Regression modeling nitrogen fertilization requirement for maize crop by combining spectral reflectance and agronomic efficiency
This study aimed to develop a novel regression model for prescription of required nitrogen (N) for maize by combining spectral reflectance data from GreenSeeker sensor and agronomic efficiency. For this end, two field trials at two sites were carried out with maize (Zea mays L.) on Oxisols under no-...
Saved in:
Published in | Journal of plant nutrition Vol. 43; no. 14; pp. 2152 - 2163 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
Taylor & Francis
26.08.2020
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0190-4167 1532-4087 1532-4087 |
DOI | 10.1080/01904167.2020.1766074 |
Cover
Loading…
Abstract | This study aimed to develop a novel regression model for prescription of required nitrogen (N) for maize by combining spectral reflectance data from GreenSeeker sensor and agronomic efficiency. For this end, two field trials at two sites were carried out with maize (Zea mays L.) on Oxisols under no-till systems in Southern Brazil. For both experiments, a randomized complete block design, with three replications in a split-plot arrangement, was used. The main plots consisted of four urea-N rates at sowing (0, 20, 40, and 60 kg N ha
−1
) and subplots included four urea-N rates in top dressing (0, 80, 160, and 240 kg N ha
−1
). Based on the results, a novel model for prescription of N rate in top dressing for maize was defined. The increases in maize yields with the N rates estimated by the model (16% to 39%) were similar to that obtained with the N rates used for maximum economic yield (15% to 42%). The estimated N rate by the model provided an economic return 36.5% and 7.0% higher than the N rate for maximum yield, and only 6.6% and 2.0% lower than the N rate for maximum economic yield, at sites 1 and 2, respectively. Thus, the economic return obtained using the model was closer to that reached with the N rate for maximum economic yield than that for maximum yield. Therefore, the developed model, combining spectral reflectance and agronomic efficiency, exhibited great potential to improve the maize N fertilization efficiency. |
---|---|
AbstractList | This study aimed to develop a novel regression model for prescription of required nitrogen (N) for maize by combining spectral reflectance data from GreenSeeker sensor and agronomic efficiency. For this end, two field trials at two sites were carried out with maize (Zea mays L.) on Oxisols under no-till systems in Southern Brazil. For both experiments, a randomized complete block design, with three replications in a split-plot arrangement, was used. The main plots consisted of four urea-N rates at sowing (0, 20, 40, and 60 kg N ha
−1
) and subplots included four urea-N rates in top dressing (0, 80, 160, and 240 kg N ha
−1
). Based on the results, a novel model for prescription of N rate in top dressing for maize was defined. The increases in maize yields with the N rates estimated by the model (16% to 39%) were similar to that obtained with the N rates used for maximum economic yield (15% to 42%). The estimated N rate by the model provided an economic return 36.5% and 7.0% higher than the N rate for maximum yield, and only 6.6% and 2.0% lower than the N rate for maximum economic yield, at sites 1 and 2, respectively. Thus, the economic return obtained using the model was closer to that reached with the N rate for maximum economic yield than that for maximum yield. Therefore, the developed model, combining spectral reflectance and agronomic efficiency, exhibited great potential to improve the maize N fertilization efficiency. This study aimed to develop a novel regression model for prescription of required nitrogen (N) for maize by combining spectral reflectance data from GreenSeeker sensor and agronomic efficiency. For this end, two field trials at two sites were carried out with maize (Zea mays L.) on Oxisols under no-till systems in Southern Brazil. For both experiments, a randomized complete block design, with three replications in a split-plot arrangement, was used. The main plots consisted of four urea-N rates at sowing (0, 20, 40, and 60 kg N ha⁻¹) and subplots included four urea-N rates in top dressing (0, 80, 160, and 240 kg N ha⁻¹). Based on the results, a novel model for prescription of N rate in top dressing for maize was defined. The increases in maize yields with the N rates estimated by the model (16% to 39%) were similar to that obtained with the N rates used for maximum economic yield (15% to 42%). The estimated N rate by the model provided an economic return 36.5% and 7.0% higher than the N rate for maximum yield, and only 6.6% and 2.0% lower than the N rate for maximum economic yield, at sites 1 and 2, respectively. Thus, the economic return obtained using the model was closer to that reached with the N rate for maximum economic yield than that for maximum yield. Therefore, the developed model, combining spectral reflectance and agronomic efficiency, exhibited great potential to improve the maize N fertilization efficiency. This study aimed to develop a novel regression model for prescription of required nitrogen (N) for maize by combining spectral reflectance data from GreenSeeker sensor and agronomic efficiency. For this end, two field trials at two sites were carried out with maize (Zea mays L.) on Oxisols under no-till systems in Southern Brazil. For both experiments, a randomized complete block design, with three replications in a split-plot arrangement, was used. The main plots consisted of four urea-N rates at sowing (0, 20, 40, and 60 kg N ha−1) and subplots included four urea-N rates in top dressing (0, 80, 160, and 240 kg N ha−1). Based on the results, a novel model for prescription of N rate in top dressing for maize was defined. The increases in maize yields with the N rates estimated by the model (16% to 39%) were similar to that obtained with the N rates used for maximum economic yield (15% to 42%). The estimated N rate by the model provided an economic return 36.5% and 7.0% higher than the N rate for maximum yield, and only 6.6% and 2.0% lower than the N rate for maximum economic yield, at sites 1 and 2, respectively. Thus, the economic return obtained using the model was closer to that reached with the N rate for maximum economic yield than that for maximum yield. Therefore, the developed model, combining spectral reflectance and agronomic efficiency, exhibited great potential to improve the maize N fertilization efficiency. |
Author | Kapp-Junior, Cláudio Caires, Eduardo Fávero Guimarães, Alaine Margarete Auler, André Carlos |
Author_xml | – sequence: 1 givenname: Cláudio surname: Kapp-Junior fullname: Kapp-Junior, Cláudio organization: Department of Rural Economy, ABC Foundation Agricultural Research and Development – sequence: 2 givenname: Eduardo Fávero surname: Caires fullname: Caires, Eduardo Fávero email: efcaires@uepg.br – sequence: 3 givenname: Alaine Margarete surname: Guimarães fullname: Guimarães, Alaine Margarete organization: Department of Computer Science, State University of Ponta Grossa – sequence: 4 givenname: André Carlos surname: Auler fullname: Auler, André Carlos organization: Department of Soils and Agricultural Engineering, Federal University of Paraná |
BookMark | eNqFkU9rHSEUxaWk0Jc0H6EgdNPNJP6Z0ZFuWkLbFAKFkqzFca4Pg6Mv6qO8rPrR6-SlmyzalaK_c7nnnFN0ElMEhN5RckHJSC4JVaSnQl4wwtqTFILI_hXa0IGzriejPEGblelW6A06LeWeEKLIQDfo90_YZijFp4iXNEPwcYujrzltIWIHufrgH01d_zM87H2GBWLFLmW8GP8I2Oa0w9MB27RMPq7ysgNbswlN4EK7mmgBmzhjs80ppsVbDM556yHaw1v02plQ4Pz5PEN3X7_cXl13Nz--fb_6fNNZLmntlAQ1zxN3YMU4jYJNoNgoB8J5P8kZBBgpmlU5CDcwomTPRw4zTIqrkQjBz9CH49xdTg97KFUvvlgIwURI-6LZwHrOlGJDQ9-_QO_TPse2nWY9VaqNI6xRH49UC6CUZlVbX5-Cat590JTotR39tx29tqOf22nq4YV6l_1i8uG_uk9HnY-tgsX8SjnMuppDSNnllrQvmv97xB-SYqo9 |
CitedBy_id | crossref_primary_10_1016_j_compag_2022_107479 crossref_primary_10_3390_rs12172741 |
Cites_doi | 10.1127/0941-2948/2013/0507 10.1080/00103620701549157 10.2134/agronj2005.0005 10.1016/j.fcr.2018.01.007 10.1590/S0103-84782003000500002 10.1590/S0100-06832009000600021 10.1108/02602280510606499 10.2134/agronj2016.01.0041 10.1007/s11119-010-9210-5 10.1080/01904167.2018.1434202 10.1007/s13593-014-0207-8 10.2134/agronj1991.00021962008300010015x 10.1590/01000683rbcs20140686 10.1007/s13593-015-0296-z 10.1590/S0100-69162013000100018 10.2134/agronj2002.8150 10.1590/0034-737X201663010014 10.1007/s00374-013-0863-x 10.2134/agronj2011.0249 10.1080/00103620500303988 10.1007/s11119-010-9196-z 10.2134/agronj2010.0015 10.1016/j.still.2014.10.011 10.1016/j.still.2016.12.007 10.1590/S0100-204X2008000800018 10.1016/j.ecolind.2015.08.023 10.1016/j.fcr.2016.08.013 10.2134/agronj2004.1572 10.3390/s151127832 10.1016/j.compag.2013.10.007 10.1590/S0100-06832013000500018 10.1016/S0065-2113(05)88004-6 |
ContentType | Journal Article |
Copyright | 2020 Taylor & Francis Group, LLC 2020 2020 Taylor & Francis Group, LLC |
Copyright_xml | – notice: 2020 Taylor & Francis Group, LLC 2020 – notice: 2020 Taylor & Francis Group, LLC |
DBID | AAYXX CITATION 7ST 7T7 8FD C1K FR3 P64 SOI 7S9 L.6 |
DOI | 10.1080/01904167.2020.1766074 |
DatabaseName | CrossRef Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Engineering Research Database Technology Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Engineering Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany Economics |
EISSN | 1532-4087 |
EndPage | 2163 |
ExternalDocumentID | 10_1080_01904167_2020_1766074 1766074 |
Genre | Article |
GeographicLocations | Brazil |
GeographicLocations_xml | – name: Brazil |
GrantInformation_xml | – fundername: CNPq grantid: 69/; -0 |
GroupedDBID | .7F .QJ 0BK 0R~ 29L 30N 4.4 53G 5GY 5VS AAENE AAHBH AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACPRK ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRAH AGDLA AGMYJ AHDZW AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBS ECGQY E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM L7B LJTGL M4Z NA5 NX0 O9- P2P RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEI TFL TFT TFW TQWBC TTHFI TUROJ TWF TWZ UT5 UU3 ZGOLN ~KM ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV CITATION 7ST 7T7 8FD C1K FR3 P64 SOI TASJS 7S9 L.6 |
ID | FETCH-LOGICAL-c371t-97e9ddb3fec68b862be928750334b7de6ea76087756f520974383edeb93980663 |
ISSN | 0190-4167 1532-4087 |
IngestDate | Wed Jul 02 04:35:36 EDT 2025 Wed Aug 13 11:29:57 EDT 2025 Tue Jul 01 02:51:45 EDT 2025 Thu Apr 24 23:12:25 EDT 2025 Wed Dec 25 09:07:57 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c371t-97e9ddb3fec68b862be928750334b7de6ea76087756f520974383edeb93980663 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 2419906602 |
PQPubID | 196160 |
PageCount | 12 |
ParticipantIDs | crossref_citationtrail_10_1080_01904167_2020_1766074 crossref_primary_10_1080_01904167_2020_1766074 proquest_miscellaneous_2524329925 proquest_journals_2419906602 informaworld_taylorfrancis_310_1080_01904167_2020_1766074 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-08-26 |
PublicationDateYYYYMMDD | 2020-08-26 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-26 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | Journal of plant nutrition |
PublicationYear | 2020 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | CIT0030 CIT0010 R Foundation for Statistical Computing (CIT0027) 2016 CIT0031 CIT0012 CIT0011 CIT0033 CIT0014 CIT0036 CIT0013 CIT0035 CIT0016 CIT0015 CIT0037 CIT0018 CIT0017 CIT0019 CIT0021 CIT0020 CIT0001 CIT0023 CIT0022 Soil Survey Staff (CIT0034) 2013 Alvarez V. V. H. (CIT0003) 1994 CIT0025 CIT0002 CIT0024 CIT0005 CIT0004 CIT0026 CIT0007 CIT0029 CIT0006 CIT0028 CIT0009 CIT0008 |
References_xml | – ident: CIT0002 doi: 10.1127/0941-2948/2013/0507 – ident: CIT0020 doi: 10.1080/00103620701549157 – volume-title: Simplified guide to soil taxonomy year: 2013 ident: CIT0034 – ident: CIT0024 doi: 10.2134/agronj2005.0005 – volume-title: Avaliação da fertilidade do solo: Superfície de respostas – modelos aproximativos para expressar a relação fator-resposta. [Evaluation of soil fertility: Response surface - approximate models to express the factor-response relationship] year: 1994 ident: CIT0003 – ident: CIT0012 doi: 10.1016/j.fcr.2018.01.007 – ident: CIT0013 doi: 10.1590/S0103-84782003000500002 – ident: CIT0015 doi: 10.1590/S0100-06832009000600021 – ident: CIT0021 doi: 10.1108/02602280510606499 – ident: CIT0016 doi: 10.2134/agronj2016.01.0041 – ident: CIT0036 doi: 10.1007/s11119-010-9210-5 – ident: CIT0010 doi: 10.1080/01904167.2018.1434202 – ident: CIT0011 doi: 10.1007/s13593-014-0207-8 – ident: CIT0001 doi: 10.2134/agronj1991.00021962008300010015x – ident: CIT0031 doi: 10.1590/01000683rbcs20140686 – ident: CIT0006 doi: 10.1007/s13593-015-0296-z – ident: CIT0009 doi: 10.1590/S0100-69162013000100018 – ident: CIT0028 doi: 10.2134/agronj2002.8150 – volume-title: R: A language and environment for statistical computing year: 2016 ident: CIT0027 – ident: CIT0007 doi: 10.1590/0034-737X201663010014 – ident: CIT0018 doi: 10.1007/s00374-013-0863-x – ident: CIT0035 doi: 10.2134/agronj2011.0249 – ident: CIT0037 – ident: CIT0029 doi: 10.1080/00103620500303988 – ident: CIT0030 doi: 10.1007/s11119-010-9196-z – ident: CIT0019 doi: 10.2134/agronj2010.0015 – ident: CIT0005 doi: 10.1016/j.still.2014.10.011 – ident: CIT0025 doi: 10.1016/j.still.2016.12.007 – ident: CIT0026 doi: 10.1590/S0100-204X2008000800018 – ident: CIT0004 doi: 10.1016/j.ecolind.2015.08.023 – ident: CIT0017 doi: 10.1016/j.fcr.2016.08.013 – ident: CIT0023 doi: 10.2134/agronj2004.1572 – ident: CIT0033 doi: 10.3390/s151127832 – ident: CIT0022 doi: 10.1016/j.compag.2013.10.007 – ident: CIT0008 doi: 10.1590/S0100-06832013000500018 – ident: CIT0014 doi: 10.1016/S0065-2113(05)88004-6 |
SSID | ssj0009051 |
Score | 2.261349 |
Snippet | This study aimed to develop a novel regression model for prescription of required nitrogen (N) for maize by combining spectral reflectance data from... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2152 |
SubjectTerms | agronomic efficiency Agronomy Brazil Cereal crops Corn costs and returns Crop yield Economic models Economics Efficiency Fertilization INSEY maize grain yield NDVI Nitrogen Nitrogen fertilization no-tillage Oxisols Plant growth plant nutrition Reflectance regression analysis Regression models Spectra Spectral reflectance Urea urea nitrogen urea-N Zea mays |
Title | Regression modeling nitrogen fertilization requirement for maize crop by combining spectral reflectance and agronomic efficiency |
URI | https://www.tandfonline.com/doi/abs/10.1080/01904167.2020.1766074 https://www.proquest.com/docview/2419906602 https://www.proquest.com/docview/2524329925 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLVKhwQvCAZohYGMxFuUKp9N81jKSjWNIaFWVLxEce1MlUJSZc3D9sS_5W9wrz_SRJ0Y8BJVcexYvSf2sX3vuYS85567jhgP7DjmYzsIs8xmzji1OZDlLAiEm8osEZ8vR_NlcL4KV73er5bXUr1jw_XtnXEl_2NVuAd2xSjZf7Bs0yjcgN9gX7iCheH6Vzb-Kq6UG2uhMtrgsh8-0aqEGlaGHtO5DrO0KoEuv3IvUHoW_kg3t8LC_F1IQKFzTGaKsGTkZSXV_jPc0W8iCtKrSoUwowvIRo4InRPhFrPd5mAuqzA6_82Ynm639nldbNQOwTSXh_RuzZUrmOT1HBFbWjNVBAYprWkK_W6Y_6ca1TFksa9GuEmeIlM2GXv3EK51kCP6bCp_AHRvycvOTocn_exUOL3E5uIg6UjL80nujcaODfxSzd_CjOceLJH1nK4HfKULZYAddIZvJaerqYDnqsH3YJrRfpnwQnzfEDs7RKVNR2Uc6sp6X35JZsuLi2Rxtlo8IEcerGecPjmazD9-_7bXh3ZC10T2Y5sm2Axl4O96TYdGdUR2D0iFZEqLp-SJBgKdKLw-Iz1RHJOHH0rA0s0xeWRC4a-fk597AFMDYGoATDsApi0AU-gGlQCmCGDKbmgDYGoATFsApgBg2gCY7gH8gixnZ4vp3NYpQey1H7k7O45EzDnzM7EejRmsxpmIYc2PZ_EBi7gYiTQaocZlOMrQwStCJV7BBYv9eIzs-iXpF2UhTghlDneZFwY8RIEmEbAwgsWIy6D9FJ5mAxKYfzhZa718TNuSJ66R1dWGSdAwiTbMgAybalslGHNfhbhtvmQnYZ4phCf-PXVPja0TPS5dJ8DJgWJCuTcg75pimDXwKDAtRFnDM6EX-MBEvfDVn5t4TR7vP8VT0t9VtXgDNHzH3moI_waBhNwy |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5RqNReCn2p2wJ1pV6z3SR-rI8tAi0U9lCBxM2K4wmqSrNVmj3AqT-9M05CoQhx4Bq_nbH9jT3zDcDHkKWl8UEm1oZpIlVVJX4yLZJAYLmSEtMiRok4muvZiTw4VafXfGHYrJJ16Kojioh7NS9uvoweTOI-sf8zAQlD6l1Gn4zWdBA-gjVlteHwDflk_o94d6LSwWWaywxePHdVc-N8usFeemu3jkfQ3jqUQ-c7y5Mf42Xrx-Xlf7yODxvdBjzrEar43InUc1jB-gU8_rKgGi9ewp9veNaZztYiRtGho0_QttAsSBJFxVba571rp2iQzYzj_aOgAYqfxfdLFBwzTPgLQb3yMTqFiN6eDbVJs8GvCCyIgvovirOmc5sWGJku2E30FZzs7R7vzJI-ikNS5iZtE2vQhuDzCks99aRAebSkpvHzqfQmoMbCaKYlVLpimxzD5KkY0NvcThkQvYbVelHjGxB-ElJPGm1QzKmD0itD-DH1VH9Buf0I5PDvXNlTnHOkjXOXDkyo_dw6nlvXz-0IxlfFfnUcH_cVsNcFw7XxcqXqIqG4_J6ym4MUuX67-O0IRhEqoPRsBB-ukmmh8-tNUeNiSXlUJnMCD5l6-4Dm38OT2fHRoTvcn399B085iW_IM70Jq22zxC2CWK3fjmvoL0SAGKY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BQYgL5SkWChiJa5ZN4tibI9CuymuFEJW4WZl4XFWUbJVmD-2pP50ZJykUhHroNX47Y_sbe-YbgFc-S2uLXidl6eeJLkJIcDavEs9gOWhNaRWjRHxemt09_eF7MVoTHg9mlaJDh54oIu7VsriPfBgt4l6L-zPjCMvaXcafrDF8Dl6HG4bhiQh2Plv-5t2dFenoMS1lRiee_1Vz4Xi6QF76z2YdT6DFJuDY997w5Md03eG0Pv2L1vFKg7sLdwZ8qt70AnUPrlFzH26-XXGFJw_g7Cvt94azjYoxdPjgU7wptCuWQxXERvtwcOxULYmRcbx9VDw-9bM6OCUlEcMUnijuFMbYFCr6erbcJk-GvCGIGCruvqr2295pWlHkuRAn0Yewt9j59m43GWI4JHVu0y4pLZXeYx6oNnNk9QmpZCVNHk81Wk-GKmuElLAwQSxyrFCnkics83IucOgRbDSrhh6DwplPkfVZXwijDmksLKPHFLn-inPjBPT461w9EJxLnI1Dl448qMPcOplbN8ztBKbnxY56ho_LCpR_yoXr4tVK6OOguPySslujELlhszh2DKIYE3B6NoGX58m8zOXtpmpoteY8RaZzhg5Z8eQKzb-AW1-2F-7T--XHp3BbUuR6PDNbsNG1a3rG-KrD53EF_QLRTBdT |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regression+modeling+nitrogen+fertilization+requirement+for+maize+crop+by+combining+spectral+reflectance+and+agronomic+efficiency&rft.jtitle=Journal+of+plant+nutrition&rft.au=Kapp-Junior%2C+Cl%C3%A1udio&rft.au=Eduardo+F%C3%A1vero+Caires&rft.au=Guimar%C3%A3es%2C+Alaine+Margarete&rft.au=Auler%2C+Andr%C3%A9+Carlos&rft.date=2020-08-26&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0190-4167&rft.eissn=1532-4087&rft.volume=43&rft.issue=14&rft.spage=2152&rft.epage=2163&rft_id=info:doi/10.1080%2F01904167.2020.1766074&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0190-4167&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0190-4167&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0190-4167&client=summon |