Epitaxial growth of oriented prussian blue analogue derived well-aligned CoFe2O4 thin film for efficient oxygen evolution reaction
We first developed a well-aligned mesoporous CoFe2O4 thin film from surface epitaxial growth of oriented CoFe-based prussian blue analogue thin film (CoFe-PBA thin film) for efficient electrocatalytic OER. CoFe-PBA thin film with preferred [100] orientation is first prepared on the substrate surface...
Saved in:
Published in | Applied catalysis. B, Environmental Vol. 245; pp. 1 - 9 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
15.05.2019
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We first developed a well-aligned mesoporous CoFe2O4 thin film from surface epitaxial growth of oriented CoFe-based prussian blue analogue thin film (CoFe-PBA thin film) for efficient electrocatalytic OER. CoFe-PBA thin film with preferred [100] orientation is first prepared on the substrate surface by employing liquid-phase epitaxial method without any structure-directing surfactants. After thermal pyrolysis, such CoFe-PBA thin film was transformed into well-aligned mesoporous CoFe2O4 thin film with remarkable catalytic performance and durable stability. This study provides an effective paradigm for preparing binder-free, self-support and low-cost spinel oxide electrocatalyst for efficient OER derived from surface epitaxial growth of oriented PBA thin film.
[Display omitted]
•Epitaxial growth of oriented prussian blue analogue derived a bimetallic oxide film.•Obtained CoFe2O4 film has higher electrocatalytic OER than commercial RuO2.•Homogeneous and continuous bimetallic oxide film increased the OER performance.•Synergistic effect of Co and Fe promote the low-cost and high-efficient OER.
The development of cost-effective, high-efficiency, and non-noble metal based electrocatalysts for oxygen evolution reaction (OER) is considered to be the most pivotal portion for electrochemical water splitting to generate renewable energy. Herein, well-aligned mesoporous CoFe2O4 thin film is first developed from surface epitaxial growth of oriented CoFe-based prussian blue analogue thin film (CoFe-PBA thin film) for efficient electrocatalytic OER. CoFe-PBA thin film with preferred [100] orientation is first prepared on the substrate surface by employing liquid phase epitaxial method without any structure-directing surfactants. After thermal pyrolysis, such CoFe-PBA thin film was transformed into well-aligned mesoporous CoFe2O4 thin film. Interestingly, the self-support CoFe2O4 thin film electrode with the mass loading of 1.6 mg cm−2 delivers an oxygen evolution current density of 10 mA cm−2 at an overpotential of 266 mV and exhibits durable stability in 1 M KOH aqueous solution. The remarkable and stable catalytic performance of the CoFe2O4 thin film can be mainly owing to the mesoporous structure of CoFe2O4, efficient charge/electron transfer, the numerous exposed active sites, and the well-structured configuration of the electrode. Hence, this work provides an effective paradigm for preparing binder-free, self-support, and low-cost spinel oxide electrocatalyst for efficient OER derived from surface epitaxial growth of oriented PBA thin film. |
---|---|
AbstractList | The development of cost-effective, high-efficiency, and non-noble metal based electrocatalysts for oxygen evolution reaction (OER) is considered to be the most pivotal portion for electrochemical water splitting to generate renewable energy. Herein, well-aligned mesoporous CoFe2O4 thin film is first developed from surface epitaxial growth of oriented CoFe-based prussian blue analogue thin film (CoFe-PBA thin film) for efficient electrocatalytic OER. CoFe-PBA thin film with preferred [100] orientation is first prepared on the substrate surface by employing liquid phase epitaxial method without any structure-directing surfactants. After thermal pyrolysis, such CoFe-PBA thin film was transformed into well-aligned mesoporous CoFe2O4 thin film. Interestingly, the self-support CoFe2O4 thin film electrode with the mass loading of 1.6 mg cm−2 delivers an oxygen evolution current density of 10 mA cm−2 at an overpotential of 266 mV and exhibits durable stability in 1 M KOH aqueous solution. The remarkable and stable catalytic performance of the CoFe2O4 thin film can be mainly owing to the mesoporous structure of CoFe2O4, efficient charge/electron transfer, the numerous exposed active sites, and the well-structured configuration of the electrode. Hence, this work provides an effective paradigm for preparing binder-free, self-support, and low-cost spinel oxide electrocatalyst for efficient OER derived from surface epitaxial growth of oriented PBA thin film. We first developed a well-aligned mesoporous CoFe2O4 thin film from surface epitaxial growth of oriented CoFe-based prussian blue analogue thin film (CoFe-PBA thin film) for efficient electrocatalytic OER. CoFe-PBA thin film with preferred [100] orientation is first prepared on the substrate surface by employing liquid-phase epitaxial method without any structure-directing surfactants. After thermal pyrolysis, such CoFe-PBA thin film was transformed into well-aligned mesoporous CoFe2O4 thin film with remarkable catalytic performance and durable stability. This study provides an effective paradigm for preparing binder-free, self-support and low-cost spinel oxide electrocatalyst for efficient OER derived from surface epitaxial growth of oriented PBA thin film. [Display omitted] •Epitaxial growth of oriented prussian blue analogue derived a bimetallic oxide film.•Obtained CoFe2O4 film has higher electrocatalytic OER than commercial RuO2.•Homogeneous and continuous bimetallic oxide film increased the OER performance.•Synergistic effect of Co and Fe promote the low-cost and high-efficient OER. The development of cost-effective, high-efficiency, and non-noble metal based electrocatalysts for oxygen evolution reaction (OER) is considered to be the most pivotal portion for electrochemical water splitting to generate renewable energy. Herein, well-aligned mesoporous CoFe2O4 thin film is first developed from surface epitaxial growth of oriented CoFe-based prussian blue analogue thin film (CoFe-PBA thin film) for efficient electrocatalytic OER. CoFe-PBA thin film with preferred [100] orientation is first prepared on the substrate surface by employing liquid phase epitaxial method without any structure-directing surfactants. After thermal pyrolysis, such CoFe-PBA thin film was transformed into well-aligned mesoporous CoFe2O4 thin film. Interestingly, the self-support CoFe2O4 thin film electrode with the mass loading of 1.6 mg cm−2 delivers an oxygen evolution current density of 10 mA cm−2 at an overpotential of 266 mV and exhibits durable stability in 1 M KOH aqueous solution. The remarkable and stable catalytic performance of the CoFe2O4 thin film can be mainly owing to the mesoporous structure of CoFe2O4, efficient charge/electron transfer, the numerous exposed active sites, and the well-structured configuration of the electrode. Hence, this work provides an effective paradigm for preparing binder-free, self-support, and low-cost spinel oxide electrocatalyst for efficient OER derived from surface epitaxial growth of oriented PBA thin film. |
Author | Li, Qiao-Hong Lei, Song Gu, Zhi-Gang Zhang, Jian Kang, Yao |
Author_xml | – sequence: 1 givenname: Song surname: Lei fullname: Lei, Song – sequence: 2 givenname: Qiao-Hong surname: Li fullname: Li, Qiao-Hong – sequence: 3 givenname: Yao surname: Kang fullname: Kang, Yao – sequence: 4 givenname: Zhi-Gang orcidid: 0000-0001-6538-2917 surname: Gu fullname: Gu, Zhi-Gang email: zggu@fjirsm.ac.cn – sequence: 5 givenname: Jian surname: Zhang fullname: Zhang, Jian email: zhj@fjirsm.ac.cn |
BookMark | eNqFkE1r3DAQhkVJoJuPf9CDoGe7-vBacg-FsiRtIZBLcxayPNpoUSRXkjfJNb-8MttTD-1pZph5X-Z9LtBZiAEQ-kBJSwntPx1aPRtdxpYRKlvKWsL7d2hDpeANl5KfoQ0ZWN9wLvh7dJHzgRDCOJMb9HYzu6JfnPZ4n-JzecTR4pgchAITntOSs9MBj34BrIP2cV-bCZI71vUzeN9o7_ahDrt4C-y-w-XRBWydf8I2JgzWOrO64fjyuoeA4Rj9UlwMOIE2a3OFzq32Ga7_1Ev0cHvzc_e9ubv_9mP39a4xXNDSaNYTqQdO-EhqPknFJITYwtADH_SWya6zo5msZiMVrKPQD1thO6MFNbazkl-ijyffOcVfC-SiDnFJNVNWjHHCZM_oUK8-n65MijknsMpUQOufJWnnFSVqZa4O6sRcrcwVZar-VMXdX-I5uSedXv8n-3KSQY1_dJBUXpkZmFwCU9QU3b8NfgO4mKEt |
CitedBy_id | crossref_primary_10_1016_j_jechem_2021_04_001 crossref_primary_10_1039_D1DT01469B crossref_primary_10_3390_ma15217491 crossref_primary_10_1007_s43979_024_00112_9 crossref_primary_10_1002_chem_202001082 crossref_primary_10_1021_acsanm_4c00397 crossref_primary_10_1039_D0NR03115A crossref_primary_10_1016_j_jssc_2020_121751 crossref_primary_10_1039_D3DT01966G crossref_primary_10_1021_acssuschemeng_9b07122 crossref_primary_10_1016_j_apcatb_2019_117968 crossref_primary_10_1002_ente_202000178 crossref_primary_10_1002_asia_202401295 crossref_primary_10_1002_celc_202001356 crossref_primary_10_1016_j_ceramint_2023_10_012 crossref_primary_10_1007_s12274_022_4231_8 crossref_primary_10_1039_D0MH01757D crossref_primary_10_1021_acs_inorgchem_1c00098 crossref_primary_10_1016_j_apcatb_2019_118393 crossref_primary_10_1016_j_cclet_2022_107837 crossref_primary_10_1021_acsaem_4c00009 crossref_primary_10_1016_j_ijhydene_2020_08_019 crossref_primary_10_1016_j_cclet_2020_05_012 crossref_primary_10_1016_j_enchem_2021_100065 crossref_primary_10_1016_j_jallcom_2020_154896 crossref_primary_10_1002_ejic_202200111 crossref_primary_10_1039_D0EN00935K crossref_primary_10_1016_j_apsusc_2021_151388 crossref_primary_10_1016_j_jpowsour_2022_231536 crossref_primary_10_1016_j_jhazmat_2021_127033 crossref_primary_10_1016_j_apcatb_2020_119809 crossref_primary_10_1016_j_surfin_2024_104341 crossref_primary_10_1016_j_ijhydene_2023_04_181 crossref_primary_10_1039_D0CE00401D crossref_primary_10_1002_advs_202104846 crossref_primary_10_1016_j_ijhydene_2020_05_170 crossref_primary_10_1016_j_seppur_2022_122069 crossref_primary_10_1016_j_cej_2020_125556 crossref_primary_10_1021_acsami_4c17510 crossref_primary_10_2139_ssrn_4111908 crossref_primary_10_1016_j_jiec_2024_11_050 crossref_primary_10_1039_D3CY01013A crossref_primary_10_1088_2053_1591_abae26 crossref_primary_10_1039_D0TA07579E crossref_primary_10_1002_aenm_201902115 crossref_primary_10_1002_chem_202403229 crossref_primary_10_1016_j_apsusc_2020_147584 crossref_primary_10_1016_j_jallcom_2023_169110 crossref_primary_10_1016_j_colsurfa_2023_133082 crossref_primary_10_1016_j_cej_2022_137665 crossref_primary_10_1016_j_apsusc_2021_149007 crossref_primary_10_1016_j_jece_2022_108059 crossref_primary_10_1016_j_ccr_2022_214429 crossref_primary_10_1016_j_jallcom_2024_176978 crossref_primary_10_1016_j_gee_2022_02_014 crossref_primary_10_1016_j_apsusc_2021_149360 crossref_primary_10_1016_j_jtice_2022_104252 crossref_primary_10_1039_D2RA01235A crossref_primary_10_1039_D1NJ00092F crossref_primary_10_1002_er_5428 crossref_primary_10_1016_j_jtice_2019_08_015 crossref_primary_10_1002_smll_202304594 crossref_primary_10_1016_j_jallcom_2022_165365 crossref_primary_10_2139_ssrn_4176332 crossref_primary_10_1016_j_seppur_2024_129290 crossref_primary_10_1039_C9NR01804B crossref_primary_10_1016_j_apcatb_2022_121781 crossref_primary_10_1002_asia_201901810 crossref_primary_10_2139_ssrn_4163541 crossref_primary_10_1016_j_jcis_2024_07_009 crossref_primary_10_1021_acsestwater_2c00590 crossref_primary_10_1002_smll_202410968 crossref_primary_10_1002_smtd_202401708 crossref_primary_10_3390_nano12162881 crossref_primary_10_1002_admi_202000777 crossref_primary_10_1039_D2CE01111E crossref_primary_10_1021_acsanm_4c02915 crossref_primary_10_1016_j_sajce_2020_04_004 crossref_primary_10_1002_adfm_202111501 crossref_primary_10_1016_j_mtener_2020_100404 crossref_primary_10_1002_smll_202205547 crossref_primary_10_1016_j_apcatb_2020_119725 crossref_primary_10_6023_A20090445 crossref_primary_10_3390_ma13245618 crossref_primary_10_3389_fmats_2021_718869 crossref_primary_10_3866_PKU_WHXB202308003 crossref_primary_10_1016_j_ijhydene_2021_02_026 crossref_primary_10_1016_j_apcatb_2019_04_083 crossref_primary_10_1016_j_ijhydene_2024_10_021 crossref_primary_10_1021_acs_langmuir_1c00245 crossref_primary_10_1021_acsami_2c11456 crossref_primary_10_1016_j_ijhydene_2020_10_144 crossref_primary_10_1016_j_jece_2022_109070 crossref_primary_10_1016_j_apcatb_2020_119857 crossref_primary_10_1016_j_jcis_2022_08_106 crossref_primary_10_1039_D2CP05522H crossref_primary_10_1016_j_matlet_2019_127027 crossref_primary_10_1016_j_jcis_2021_12_164 crossref_primary_10_1016_j_ccr_2019_213156 crossref_primary_10_1016_j_jssc_2024_124553 crossref_primary_10_1016_j_ccr_2021_214144 crossref_primary_10_1016_j_apcata_2022_118889 crossref_primary_10_1016_j_jssc_2021_122117 crossref_primary_10_1016_j_electacta_2021_138873 crossref_primary_10_1051_e3sconf_202343801001 crossref_primary_10_1039_D1NR04540G crossref_primary_10_1016_j_jallcom_2022_164805 crossref_primary_10_1021_acs_inorgchem_1c00620 crossref_primary_10_1002_smll_202205092 crossref_primary_10_1039_C9CC02393C crossref_primary_10_1002_chem_201904324 crossref_primary_10_1016_j_jece_2022_107616 crossref_primary_10_1016_j_partic_2022_12_012 crossref_primary_10_7498_aps_69_20200274 crossref_primary_10_1016_j_cej_2020_128227 crossref_primary_10_1016_j_cej_2020_127934 crossref_primary_10_1016_j_ijhydene_2019_09_058 crossref_primary_10_1016_j_seppur_2021_118889 crossref_primary_10_1016_j_cej_2022_138550 crossref_primary_10_1039_D2NJ06351D crossref_primary_10_1016_S1872_2067_21_63833_0 crossref_primary_10_1002_asia_201901721 crossref_primary_10_1007_s10854_021_06904_4 crossref_primary_10_1016_j_jssc_2023_124160 crossref_primary_10_1016_j_mtnano_2021_100120 crossref_primary_10_1016_j_cis_2023_102967 crossref_primary_10_1039_D2TA03033K crossref_primary_10_1002_adfm_202212160 crossref_primary_10_1016_j_cej_2021_133942 crossref_primary_10_1039_D2TA09501G crossref_primary_10_1016_j_ijhydene_2020_08_274 crossref_primary_10_1016_j_cej_2020_126284 crossref_primary_10_1021_acscatal_2c01534 crossref_primary_10_1016_j_jechem_2021_10_009 crossref_primary_10_1016_j_colsurfa_2021_126898 crossref_primary_10_1016_j_electacta_2021_139195 crossref_primary_10_1016_j_jallcom_2022_168674 crossref_primary_10_1016_j_mcat_2021_111835 crossref_primary_10_1016_j_electacta_2021_139745 crossref_primary_10_2139_ssrn_4098284 crossref_primary_10_1016_j_est_2024_115016 crossref_primary_10_1016_j_microc_2023_108832 crossref_primary_10_1021_acssuschemeng_9b03952 crossref_primary_10_1002_cnma_202400552 crossref_primary_10_1016_j_apcatb_2024_124530 crossref_primary_10_1016_j_ijhydene_2020_12_045 |
Cites_doi | 10.1126/science.1246738 10.1021/cm503639a 10.1021/ja406242y 10.1021/ja409205s 10.1002/aenm.201602643 10.1039/C4CP02021A 10.1021/acs.chemmater.6b02796 10.1039/C7NR02284K 10.1039/C5TA10420C 10.1016/j.apcatb.2017.07.086 10.1016/j.apcatb.2018.08.081 10.1016/j.apcatb.2018.01.051 10.1002/adfm.201704638 10.1021/acsami.6b14541 10.1039/C6CC07049C 10.1021/acs.nanolett.6b03803 10.1016/j.apcatb.2018.05.054 10.1021/ja510442p 10.1002/adfm.200700982 10.1039/C7TA06580A 10.1039/c0cs00147c 10.1039/C6TA10094E 10.1002/anie.200901090 10.1039/C4TA06150K 10.1021/jacs.6b05190 10.1039/C5NR07193C 10.1021/jp047349j 10.1021/jp711929d 10.1039/C4NR04422C 10.1002/anie.201500267 10.1103/PhysRevLett.77.3865 10.1039/C7CS00315C 10.1016/j.jelechem.2006.11.008 10.1039/c3cc45343j 10.1021/jacs.6b09778 10.1021/acscatal.6b03497 10.1016/j.apcata.2016.03.024 10.1021/nl401325u 10.1039/C5CS00397K 10.1039/C4NR07243J 10.1002/adma.201506315 10.1016/j.nanoen.2017.07.005 10.1039/C7TA05134D 10.1021/ja0356582 10.1021/jacs.6b02964 10.1002/chem.201203138 10.1021/acs.chemrev.7b00051 10.1038/nmat4778 10.1002/anie.201710460 10.1002/aenm.201602391 10.1021/acs.jpcc.5b11533 10.1002/adfm.201704594 10.1016/j.apcatb.2018.05.010 10.1002/adfm.201202996 10.1002/aenm.201600980 10.1021/jacs.6b11291 10.1002/anie.201708385 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. Copyright Elsevier BV May 15, 2019 |
Copyright_xml | – notice: 2018 Elsevier B.V. – notice: Copyright Elsevier BV May 15, 2019 |
DBID | AAYXX CITATION 7SR 7ST 7U5 8BQ 8FD C1K FR3 JG9 KR7 L7M SOI |
DOI | 10.1016/j.apcatb.2018.12.036 |
DatabaseName | CrossRef Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Materials Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Environmental Sciences |
EISSN | 1873-3883 |
EndPage | 9 |
ExternalDocumentID | 10_1016_j_apcatb_2018_12_036 S0926337318311895 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABMAC ABNUV ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPD SSG SSZ T5K ~02 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AHHHB AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU ASPBG AVWKF AZFZN BBWZM BNPGV CITATION FEDTE FGOYB HLY HVGLF HZ~ NDZJH R2- SCE SEW SSH VH1 WUQ XPP 7SR 7ST 7U5 8BQ 8FD C1K EFKBS FR3 JG9 KR7 L7M SOI |
ID | FETCH-LOGICAL-c371t-a2608a9303b0036817d7775e96e39a52844fbcdfa2b17241e6957f4ca71cf4f83 |
IEDL.DBID | .~1 |
ISSN | 0926-3373 |
IngestDate | Wed Aug 13 09:36:54 EDT 2025 Tue Jul 01 03:10:54 EDT 2025 Thu Apr 24 22:58:20 EDT 2025 Sat Mar 02 16:00:19 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Liquid phase epitaxial growth Oxygen evolution reaction CoFe2O4 thin film Prussian blue analogous |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c371t-a2608a9303b0036817d7775e96e39a52844fbcdfa2b17241e6957f4ca71cf4f83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6538-2917 |
PQID | 2230286219 |
PQPubID | 2045281 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2230286219 crossref_citationtrail_10_1016_j_apcatb_2018_12_036 crossref_primary_10_1016_j_apcatb_2018_12_036 elsevier_sciencedirect_doi_10_1016_j_apcatb_2018_12_036 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-05-15 |
PublicationDateYYYYMMDD | 2019-05-15 |
PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Applied catalysis. B, Environmental |
PublicationYear | 2019 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Tsotsalas, Liu, Tettmann, Grosjean, Shahnas, Wang, Azucena, Addicoat, Heine, Lahann, Overhage, Braese, Gliemann, Woell (bib0180) 2014; 136 Hu, Ishihara, Ariga, Imura, Yamauchi (bib0140) 2013; 19 Walter, Menezes, Orthmann, Schuch, Connor, Kaiser, Lerch, Driess (bib0025) 2018; 57 Wan, Liu, Li, Peng, Xi, Luo (bib0250) 2019; 240 Zhao, Yan, Chen, Chen (bib0055) 2017; 117 McCrory, Jung, Ferrer, Chatman, Peters, Jaramillo (bib0285) 2015; 137 Zhou, Dou, Zhou, Guo, Zhao, Li (bib0295) 2017; 7 Das, Bera, Maitra, Karan, Paria, Halder, Si, Bera, Khatua (bib0095) 2017; 5 Uemura, Kitagawa (bib0145) 2003; 125 Kong, Selomulya, Zheng, Zhao (bib0070) 2015; 44 Kim, Kim, Song, Oh, Chang, Cho (bib0035) 2018; 227 Li, Gu, Vohra, Kang, Zhu, Zhang (bib0165) 2017; 13 Zhuo, Wu, Yang (bib0225) 2016; 138 Li, Cui, Zhong, Li, Wang, Wang, Jiang (bib0230) 2016; 52 Yu, Yu, Wu, Lou (bib0090) 2015; 54 Shekhah, Liu, Fischer, Woell (bib0195) 2011; 40 Kang, Jin, Oh, Patil, Kim, Kim, Hwang (bib0280) 2018; 236 Valdes, Qu, Kroes, Rossmeisl, Norskov (bib0220) 2008; 112 Jia, Zhang, Fan, Li, Fu, Hao, Yuan, Zou (bib0125) 2017; 56 Masa, Weide, Peeters, Sinev, Xia, Sun, Somsen, Muhler, Schuhmann (bib0040) 2016; 6 Pintado, Goberna-Ferron, Escudero-Adan, Ramon Galan-Mascaros (bib0100) 2013; 135 Li, Gu, Zhang, Kang, Zhang (bib0170) 2017; 5 Gu, Chen, Fu, Zheng, Zhang (bib0185) 2017; 9 Huang, Xie, Zhang, Wang, Jiang, Xiao, Li, Li, Wu, Chen (bib0080) 2017; 39 Han, Yu, Lou (bib0115) 2016; 28 Zhao, Li, Yan, Xing, Lu, Zhao, Zhou, Peng, Zeng (bib0015) 2018; 236 Liang, Gandi, Anjum, Wang, Schwingenschlogl, Alshareef (bib0290) 2016; 16 Li, Zhao (bib0260) 2017; 7 Li, Xiong, Liu, Bo, Zhang, Han, Guo (bib0045) 2015; 7 Han, Tang, Reyes-Carmona, Rodriguez-Garcia, Torrens, Ramon Morante, Arbiol, Ramon Galan-Mascaros (bib0105) 2016; 138 Zheng, Zhu, Shi, Chen (bib0265) 2015; 3 Perdew, Burke, Ernzerhof (bib0205) 1996; 77 Norskov, Rossmeisl, Logadottir, Lindqvist, Kitchin, Bligaard, Jonsson (bib0210) 2004; 108 Stevens, Enman, Batchellor, Cosby, Vise, Trang, Boettcher (bib0120) 2017; 29 Wang, Yu, Guan, Song, Lou (bib0110) 2018; 30 Liu, Tu, Zacher, Fischer (bib0160) 2013; 23 Vohra, Li, Gu, Zhang (bib0175) 2017; 9 Liu, Woell (bib0200) 2017; 46 Li, Yuan, Wang, Jiang, Rykov, Nagy, Bogdan, Ahmed, Zhu, Sun, Yang (bib0245) 2016; 8 Guan, Liu, Ren, Li, Cheng, Wang (bib0270) 2017; 7 Fischer, Woell (bib0150) 2009; 48 Liu, Li, Li, Li, Yang, Zhang, Liu, Ma (bib0050) 2016; 4 Tang, Jiang, Niu, Liu, Luo, Zhang, Wen, Chen, Huang, Gao, Hu (bib0135) 2018; 28 Li, Peprah, Asakura, Meisel, Okubo, Talham (bib0075) 2015; 27 Guo, Li, Chen, Liu, Yang, Wang, Guo (bib0085) 2014; 6 Montoya, Seitz, Chakthranont, Vojvodic, Jaramillo, Norskov (bib0010) 2017; 16 Wirth, Neumann, Antonietti, Saalfrank (bib0235) 2014; 16 Cui, Lin, Li, Li, Yang, Tao (bib0065) 2008; 18 Rossmeisl, Qu, Zhu, Kroes, Norskov (bib0215) 2007; 607 Liu, Li, Zhao, Wang, Kong, Liu, Zhang, Chang, Meng, Kako, Ye (bib0020) 2016; 138 Zhu, Zhang, Huang, Wu, Sun (bib0060) 2013; 13 Mamtani, Jain, Dogu, Gustin, Gunduz, Co, Ozkan (bib0030) 2018; 220 Shekhah, Eddaoudi (bib0155) 2013; 49 Talin, Centrone, Ford, Foster, Stavila, Haney, Kinney, Szalai, El Gabaly, Yoon, Leonard, Allendorf (bib0190) 2014; 343 Feng, Wei, Ding, Photochemical (bib0275) 2016; 120 Amiinu, Liu, Pu, Li, Li, Zhang, Tang, Zhang, Mu (bib0130) 2018; 28 Zheng, Jiao, Zhu, Li, Han, Chen, Jaroniec, Qiao (bib0005) 2016; 138 Chagas, de Souza, de Carvalho, Martins, Schmal (bib0255) 2016; 519 Kang, Woo, Lee, Song, Wang, Guo, Yamauchi, Kim, Lim, Yoon (bib0240) 2017; 5 Shekhah (10.1016/j.apcatb.2018.12.036_bib0155) 2013; 49 Wirth (10.1016/j.apcatb.2018.12.036_bib0235) 2014; 16 Perdew (10.1016/j.apcatb.2018.12.036_bib0205) 1996; 77 Jia (10.1016/j.apcatb.2018.12.036_bib0125) 2017; 56 Pintado (10.1016/j.apcatb.2018.12.036_bib0100) 2013; 135 Zhao (10.1016/j.apcatb.2018.12.036_bib0055) 2017; 117 Gu (10.1016/j.apcatb.2018.12.036_bib0185) 2017; 9 Zhao (10.1016/j.apcatb.2018.12.036_bib0015) 2018; 236 Fischer (10.1016/j.apcatb.2018.12.036_bib0150) 2009; 48 Liu (10.1016/j.apcatb.2018.12.036_bib0200) 2017; 46 Yu (10.1016/j.apcatb.2018.12.036_bib0090) 2015; 54 Uemura (10.1016/j.apcatb.2018.12.036_bib0145) 2003; 125 Montoya (10.1016/j.apcatb.2018.12.036_bib0010) 2017; 16 Kang (10.1016/j.apcatb.2018.12.036_bib0280) 2018; 236 Valdes (10.1016/j.apcatb.2018.12.036_bib0220) 2008; 112 Liu (10.1016/j.apcatb.2018.12.036_bib0050) 2016; 4 Li (10.1016/j.apcatb.2018.12.036_bib0075) 2015; 27 Liu (10.1016/j.apcatb.2018.12.036_bib0020) 2016; 138 McCrory (10.1016/j.apcatb.2018.12.036_bib0285) 2015; 137 Tsotsalas (10.1016/j.apcatb.2018.12.036_bib0180) 2014; 136 Zheng (10.1016/j.apcatb.2018.12.036_bib0005) 2016; 138 Li (10.1016/j.apcatb.2018.12.036_bib0230) 2016; 52 Kang (10.1016/j.apcatb.2018.12.036_bib0240) 2017; 5 Shekhah (10.1016/j.apcatb.2018.12.036_bib0195) 2011; 40 Li (10.1016/j.apcatb.2018.12.036_bib0165) 2017; 13 Liu (10.1016/j.apcatb.2018.12.036_bib0160) 2013; 23 Das (10.1016/j.apcatb.2018.12.036_bib0095) 2017; 5 Guan (10.1016/j.apcatb.2018.12.036_bib0270) 2017; 7 Zhu (10.1016/j.apcatb.2018.12.036_bib0060) 2013; 13 Zhou (10.1016/j.apcatb.2018.12.036_bib0295) 2017; 7 Vohra (10.1016/j.apcatb.2018.12.036_bib0175) 2017; 9 Han (10.1016/j.apcatb.2018.12.036_bib0105) 2016; 138 Feng (10.1016/j.apcatb.2018.12.036_bib0275) 2016; 120 Tang (10.1016/j.apcatb.2018.12.036_bib0135) 2018; 28 Wang (10.1016/j.apcatb.2018.12.036_bib0110) 2018; 30 Kim (10.1016/j.apcatb.2018.12.036_bib0035) 2018; 227 Li (10.1016/j.apcatb.2018.12.036_bib0170) 2017; 5 Kong (10.1016/j.apcatb.2018.12.036_bib0070) 2015; 44 Chagas (10.1016/j.apcatb.2018.12.036_bib0255) 2016; 519 Zheng (10.1016/j.apcatb.2018.12.036_bib0265) 2015; 3 Zhuo (10.1016/j.apcatb.2018.12.036_bib0225) 2016; 138 Rossmeisl (10.1016/j.apcatb.2018.12.036_bib0215) 2007; 607 Norskov (10.1016/j.apcatb.2018.12.036_bib0210) 2004; 108 Liang (10.1016/j.apcatb.2018.12.036_bib0290) 2016; 16 Li (10.1016/j.apcatb.2018.12.036_bib0260) 2017; 7 Stevens (10.1016/j.apcatb.2018.12.036_bib0120) 2017; 29 Han (10.1016/j.apcatb.2018.12.036_bib0115) 2016; 28 Mamtani (10.1016/j.apcatb.2018.12.036_bib0030) 2018; 220 Masa (10.1016/j.apcatb.2018.12.036_bib0040) 2016; 6 Cui (10.1016/j.apcatb.2018.12.036_bib0065) 2008; 18 Guo (10.1016/j.apcatb.2018.12.036_bib0085) 2014; 6 Huang (10.1016/j.apcatb.2018.12.036_bib0080) 2017; 39 Hu (10.1016/j.apcatb.2018.12.036_bib0140) 2013; 19 Wan (10.1016/j.apcatb.2018.12.036_bib0250) 2019; 240 Walter (10.1016/j.apcatb.2018.12.036_bib0025) 2018; 57 Amiinu (10.1016/j.apcatb.2018.12.036_bib0130) 2018; 28 Li (10.1016/j.apcatb.2018.12.036_bib0045) 2015; 7 Li (10.1016/j.apcatb.2018.12.036_bib0245) 2016; 8 Talin (10.1016/j.apcatb.2018.12.036_bib0190) 2014; 343 |
References_xml | – volume: 23 start-page: 3790 year: 2013 end-page: 3798 ident: bib0160 article-title: Multi variant surface mounted metal-organic frameworks publication-title: Adv. Funct. Mater. – volume: 77 start-page: 3865 year: 1996 end-page: 3868 ident: bib0205 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. – volume: 6 year: 2016 ident: bib0040 article-title: Amorphous cobalt boride (Co publication-title: Adv. Energy Mater. – volume: 4 start-page: 4472 year: 2016 end-page: 4478 ident: bib0050 article-title: A facile preparation of CoFe publication-title: J. Mater. Chem. A Mater. Energy Sustain. – volume: 49 start-page: 10079 year: 2013 end-page: 10081 ident: bib0155 article-title: The liquid phase epitaxy method for the construction of oriented ZIF-8 thin films with controlled growth on functionalized surfaces publication-title: Chem. Commun. (Camb.) – volume: 607 start-page: 83 year: 2007 end-page: 89 ident: bib0215 article-title: Electrolysis of water on oxide surfaces publication-title: J. Electroanal. Chem. Lausanne (Lausanne) – volume: 16 start-page: 15917 year: 2014 end-page: 15926 ident: bib0235 article-title: Adsorption and photocatalytic splitting of water on graphitic carbon nitride: a combined first principles and semiempirical study publication-title: Phys. Chem. Chem. Phys. – volume: 46 start-page: 5730 year: 2017 end-page: 5770 ident: bib0200 article-title: Surface-supported metal-organic framework thin films: fabrication methods, applications, and challenges publication-title: Chem. Soc. Rev. – volume: 8 start-page: 2333 year: 2016 end-page: 2342 ident: bib0245 article-title: A "copolymer-co-morphology" conception for shape-controlled synthesis of Prussian blue analogues and as-derived spinel oxides publication-title: Nanoscale – volume: 138 start-page: 9128 year: 2016 end-page: 9136 ident: bib0020 article-title: Promoting active species generation by plasmon-induced hot-electron excitation for efficient electrocatalytic oxygen evolution publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 15168 year: 2014 end-page: 15174 ident: bib0085 article-title: General design of hollow porous CoFe publication-title: Nanoscale – volume: 5 start-page: 4320 year: 2017 end-page: 4324 ident: bib0240 article-title: Mesoporous Ni-Fe oxide multi-composite hollow nanocages for efficient electrocatalytic water oxidation reactions publication-title: J. Mater. Chem. A Mater. Energy Sustain. – volume: 135 start-page: 13270 year: 2013 end-page: 13273 ident: bib0100 article-title: Fast and persistent electrocatalytic water oxidation by Co-Fe prussian blue coordination polymers publication-title: J. Am. Chem. Soc. – volume: 138 start-page: 16037 year: 2016 end-page: 16045 ident: bib0105 article-title: Enhanced activity and acid pH stability of prussian blue-type oxygen evolution electrocatalysts processed by chemical etching publication-title: J. Am. Chem. Soc. – volume: 117 start-page: 10121 year: 2017 end-page: 10211 ident: bib0055 article-title: Spinels: controlled preparation, oxygen Reduction/Evolution reaction application, and beyond publication-title: Chem. Rev. – volume: 13 start-page: 2947 year: 2013 end-page: 2951 ident: bib0060 article-title: Monodisperse M publication-title: Nano Lett. – volume: 19 start-page: 1882 year: 2013 end-page: 1885 ident: bib0140 article-title: Kinetically controlled crystallization for synthesis of monodispersed coordination polymer nanocubes and their self-assembly to periodic arrangements publication-title: Chem.-Eur. J. – volume: 13 year: 2017 ident: bib0165 article-title: Epitaxial growth of oriented metalloporphyrin network thin film for improved selectivity of volatile organic compounds publication-title: Small – volume: 343 start-page: 66 year: 2014 end-page: 69 ident: bib0190 article-title: Tunable electrical conductivity in metal-organic framework thin-film devices publication-title: Science – volume: 240 start-page: 193 year: 2019 end-page: 200 ident: bib0250 article-title: 3D carbon framework-supported CoNi nanoparticles as bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries publication-title: Appl. Catal. B – volume: 56 start-page: 13781 year: 2017 end-page: 13785 ident: bib0125 article-title: Three-dimensional hierarchical architectures derived from surface-mounted metal-organic framework membranes for enhanced electrocatalysis publication-title: Angew. Chem. Int. Ed. – volume: 125 start-page: 7814 year: 2003 end-page: 7815 ident: bib0145 article-title: Prussian blue nanoparticles protected by poly(vinylpyrrolidone) publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 2535 year: 2017 end-page: 2541 ident: bib0260 article-title: Enhancing water oxidation catalysis on a synergistic phosphorylated NiFe hydroxide by adjusting catalyst wettability publication-title: ACS Catal. – volume: 7 year: 2017 ident: bib0295 article-title: MOF template-directed fabrication of hierarchically structured electrocatalysts for efficient oxygen evolution reaction publication-title: Adv. Energy Mater. – volume: 16 start-page: 70 year: 2017 end-page: 81 ident: bib0010 article-title: Materials for solar fuels and chemicals publication-title: Nat. Mater. – volume: 227 start-page: 340 year: 2018 end-page: 348 ident: bib0035 article-title: Promotion of electrochemical oxygen evolution reaction by chemical coupling of cobalt to molybdenum carbide publication-title: Appl. Catal. B: Environ. – volume: 519 start-page: 139 year: 2016 end-page: 145 ident: bib0255 article-title: Cobalt ferrite nanoparticles for the preferential oxidation of CO publication-title: Appl. Catal. A Gen. – volume: 28 start-page: 4601 year: 2016 end-page: 4605 ident: bib0115 article-title: Formation of prussian-blue-Analog nanocages via a direct etching method and their conversion into Ni-Co-Mixed oxide for enhanced oxygen evolution publication-title: Adv. Mater. – volume: 52 start-page: 13233 year: 2016 end-page: 13236 ident: bib0230 article-title: Graphitic carbon nitride supported single-atom catalysts for efficient oxygen evolution reaction publication-title: Chem. Commun. (Camb.) – volume: 3 start-page: 2815 year: 2015 end-page: 2824 ident: bib0265 article-title: Metal-organic framework-derived porous Mn publication-title: J. Mater. Chem. A Mater. Energy Sustain. – volume: 30 year: 2018 ident: bib0110 article-title: Metal-organic framework hybrid-assisted formation of Co publication-title: Adv. Mater. – volume: 40 start-page: 1081 year: 2011 end-page: 1106 ident: bib0195 article-title: MOF thin films: existing and future applications publication-title: Chem. Soc. Rev. – volume: 120 start-page: 517 year: 2016 end-page: 526 ident: bib0275 article-title: Thermal, and electrochemical water oxidation catalyzed by a porous iron-based oxide derived metal organic framework publication-title: J. Phys. Chem. C – volume: 112 start-page: 9872 year: 2008 end-page: 9879 ident: bib0220 article-title: Oxidation and photo-oxidation of water on TiO publication-title: J. Phys. Chem. C – volume: 7 year: 2017 ident: bib0270 article-title: Rational design of metal-organic framework derived hollow NiCo publication-title: Adv. Energy Mater. – volume: 7 start-page: 8920 year: 2015 end-page: 8930 ident: bib0045 article-title: Facile synthesis of electrospun MFe publication-title: Nanoscale – volume: 5 start-page: 20126 year: 2017 end-page: 20130 ident: bib0170 article-title: Epitaxial encapsulation of homodispersed CeO publication-title: J. Mater. Chem. A Mater. Energy Sustain. – volume: 236 start-page: 569 year: 2018 end-page: 575 ident: bib0015 article-title: Electrical and structural engineering of cobalt selenide nanosheets by Mn modulation for efficient oxygen evolution publication-title: Appl. Catal. B: Environ. – volume: 9 start-page: 7734 year: 2017 end-page: 7738 ident: bib0175 article-title: Insight into the epitaxial encapsulation of Pd catalysts in an oriented metalloporphyrin network thin film for tandem catalysis publication-title: Nanoscale – volume: 236 start-page: 107 year: 2018 end-page: 116 ident: bib0280 article-title: An effective way to improve bifunctional electrocatalyst activity of manganese oxide via control of bond competition publication-title: Appl. Catal. B: Environ. – volume: 28 year: 2018 ident: bib0130 article-title: From 3D ZIF nanocrystals to Co-N publication-title: Adv. Funct. Mater. – volume: 48 start-page: 6205 year: 2009 end-page: 6208 ident: bib0150 article-title: Layer-by-Layer liquid-phase epitaxy of crystalline coordination polymers at surfaces publication-title: Angew. Chem. Int. Ed. – volume: 29 start-page: 120 year: 2017 end-page: 140 ident: bib0120 article-title: Measurement techniques for the study of thin film heterogeneous water oxidation electrocatalysts publication-title: Chem. Mater. – volume: 220 start-page: 88 year: 2018 end-page: 97 ident: bib0030 article-title: Insights into oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) active sites for nitrogen-doped carbon nanostructures (CN publication-title: Appl. Catal. B: Environ. – volume: 138 start-page: 7091 year: 2016 end-page: 7098 ident: bib0225 article-title: Two-dimensional phosphorus porous polymorphs with tunable band gaps publication-title: J. Am. Chem. Soc. – volume: 137 start-page: 4347 year: 2015 end-page: 4357 ident: bib0285 article-title: Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices publication-title: J. Am. Chem. Soc. – volume: 27 start-page: 1524 year: 2015 end-page: 1530 ident: bib0075 article-title: Stepwise reduction of electrochemically lithiated core-shell heterostructures based on the prussian blue analogue coordination polymers K publication-title: Chem. Mater. – volume: 16 start-page: 7718 year: 2016 end-page: 7725 ident: bib0290 article-title: Plasma-assisted synthesis of NiCoP for efficient overall water splitting publication-title: Nano Lett. – volume: 108 start-page: 17886 year: 2004 end-page: 17892 ident: bib0210 article-title: Origin of the overpotential for oxygen reduction at a fuel-cell cathode publication-title: J. Phys. Chem. B – volume: 138 start-page: 16174 year: 2016 end-page: 16181 ident: bib0005 article-title: High electrocatalytic hydrogen evolution activity of an anomalous ruthenium catalyst publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 22242 year: 2017 end-page: 22254 ident: bib0095 article-title: Fabrication of an advanced asymmetric supercapacitor based on a microcubical PB@MnO publication-title: J. Mater. Chem. A Mater. Energy Sustain. – volume: 9 start-page: 7259 year: 2017 end-page: 7264 ident: bib0185 article-title: Epitaxial growth of MOF thin film for modifying the dielectric layer in organic field-effect transistors, ACS appl publication-title: Mater. Interfaces – volume: 39 start-page: 273 year: 2017 end-page: 283 ident: bib0080 article-title: A novel border-rich Prussian blue synthetized by inhibitor control as cathode for sodium ion batteries publication-title: Nano Energy – volume: 57 start-page: 698 year: 2018 end-page: 702 ident: bib0025 article-title: A molecular approach to manganese nitride acting as a high performance electrocatalyst in the oxygen evolution reaction publication-title: Angew. Chem. Int. Ed. – volume: 28 year: 2018 ident: bib0135 article-title: Kinetically controlled coprecipitation for general fast synthesis of sandwiched metal hydroxide nanosheets/graphene composites toward efficient water splitting publication-title: Adv. Funct. Mater. – volume: 44 start-page: 7997 year: 2015 end-page: 8018 ident: bib0070 article-title: New faces of porous Prussian blue: interfacial assembly of integrated hetero-structures for sensing applications publication-title: Chem. Soc. Rev. – volume: 136 start-page: 8 year: 2014 end-page: 11 ident: bib0180 article-title: Fabrication of highly uniform gel coatings by the conversion of surface-anchored metal-organic frameworks publication-title: J. Am. Chem. Soc. – volume: 54 start-page: 5331 year: 2015 end-page: 5335 ident: bib0090 article-title: Formation of nickel sulfide nanoframes from metal-organic frameworks with enhanced pseudocapacitive and electrocatalytic properties publication-title: Angew. Chem. Int. Ed. – volume: 18 start-page: 1440 year: 2008 end-page: 1447 ident: bib0065 article-title: Core-ring structured NiCo publication-title: Adv. Funct. Mater. – volume: 343 start-page: 66 year: 2014 ident: 10.1016/j.apcatb.2018.12.036_bib0190 article-title: Tunable electrical conductivity in metal-organic framework thin-film devices publication-title: Science doi: 10.1126/science.1246738 – volume: 27 start-page: 1524 year: 2015 ident: 10.1016/j.apcatb.2018.12.036_bib0075 article-title: Stepwise reduction of electrochemically lithiated core-shell heterostructures based on the prussian blue analogue coordination polymers K0.1Cu[Fe(CN)6]0.7·3.5H2O and K0.1Ni [Fe(CN)6]0.7·4.4H2O publication-title: Chem. Mater. doi: 10.1021/cm503639a – volume: 135 start-page: 13270 year: 2013 ident: 10.1016/j.apcatb.2018.12.036_bib0100 article-title: Fast and persistent electrocatalytic water oxidation by Co-Fe prussian blue coordination polymers publication-title: J. Am. Chem. Soc. doi: 10.1021/ja406242y – volume: 136 start-page: 8 year: 2014 ident: 10.1016/j.apcatb.2018.12.036_bib0180 article-title: Fabrication of highly uniform gel coatings by the conversion of surface-anchored metal-organic frameworks publication-title: J. Am. Chem. Soc. doi: 10.1021/ja409205s – volume: 7 year: 2017 ident: 10.1016/j.apcatb.2018.12.036_bib0295 article-title: MOF template-directed fabrication of hierarchically structured electrocatalysts for efficient oxygen evolution reaction publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201602643 – volume: 16 start-page: 15917 year: 2014 ident: 10.1016/j.apcatb.2018.12.036_bib0235 article-title: Adsorption and photocatalytic splitting of water on graphitic carbon nitride: a combined first principles and semiempirical study publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP02021A – volume: 29 start-page: 120 year: 2017 ident: 10.1016/j.apcatb.2018.12.036_bib0120 article-title: Measurement techniques for the study of thin film heterogeneous water oxidation electrocatalysts publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b02796 – volume: 9 start-page: 7734 year: 2017 ident: 10.1016/j.apcatb.2018.12.036_bib0175 article-title: Insight into the epitaxial encapsulation of Pd catalysts in an oriented metalloporphyrin network thin film for tandem catalysis publication-title: Nanoscale doi: 10.1039/C7NR02284K – volume: 4 start-page: 4472 year: 2016 ident: 10.1016/j.apcatb.2018.12.036_bib0050 article-title: A facile preparation of CoFe2O4 nanoparticles on polyaniline-functionalised carbon nanotubes as enhanced catalysts for the oxygen evolution reaction publication-title: J. Mater. Chem. A Mater. Energy Sustain. doi: 10.1039/C5TA10420C – volume: 220 start-page: 88 year: 2018 ident: 10.1016/j.apcatb.2018.12.036_bib0030 article-title: Insights into oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) active sites for nitrogen-doped carbon nanostructures (CNx) in acidic media publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2017.07.086 – volume: 240 start-page: 193 year: 2019 ident: 10.1016/j.apcatb.2018.12.036_bib0250 article-title: 3D carbon framework-supported CoNi nanoparticles as bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2018.08.081 – volume: 227 start-page: 340 year: 2018 ident: 10.1016/j.apcatb.2018.12.036_bib0035 article-title: Promotion of electrochemical oxygen evolution reaction by chemical coupling of cobalt to molybdenum carbide publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2018.01.051 – volume: 28 year: 2018 ident: 10.1016/j.apcatb.2018.12.036_bib0130 article-title: From 3D ZIF nanocrystals to Co-Nx/C nanorod array electrocatalysts for ORR, OER, and Zn-Air batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201704638 – volume: 9 start-page: 7259 year: 2017 ident: 10.1016/j.apcatb.2018.12.036_bib0185 article-title: Epitaxial growth of MOF thin film for modifying the dielectric layer in organic field-effect transistors, ACS appl publication-title: Mater. Interfaces doi: 10.1021/acsami.6b14541 – volume: 52 start-page: 13233 year: 2016 ident: 10.1016/j.apcatb.2018.12.036_bib0230 article-title: Graphitic carbon nitride supported single-atom catalysts for efficient oxygen evolution reaction publication-title: Chem. Commun. (Camb.) doi: 10.1039/C6CC07049C – volume: 16 start-page: 7718 year: 2016 ident: 10.1016/j.apcatb.2018.12.036_bib0290 article-title: Plasma-assisted synthesis of NiCoP for efficient overall water splitting publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b03803 – volume: 236 start-page: 569 year: 2018 ident: 10.1016/j.apcatb.2018.12.036_bib0015 article-title: Electrical and structural engineering of cobalt selenide nanosheets by Mn modulation for efficient oxygen evolution publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2018.05.054 – volume: 137 start-page: 4347 year: 2015 ident: 10.1016/j.apcatb.2018.12.036_bib0285 article-title: Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices publication-title: J. Am. Chem. Soc. doi: 10.1021/ja510442p – volume: 13 year: 2017 ident: 10.1016/j.apcatb.2018.12.036_bib0165 article-title: Epitaxial growth of oriented metalloporphyrin network thin film for improved selectivity of volatile organic compounds publication-title: Small – volume: 18 start-page: 1440 year: 2008 ident: 10.1016/j.apcatb.2018.12.036_bib0065 article-title: Core-ring structured NiCo2O4 nanoplatelets: synthesis, characterization, and electrocatalytic applications publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200700982 – volume: 5 start-page: 20126 year: 2017 ident: 10.1016/j.apcatb.2018.12.036_bib0170 article-title: Epitaxial encapsulation of homodispersed CeO2 in a cobalt-porphyrin network derived thin film for the highly efficient oxygen evolution reaction publication-title: J. Mater. Chem. A Mater. Energy Sustain. doi: 10.1039/C7TA06580A – volume: 40 start-page: 1081 year: 2011 ident: 10.1016/j.apcatb.2018.12.036_bib0195 article-title: MOF thin films: existing and future applications publication-title: Chem. Soc. Rev. doi: 10.1039/c0cs00147c – volume: 5 start-page: 4320 year: 2017 ident: 10.1016/j.apcatb.2018.12.036_bib0240 article-title: Mesoporous Ni-Fe oxide multi-composite hollow nanocages for efficient electrocatalytic water oxidation reactions publication-title: J. Mater. Chem. A Mater. Energy Sustain. doi: 10.1039/C6TA10094E – volume: 48 start-page: 6205 year: 2009 ident: 10.1016/j.apcatb.2018.12.036_bib0150 article-title: Layer-by-Layer liquid-phase epitaxy of crystalline coordination polymers at surfaces publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200901090 – volume: 3 start-page: 2815 year: 2015 ident: 10.1016/j.apcatb.2018.12.036_bib0265 article-title: Metal-organic framework-derived porous Mn1.8Fe1.2O4 nanocubes with an interconnected channel structure as high-performance anodes for lithium ion batteries publication-title: J. Mater. Chem. A Mater. Energy Sustain. doi: 10.1039/C4TA06150K – volume: 138 start-page: 9128 year: 2016 ident: 10.1016/j.apcatb.2018.12.036_bib0020 article-title: Promoting active species generation by plasmon-induced hot-electron excitation for efficient electrocatalytic oxygen evolution publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b05190 – volume: 8 start-page: 2333 year: 2016 ident: 10.1016/j.apcatb.2018.12.036_bib0245 article-title: A "copolymer-co-morphology" conception for shape-controlled synthesis of Prussian blue analogues and as-derived spinel oxides publication-title: Nanoscale doi: 10.1039/C5NR07193C – volume: 108 start-page: 17886 year: 2004 ident: 10.1016/j.apcatb.2018.12.036_bib0210 article-title: Origin of the overpotential for oxygen reduction at a fuel-cell cathode publication-title: J. Phys. Chem. B doi: 10.1021/jp047349j – volume: 112 start-page: 9872 year: 2008 ident: 10.1016/j.apcatb.2018.12.036_bib0220 article-title: Oxidation and photo-oxidation of water on TiO2 surface publication-title: J. Phys. Chem. C doi: 10.1021/jp711929d – volume: 6 start-page: 15168 year: 2014 ident: 10.1016/j.apcatb.2018.12.036_bib0085 article-title: General design of hollow porous CoFe2O4 nanocubes from metal-organic frameworks with extraordinary lithium storage publication-title: Nanoscale doi: 10.1039/C4NR04422C – volume: 54 start-page: 5331 year: 2015 ident: 10.1016/j.apcatb.2018.12.036_bib0090 article-title: Formation of nickel sulfide nanoframes from metal-organic frameworks with enhanced pseudocapacitive and electrocatalytic properties publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201500267 – volume: 77 start-page: 3865 year: 1996 ident: 10.1016/j.apcatb.2018.12.036_bib0205 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 46 start-page: 5730 year: 2017 ident: 10.1016/j.apcatb.2018.12.036_bib0200 article-title: Surface-supported metal-organic framework thin films: fabrication methods, applications, and challenges publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00315C – volume: 607 start-page: 83 year: 2007 ident: 10.1016/j.apcatb.2018.12.036_bib0215 article-title: Electrolysis of water on oxide surfaces publication-title: J. Electroanal. Chem. Lausanne (Lausanne) doi: 10.1016/j.jelechem.2006.11.008 – volume: 49 start-page: 10079 year: 2013 ident: 10.1016/j.apcatb.2018.12.036_bib0155 article-title: The liquid phase epitaxy method for the construction of oriented ZIF-8 thin films with controlled growth on functionalized surfaces publication-title: Chem. Commun. (Camb.) doi: 10.1039/c3cc45343j – volume: 138 start-page: 16037 year: 2016 ident: 10.1016/j.apcatb.2018.12.036_bib0105 article-title: Enhanced activity and acid pH stability of prussian blue-type oxygen evolution electrocatalysts processed by chemical etching publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b09778 – volume: 7 start-page: 2535 year: 2017 ident: 10.1016/j.apcatb.2018.12.036_bib0260 article-title: Enhancing water oxidation catalysis on a synergistic phosphorylated NiFe hydroxide by adjusting catalyst wettability publication-title: ACS Catal. doi: 10.1021/acscatal.6b03497 – volume: 519 start-page: 139 year: 2016 ident: 10.1016/j.apcatb.2018.12.036_bib0255 article-title: Cobalt ferrite nanoparticles for the preferential oxidation of CO publication-title: Appl. Catal. A Gen. doi: 10.1016/j.apcata.2016.03.024 – volume: 13 start-page: 2947 year: 2013 ident: 10.1016/j.apcatb.2018.12.036_bib0060 article-title: Monodisperse MxFe3-xO4 (M = Fe, Cu, Co, Mn) nanoparticles and their electrocatalysis for oxygen reduction reaction publication-title: Nano Lett. doi: 10.1021/nl401325u – volume: 44 start-page: 7997 year: 2015 ident: 10.1016/j.apcatb.2018.12.036_bib0070 article-title: New faces of porous Prussian blue: interfacial assembly of integrated hetero-structures for sensing applications publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00397K – volume: 7 start-page: 8920 year: 2015 ident: 10.1016/j.apcatb.2018.12.036_bib0045 article-title: Facile synthesis of electrospun MFe2O4 (M = Co, Ni, Cu, Mn) spinel nanofibers with excellent electrocatalytic properties for oxygen evolution and hydrogen peroxide reduction publication-title: Nanoscale doi: 10.1039/C4NR07243J – volume: 28 start-page: 4601 year: 2016 ident: 10.1016/j.apcatb.2018.12.036_bib0115 article-title: Formation of prussian-blue-Analog nanocages via a direct etching method and their conversion into Ni-Co-Mixed oxide for enhanced oxygen evolution publication-title: Adv. Mater. doi: 10.1002/adma.201506315 – volume: 39 start-page: 273 year: 2017 ident: 10.1016/j.apcatb.2018.12.036_bib0080 article-title: A novel border-rich Prussian blue synthetized by inhibitor control as cathode for sodium ion batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.07.005 – volume: 5 start-page: 22242 year: 2017 ident: 10.1016/j.apcatb.2018.12.036_bib0095 article-title: Fabrication of an advanced asymmetric supercapacitor based on a microcubical PB@MnO2 hybrid and PANI/GNP composite with excellent electrochemical behaviour publication-title: J. Mater. Chem. A Mater. Energy Sustain. doi: 10.1039/C7TA05134D – volume: 125 start-page: 7814 year: 2003 ident: 10.1016/j.apcatb.2018.12.036_bib0145 article-title: Prussian blue nanoparticles protected by poly(vinylpyrrolidone) publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0356582 – volume: 138 start-page: 7091 year: 2016 ident: 10.1016/j.apcatb.2018.12.036_bib0225 article-title: Two-dimensional phosphorus porous polymorphs with tunable band gaps publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b02964 – volume: 19 start-page: 1882 year: 2013 ident: 10.1016/j.apcatb.2018.12.036_bib0140 article-title: Kinetically controlled crystallization for synthesis of monodispersed coordination polymer nanocubes and their self-assembly to periodic arrangements publication-title: Chem.-Eur. J. doi: 10.1002/chem.201203138 – volume: 117 start-page: 10121 year: 2017 ident: 10.1016/j.apcatb.2018.12.036_bib0055 article-title: Spinels: controlled preparation, oxygen Reduction/Evolution reaction application, and beyond publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00051 – volume: 16 start-page: 70 year: 2017 ident: 10.1016/j.apcatb.2018.12.036_bib0010 article-title: Materials for solar fuels and chemicals publication-title: Nat. Mater. doi: 10.1038/nmat4778 – volume: 57 start-page: 698 year: 2018 ident: 10.1016/j.apcatb.2018.12.036_bib0025 article-title: A molecular approach to manganese nitride acting as a high performance electrocatalyst in the oxygen evolution reaction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201710460 – volume: 7 year: 2017 ident: 10.1016/j.apcatb.2018.12.036_bib0270 article-title: Rational design of metal-organic framework derived hollow NiCo2O4 arrays for flexible supercapacitor and electrocatalysis publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201602391 – volume: 120 start-page: 517 year: 2016 ident: 10.1016/j.apcatb.2018.12.036_bib0275 article-title: Thermal, and electrochemical water oxidation catalyzed by a porous iron-based oxide derived metal organic framework publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b11533 – volume: 28 year: 2018 ident: 10.1016/j.apcatb.2018.12.036_bib0135 article-title: Kinetically controlled coprecipitation for general fast synthesis of sandwiched metal hydroxide nanosheets/graphene composites toward efficient water splitting publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201704594 – volume: 236 start-page: 107 year: 2018 ident: 10.1016/j.apcatb.2018.12.036_bib0280 article-title: An effective way to improve bifunctional electrocatalyst activity of manganese oxide via control of bond competition publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2018.05.010 – volume: 23 start-page: 3790 year: 2013 ident: 10.1016/j.apcatb.2018.12.036_bib0160 article-title: Multi variant surface mounted metal-organic frameworks publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201202996 – volume: 6 year: 2016 ident: 10.1016/j.apcatb.2018.12.036_bib0040 article-title: Amorphous cobalt boride (Co2B) as a highly efficient nonprecious catalyst for electrochemical water splitting: oxygen and hydrogen evolution publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201600980 – volume: 30 year: 2018 ident: 10.1016/j.apcatb.2018.12.036_bib0110 article-title: Metal-organic framework hybrid-assisted formation of Co3O4/Co-Fe oxide double-shelled nanoboxes for enhanced oxygen evolution publication-title: Adv. Mater. – volume: 138 start-page: 16174 year: 2016 ident: 10.1016/j.apcatb.2018.12.036_bib0005 article-title: High electrocatalytic hydrogen evolution activity of an anomalous ruthenium catalyst publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b11291 – volume: 56 start-page: 13781 year: 2017 ident: 10.1016/j.apcatb.2018.12.036_bib0125 article-title: Three-dimensional hierarchical architectures derived from surface-mounted metal-organic framework membranes for enhanced electrocatalysis publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201708385 |
SSID | ssj0002328 |
Score | 2.6093185 |
Snippet | We first developed a well-aligned mesoporous CoFe2O4 thin film from surface epitaxial growth of oriented CoFe-based prussian blue analogue thin film (CoFe-PBA... The development of cost-effective, high-efficiency, and non-noble metal based electrocatalysts for oxygen evolution reaction (OER) is considered to be the most... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Alignment Aqueous solutions Catalysis Charge transfer Cobalt ferrites CoFe2O4 thin film Electrocatalysts Electrochemistry Electrodes Electron transfer Epitaxial growth Evolution Liquid phase epitaxial growth Liquid phases Noble metals Oxygen Oxygen evolution reaction Oxygen evolution reactions Photovoltaic cells Pigments Prussian blue analogous Pyrolysis Renewable energy Substrates Thin films Water splitting |
Title | Epitaxial growth of oriented prussian blue analogue derived well-aligned CoFe2O4 thin film for efficient oxygen evolution reaction |
URI | https://dx.doi.org/10.1016/j.apcatb.2018.12.036 https://www.proquest.com/docview/2230286219 |
Volume | 245 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFLcQO8AO09aBxgboHbh6bRLHjo-oalU2jR0YEjfLTmwo6pKKpohdduAv59lxBpuQkHbLh21Z9s_v_fz0Pgg5krk2yJQdLapRTpmRkhZcWGpskovUSlMFO-S3Uz47Z18u8osNMu5jYbxbZZT9nUwP0jp-GcbVHC7n8-HZSKY8y4QHJbJk6QPNGRMe5Z9_P7p5IGMI0hgbU9-6D58LPl56WerWeAevIhgFQ6LmZ9XTP4I6aJ_pW_Im0kY47mb2jmzYekC2xn21tgF5_SSx4IDsTh7j17BbPMCr9-R-4quE3CHo4BIv4O0VNA4an-sYmScsb9YrH1QJZrG2oOvOsAMVjnqLv72djyJvv0TRDONmatPvDNqreQ1uvvgJSH_BhowUOBo0d78Qm2BvI7YB2WmIodgh59PJj_GMxjIMtMxE0lKNV55CS9R1XgTwIhGVECK3kttM6hz1G3OmrJxODbIhllguc-FYqUVSOuaKbJds1k1tPxAoGR9ZaZlMKx_LnuEjXn94aYWrkNpkeyTrV1-VMUe5L5WxUL0z2rXq9kz5PVNJqnBGe4T-6bXscnS80F70G6v-wppCNfJCz_0eByqe9ZVCgoUkjaPo__jfA38i2_gmvVtCku-TzfZmbQ-Q7bTmMMD5kLw6Pvk6O30A94EAIw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcigcECxUFErxgavZTeJHfESrXW2fHGil3iwnsdutlmTVzVbtpQd-OWPHoYCQKnGL4ocse_zN59E8AD4pbgpkyo7m1YhTVihFcyEtLWzCZWpVUQU75PGJmJ2xg3N-vgHjPhbGu1VG7O8wPaB1_DOMuzlczufDbyOViiyTXiiRJSv-BJ4yvL6-jMHn-wc_D6QMAY6xN_Xd-_i54ORllqVpC-_hlQerYMjU_E_99BdSB_UzfQkvIm8kX7qlvYINWw9ga9yXaxvA898yCw5ge_IQwIbD4g1evYYfE18m5BaljlzgC7y9JI0jjU92jNSTLK_XKx9VSYrF2hJTd5YdUuGsN9jsDX0UifsFYjMZN1ObfmWkvZzXxM0X3wnyX2JDSgqcjTS3dyicxN5E4SZIT0MQxRs4m05OxzMa6zDQMpNJSw2-eXKjUNl5DBB5IispJbdK2EwZjgqOuaKsnEkLpEMssUJx6VhpZFI65vJsGzbrprZvgZRMjKyyTKWVD2bP8BPfP6K00lXIbbIdyPrd12VMUu5rZSx07412pbsz0_7MdJJqXNEO0F-jll2Sjkf6y_5g9R_CplGPPDJyt5cDHS_7SiPDQpYmEPvf_ffEH2Frdnp8pI_2Tw7fwzNsUd5HIeG7sNler-0HpD5tsRdE-yfBNgGx |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Epitaxial+growth+of+oriented+prussian+blue+analogue+derived+well-aligned+CoFe2O4+thin+film+for+efficient+oxygen+evolution+reaction&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Lei%2C+Song&rft.au=Li%2C+Qiao-Hong&rft.au=Kang%2C+Yao&rft.au=Gu%2C+Zhi-Gang&rft.date=2019-05-15&rft.pub=Elsevier+BV&rft.issn=0926-3373&rft.eissn=1873-3883&rft.volume=245&rft.spage=1&rft_id=info:doi/10.1016%2Fj.apcatb.2018.12.036&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon |