal based electrocatalysts for oxygen evolution reaction (OER) is considered to be the most pivotal portion for electrochemical water splitting to generate renewable energy. Herein, well-aligned mesoporous CoFe2O4 thin film is first developed from surface epitaxial growth of oriented CoFe-based prussian blue analogue thin film (CoFe-PBA thin film) for efficient electrocatalytic OER. CoFe-PBA thin film with preferred [100] orientation is first prepared on the substrate surface by employing liquid phase epitaxial method without any structure-directing surfactants. After thermal pyrolysis, such CoFe-PBA thin film was transformed into well-aligned mesoporous CoFe2O4 thin film. Interestingly, the self-support CoFe2O4 thin film electrode with the mass loading of 1.6 mg cm−2 delivers an oxygen evolution current density of 10 mA cm−2 at an overpotential of 266 mV and exhibits durable stability in 1 M KOH aqueous solution. The remarkable and stable catalytic performance of the CoFe2O4 thin film can be mainly owing to the mesoporous structure of CoFe2O4, efficient charge/electron transfer, the numerous exposed active sites, and the well-structured configuration of the electrode. Hence, this work provides an effective paradigm for preparing binder-free, self-support, and low-cost spinel oxide electrocatalyst for efficient OER derived from surface epitaxial growth of oriented PBA thin film.
Author Li, Qiao-Hong
Lei, Song
Gu, Zhi-Gang
Zhang, Jian
Kang, Yao
Author_xml – sequence: 1
  givenname: Song
  surname: Lei
  fullname: Lei, Song
– sequence: 2
  givenname: Qiao-Hong
  surname: Li
  fullname: Li, Qiao-Hong
– sequence: 3
  givenname: Yao
  surname: Kang
  fullname: Kang, Yao
– sequence: 4
  givenname: Zhi-Gang
  orcidid: 0000-0001-6538-2917
  surname: Gu
  fullname: Gu, Zhi-Gang
  email: zggu@fjirsm.ac.cn
– sequence: 5
  givenname: Jian
  surname: Zhang
  fullname: Zhang, Jian
  email: zhj@fjirsm.ac.cn
BookMark eNqFkE1r3DAQhkVJoJuPf9CDoGe7-vBacg-FsiRtIZBLcxayPNpoUSRXkjfJNb-8MttTD-1pZph5X-Z9LtBZiAEQ-kBJSwntPx1aPRtdxpYRKlvKWsL7d2hDpeANl5KfoQ0ZWN9wLvh7dJHzgRDCOJMb9HYzu6JfnPZ4n-JzecTR4pgchAITntOSs9MBj34BrIP2cV-bCZI71vUzeN9o7_ahDrt4C-y-w-XRBWydf8I2JgzWOrO64fjyuoeA4Rj9UlwMOIE2a3OFzq32Ga7_1Ev0cHvzc_e9ubv_9mP39a4xXNDSaNYTqQdO-EhqPknFJITYwtADH_SWya6zo5msZiMVrKPQD1thO6MFNbazkl-ijyffOcVfC-SiDnFJNVNWjHHCZM_oUK8-n65MijknsMpUQOufJWnnFSVqZa4O6sRcrcwVZar-VMXdX-I5uSedXv8n-3KSQY1_dJBUXpkZmFwCU9QU3b8NfgO4mKEt
CitedBy_id crossref_primary_10_1016_j_jechem_2021_04_001
crossref_primary_10_1039_D1DT01469B
crossref_primary_10_3390_ma15217491
crossref_primary_10_1007_s43979_024_00112_9
crossref_primary_10_1002_chem_202001082
crossref_primary_10_1021_acsanm_4c00397
crossref_primary_10_1039_D0NR03115A
crossref_primary_10_1016_j_jssc_2020_121751
crossref_primary_10_1039_D3DT01966G
crossref_primary_10_1021_acssuschemeng_9b07122
crossref_primary_10_1016_j_apcatb_2019_117968
crossref_primary_10_1002_ente_202000178
crossref_primary_10_1002_asia_202401295
crossref_primary_10_1002_celc_202001356
crossref_primary_10_1016_j_ceramint_2023_10_012
crossref_primary_10_1007_s12274_022_4231_8
crossref_primary_10_1039_D0MH01757D
crossref_primary_10_1021_acs_inorgchem_1c00098
crossref_primary_10_1016_j_apcatb_2019_118393
crossref_primary_10_1016_j_cclet_2022_107837
crossref_primary_10_1021_acsaem_4c00009
crossref_primary_10_1016_j_ijhydene_2020_08_019
crossref_primary_10_1016_j_cclet_2020_05_012
crossref_primary_10_1016_j_enchem_2021_100065
crossref_primary_10_1016_j_jallcom_2020_154896
crossref_primary_10_1002_ejic_202200111
crossref_primary_10_1039_D0EN00935K
crossref_primary_10_1016_j_apsusc_2021_151388
crossref_primary_10_1016_j_jpowsour_2022_231536
crossref_primary_10_1016_j_jhazmat_2021_127033
crossref_primary_10_1016_j_apcatb_2020_119809
crossref_primary_10_1016_j_surfin_2024_104341
crossref_primary_10_1016_j_ijhydene_2023_04_181
crossref_primary_10_1039_D0CE00401D
crossref_primary_10_1002_advs_202104846
crossref_primary_10_1016_j_ijhydene_2020_05_170
crossref_primary_10_1016_j_seppur_2022_122069
crossref_primary_10_1016_j_cej_2020_125556
crossref_primary_10_1021_acsami_4c17510
crossref_primary_10_2139_ssrn_4111908
crossref_primary_10_1016_j_jiec_2024_11_050
crossref_primary_10_1039_D3CY01013A
crossref_primary_10_1088_2053_1591_abae26
crossref_primary_10_1039_D0TA07579E
crossref_primary_10_1002_aenm_201902115
crossref_primary_10_1002_chem_202403229
crossref_primary_10_1016_j_apsusc_2020_147584
crossref_primary_10_1016_j_jallcom_2023_169110
crossref_primary_10_1016_j_colsurfa_2023_133082
crossref_primary_10_1016_j_cej_2022_137665
crossref_primary_10_1016_j_apsusc_2021_149007
crossref_primary_10_1016_j_jece_2022_108059
crossref_primary_10_1016_j_ccr_2022_214429
crossref_primary_10_1016_j_jallcom_2024_176978
crossref_primary_10_1016_j_gee_2022_02_014
crossref_primary_10_1016_j_apsusc_2021_149360
crossref_primary_10_1016_j_jtice_2022_104252
crossref_primary_10_1039_D2RA01235A
crossref_primary_10_1039_D1NJ00092F
crossref_primary_10_1002_er_5428
crossref_primary_10_1016_j_jtice_2019_08_015
crossref_primary_10_1002_smll_202304594
crossref_primary_10_1016_j_jallcom_2022_165365
crossref_primary_10_2139_ssrn_4176332
crossref_primary_10_1016_j_seppur_2024_129290
crossref_primary_10_1039_C9NR01804B
crossref_primary_10_1016_j_apcatb_2022_121781
crossref_primary_10_1002_asia_201901810
crossref_primary_10_2139_ssrn_4163541
crossref_primary_10_1016_j_jcis_2024_07_009
crossref_primary_10_1021_acsestwater_2c00590
crossref_primary_10_1002_smll_202410968
crossref_primary_10_1002_smtd_202401708
crossref_primary_10_3390_nano12162881
crossref_primary_10_1002_admi_202000777
crossref_primary_10_1039_D2CE01111E
crossref_primary_10_1021_acsanm_4c02915
crossref_primary_10_1016_j_sajce_2020_04_004
crossref_primary_10_1002_adfm_202111501
crossref_primary_10_1016_j_mtener_2020_100404
crossref_primary_10_1002_smll_202205547
crossref_primary_10_1016_j_apcatb_2020_119725
crossref_primary_10_6023_A20090445
crossref_primary_10_3390_ma13245618
crossref_primary_10_3389_fmats_2021_718869
crossref_primary_10_3866_PKU_WHXB202308003
crossref_primary_10_1016_j_ijhydene_2021_02_026
crossref_primary_10_1016_j_apcatb_2019_04_083
crossref_primary_10_1016_j_ijhydene_2024_10_021
crossref_primary_10_1021_acs_langmuir_1c00245
crossref_primary_10_1021_acsami_2c11456
crossref_primary_10_1016_j_ijhydene_2020_10_144
crossref_primary_10_1016_j_jece_2022_109070
crossref_primary_10_1016_j_apcatb_2020_119857
crossref_primary_10_1016_j_jcis_2022_08_106
crossref_primary_10_1039_D2CP05522H
crossref_primary_10_1016_j_matlet_2019_127027
crossref_primary_10_1016_j_jcis_2021_12_164
crossref_primary_10_1016_j_ccr_2019_213156
crossref_primary_10_1016_j_jssc_2024_124553
crossref_primary_10_1016_j_ccr_2021_214144
crossref_primary_10_1016_j_apcata_2022_118889
crossref_primary_10_1016_j_jssc_2021_122117
crossref_primary_10_1016_j_electacta_2021_138873
crossref_primary_10_1051_e3sconf_202343801001
crossref_primary_10_1039_D1NR04540G
crossref_primary_10_1016_j_jallcom_2022_164805
crossref_primary_10_1021_acs_inorgchem_1c00620
crossref_primary_10_1002_smll_202205092
crossref_primary_10_1039_C9CC02393C
crossref_primary_10_1002_chem_201904324
crossref_primary_10_1016_j_jece_2022_107616
crossref_primary_10_1016_j_partic_2022_12_012
crossref_primary_10_7498_aps_69_20200274
crossref_primary_10_1016_j_cej_2020_128227
crossref_primary_10_1016_j_cej_2020_127934
crossref_primary_10_1016_j_ijhydene_2019_09_058
crossref_primary_10_1016_j_seppur_2021_118889
crossref_primary_10_1016_j_cej_2022_138550
crossref_primary_10_1039_D2NJ06351D
crossref_primary_10_1016_S1872_2067_21_63833_0
crossref_primary_10_1002_asia_201901721
crossref_primary_10_1007_s10854_021_06904_4
crossref_primary_10_1016_j_jssc_2023_124160
crossref_primary_10_1016_j_mtnano_2021_100120
crossref_primary_10_1016_j_cis_2023_102967
crossref_primary_10_1039_D2TA03033K
crossref_primary_10_1002_adfm_202212160
crossref_primary_10_1016_j_cej_2021_133942
crossref_primary_10_1039_D2TA09501G
crossref_primary_10_1016_j_ijhydene_2020_08_274
crossref_primary_10_1016_j_cej_2020_126284
crossref_primary_10_1021_acscatal_2c01534
crossref_primary_10_1016_j_jechem_2021_10_009
crossref_primary_10_1016_j_colsurfa_2021_126898
crossref_primary_10_1016_j_electacta_2021_139195
crossref_primary_10_1016_j_jallcom_2022_168674
crossref_primary_10_1016_j_mcat_2021_111835
crossref_primary_10_1016_j_electacta_2021_139745
crossref_primary_10_2139_ssrn_4098284
crossref_primary_10_1016_j_est_2024_115016
crossref_primary_10_1016_j_microc_2023_108832
crossref_primary_10_1021_acssuschemeng_9b03952
crossref_primary_10_1002_cnma_202400552
crossref_primary_10_1016_j_apcatb_2024_124530
crossref_primary_10_1016_j_ijhydene_2020_12_045
Cites_doi 10.1126/science.1246738
10.1021/cm503639a
10.1021/ja406242y
10.1021/ja409205s
10.1002/aenm.201602643
10.1039/C4CP02021A
10.1021/acs.chemmater.6b02796
10.1039/C7NR02284K
10.1039/C5TA10420C
10.1016/j.apcatb.2017.07.086
10.1016/j.apcatb.2018.08.081
10.1016/j.apcatb.2018.01.051
10.1002/adfm.201704638
10.1021/acsami.6b14541
10.1039/C6CC07049C
10.1021/acs.nanolett.6b03803
10.1016/j.apcatb.2018.05.054
10.1021/ja510442p
10.1002/adfm.200700982
10.1039/C7TA06580A
10.1039/c0cs00147c
10.1039/C6TA10094E
10.1002/anie.200901090
10.1039/C4TA06150K
10.1021/jacs.6b05190
10.1039/C5NR07193C
10.1021/jp047349j
10.1021/jp711929d
10.1039/C4NR04422C
10.1002/anie.201500267
10.1103/PhysRevLett.77.3865
10.1039/C7CS00315C
10.1016/j.jelechem.2006.11.008
10.1039/c3cc45343j
10.1021/jacs.6b09778
10.1021/acscatal.6b03497
10.1016/j.apcata.2016.03.024
10.1021/nl401325u
10.1039/C5CS00397K
10.1039/C4NR07243J
10.1002/adma.201506315
10.1016/j.nanoen.2017.07.005
10.1039/C7TA05134D
10.1021/ja0356582
10.1021/jacs.6b02964
10.1002/chem.201203138
10.1021/acs.chemrev.7b00051
10.1038/nmat4778
10.1002/anie.201710460
10.1002/aenm.201602391
10.1021/acs.jpcc.5b11533
10.1002/adfm.201704594
10.1016/j.apcatb.2018.05.010
10.1002/adfm.201202996
10.1002/aenm.201600980
10.1021/jacs.6b11291
10.1002/anie.201708385
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright Elsevier BV May 15, 2019
Copyright_xml – notice: 2018 Elsevier B.V.
– notice: Copyright Elsevier BV May 15, 2019
DBID AAYXX
CITATION
7SR
7ST
7U5
8BQ
8FD
C1K
FR3
JG9
KR7
L7M
SOI
DOI 10.1016/j.apcatb.2018.12.036
DatabaseName CrossRef
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Environmental Sciences
EISSN 1873-3883
EndPage 9
ExternalDocumentID 10_1016_j_apcatb_2018_12_036
S0926337318311895
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LX7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPD
SSG
SSZ
T5K
~02
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AHHHB
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
FEDTE
FGOYB
HLY
HVGLF
HZ~
NDZJH
R2-
SCE
SEW
SSH
VH1
WUQ
XPP
7SR
7ST
7U5
8BQ
8FD
C1K
EFKBS
FR3
JG9
KR7
L7M
SOI
ID FETCH-LOGICAL-c371t-a2608a9303b0036817d7775e96e39a52844fbcdfa2b17241e6957f4ca71cf4f83
IEDL.DBID .~1
ISSN 0926-3373
IngestDate Wed Aug 13 09:36:54 EDT 2025
Tue Jul 01 03:10:54 EDT 2025
Thu Apr 24 22:58:20 EDT 2025
Sat Mar 02 16:00:19 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Liquid phase epitaxial growth
Oxygen evolution reaction
CoFe2O4 thin film
Prussian blue analogous
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c371t-a2608a9303b0036817d7775e96e39a52844fbcdfa2b17241e6957f4ca71cf4f83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6538-2917
PQID 2230286219
PQPubID 2045281
PageCount 9
ParticipantIDs proquest_journals_2230286219
crossref_citationtrail_10_1016_j_apcatb_2018_12_036
crossref_primary_10_1016_j_apcatb_2018_12_036
elsevier_sciencedirect_doi_10_1016_j_apcatb_2018_12_036
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-05-15
PublicationDateYYYYMMDD 2019-05-15
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-15
  day: 15
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Applied catalysis. B, Environmental
PublicationYear 2019
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Tsotsalas, Liu, Tettmann, Grosjean, Shahnas, Wang, Azucena, Addicoat, Heine, Lahann, Overhage, Braese, Gliemann, Woell (bib0180) 2014; 136
Hu, Ishihara, Ariga, Imura, Yamauchi (bib0140) 2013; 19
Walter, Menezes, Orthmann, Schuch, Connor, Kaiser, Lerch, Driess (bib0025) 2018; 57
Wan, Liu, Li, Peng, Xi, Luo (bib0250) 2019; 240
Zhao, Yan, Chen, Chen (bib0055) 2017; 117
McCrory, Jung, Ferrer, Chatman, Peters, Jaramillo (bib0285) 2015; 137
Zhou, Dou, Zhou, Guo, Zhao, Li (bib0295) 2017; 7
Das, Bera, Maitra, Karan, Paria, Halder, Si, Bera, Khatua (bib0095) 2017; 5
Uemura, Kitagawa (bib0145) 2003; 125
Kong, Selomulya, Zheng, Zhao (bib0070) 2015; 44
Kim, Kim, Song, Oh, Chang, Cho (bib0035) 2018; 227
Li, Gu, Vohra, Kang, Zhu, Zhang (bib0165) 2017; 13
Zhuo, Wu, Yang (bib0225) 2016; 138
Li, Cui, Zhong, Li, Wang, Wang, Jiang (bib0230) 2016; 52
Yu, Yu, Wu, Lou (bib0090) 2015; 54
Shekhah, Liu, Fischer, Woell (bib0195) 2011; 40
Kang, Jin, Oh, Patil, Kim, Kim, Hwang (bib0280) 2018; 236
Valdes, Qu, Kroes, Rossmeisl, Norskov (bib0220) 2008; 112
Jia, Zhang, Fan, Li, Fu, Hao, Yuan, Zou (bib0125) 2017; 56
Masa, Weide, Peeters, Sinev, Xia, Sun, Somsen, Muhler, Schuhmann (bib0040) 2016; 6
Pintado, Goberna-Ferron, Escudero-Adan, Ramon Galan-Mascaros (bib0100) 2013; 135
Li, Gu, Zhang, Kang, Zhang (bib0170) 2017; 5
Gu, Chen, Fu, Zheng, Zhang (bib0185) 2017; 9
Huang, Xie, Zhang, Wang, Jiang, Xiao, Li, Li, Wu, Chen (bib0080) 2017; 39
Han, Yu, Lou (bib0115) 2016; 28
Zhao, Li, Yan, Xing, Lu, Zhao, Zhou, Peng, Zeng (bib0015) 2018; 236
Liang, Gandi, Anjum, Wang, Schwingenschlogl, Alshareef (bib0290) 2016; 16
Li, Zhao (bib0260) 2017; 7
Li, Xiong, Liu, Bo, Zhang, Han, Guo (bib0045) 2015; 7
Han, Tang, Reyes-Carmona, Rodriguez-Garcia, Torrens, Ramon Morante, Arbiol, Ramon Galan-Mascaros (bib0105) 2016; 138
Zheng, Zhu, Shi, Chen (bib0265) 2015; 3
Perdew, Burke, Ernzerhof (bib0205) 1996; 77
Norskov, Rossmeisl, Logadottir, Lindqvist, Kitchin, Bligaard, Jonsson (bib0210) 2004; 108
Stevens, Enman, Batchellor, Cosby, Vise, Trang, Boettcher (bib0120) 2017; 29
Wang, Yu, Guan, Song, Lou (bib0110) 2018; 30
Liu, Tu, Zacher, Fischer (bib0160) 2013; 23
Vohra, Li, Gu, Zhang (bib0175) 2017; 9
Liu, Woell (bib0200) 2017; 46
Li, Yuan, Wang, Jiang, Rykov, Nagy, Bogdan, Ahmed, Zhu, Sun, Yang (bib0245) 2016; 8
Guan, Liu, Ren, Li, Cheng, Wang (bib0270) 2017; 7
Fischer, Woell (bib0150) 2009; 48
Liu, Li, Li, Li, Yang, Zhang, Liu, Ma (bib0050) 2016; 4
Tang, Jiang, Niu, Liu, Luo, Zhang, Wen, Chen, Huang, Gao, Hu (bib0135) 2018; 28
Li, Peprah, Asakura, Meisel, Okubo, Talham (bib0075) 2015; 27
Guo, Li, Chen, Liu, Yang, Wang, Guo (bib0085) 2014; 6
Montoya, Seitz, Chakthranont, Vojvodic, Jaramillo, Norskov (bib0010) 2017; 16
Wirth, Neumann, Antonietti, Saalfrank (bib0235) 2014; 16
Cui, Lin, Li, Li, Yang, Tao (bib0065) 2008; 18
Rossmeisl, Qu, Zhu, Kroes, Norskov (bib0215) 2007; 607
Liu, Li, Zhao, Wang, Kong, Liu, Zhang, Chang, Meng, Kako, Ye (bib0020) 2016; 138
Zhu, Zhang, Huang, Wu, Sun (bib0060) 2013; 13
Mamtani, Jain, Dogu, Gustin, Gunduz, Co, Ozkan (bib0030) 2018; 220
Shekhah, Eddaoudi (bib0155) 2013; 49
Talin, Centrone, Ford, Foster, Stavila, Haney, Kinney, Szalai, El Gabaly, Yoon, Leonard, Allendorf (bib0190) 2014; 343
Feng, Wei, Ding, Photochemical (bib0275) 2016; 120
Amiinu, Liu, Pu, Li, Li, Zhang, Tang, Zhang, Mu (bib0130) 2018; 28
Zheng, Jiao, Zhu, Li, Han, Chen, Jaroniec, Qiao (bib0005) 2016; 138
Chagas, de Souza, de Carvalho, Martins, Schmal (bib0255) 2016; 519
Kang, Woo, Lee, Song, Wang, Guo, Yamauchi, Kim, Lim, Yoon (bib0240) 2017; 5
Shekhah (10.1016/j.apcatb.2018.12.036_bib0155) 2013; 49
Wirth (10.1016/j.apcatb.2018.12.036_bib0235) 2014; 16
Perdew (10.1016/j.apcatb.2018.12.036_bib0205) 1996; 77
Jia (10.1016/j.apcatb.2018.12.036_bib0125) 2017; 56
Pintado (10.1016/j.apcatb.2018.12.036_bib0100) 2013; 135
Zhao (10.1016/j.apcatb.2018.12.036_bib0055) 2017; 117
Gu (10.1016/j.apcatb.2018.12.036_bib0185) 2017; 9
Zhao (10.1016/j.apcatb.2018.12.036_bib0015) 2018; 236
Fischer (10.1016/j.apcatb.2018.12.036_bib0150) 2009; 48
Liu (10.1016/j.apcatb.2018.12.036_bib0200) 2017; 46
Yu (10.1016/j.apcatb.2018.12.036_bib0090) 2015; 54
Uemura (10.1016/j.apcatb.2018.12.036_bib0145) 2003; 125
Montoya (10.1016/j.apcatb.2018.12.036_bib0010) 2017; 16
Kang (10.1016/j.apcatb.2018.12.036_bib0280) 2018; 236
Valdes (10.1016/j.apcatb.2018.12.036_bib0220) 2008; 112
Liu (10.1016/j.apcatb.2018.12.036_bib0050) 2016; 4
Li (10.1016/j.apcatb.2018.12.036_bib0075) 2015; 27
Liu (10.1016/j.apcatb.2018.12.036_bib0020) 2016; 138
McCrory (10.1016/j.apcatb.2018.12.036_bib0285) 2015; 137
Tsotsalas (10.1016/j.apcatb.2018.12.036_bib0180) 2014; 136
Zheng (10.1016/j.apcatb.2018.12.036_bib0005) 2016; 138
Li (10.1016/j.apcatb.2018.12.036_bib0230) 2016; 52
Kang (10.1016/j.apcatb.2018.12.036_bib0240) 2017; 5
Shekhah (10.1016/j.apcatb.2018.12.036_bib0195) 2011; 40
Li (10.1016/j.apcatb.2018.12.036_bib0165) 2017; 13
Liu (10.1016/j.apcatb.2018.12.036_bib0160) 2013; 23
Das (10.1016/j.apcatb.2018.12.036_bib0095) 2017; 5
Guan (10.1016/j.apcatb.2018.12.036_bib0270) 2017; 7
Zhu (10.1016/j.apcatb.2018.12.036_bib0060) 2013; 13
Zhou (10.1016/j.apcatb.2018.12.036_bib0295) 2017; 7
Vohra (10.1016/j.apcatb.2018.12.036_bib0175) 2017; 9
Han (10.1016/j.apcatb.2018.12.036_bib0105) 2016; 138
Feng (10.1016/j.apcatb.2018.12.036_bib0275) 2016; 120
Tang (10.1016/j.apcatb.2018.12.036_bib0135) 2018; 28
Wang (10.1016/j.apcatb.2018.12.036_bib0110) 2018; 30
Kim (10.1016/j.apcatb.2018.12.036_bib0035) 2018; 227
Li (10.1016/j.apcatb.2018.12.036_bib0170) 2017; 5
Kong (10.1016/j.apcatb.2018.12.036_bib0070) 2015; 44
Chagas (10.1016/j.apcatb.2018.12.036_bib0255) 2016; 519
Zheng (10.1016/j.apcatb.2018.12.036_bib0265) 2015; 3
Zhuo (10.1016/j.apcatb.2018.12.036_bib0225) 2016; 138
Rossmeisl (10.1016/j.apcatb.2018.12.036_bib0215) 2007; 607
Norskov (10.1016/j.apcatb.2018.12.036_bib0210) 2004; 108
Liang (10.1016/j.apcatb.2018.12.036_bib0290) 2016; 16
Li (10.1016/j.apcatb.2018.12.036_bib0260) 2017; 7
Stevens (10.1016/j.apcatb.2018.12.036_bib0120) 2017; 29
Han (10.1016/j.apcatb.2018.12.036_bib0115) 2016; 28
Mamtani (10.1016/j.apcatb.2018.12.036_bib0030) 2018; 220
Masa (10.1016/j.apcatb.2018.12.036_bib0040) 2016; 6
Cui (10.1016/j.apcatb.2018.12.036_bib0065) 2008; 18
Guo (10.1016/j.apcatb.2018.12.036_bib0085) 2014; 6
Huang (10.1016/j.apcatb.2018.12.036_bib0080) 2017; 39
Hu (10.1016/j.apcatb.2018.12.036_bib0140) 2013; 19
Wan (10.1016/j.apcatb.2018.12.036_bib0250) 2019; 240
Walter (10.1016/j.apcatb.2018.12.036_bib0025) 2018; 57
Amiinu (10.1016/j.apcatb.2018.12.036_bib0130) 2018; 28
Li (10.1016/j.apcatb.2018.12.036_bib0045) 2015; 7
Li (10.1016/j.apcatb.2018.12.036_bib0245) 2016; 8
Talin (10.1016/j.apcatb.2018.12.036_bib0190) 2014; 343
References_xml – volume: 23
  start-page: 3790
  year: 2013
  end-page: 3798
  ident: bib0160
  article-title: Multi variant surface mounted metal-organic frameworks
  publication-title: Adv. Funct. Mater.
– volume: 77
  start-page: 3865
  year: 1996
  end-page: 3868
  ident: bib0205
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
– volume: 6
  year: 2016
  ident: bib0040
  article-title: Amorphous cobalt boride (Co
  publication-title: Adv. Energy Mater.
– volume: 4
  start-page: 4472
  year: 2016
  end-page: 4478
  ident: bib0050
  article-title: A facile preparation of CoFe
  publication-title: J. Mater. Chem. A Mater. Energy Sustain.
– volume: 49
  start-page: 10079
  year: 2013
  end-page: 10081
  ident: bib0155
  article-title: The liquid phase epitaxy method for the construction of oriented ZIF-8 thin films with controlled growth on functionalized surfaces
  publication-title: Chem. Commun. (Camb.)
– volume: 607
  start-page: 83
  year: 2007
  end-page: 89
  ident: bib0215
  article-title: Electrolysis of water on oxide surfaces
  publication-title: J. Electroanal. Chem. Lausanne (Lausanne)
– volume: 16
  start-page: 15917
  year: 2014
  end-page: 15926
  ident: bib0235
  article-title: Adsorption and photocatalytic splitting of water on graphitic carbon nitride: a combined first principles and semiempirical study
  publication-title: Phys. Chem. Chem. Phys.
– volume: 46
  start-page: 5730
  year: 2017
  end-page: 5770
  ident: bib0200
  article-title: Surface-supported metal-organic framework thin films: fabrication methods, applications, and challenges
  publication-title: Chem. Soc. Rev.
– volume: 8
  start-page: 2333
  year: 2016
  end-page: 2342
  ident: bib0245
  article-title: A "copolymer-co-morphology" conception for shape-controlled synthesis of Prussian blue analogues and as-derived spinel oxides
  publication-title: Nanoscale
– volume: 138
  start-page: 9128
  year: 2016
  end-page: 9136
  ident: bib0020
  article-title: Promoting active species generation by plasmon-induced hot-electron excitation for efficient electrocatalytic oxygen evolution
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 15168
  year: 2014
  end-page: 15174
  ident: bib0085
  article-title: General design of hollow porous CoFe
  publication-title: Nanoscale
– volume: 5
  start-page: 4320
  year: 2017
  end-page: 4324
  ident: bib0240
  article-title: Mesoporous Ni-Fe oxide multi-composite hollow nanocages for efficient electrocatalytic water oxidation reactions
  publication-title: J. Mater. Chem. A Mater. Energy Sustain.
– volume: 135
  start-page: 13270
  year: 2013
  end-page: 13273
  ident: bib0100
  article-title: Fast and persistent electrocatalytic water oxidation by Co-Fe prussian blue coordination polymers
  publication-title: J. Am. Chem. Soc.
– volume: 138
  start-page: 16037
  year: 2016
  end-page: 16045
  ident: bib0105
  article-title: Enhanced activity and acid pH stability of prussian blue-type oxygen evolution electrocatalysts processed by chemical etching
  publication-title: J. Am. Chem. Soc.
– volume: 117
  start-page: 10121
  year: 2017
  end-page: 10211
  ident: bib0055
  article-title: Spinels: controlled preparation, oxygen Reduction/Evolution reaction application, and beyond
  publication-title: Chem. Rev.
– volume: 13
  start-page: 2947
  year: 2013
  end-page: 2951
  ident: bib0060
  article-title: Monodisperse M
  publication-title: Nano Lett.
– volume: 19
  start-page: 1882
  year: 2013
  end-page: 1885
  ident: bib0140
  article-title: Kinetically controlled crystallization for synthesis of monodispersed coordination polymer nanocubes and their self-assembly to periodic arrangements
  publication-title: Chem.-Eur. J.
– volume: 13
  year: 2017
  ident: bib0165
  article-title: Epitaxial growth of oriented metalloporphyrin network thin film for improved selectivity of volatile organic compounds
  publication-title: Small
– volume: 343
  start-page: 66
  year: 2014
  end-page: 69
  ident: bib0190
  article-title: Tunable electrical conductivity in metal-organic framework thin-film devices
  publication-title: Science
– volume: 240
  start-page: 193
  year: 2019
  end-page: 200
  ident: bib0250
  article-title: 3D carbon framework-supported CoNi nanoparticles as bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries
  publication-title: Appl. Catal. B
– volume: 56
  start-page: 13781
  year: 2017
  end-page: 13785
  ident: bib0125
  article-title: Three-dimensional hierarchical architectures derived from surface-mounted metal-organic framework membranes for enhanced electrocatalysis
  publication-title: Angew. Chem. Int. Ed.
– volume: 125
  start-page: 7814
  year: 2003
  end-page: 7815
  ident: bib0145
  article-title: Prussian blue nanoparticles protected by poly(vinylpyrrolidone)
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 2535
  year: 2017
  end-page: 2541
  ident: bib0260
  article-title: Enhancing water oxidation catalysis on a synergistic phosphorylated NiFe hydroxide by adjusting catalyst wettability
  publication-title: ACS Catal.
– volume: 7
  year: 2017
  ident: bib0295
  article-title: MOF template-directed fabrication of hierarchically structured electrocatalysts for efficient oxygen evolution reaction
  publication-title: Adv. Energy Mater.
– volume: 16
  start-page: 70
  year: 2017
  end-page: 81
  ident: bib0010
  article-title: Materials for solar fuels and chemicals
  publication-title: Nat. Mater.
– volume: 227
  start-page: 340
  year: 2018
  end-page: 348
  ident: bib0035
  article-title: Promotion of electrochemical oxygen evolution reaction by chemical coupling of cobalt to molybdenum carbide
  publication-title: Appl. Catal. B: Environ.
– volume: 519
  start-page: 139
  year: 2016
  end-page: 145
  ident: bib0255
  article-title: Cobalt ferrite nanoparticles for the preferential oxidation of CO
  publication-title: Appl. Catal. A Gen.
– volume: 28
  start-page: 4601
  year: 2016
  end-page: 4605
  ident: bib0115
  article-title: Formation of prussian-blue-Analog nanocages via a direct etching method and their conversion into Ni-Co-Mixed oxide for enhanced oxygen evolution
  publication-title: Adv. Mater.
– volume: 52
  start-page: 13233
  year: 2016
  end-page: 13236
  ident: bib0230
  article-title: Graphitic carbon nitride supported single-atom catalysts for efficient oxygen evolution reaction
  publication-title: Chem. Commun. (Camb.)
– volume: 3
  start-page: 2815
  year: 2015
  end-page: 2824
  ident: bib0265
  article-title: Metal-organic framework-derived porous Mn
  publication-title: J. Mater. Chem. A Mater. Energy Sustain.
– volume: 30
  year: 2018
  ident: bib0110
  article-title: Metal-organic framework hybrid-assisted formation of Co
  publication-title: Adv. Mater.
– volume: 40
  start-page: 1081
  year: 2011
  end-page: 1106
  ident: bib0195
  article-title: MOF thin films: existing and future applications
  publication-title: Chem. Soc. Rev.
– volume: 120
  start-page: 517
  year: 2016
  end-page: 526
  ident: bib0275
  article-title: Thermal, and electrochemical water oxidation catalyzed by a porous iron-based oxide derived metal organic framework
  publication-title: J. Phys. Chem. C
– volume: 112
  start-page: 9872
  year: 2008
  end-page: 9879
  ident: bib0220
  article-title: Oxidation and photo-oxidation of water on TiO
  publication-title: J. Phys. Chem. C
– volume: 7
  year: 2017
  ident: bib0270
  article-title: Rational design of metal-organic framework derived hollow NiCo
  publication-title: Adv. Energy Mater.
– volume: 7
  start-page: 8920
  year: 2015
  end-page: 8930
  ident: bib0045
  article-title: Facile synthesis of electrospun MFe
  publication-title: Nanoscale
– volume: 5
  start-page: 20126
  year: 2017
  end-page: 20130
  ident: bib0170
  article-title: Epitaxial encapsulation of homodispersed CeO
  publication-title: J. Mater. Chem. A Mater. Energy Sustain.
– volume: 236
  start-page: 569
  year: 2018
  end-page: 575
  ident: bib0015
  article-title: Electrical and structural engineering of cobalt selenide nanosheets by Mn modulation for efficient oxygen evolution
  publication-title: Appl. Catal. B: Environ.
– volume: 9
  start-page: 7734
  year: 2017
  end-page: 7738
  ident: bib0175
  article-title: Insight into the epitaxial encapsulation of Pd catalysts in an oriented metalloporphyrin network thin film for tandem catalysis
  publication-title: Nanoscale
– volume: 236
  start-page: 107
  year: 2018
  end-page: 116
  ident: bib0280
  article-title: An effective way to improve bifunctional electrocatalyst activity of manganese oxide via control of bond competition
  publication-title: Appl. Catal. B: Environ.
– volume: 28
  year: 2018
  ident: bib0130
  article-title: From 3D ZIF nanocrystals to Co-N
  publication-title: Adv. Funct. Mater.
– volume: 48
  start-page: 6205
  year: 2009
  end-page: 6208
  ident: bib0150
  article-title: Layer-by-Layer liquid-phase epitaxy of crystalline coordination polymers at surfaces
  publication-title: Angew. Chem. Int. Ed.
– volume: 29
  start-page: 120
  year: 2017
  end-page: 140
  ident: bib0120
  article-title: Measurement techniques for the study of thin film heterogeneous water oxidation electrocatalysts
  publication-title: Chem. Mater.
– volume: 220
  start-page: 88
  year: 2018
  end-page: 97
  ident: bib0030
  article-title: Insights into oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) active sites for nitrogen-doped carbon nanostructures (CN
  publication-title: Appl. Catal. B: Environ.
– volume: 138
  start-page: 7091
  year: 2016
  end-page: 7098
  ident: bib0225
  article-title: Two-dimensional phosphorus porous polymorphs with tunable band gaps
  publication-title: J. Am. Chem. Soc.
– volume: 137
  start-page: 4347
  year: 2015
  end-page: 4357
  ident: bib0285
  article-title: Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices
  publication-title: J. Am. Chem. Soc.
– volume: 27
  start-page: 1524
  year: 2015
  end-page: 1530
  ident: bib0075
  article-title: Stepwise reduction of electrochemically lithiated core-shell heterostructures based on the prussian blue analogue coordination polymers K
  publication-title: Chem. Mater.
– volume: 16
  start-page: 7718
  year: 2016
  end-page: 7725
  ident: bib0290
  article-title: Plasma-assisted synthesis of NiCoP for efficient overall water splitting
  publication-title: Nano Lett.
– volume: 108
  start-page: 17886
  year: 2004
  end-page: 17892
  ident: bib0210
  article-title: Origin of the overpotential for oxygen reduction at a fuel-cell cathode
  publication-title: J. Phys. Chem. B
– volume: 138
  start-page: 16174
  year: 2016
  end-page: 16181
  ident: bib0005
  article-title: High electrocatalytic hydrogen evolution activity of an anomalous ruthenium catalyst
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 22242
  year: 2017
  end-page: 22254
  ident: bib0095
  article-title: Fabrication of an advanced asymmetric supercapacitor based on a microcubical PB@MnO
  publication-title: J. Mater. Chem. A Mater. Energy Sustain.
– volume: 9
  start-page: 7259
  year: 2017
  end-page: 7264
  ident: bib0185
  article-title: Epitaxial growth of MOF thin film for modifying the dielectric layer in organic field-effect transistors, ACS appl
  publication-title: Mater. Interfaces
– volume: 39
  start-page: 273
  year: 2017
  end-page: 283
  ident: bib0080
  article-title: A novel border-rich Prussian blue synthetized by inhibitor control as cathode for sodium ion batteries
  publication-title: Nano Energy
– volume: 57
  start-page: 698
  year: 2018
  end-page: 702
  ident: bib0025
  article-title: A molecular approach to manganese nitride acting as a high performance electrocatalyst in the oxygen evolution reaction
  publication-title: Angew. Chem. Int. Ed.
– volume: 28
  year: 2018
  ident: bib0135
  article-title: Kinetically controlled coprecipitation for general fast synthesis of sandwiched metal hydroxide nanosheets/graphene composites toward efficient water splitting
  publication-title: Adv. Funct. Mater.
– volume: 44
  start-page: 7997
  year: 2015
  end-page: 8018
  ident: bib0070
  article-title: New faces of porous Prussian blue: interfacial assembly of integrated hetero-structures for sensing applications
  publication-title: Chem. Soc. Rev.
– volume: 136
  start-page: 8
  year: 2014
  end-page: 11
  ident: bib0180
  article-title: Fabrication of highly uniform gel coatings by the conversion of surface-anchored metal-organic frameworks
  publication-title: J. Am. Chem. Soc.
– volume: 54
  start-page: 5331
  year: 2015
  end-page: 5335
  ident: bib0090
  article-title: Formation of nickel sulfide nanoframes from metal-organic frameworks with enhanced pseudocapacitive and electrocatalytic properties
  publication-title: Angew. Chem. Int. Ed.
– volume: 18
  start-page: 1440
  year: 2008
  end-page: 1447
  ident: bib0065
  article-title: Core-ring structured NiCo
  publication-title: Adv. Funct. Mater.
– volume: 343
  start-page: 66
  year: 2014
  ident: 10.1016/j.apcatb.2018.12.036_bib0190
  article-title: Tunable electrical conductivity in metal-organic framework thin-film devices
  publication-title: Science
  doi: 10.1126/science.1246738
– volume: 27
  start-page: 1524
  year: 2015
  ident: 10.1016/j.apcatb.2018.12.036_bib0075
  article-title: Stepwise reduction of electrochemically lithiated core-shell heterostructures based on the prussian blue analogue coordination polymers K0.1Cu[Fe(CN)6]0.7·3.5H2O and K0.1Ni [Fe(CN)6]0.7·4.4H2O
  publication-title: Chem. Mater.
  doi: 10.1021/cm503639a
– volume: 135
  start-page: 13270
  year: 2013
  ident: 10.1016/j.apcatb.2018.12.036_bib0100
  article-title: Fast and persistent electrocatalytic water oxidation by Co-Fe prussian blue coordination polymers
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja406242y
– volume: 136
  start-page: 8
  year: 2014
  ident: 10.1016/j.apcatb.2018.12.036_bib0180
  article-title: Fabrication of highly uniform gel coatings by the conversion of surface-anchored metal-organic frameworks
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja409205s
– volume: 7
  year: 2017
  ident: 10.1016/j.apcatb.2018.12.036_bib0295
  article-title: MOF template-directed fabrication of hierarchically structured electrocatalysts for efficient oxygen evolution reaction
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201602643
– volume: 16
  start-page: 15917
  year: 2014
  ident: 10.1016/j.apcatb.2018.12.036_bib0235
  article-title: Adsorption and photocatalytic splitting of water on graphitic carbon nitride: a combined first principles and semiempirical study
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP02021A
– volume: 29
  start-page: 120
  year: 2017
  ident: 10.1016/j.apcatb.2018.12.036_bib0120
  article-title: Measurement techniques for the study of thin film heterogeneous water oxidation electrocatalysts
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b02796
– volume: 9
  start-page: 7734
  year: 2017
  ident: 10.1016/j.apcatb.2018.12.036_bib0175
  article-title: Insight into the epitaxial encapsulation of Pd catalysts in an oriented metalloporphyrin network thin film for tandem catalysis
  publication-title: Nanoscale
  doi: 10.1039/C7NR02284K
– volume: 4
  start-page: 4472
  year: 2016
  ident: 10.1016/j.apcatb.2018.12.036_bib0050
  article-title: A facile preparation of CoFe2O4 nanoparticles on polyaniline-functionalised carbon nanotubes as enhanced catalysts for the oxygen evolution reaction
  publication-title: J. Mater. Chem. A Mater. Energy Sustain.
  doi: 10.1039/C5TA10420C
– volume: 220
  start-page: 88
  year: 2018
  ident: 10.1016/j.apcatb.2018.12.036_bib0030
  article-title: Insights into oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) active sites for nitrogen-doped carbon nanostructures (CNx) in acidic media
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2017.07.086
– volume: 240
  start-page: 193
  year: 2019
  ident: 10.1016/j.apcatb.2018.12.036_bib0250
  article-title: 3D carbon framework-supported CoNi nanoparticles as bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2018.08.081
– volume: 227
  start-page: 340
  year: 2018
  ident: 10.1016/j.apcatb.2018.12.036_bib0035
  article-title: Promotion of electrochemical oxygen evolution reaction by chemical coupling of cobalt to molybdenum carbide
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2018.01.051
– volume: 28
  year: 2018
  ident: 10.1016/j.apcatb.2018.12.036_bib0130
  article-title: From 3D ZIF nanocrystals to Co-Nx/C nanorod array electrocatalysts for ORR, OER, and Zn-Air batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201704638
– volume: 9
  start-page: 7259
  year: 2017
  ident: 10.1016/j.apcatb.2018.12.036_bib0185
  article-title: Epitaxial growth of MOF thin film for modifying the dielectric layer in organic field-effect transistors, ACS appl
  publication-title: Mater. Interfaces
  doi: 10.1021/acsami.6b14541
– volume: 52
  start-page: 13233
  year: 2016
  ident: 10.1016/j.apcatb.2018.12.036_bib0230
  article-title: Graphitic carbon nitride supported single-atom catalysts for efficient oxygen evolution reaction
  publication-title: Chem. Commun. (Camb.)
  doi: 10.1039/C6CC07049C
– volume: 16
  start-page: 7718
  year: 2016
  ident: 10.1016/j.apcatb.2018.12.036_bib0290
  article-title: Plasma-assisted synthesis of NiCoP for efficient overall water splitting
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b03803
– volume: 236
  start-page: 569
  year: 2018
  ident: 10.1016/j.apcatb.2018.12.036_bib0015
  article-title: Electrical and structural engineering of cobalt selenide nanosheets by Mn modulation for efficient oxygen evolution
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2018.05.054
– volume: 137
  start-page: 4347
  year: 2015
  ident: 10.1016/j.apcatb.2018.12.036_bib0285
  article-title: Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja510442p
– volume: 13
  year: 2017
  ident: 10.1016/j.apcatb.2018.12.036_bib0165
  article-title: Epitaxial growth of oriented metalloporphyrin network thin film for improved selectivity of volatile organic compounds
  publication-title: Small
– volume: 18
  start-page: 1440
  year: 2008
  ident: 10.1016/j.apcatb.2018.12.036_bib0065
  article-title: Core-ring structured NiCo2O4 nanoplatelets: synthesis, characterization, and electrocatalytic applications
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200700982
– volume: 5
  start-page: 20126
  year: 2017
  ident: 10.1016/j.apcatb.2018.12.036_bib0170
  article-title: Epitaxial encapsulation of homodispersed CeO2 in a cobalt-porphyrin network derived thin film for the highly efficient oxygen evolution reaction
  publication-title: J. Mater. Chem. A Mater. Energy Sustain.
  doi: 10.1039/C7TA06580A
– volume: 40
  start-page: 1081
  year: 2011
  ident: 10.1016/j.apcatb.2018.12.036_bib0195
  article-title: MOF thin films: existing and future applications
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c0cs00147c
– volume: 5
  start-page: 4320
  year: 2017
  ident: 10.1016/j.apcatb.2018.12.036_bib0240
  article-title: Mesoporous Ni-Fe oxide multi-composite hollow nanocages for efficient electrocatalytic water oxidation reactions
  publication-title: J. Mater. Chem. A Mater. Energy Sustain.
  doi: 10.1039/C6TA10094E
– volume: 48
  start-page: 6205
  year: 2009
  ident: 10.1016/j.apcatb.2018.12.036_bib0150
  article-title: Layer-by-Layer liquid-phase epitaxy of crystalline coordination polymers at surfaces
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200901090
– volume: 3
  start-page: 2815
  year: 2015
  ident: 10.1016/j.apcatb.2018.12.036_bib0265
  article-title: Metal-organic framework-derived porous Mn1.8Fe1.2O4 nanocubes with an interconnected channel structure as high-performance anodes for lithium ion batteries
  publication-title: J. Mater. Chem. A Mater. Energy Sustain.
  doi: 10.1039/C4TA06150K
– volume: 138
  start-page: 9128
  year: 2016
  ident: 10.1016/j.apcatb.2018.12.036_bib0020
  article-title: Promoting active species generation by plasmon-induced hot-electron excitation for efficient electrocatalytic oxygen evolution
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b05190
– volume: 8
  start-page: 2333
  year: 2016
  ident: 10.1016/j.apcatb.2018.12.036_bib0245
  article-title: A "copolymer-co-morphology" conception for shape-controlled synthesis of Prussian blue analogues and as-derived spinel oxides
  publication-title: Nanoscale
  doi: 10.1039/C5NR07193C
– volume: 108
  start-page: 17886
  year: 2004
  ident: 10.1016/j.apcatb.2018.12.036_bib0210
  article-title: Origin of the overpotential for oxygen reduction at a fuel-cell cathode
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp047349j
– volume: 112
  start-page: 9872
  year: 2008
  ident: 10.1016/j.apcatb.2018.12.036_bib0220
  article-title: Oxidation and photo-oxidation of water on TiO2 surface
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp711929d
– volume: 6
  start-page: 15168
  year: 2014
  ident: 10.1016/j.apcatb.2018.12.036_bib0085
  article-title: General design of hollow porous CoFe2O4 nanocubes from metal-organic frameworks with extraordinary lithium storage
  publication-title: Nanoscale
  doi: 10.1039/C4NR04422C
– volume: 54
  start-page: 5331
  year: 2015
  ident: 10.1016/j.apcatb.2018.12.036_bib0090
  article-title: Formation of nickel sulfide nanoframes from metal-organic frameworks with enhanced pseudocapacitive and electrocatalytic properties
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201500267
– volume: 77
  start-page: 3865
  year: 1996
  ident: 10.1016/j.apcatb.2018.12.036_bib0205
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 46
  start-page: 5730
  year: 2017
  ident: 10.1016/j.apcatb.2018.12.036_bib0200
  article-title: Surface-supported metal-organic framework thin films: fabrication methods, applications, and challenges
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00315C
– volume: 607
  start-page: 83
  year: 2007
  ident: 10.1016/j.apcatb.2018.12.036_bib0215
  article-title: Electrolysis of water on oxide surfaces
  publication-title: J. Electroanal. Chem. Lausanne (Lausanne)
  doi: 10.1016/j.jelechem.2006.11.008
– volume: 49
  start-page: 10079
  year: 2013
  ident: 10.1016/j.apcatb.2018.12.036_bib0155
  article-title: The liquid phase epitaxy method for the construction of oriented ZIF-8 thin films with controlled growth on functionalized surfaces
  publication-title: Chem. Commun. (Camb.)
  doi: 10.1039/c3cc45343j
– volume: 138
  start-page: 16037
  year: 2016
  ident: 10.1016/j.apcatb.2018.12.036_bib0105
  article-title: Enhanced activity and acid pH stability of prussian blue-type oxygen evolution electrocatalysts processed by chemical etching
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b09778
– volume: 7
  start-page: 2535
  year: 2017
  ident: 10.1016/j.apcatb.2018.12.036_bib0260
  article-title: Enhancing water oxidation catalysis on a synergistic phosphorylated NiFe hydroxide by adjusting catalyst wettability
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b03497
– volume: 519
  start-page: 139
  year: 2016
  ident: 10.1016/j.apcatb.2018.12.036_bib0255
  article-title: Cobalt ferrite nanoparticles for the preferential oxidation of CO
  publication-title: Appl. Catal. A Gen.
  doi: 10.1016/j.apcata.2016.03.024
– volume: 13
  start-page: 2947
  year: 2013
  ident: 10.1016/j.apcatb.2018.12.036_bib0060
  article-title: Monodisperse MxFe3-xO4 (M = Fe, Cu, Co, Mn) nanoparticles and their electrocatalysis for oxygen reduction reaction
  publication-title: Nano Lett.
  doi: 10.1021/nl401325u
– volume: 44
  start-page: 7997
  year: 2015
  ident: 10.1016/j.apcatb.2018.12.036_bib0070
  article-title: New faces of porous Prussian blue: interfacial assembly of integrated hetero-structures for sensing applications
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00397K
– volume: 7
  start-page: 8920
  year: 2015
  ident: 10.1016/j.apcatb.2018.12.036_bib0045
  article-title: Facile synthesis of electrospun MFe2O4 (M = Co, Ni, Cu, Mn) spinel nanofibers with excellent electrocatalytic properties for oxygen evolution and hydrogen peroxide reduction
  publication-title: Nanoscale
  doi: 10.1039/C4NR07243J
– volume: 28
  start-page: 4601
  year: 2016
  ident: 10.1016/j.apcatb.2018.12.036_bib0115
  article-title: Formation of prussian-blue-Analog nanocages via a direct etching method and their conversion into Ni-Co-Mixed oxide for enhanced oxygen evolution
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201506315
– volume: 39
  start-page: 273
  year: 2017
  ident: 10.1016/j.apcatb.2018.12.036_bib0080
  article-title: A novel border-rich Prussian blue synthetized by inhibitor control as cathode for sodium ion batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.07.005
– volume: 5
  start-page: 22242
  year: 2017
  ident: 10.1016/j.apcatb.2018.12.036_bib0095
  article-title: Fabrication of an advanced asymmetric supercapacitor based on a microcubical PB@MnO2 hybrid and PANI/GNP composite with excellent electrochemical behaviour
  publication-title: J. Mater. Chem. A Mater. Energy Sustain.
  doi: 10.1039/C7TA05134D
– volume: 125
  start-page: 7814
  year: 2003
  ident: 10.1016/j.apcatb.2018.12.036_bib0145
  article-title: Prussian blue nanoparticles protected by poly(vinylpyrrolidone)
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0356582
– volume: 138
  start-page: 7091
  year: 2016
  ident: 10.1016/j.apcatb.2018.12.036_bib0225
  article-title: Two-dimensional phosphorus porous polymorphs with tunable band gaps
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b02964
– volume: 19
  start-page: 1882
  year: 2013
  ident: 10.1016/j.apcatb.2018.12.036_bib0140
  article-title: Kinetically controlled crystallization for synthesis of monodispersed coordination polymer nanocubes and their self-assembly to periodic arrangements
  publication-title: Chem.-Eur. J.
  doi: 10.1002/chem.201203138
– volume: 117
  start-page: 10121
  year: 2017
  ident: 10.1016/j.apcatb.2018.12.036_bib0055
  article-title: Spinels: controlled preparation, oxygen Reduction/Evolution reaction application, and beyond
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00051
– volume: 16
  start-page: 70
  year: 2017
  ident: 10.1016/j.apcatb.2018.12.036_bib0010
  article-title: Materials for solar fuels and chemicals
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4778
– volume: 57
  start-page: 698
  year: 2018
  ident: 10.1016/j.apcatb.2018.12.036_bib0025
  article-title: A molecular approach to manganese nitride acting as a high performance electrocatalyst in the oxygen evolution reaction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201710460
– volume: 7
  year: 2017
  ident: 10.1016/j.apcatb.2018.12.036_bib0270
  article-title: Rational design of metal-organic framework derived hollow NiCo2O4 arrays for flexible supercapacitor and electrocatalysis
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201602391
– volume: 120
  start-page: 517
  year: 2016
  ident: 10.1016/j.apcatb.2018.12.036_bib0275
  article-title: Thermal, and electrochemical water oxidation catalyzed by a porous iron-based oxide derived metal organic framework
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b11533
– volume: 28
  year: 2018
  ident: 10.1016/j.apcatb.2018.12.036_bib0135
  article-title: Kinetically controlled coprecipitation for general fast synthesis of sandwiched metal hydroxide nanosheets/graphene composites toward efficient water splitting
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201704594
– volume: 236
  start-page: 107
  year: 2018
  ident: 10.1016/j.apcatb.2018.12.036_bib0280
  article-title: An effective way to improve bifunctional electrocatalyst activity of manganese oxide via control of bond competition
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2018.05.010
– volume: 23
  start-page: 3790
  year: 2013
  ident: 10.1016/j.apcatb.2018.12.036_bib0160
  article-title: Multi variant surface mounted metal-organic frameworks
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201202996
– volume: 6
  year: 2016
  ident: 10.1016/j.apcatb.2018.12.036_bib0040
  article-title: Amorphous cobalt boride (Co2B) as a highly efficient nonprecious catalyst for electrochemical water splitting: oxygen and hydrogen evolution
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201600980
– volume: 30
  year: 2018
  ident: 10.1016/j.apcatb.2018.12.036_bib0110
  article-title: Metal-organic framework hybrid-assisted formation of Co3O4/Co-Fe oxide double-shelled nanoboxes for enhanced oxygen evolution
  publication-title: Adv. Mater.
– volume: 138
  start-page: 16174
  year: 2016
  ident: 10.1016/j.apcatb.2018.12.036_bib0005
  article-title: High electrocatalytic hydrogen evolution activity of an anomalous ruthenium catalyst
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b11291
– volume: 56
  start-page: 13781
  year: 2017
  ident: 10.1016/j.apcatb.2018.12.036_bib0125
  article-title: Three-dimensional hierarchical architectures derived from surface-mounted metal-organic framework membranes for enhanced electrocatalysis
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201708385
SSID ssj0002328
Score 2.6093185
Snippet We first developed a well-aligned mesoporous CoFe2O4 thin film from surface epitaxial growth of oriented CoFe-based prussian blue analogue thin film (CoFe-PBA...
The development of cost-effective, high-efficiency, and non-noble metal based electrocatalysts for oxygen evolution reaction (OER) is considered to be the most...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Alignment
Aqueous solutions
Catalysis
Charge transfer
Cobalt ferrites
CoFe2O4 thin film
Electrocatalysts
Electrochemistry
Electrodes
Electron transfer
Epitaxial growth
Evolution
Liquid phase epitaxial growth
Liquid phases
Noble metals
Oxygen
Oxygen evolution reaction
Oxygen evolution reactions
Photovoltaic cells
Pigments
Prussian blue analogous
Pyrolysis
Renewable energy
Substrates
Thin films
Water splitting
Title Epitaxial growth of oriented prussian blue analogue derived well-aligned CoFe2O4 thin film for efficient oxygen evolution reaction
URI https://dx.doi.org/10.1016/j.apcatb.2018.12.036
https://www.proquest.com/docview/2230286219
Volume 245
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFLcQO8AO09aBxgboHbh6bRLHjo-oalU2jR0YEjfLTmwo6pKKpohdduAv59lxBpuQkHbLh21Z9s_v_fz0Pgg5krk2yJQdLapRTpmRkhZcWGpskovUSlMFO-S3Uz47Z18u8osNMu5jYbxbZZT9nUwP0jp-GcbVHC7n8-HZSKY8y4QHJbJk6QPNGRMe5Z9_P7p5IGMI0hgbU9-6D58LPl56WerWeAevIhgFQ6LmZ9XTP4I6aJ_pW_Im0kY47mb2jmzYekC2xn21tgF5_SSx4IDsTh7j17BbPMCr9-R-4quE3CHo4BIv4O0VNA4an-sYmScsb9YrH1QJZrG2oOvOsAMVjnqLv72djyJvv0TRDONmatPvDNqreQ1uvvgJSH_BhowUOBo0d78Qm2BvI7YB2WmIodgh59PJj_GMxjIMtMxE0lKNV55CS9R1XgTwIhGVECK3kttM6hz1G3OmrJxODbIhllguc-FYqUVSOuaKbJds1k1tPxAoGR9ZaZlMKx_LnuEjXn94aYWrkNpkeyTrV1-VMUe5L5WxUL0z2rXq9kz5PVNJqnBGe4T-6bXscnS80F70G6v-wppCNfJCz_0eByqe9ZVCgoUkjaPo__jfA38i2_gmvVtCku-TzfZmbQ-Q7bTmMMD5kLw6Pvk6O30A94EAIw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcigcECxUFErxgavZTeJHfESrXW2fHGil3iwnsdutlmTVzVbtpQd-OWPHoYCQKnGL4ocse_zN59E8AD4pbgpkyo7m1YhTVihFcyEtLWzCZWpVUQU75PGJmJ2xg3N-vgHjPhbGu1VG7O8wPaB1_DOMuzlczufDbyOViiyTXiiRJSv-BJ4yvL6-jMHn-wc_D6QMAY6xN_Xd-_i54ORllqVpC-_hlQerYMjU_E_99BdSB_UzfQkvIm8kX7qlvYINWw9ga9yXaxvA898yCw5ge_IQwIbD4g1evYYfE18m5BaljlzgC7y9JI0jjU92jNSTLK_XKx9VSYrF2hJTd5YdUuGsN9jsDX0UifsFYjMZN1ObfmWkvZzXxM0X3wnyX2JDSgqcjTS3dyicxN5E4SZIT0MQxRs4m05OxzMa6zDQMpNJSw2-eXKjUNl5DBB5IispJbdK2EwZjgqOuaKsnEkLpEMssUJx6VhpZFI65vJsGzbrprZvgZRMjKyyTKWVD2bP8BPfP6K00lXIbbIdyPrd12VMUu5rZSx07412pbsz0_7MdJJqXNEO0F-jll2Sjkf6y_5g9R_CplGPPDJyt5cDHS_7SiPDQpYmEPvf_ffEH2Frdnp8pI_2Tw7fwzNsUd5HIeG7sNler-0HpD5tsRdE-yfBNgGx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Epitaxial+growth+of+oriented+prussian+blue+analogue+derived+well-aligned+CoFe2O4+thin+film+for+efficient+oxygen+evolution+reaction&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Lei%2C+Song&rft.au=Li%2C+Qiao-Hong&rft.au=Kang%2C+Yao&rft.au=Gu%2C+Zhi-Gang&rft.date=2019-05-15&rft.pub=Elsevier+BV&rft.issn=0926-3373&rft.eissn=1873-3883&rft.volume=245&rft.spage=1&rft_id=info:doi/10.1016%2Fj.apcatb.2018.12.036&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon