Contributions to the muon g − 2 from a three-form field

A bstract We examine contributions to the muon dipole moment g − 2 from a 3-form field Ω, which naturally arises from many fundamental theories, such as the string theory and the hyperunified field theory. In particular, by calculating the one-loop Feynman diagram, we have obtained the leading-order...

Full description

Saved in:
Bibliographic Details
Published inThe journal of high energy physics Vol. 2023; no. 1; pp. 117 - 19
Main Authors Huang, Da, Tang, Yong, Wu, Yue-Liang
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 20.01.2023
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A bstract We examine contributions to the muon dipole moment g − 2 from a 3-form field Ω, which naturally arises from many fundamental theories, such as the string theory and the hyperunified field theory. In particular, by calculating the one-loop Feynman diagram, we have obtained the leading-order Ω-induced contribution to the muon g − 2, which is found to be finite. Then we investigate the theoretical constraints from perturbativity and unitarity. Especially, the unitarity bounds are yielded by computing the tree-level μ + μ − scattering amplitudes of various initial and final helicity configurations. As a result, despite the strong unitarity bounds imposed on this model of Ω, we have still found a substantial parameter space which can accommodates the muon g − 2 data.
AbstractList Abstract We examine contributions to the muon dipole moment g − 2 from a 3-form field Ω, which naturally arises from many fundamental theories, such as the string theory and the hyperunified field theory. In particular, by calculating the one-loop Feynman diagram, we have obtained the leading-order Ω-induced contribution to the muon g − 2, which is found to be finite. Then we investigate the theoretical constraints from perturbativity and unitarity. Especially, the unitarity bounds are yielded by computing the tree-level μ + μ − scattering amplitudes of various initial and final helicity configurations. As a result, despite the strong unitarity bounds imposed on this model of Ω, we have still found a substantial parameter space which can accommodates the muon g − 2 data.
We examine contributions to the muon dipole moment g − 2 from a 3-form field Ω, which naturally arises from many fundamental theories, such as the string theory and the hyperunified field theory. In particular, by calculating the one-loop Feynman diagram, we have obtained the leading-order Ω-induced contribution to the muon g − 2, which is found to be finite. Then we investigate the theoretical constraints from perturbativity and unitarity. Especially, the unitarity bounds are yielded by computing the tree-level μ+μ− scattering amplitudes of various initial and final helicity configurations. As a result, despite the strong unitarity bounds imposed on this model of Ω, we have still found a substantial parameter space which can accommodates the muon g − 2 data.
A bstract We examine contributions to the muon dipole moment g − 2 from a 3-form field Ω, which naturally arises from many fundamental theories, such as the string theory and the hyperunified field theory. In particular, by calculating the one-loop Feynman diagram, we have obtained the leading-order Ω-induced contribution to the muon g − 2, which is found to be finite. Then we investigate the theoretical constraints from perturbativity and unitarity. Especially, the unitarity bounds are yielded by computing the tree-level μ + μ − scattering amplitudes of various initial and final helicity configurations. As a result, despite the strong unitarity bounds imposed on this model of Ω, we have still found a substantial parameter space which can accommodates the muon g − 2 data.
We examine contributions to the muon dipole moment g − 2 from a 3-form field Ω, which naturally arises from many fundamental theories, such as the string theory and the hyperunified field theory. In particular, by calculating the one-loop Feynman diagram, we have obtained the leading-order Ω-induced contribution to the muon g − 2, which is found to be finite. Then we investigate the theoretical constraints from perturbativity and unitarity. Especially, the unitarity bounds are yielded by computing the tree-level μ + μ − scattering amplitudes of various initial and final helicity configurations. As a result, despite the strong unitarity bounds imposed on this model of Ω, we have still found a substantial parameter space which can accommodates the muon g − 2 data.
ArticleNumber 117
Author Huang, Da
Tang, Yong
Wu, Yue-Liang
Author_xml – sequence: 1
  givenname: Da
  orcidid: 0000-0001-8357-754X
  surname: Huang
  fullname: Huang, Da
  email: dahuang@bao.ac.cn
  organization: National Astronomical Observatories, Chinese Academy of Sciences, School of Fundamental Physics and Mathematical Sciences, Hangzhou Institute for Advanced Study, UCAS, International Centre for Theoretical Physics Asia-Pacific
– sequence: 2
  givenname: Yong
  surname: Tang
  fullname: Tang, Yong
  organization: National Astronomical Observatories, Chinese Academy of Sciences, University of Chinese Academy of Sciences (UCAS)
– sequence: 3
  givenname: Yue-Liang
  surname: Wu
  fullname: Wu, Yue-Liang
  organization: School of Fundamental Physics and Mathematical Sciences, Hangzhou Institute for Advanced Study, UCAS, International Centre for Theoretical Physics Asia-Pacific, University of Chinese Academy of Sciences (UCAS), Institute of Theoretical Physics, Chinese Academy of Sciences
BookMark eNp1kL1OwzAUhS0EEm1hZrXEAkPotR3_jagqtKgSDDBbTuyUVE1cnGTgDZh5RJ6ElCBgYbpXR-d89-qM0WEdao_QGYErAiCnd4v5A5ALCpRdEiIP0IgA1YlKpT78sx-jcdNsAAgnGkZIz0LdxjLr2jLUDW4Dbp89rrpQ4zX-eHvHFBcxVNj2evQ-KUKscFH6rTtBR4XdNv70e07Q0838cbZIVve3y9n1KsmZJG2imRBcCwKcZgScgNxy6YRiuQLKdVooR7xiKsuso1muUgaOEW8zpoTw1LMJWg5cF-zG7GJZ2fhqgi3NlxDi2tjYlvnWG880d8QJnkqbKukVuFSDSKnLGZNU9KzzgbWL4aXzTWs2oYt1_76hUkhOqVDQu6aDK4-haaIvfq4SMPuuzdC12Xdt-q77BAyJpnfWax9_uf9FPgEpXH9W
Cites_doi 10.1016/0370-2693(93)91205-2
10.1103/PhysRevD.103.095024
10.1103/RevModPhys.84.987
10.1103/PhysRevD.22.301
10.1007/JHEP10(2018)141
10.1103/PhysRevLett.38.883
10.1103/PhysRevLett.59.2405
10.1142/S0217751X21430028
10.1007/JHEP03(2020)101
10.1088/1126-6708/2006/11/034
10.1007/BF01429824
10.1088/0253-6102/70/2/161
10.1016/0550-3213(87)90469-X
10.1103/PhysRevD.70.113006
10.1103/PhysRevD.95.054026
10.1142/S0217751X21430016
10.1007/JHEP09(2021)080
10.1103/PhysRevLett.27.1688
10.1016/S0370-2693(00)00962-X
10.1103/PhysRevD.101.075013
10.1016/j.physletb.2014.05.043
10.1103/PhysRevD.77.093013
10.1007/BF02734585
10.1016/j.physletb.2014.06.012
10.1016/0550-3213(72)90279-9
10.1103/PhysRevD.91.095024
10.1140/epjc/s10052-017-5161-6
10.1016/j.physletb.2019.134994
10.1007/JHEP02(2022)029
10.1103/PhysRevD.100.034520
10.1016/j.nuclphysb.2012.04.012
10.1007/978-1-4684-7571-5_9
10.1103/PhysRevD.97.114025
10.1007/JHEP08(2019)137
10.1103/PhysRevLett.124.132002
10.1088/1126-6708/2008/08/056
10.1103/PhysRev.159.1251
10.1016/j.scib.2017.08.005
10.1103/PhysRevD.15.996
10.1103/PhysRevD.78.065016
10.1103/PhysRevD.94.015008
10.1016/0550-3213(73)90194-6
10.1103/PhysRevD.21.3269
10.1103/PhysRevD.93.024012
10.1016/0550-3213(88)90394-X
10.1140/epjc/s10052-020-7857-2
10.1103/PhysRevD.101.014029
10.1016/0370-2693(91)90068-2
10.1016/0370-2693(80)90212-9
10.3390/atoms7010028
10.1016/j.physrep.2020.07.006
10.1103/PhysRev.135.B1049
10.1103/PhysRevD.88.053005
10.1016/0550-3213(75)90279-5
10.1016/j.nuclphysb.2006.10.002
10.1103/PhysRevLett.109.111808
10.1140/epjc/s10052-017-5504-3
10.1103/PhysRevD.67.073006
10.1140/epjc/s10052-018-6127-z
10.1016/0370-2693(87)91275-5
10.1007/JHEP04(2017)161
10.1103/PhysRev.179.1518
10.1103/PhysRevD.16.1519
10.1103/PhysRevD.15.1958
10.1007/JHEP02(2019)006
10.1016/j.physletb.2015.10.047
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1007/JHEP01(2023)117
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
AAdvanced Technologies & Aerospace Database (subscription)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database (subscription)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals (ODIN)
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals (ODIN)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1029-8479
EndPage 19
ExternalDocumentID oai_doaj_org_article_e395d1d6547a487e80d490642dc33726
10_1007_JHEP01_2023_117
GroupedDBID -5F
-5G
-A0
-BR
0R~
0VY
199
1N0
30V
4.4
408
40D
5GY
5VS
8FE
8FG
8TC
8UJ
95.
AAFWJ
AAKKN
ABEEZ
ACACY
ACGFS
ACHIP
ACREN
ACULB
ADBBV
ADINQ
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFWTZ
AHBYD
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOAED
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
CSCUP
DU5
EBS
ER.
FEDTE
GQ6
GROUPED_DOAJ
HCIFZ
HF~
HLICF
HMJXF
HVGLF
HZ~
IHE
KOV
LAP
M~E
N5L
N9A
NB0
O93
OK1
P62
P9T
PIMPY
PROAC
R9I
RO9
RSV
S27
S3B
SOJ
SPH
T13
TUS
U2A
VC2
VSI
WK8
XPP
Z45
ZMT
AAYXX
AMVHM
CITATION
PHGZM
PHGZT
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c371t-93665961052b10d60ca57d683c802594f8d1e838bbad2bc8430d31eab3866e2e3
IEDL.DBID BENPR
ISSN 1029-8479
IngestDate Wed Aug 27 01:23:54 EDT 2025
Fri Jul 25 09:36:49 EDT 2025
Tue Jul 01 01:00:42 EDT 2025
Fri Feb 21 02:43:20 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Theories of Flavour
Other Weak Scale BSM Models
Specific BSM Phenomenology
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c371t-93665961052b10d60ca57d683c802594f8d1e838bbad2bc8430d31eab3866e2e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8357-754X
OpenAccessLink https://www.proquest.com/docview/2767522680?pq-origsite=%requestingapplication%
PQID 2767522680
PQPubID 2034718
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_e395d1d6547a487e80d490642dc33726
proquest_journals_2767522680
crossref_primary_10_1007_JHEP01_2023_117
springer_journals_10_1007_JHEP01_2023_117
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-20
PublicationDateYYYYMMDD 2023-01-20
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-20
  day: 20
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle The journal of high energy physics
PublicationTitleAbbrev J. High Energ. Phys
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: SpringerOpen
References SezginEvan NieuwenhuizenPRenormalizability properties of antisymmetric tensor fields coupled to gravityPhys. Rev. D1980223011980PhRvD..22..301S57895210.1103/PhysRevD.22.301[INSPIRE]
Y.-L. Wu, Gravidynamics, spinodynamics and electrodynamics within the framework of gravitational quantum field theory, arXiv:2208.03290 [INSPIRE].
D. Das and I. Saha, Search for a stable alignment limit in two-Higgs-doublet models, Phys. Rev. D91 (2015) 095024 [arXiv:1503.02135] [INSPIRE].
GoodsellMDStaubFUnitarity constraints on general scalar couplings with SARAHEur. Phys. J. C2018786492018EPJC...78..649G10.1140/epjc/s10052-018-6127-z[arXiv:1805.07306] [INSPIRE]
WuY-LUnified field theory of basic forces and elementary particles with gravitational origin of gauge symmetry in hyper-spacetimeSci. Bull.201762110910.1016/j.scib.2017.08.005[arXiv:1705.06365] [INSPIRE]
C. Gnendiger, D. Stöckinger and H. Stöckinger-Kim, The electroweak contributions to (g − 2)μafter the Higgs boson mass measurement, Phys. Rev. D88 (2013) 053005 [arXiv:1306.5546] [INSPIRE].
CMS collaboration, Search for high-mass resonances in dilepton final states in proton-proton collisions ats\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 13 TeV, JHEP06 (2018) 120 [arXiv:1803.06292] [INSPIRE].
M. Gell-Mann, M.L. Goldberger, N.M. Kroll and F.E. Low, Amelioration of divergence difficulties in the theory of weak interactions, Phys. Rev.179 (1969) 1518 [INSPIRE].
CEPC Study Group collaboration, CEPC conceptual design report: volume 1 — accelerator, arXiv:1809.00285 [INSPIRE].
G. ’t Hooft, Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking, NATO Sci. Ser. B59 (1980) 135 [INSPIRE].
M. Nebot, J.F. Oliver, D. Palao and A. Santamaria, Prospects for the Zee-Babu model at the CERN LHC and low energy experiments, Phys. Rev. D77 (2008) 093013 [arXiv:0711.0483] [INSPIRE].
HoferichterMHoidB-LKubisBThree-pion contribution to hadronic vacuum polarizationJHEP2019081372019JHEP...08..137H10.1007/JHEP08(2019)137[arXiv:1907.01556] [INSPIRE]
AthronPBalázsCJacobDHJKotlarskiWStöckingerDStöckinger-KimHNew physics explanations of aμin light of the FNAL muon g − 2 measurementJHEP2021090802021JHEP...09..080A10.1007/JHEP09(2021)080[arXiv:2104.03691] [INSPIRE]
FCC collaboration, FCC-ee: the lepton collider. Future Circular Collider conceptual design report volume 2, Eur. Phys. J. ST228 (2019) 261 [INSPIRE].
Muon g-2 collaboration, Final report of the muon E821 anomalous magnetic moment measurement at BNL, Phys. Rev. D73 (2006) 072003 [hep-ex/0602035] [INSPIRE].
BekaertXBoulangerNSundellPHow higher-spin gravity surpasses the spin two barrier: no-go theorems versus yes-go examplesRev. Mod. Phys.2012849872012RvMP...84..987B10.1103/RevModPhys.84.987[arXiv:1007.0435] [INSPIRE]
B.W. Lee, C. Quigg and H.B. Thacker, Weak interactions at very high-energies: the role of the Higgs boson mass, Phys. Rev. D16 (1977) 1519 [INSPIRE].
M.B. Green, J.H. Schwarz and E. Witten, Superstring theory. Volume 1: introduction, Cambridge University Press, Cambridge, U.K. (1988) [ISBN:978-0-521-35752-4] [INSPIRE].
A. Falkowski and J.F. Kamenik, Diphoton portal to warped gravity, Phys. Rev. D94 (2016) 015008 [arXiv:1603.06980] [INSPIRE].
MaalampiJSirkkaJViljaITree level unitarity and triviality bounds for two Higgs modelsPhys. Lett. B19912653711991PhLB..265..371M10.1016/0370-2693(91)90068-2[INSPIRE]
M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, A new evaluation of the hadronic vacuum polarisation contributions to the muon anomalous magnetic moment and to α(mZ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {m}_Z^2 $$\end{document}), Eur. Phys. J. C80 (2020) 241 [Erratum ibid.80 (2020) 410] [arXiv:1908.00921] [INSPIRE].
ColangeloGHoferichterMProcuraMStofferPDispersion relation for hadronic light-by-light scattering: two-pion contributionsJHEP2017041612017JHEP...04..161C10.1007/JHEP04(2017)1611388.81508[arXiv:1702.07347] [INSPIRE]
T. Blum et al., Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment from lattice QCD, Phys. Rev. Lett.124 (2020) 132002 [arXiv:1911.08123] [INSPIRE].
HaagRLopuszanskiJTSohniusMAll possible generators of supersymmetries of the S matrixNucl. Phys. B1975882571975NuPhB..88..257H41139610.1016/0550-3213(75)90279-5[INSPIRE]
Particle Data Group collaboration, Review of particle physics, PTEP2022 (2022) 083C01 [INSPIRE].
WuY-LHyperunified field theory and gravitational gauge-geometry dualityEur. Phys. J. C201878282018EPJC...78...28W10.1140/epjc/s10052-017-5504-3[arXiv:1712.04537] [INSPIRE]
WuY-LThe foundation of the hyperunified field theory II — fundamental interaction and evolving universeInt. J. Mod. Phys. A20213621430022021IJMPA..3643002W433806510.1142/S0217751X21430028[arXiv:2104.11078] [INSPIRE]
RiversRJLagrangian theory for neutral massive spin-2 fieldsNuovo Cim.1964343861964NCim...34..386R19399810.1007/BF02734585
R. Sekhar Chivukula, D. Foren, K.A. Mohan, D. Sengupta and E.H. Simmons, Scattering amplitudes of massive spin-2 Kaluza-Klein states grow only as O(s), Phys. Rev. D101 (2020) 055013 [arXiv:1906.11098] [INSPIRE].
S.L. Glashow and S. Weinberg, Natural conservation laws for neutral currents, Phys. Rev. D15 (1977) 1958 [INSPIRE].
J. Polchinski, String theory. Volume 2: superstring theory and beyond, Cambridge University Press, Cambridge, U.K. (2007) [INSPIRE].
S. Weinberg and E. Witten, Limits on massless particles, Phys. Lett. B96 (1980) 59 [INSPIRE].
GrisaruMTPendletonHNvan NieuwenhuizenPSupergravity and the S matrixPhys. Rev. D1977159961977PhRvD..15..996G10.1103/PhysRevD.15.996[INSPIRE]
ATLAS collaboration, Search for new resonances in high-mass diphoton final states using proton-proton collision data collected with the ATLAS detector, PoSICHEP2020 (2021) 109 [INSPIRE].
E. Sezgin and P. van Nieuwenhuizen, New ghost free gravity Lagrangians with propagating torsion, Phys. Rev. D21 (1980) 3269 [INSPIRE].
CMS collaboration, Searches for new heavy resonances in final states with leptons and photons at CMS, PoSICHEP2018 (2019) 287 [INSPIRE].
KurzALiuTMarquardPSteinhauserMHadronic contribution to the muon anomalous magnetic moment to next-to-next-to-leading orderPhys. Lett. B20147341442014PhLB..734..144K10.1016/j.physletb.2014.05.043[arXiv:1403.6400] [INSPIRE]
ColangeloGHagelsteinFHoferichterMLaubLStofferPLongitudinal short-distance constraints for the hadronic light-by-light contribution to (g − 2)μwith large-NcRegge modelsJHEP2020031012020JHEP...03..101C10.1007/JHEP03(2020)101[arXiv:1910.13432] [INSPIRE]
A. Keshavarzi, D. Nomura and T. Teubner, g − 2 of charged leptons, α(MZ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {M}_Z^2 $$\end{document}), and the hyperfine splitting of muonium, Phys. Rev. D101 (2020) 014029 [arXiv:1911.00367] [INSPIRE].
ChaichianMFischerJHigher dimensional space-time and unitarity bound on the scattering amplitudeNucl. Phys. B19883035571988NuPhB.303..557C94509310.1016/0550-3213(88)90394-X[INSPIRE]
M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Reevaluation of the hadronic vacuum polarisation contributions to the Standard Model predictions of the muon g − 2 and α(mZ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {m}_Z^2 $$\end{document}) using newest hadronic cross-section data, Eur. Phys. J. C77 (2017) 827 [arXiv:1706.09436] [INSPIRE].
ColangeloGHoferichterMNyffelerAPasseraMStofferPRemarks on higher-order hadronic corrections to the muon g − 2Phys. Lett. B2014735902014PhLB..735...90C10.1016/j.physletb.2014.06.012[arXiv:1403.7512] [INSPIRE]
L. Linssen, A. Miyamoto, M. Stanitzki and H. Weerts eds., Physics and detectors at CLIC: CLIC conceptual design report, CERN-2012-003, CERN, Geneva, Switzerland (2012) [arXiv:1202.5940] [INSPIRE].
S. Weinberg, Physical processes in a convergent theory of the weak and electromagnetic interactions, Phys. Rev. Lett.27 (1971) 1688 [INSPIRE].
BoulangerNLeclercqSConsistent couplings between spin-2 and spin-3 massless fieldsJHEP2006110342006JHEP...11..034B227042010.1088/1126-6708/2006/11/034[hep-th/0609221] [INSPIRE]
ATLAS collaboration, Search for diboson resonances in hadronic final states in 139 fb−1of pp collisions ats\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 13 TeV with the ATLAS detector, JHEP09 (2019) 091 [Erratum ibid.06 (2020) 042] [arXiv:1906.08589] [INSPIRE].
ATLAS collaboration, Search for high-mass dilepton resonances using 139 fb−1of pp collision data collected ats\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 13 TeV with the ATLAS detector, Phys. Lett. B796 (2019) 68 [arXiv:1903.06248] [INSPIRE].
P. Masjuan and P. Sanchez-Puertas, Pseudoscalar-pole contribution to the (gμ − 2): a rational approach, Phys. Rev. D95 (2017) 054026 [arXiv:1701.05829] [INSPIRE].
HoferichterMHoidB-LKubisBLeupoldSSchneiderSPDispersion relation for hadronic light-by-light scattering: pion poleJHEP2018101412018JHEP...10..141H10.1007/JHEP10(2018)141[arXiv:1808.04823] [INSPIRE]
H.
Y-L Wu (20031_CR5) 2017; 62
20031_CR62
20031_CR63
20031_CR61
20031_CR66
20031_CR23
20031_CR67
20031_CR20
20031_CR65
G Colangelo (20031_CR32) 2020; 03
G Colangelo (20031_CR21) 2019; 02
G Colangelo (20031_CR34) 2014; 735
P Van Nieuwenhuizen (20031_CR40) 1973; 60
Y-L Wu (20031_CR6) 2018; 78
R Haag (20031_CR44) 1975; 88
20031_CR15
20031_CR59
E Sezgin (20031_CR11) 1980; 22
20031_CR16
20031_CR13
20031_CR57
Y-L Wu (20031_CR8) 2021; 36
20031_CR14
20031_CR58
20031_CR19
20031_CR17
20031_CR18
20031_CR95
20031_CR93
20031_CR94
20031_CR55
20031_CR12
ES Fradkin (20031_CR52) 1987; 291
20031_CR56
20031_CR53
20031_CR10
A Kurz (20031_CR25) 2014; 734
P Athron (20031_CR36) 2021; 09
MA Vasiliev (20031_CR54) 2012; 862
20031_CR91
20031_CR92
20031_CR90
Y-L Wu (20031_CR7) 2018; 70
20031_CR48
20031_CR46
20031_CR47
20031_CR84
20031_CR85
20031_CR82
20031_CR83
20031_CR88
20031_CR89
20031_CR42
J Maalampi (20031_CR64) 1991; 265
S Kanemura (20031_CR68) 2015; 751
20031_CR86
20031_CR43
20031_CR87
M Hoferichter (20031_CR22) 2019; 08
MD Goodsell (20031_CR69) 2018; 78
20031_CR80
RJ Rivers (20031_CR39) 1964; 34
20031_CR81
20031_CR4
20031_CR3
G Colangelo (20031_CR28) 2017; 04
20031_CR2
20031_CR1
N Boulanger (20031_CR51) 2008; 08
20031_CR37
T Aoyama (20031_CR35) 2020; 887
20031_CR38
20031_CR79
20031_CR73
20031_CR30
20031_CR74
20031_CR72
20031_CR33
X Bekaert (20031_CR41) 2012; 84
M Chaichian (20031_CR71) 1988; 303
20031_CR77
20031_CR31
20031_CR75
20031_CR76
20031_CR70
RR Metsaev (20031_CR49) 2006; 759
I Banta (20031_CR78) 2022; 02
Y-L Wu (20031_CR9) 2021; 36
MT Grisaru (20031_CR45) 1977; 15
BW Lee (20031_CR60) 1977; 38
20031_CR26
20031_CR27
20031_CR24
N Boulanger (20031_CR50) 2006; 11
M Hoferichter (20031_CR29) 2018; 10
References_xml – reference: R.S. Chivukula, D. Foren, K.A. Mohan, D. Sengupta and E.H. Simmons, Spin-2 Kaluza-Klein scattering in a stabilized warped background, arXiv:2206.10628 [INSPIRE].
– reference: H. Huffel and G. Pocsik, Unitarity bounds on Higgs boson masses in the Weinberg-Salam model with two Higgs doublets, Z. Phys. C8 (1981) 13 [INSPIRE].
– reference: Muon g-2 collaboration, Final report of the muon E821 anomalous magnetic moment measurement at BNL, Phys. Rev. D73 (2006) 072003 [hep-ex/0602035] [INSPIRE].
– reference: S. Weinberg and E. Witten, Limits on massless particles, Phys. Lett. B96 (1980) 59 [INSPIRE].
– reference: MaalampiJSirkkaJViljaITree level unitarity and triviality bounds for two Higgs modelsPhys. Lett. B19912653711991PhLB..265..371M10.1016/0370-2693(91)90068-2[INSPIRE]
– reference: S.R. Coleman and J. Mandula, All possible symmetries of the S matrix, Phys. Rev.159 (1967) 1251 [INSPIRE].
– reference: ChaichianMFischerJHigher dimensional space-time and unitarity bound on the scattering amplitudeNucl. Phys. B19883035571988NuPhB.303..557C94509310.1016/0550-3213(88)90394-X[INSPIRE]
– reference: ATLAS collaboration, Search for low-mass dijet resonances using trigger-level jets with the ATLAS detector in pp collisions ats\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 13 TeV, Phys. Rev. Lett. 121 (2018) 081801 [arXiv:1804.03496] [INSPIRE].
– reference: M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Reevaluation of the hadronic vacuum polarisation contributions to the Standard Model predictions of the muon g − 2 and α(mZ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {m}_Z^2 $$\end{document}) using newest hadronic cross-section data, Eur. Phys. J. C77 (2017) 827 [arXiv:1706.09436] [INSPIRE].
– reference: CEPC Study Group collaboration, CEPC conceptual design report: volume 2 — physics & detector, arXiv:1811.10545 [INSPIRE].
– reference: M. Porrati, Universal limits on massless high-spin particles, Phys. Rev. D78 (2008) 065016 [arXiv:0804.4672] [INSPIRE].
– reference: BantaICohenTCraigNLuXSutherlandDNon-decoupling new particlesJHEP2022020292022JHEP...02..029B440743610.1007/JHEP02(2022)02907608030[arXiv:2110.02967] [INSPIRE]
– reference: S. Weinberg, Physical processes in a convergent theory of the weak and electromagnetic interactions, Phys. Rev. Lett.27 (1971) 1688 [INSPIRE].
– reference: KanemuraSYagyuKUnitarity bound in the most general two Higgs doublet modelPhys. Lett. B20157512892015PhLB..751..289K10.1016/j.physletb.2015.10.047[arXiv:1509.06060] [INSPIRE]
– reference: A. Keshavarzi, D. Nomura and T. Teubner, Muon g − 2 and α(MZ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {M}_Z^2 $$\end{document}): a new data-based analysis, Phys. Rev. D97 (2018) 114025 [arXiv:1802.02995] [INSPIRE].
– reference: ColangeloGHoferichterMNyffelerAPasseraMStofferPRemarks on higher-order hadronic corrections to the muon g − 2Phys. Lett. B2014735902014PhLB..735...90C10.1016/j.physletb.2014.06.012[arXiv:1403.7512] [INSPIRE]
– reference: LeeBWQuiggCThackerHBThe strength of weak interactions at very high-energies and the Higgs boson massPhys. Rev. Lett.1977388831977PhRvL..38..883L10.1103/PhysRevLett.38.883[INSPIRE]
– reference: GoodsellMDStaubFUnitarity constraints on general scalar couplings with SARAHEur. Phys. J. C2018786492018EPJC...78..649G10.1140/epjc/s10052-018-6127-z[arXiv:1805.07306] [INSPIRE]
– reference: ATLAS collaboration, Search for new resonances in high-mass diphoton final states using proton-proton collision data collected with the ATLAS detector, PoSICHEP2020 (2021) 109 [INSPIRE].
– reference: G. ’t Hooft and M.J.G. Veltman, Regularization and renormalization of gauge fields, Nucl. Phys. B44 (1972) 189 [INSPIRE].
– reference: M. Nebot, J.F. Oliver, D. Palao and A. Santamaria, Prospects for the Zee-Babu model at the CERN LHC and low energy experiments, Phys. Rev. D77 (2008) 093013 [arXiv:0711.0483] [INSPIRE].
– reference: GrisaruMTPendletonHNvan NieuwenhuizenPSupergravity and the S matrixPhys. Rev. D1977159961977PhRvD..15..996G10.1103/PhysRevD.15.996[INSPIRE]
– reference: J. Polchinski, String theory. Volume 2: superstring theory and beyond, Cambridge University Press, Cambridge, U.K. (2007) [INSPIRE].
– reference: VasilievMACubic vertices for symmetric higher-spin gauge fields in (A)dSdNucl. Phys. B20128623412012NuPhB.862..341V10.1016/j.nuclphysb.2012.04.0121246.81155[arXiv:1108.5921] [INSPIRE]
– reference: CMS collaboration, Search for high-mass resonances in dilepton final states in proton-proton collisions ats\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 13 TeV, JHEP06 (2018) 120 [arXiv:1803.06292] [INSPIRE].
– reference: WuY-LHyperunified field theory and gravitational gauge-geometry dualityEur. Phys. J. C201878282018EPJC...78...28W10.1140/epjc/s10052-017-5504-3[arXiv:1712.04537] [INSPIRE]
– reference: BoulangerNLeclercqSSundellPOn the uniqueness of minimal coupling in higher-spin gauge theoryJHEP2008080562008JHEP...08..056B243453010.1088/1126-6708/2008/08/056[arXiv:0805.2764] [INSPIRE]
– reference: RiversRJLagrangian theory for neutral massive spin-2 fieldsNuovo Cim.1964343861964NCim...34..386R19399810.1007/BF02734585
– reference: Muon g-2 collaboration, Measurement of the positive muon anomalous magnetic moment to 0.46 ppm, Phys. Rev. Lett.126 (2021) 141801 [arXiv:2104.03281] [INSPIRE].
– reference: CMS collaboration, A multi-dimensional search for new heavy resonances decaying to boosted WW, WZ, or ZZ boson pairs in the dijet final state at 13 TeV, Eur. Phys. J. C80 (2020) 237 [arXiv:1906.05977] [INSPIRE].
– reference: ILC collaboration, The International Linear Collider technical design report — volume 2: physics, arXiv:1306.6352 [INSPIRE].
– reference: WuY-LThe foundation of the hyperunified field theory I — fundamental building block and symmetryInt. J. Mod. Phys. A20213621430012021IJMPA..3643001W433806410.1142/S0217751X21430016[arXiv:2104.05404] [INSPIRE]
– reference: B.W. Lee, C. Quigg and H.B. Thacker, Weak interactions at very high-energies: the role of the Higgs boson mass, Phys. Rev. D16 (1977) 1519 [INSPIRE].
– reference: WuY-LThe foundation of the hyperunified field theory II — fundamental interaction and evolving universeInt. J. Mod. Phys. A20213621430022021IJMPA..3643002W433806510.1142/S0217751X21430028[arXiv:2104.11078] [INSPIRE]
– reference: T. Blum et al., Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment from lattice QCD, Phys. Rev. Lett.124 (2020) 132002 [arXiv:1911.08123] [INSPIRE].
– reference: S.L. Glashow and S. Weinberg, Natural conservation laws for neutral currents, Phys. Rev. D15 (1977) 1958 [INSPIRE].
– reference: CMS collaboration, Search for resonanttt¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ t\overline{t} $$\end{document}production in proton-proton collisions ats\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 13 TeV, JHEP04 (2019) 031 [arXiv:1810.05905] [INSPIRE].
– reference: Y.-L. Wu, Quantum field theory of gravity with spin and scaling gauge invariance and spacetime dynamics with quantum inflation, Phys. Rev. D93 (2016) 024012 [arXiv:1506.01807] [INSPIRE].
– reference: ColangeloGHagelsteinFHoferichterMLaubLStofferPLongitudinal short-distance constraints for the hadronic light-by-light contribution to (g − 2)μwith large-NcRegge modelsJHEP2020031012020JHEP...03..101C10.1007/JHEP03(2020)101[arXiv:1910.13432] [INSPIRE]
– reference: CMS collaboration, Search for narrow and broad dijet resonances in proton-proton collisions ats\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 13 TeV and constraints on dark matter mediators and other new particles, JHEP08 (2018) 130 [arXiv:1806.00843] [INSPIRE].
– reference: M.B. Green, J.H. Schwarz and E. Witten, Superstring theory. Volume 1: introduction, Cambridge University Press, Cambridge, U.K. (1988) [ISBN:978-0-521-35752-4] [INSPIRE].
– reference: R. Sekhar Chivukula, D. Foren, K.A. Mohan, D. Sengupta and E.H. Simmons, Scattering amplitudes of massive spin-2 Kaluza-Klein states grow only as O(s), Phys. Rev. D101 (2020) 055013 [arXiv:1906.11098] [INSPIRE].
– reference: C. Gnendiger, D. Stöckinger and H. Stöckinger-Kim, The electroweak contributions to (g − 2)μafter the Higgs boson mass measurement, Phys. Rev. D88 (2013) 053005 [arXiv:1306.5546] [INSPIRE].
– reference: T. Appelquist and M.S. Chanowitz, Unitarity bound on the scale of fermion mass generation, Phys. Rev. Lett.59 (1987) 2405 [Erratum ibid.60 (1988) 1589] [INSPIRE].
– reference: AthronPBalázsCJacobDHJKotlarskiWStöckingerDStöckinger-KimHNew physics explanations of aμin light of the FNAL muon g − 2 measurementJHEP2021090802021JHEP...09..080A10.1007/JHEP09(2021)080[arXiv:2104.03691] [INSPIRE]
– reference: Particle Data Group collaboration, Review of particle physics, PTEP2022 (2022) 083C01 [INSPIRE].
– reference: ColangeloGHoferichterMStofferPTwo-pion contribution to hadronic vacuum polarizationJHEP2019020062019JHEP...02..006C10.1007/JHEP02(2019)006[arXiv:1810.00007] [INSPIRE]
– reference: ColangeloGHoferichterMProcuraMStofferPDispersion relation for hadronic light-by-light scattering: two-pion contributionsJHEP2017041612017JHEP...04..161C10.1007/JHEP04(2017)1611388.81508[arXiv:1702.07347] [INSPIRE]
– reference: A.G. Akeroyd, A. Arhrib and E.-M. Naimi, Note on tree level unitarity in the general two Higgs doublet model, Phys. Lett. B490 (2000) 119 [hep-ph/0006035] [INSPIRE].
– reference: M. Aicheler et al. eds., A multi-TeV linear collider based on CLIC technology: CLIC conceptual design report, CERN-2012-007, CERN, Geneva, Switzerland (2012) [INSPIRE].
– reference: S. Kanemura, T. Kubota and E. Takasugi, Lee-Quigg-Thacker bounds for Higgs boson masses in a two doublet model, Phys. Lett. B313 (1993) 155 [hep-ph/9303263] [INSPIRE].
– reference: E. Sezgin and P. van Nieuwenhuizen, New ghost free gravity Lagrangians with propagating torsion, Phys. Rev. D21 (1980) 3269 [INSPIRE].
– reference: HoferichterMHoidB-LKubisBLeupoldSSchneiderSPDispersion relation for hadronic light-by-light scattering: pion poleJHEP2018101412018JHEP...10..141H10.1007/JHEP10(2018)141[arXiv:1808.04823] [INSPIRE]
– reference: M. Gell-Mann, M.L. Goldberger, N.M. Kroll and F.E. Low, Amelioration of divergence difficulties in the theory of weak interactions, Phys. Rev.179 (1969) 1518 [INSPIRE].
– reference: T. Aoyama, T. Kinoshita and M. Nio, Theory of the anomalous magnetic moment of the electron, Atoms7 (2019) 28 [INSPIRE].
– reference: AoyamaTThe anomalous magnetic moment of the muon in the Standard ModelPhys. Rept.202088712020PhR...887....1A10.1016/j.physrep.2020.07.006[arXiv:2006.04822] [INSPIRE]
– reference: T. Aoyama, M. Hayakawa, T. Kinoshita and M. Nio, Complete tenth-order QED contribution to the muon g − 2, Phys. Rev. Lett.109 (2012) 111808 [arXiv:1205.5370] [INSPIRE].
– reference: SezginEvan NieuwenhuizenPRenormalizability properties of antisymmetric tensor fields coupled to gravityPhys. Rev. D1980223011980PhRvD..22..301S57895210.1103/PhysRevD.22.301[INSPIRE]
– reference: Van NieuwenhuizenPOn ghost-free tensor lagrangians and linearized gravitationNucl. Phys. B1973604781973NuPhB..60..478V41883610.1016/0550-3213(73)90194-6[INSPIRE]
– reference: K. Melnikov and A. Vainshtein, Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment revisited, Phys. Rev. D70 (2004) 113006 [hep-ph/0312226] [INSPIRE].
– reference: MetsaevRRCubic interaction vertices of massive and massless higher spin fieldsNucl. Phys. B20067591472006NuPhB.759..147M228238710.1016/j.nuclphysb.2006.10.0021116.81042[hep-th/0512342] [INSPIRE]
– reference: CMS collaboration, Search for physics beyond the Standard Model in high-mass diphoton events from proton-proton collisions ats\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 13 TeV, Phys. Rev. D98 (2018) 092001 [arXiv:1809.00327] [INSPIRE].
– reference: FradkinESVasilievMACubic interaction in extended theories of massless higher spin fieldsNucl. Phys. B19872911411987NuPhB.291..141F89597810.1016/0550-3213(87)90469-X[INSPIRE]
– reference: ATLAS collaboration, Search for heavy particles decaying into top-quark pairs using lepton-plus-jets events in proton-proton collisions ats\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 13 TeV with the ATLAS detector, Eur. Phys. J. C78 (2018) 565 [arXiv:1804.10823] [INSPIRE].
– reference: HoferichterMHoidB-LKubisBThree-pion contribution to hadronic vacuum polarizationJHEP2019081372019JHEP...08..137H10.1007/JHEP08(2019)137[arXiv:1907.01556] [INSPIRE]
– reference: BekaertXBoulangerNSundellPHow higher-spin gravity surpasses the spin two barrier: no-go theorems versus yes-go examplesRev. Mod. Phys.2012849872012RvMP...84..987B10.1103/RevModPhys.84.987[arXiv:1007.0435] [INSPIRE]
– reference: Y.-L. Wu, Gravidynamics, spinodynamics and electrodynamics within the framework of gravitational quantum field theory, arXiv:2208.03290 [INSPIRE].
– reference: G. ’t Hooft, Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking, NATO Sci. Ser. B59 (1980) 135 [INSPIRE].
– reference: R.S. Chivukula, D. Foren, K.A. Mohan, D. Sengupta and E.H. Simmons, Spin-2 Kaluza-Klein mode scattering in models with a massive radion, Phys. Rev. D103 (2021) 095024 [arXiv:2104.08169] [INSPIRE].
– reference: WuY-LUnified field theory of basic forces and elementary particles with gravitational origin of gauge symmetry in hyper-spacetimeSci. Bull.201762110910.1016/j.scib.2017.08.005[arXiv:1705.06365] [INSPIRE]
– reference: WuY-LZhangRGravity and spin forces in gravitational quantum field theoryCommun. Theor. Phys.2018701612018CoTPh..70..161W395290810.1088/0253-6102/70/2/1611451.83023[arXiv:1808.09797] [INSPIRE]
– reference: R.S. Chivukula, D. Foren, K.A. Mohan, D. Sengupta and E.H. Simmons, Massive spin-2 scattering amplitudes in extra-dimensional theories, Phys. Rev. D101 (2020) 075013 [arXiv:2002.12458] [INSPIRE].
– reference: M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, A new evaluation of the hadronic vacuum polarisation contributions to the muon anomalous magnetic moment and to α(mZ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {m}_Z^2 $$\end{document}), Eur. Phys. J. C80 (2020) 241 [Erratum ibid.80 (2020) 410] [arXiv:1908.00921] [INSPIRE].
– reference: HaagRLopuszanskiJTSohniusMAll possible generators of supersymmetries of the S matrixNucl. Phys. B1975882571975NuPhB..88..257H41139610.1016/0550-3213(75)90279-5[INSPIRE]
– reference: FCC collaboration, FCC-ee: the lepton collider. Future Circular Collider conceptual design report volume 2, Eur. Phys. J. ST228 (2019) 261 [INSPIRE].
– reference: M.B. Green, J.H. Schwarz and E. Witten, Superstring theory. Volume 2: loop amplitudes, anomalies and phenomenology, Cambridge University Press, Cambridge, U.K. (1988) [ISBN:978-0-521-35753-1] [INSPIRE].
– reference: D. Das and I. Saha, Search for a stable alignment limit in two-Higgs-doublet models, Phys. Rev. D91 (2015) 095024 [arXiv:1503.02135] [INSPIRE].
– reference: D. Huang, C.-Q. Geng and J. Wu, Unitarity bounds on the massive spin-2 particle explanation of muon g − 2 anomaly, arXiv:2208.01097 [INSPIRE].
– reference: CEPC Study Group collaboration, CEPC conceptual design report: volume 1 — accelerator, arXiv:1809.00285 [INSPIRE].
– reference: CMS collaboration, Searches for new heavy resonances in final states with leptons and photons at CMS, PoSICHEP2018 (2019) 287 [INSPIRE].
– reference: E.S. Fradkin and M.A. Vasiliev, On the gravitational interaction of massless higher spin fields, Phys. Lett. B189 (1987) 89 [INSPIRE].
– reference: A. Gérardin, H.B. Meyer and A. Nyffeler, Lattice calculation of the pion transition form factor with Nf = 2 + 1 Wilson quarks, Phys. Rev. D100 (2019) 034520 [arXiv:1903.09471] [INSPIRE].
– reference: KurzALiuTMarquardPSteinhauserMHadronic contribution to the muon anomalous magnetic moment to next-to-next-to-leading orderPhys. Lett. B20147341442014PhLB..734..144K10.1016/j.physletb.2014.05.043[arXiv:1403.6400] [INSPIRE]
– reference: J. Bijnens, N. Hermansson-Truedsson and A. Rodríguez-Sánchez, Short-distance constraints for the HLbL contribution to the muon anomalous magnetic moment, Phys. Lett. B798 (2019) 134994 [arXiv:1908.03331] [INSPIRE].
– reference: BoulangerNLeclercqSConsistent couplings between spin-2 and spin-3 massless fieldsJHEP2006110342006JHEP...11..034B227042010.1088/1126-6708/2006/11/034[hep-th/0609221] [INSPIRE]
– reference: P. Benincasa and F. Cachazo, Consistency conditions on the S-matrix of massless particles, arXiv:0705.4305 [INSPIRE].
– reference: A. Czarnecki, W.J. Marciano and A. Vainshtein, Refinements in electroweak contributions to the muon anomalous magnetic moment, Phys. Rev. D67 (2003) 073006 [Erratum ibid.73 (2006) 119901] [hep-ph/0212229] [INSPIRE].
– reference: P. Masjuan and P. Sanchez-Puertas, Pseudoscalar-pole contribution to the (gμ − 2): a rational approach, Phys. Rev. D95 (2017) 054026 [arXiv:1701.05829] [INSPIRE].
– reference: A. Falkowski and J.F. Kamenik, Diphoton portal to warped gravity, Phys. Rev. D94 (2016) 015008 [arXiv:1603.06980] [INSPIRE].
– reference: A. Keshavarzi, D. Nomura and T. Teubner, g − 2 of charged leptons, α(MZ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {M}_Z^2 $$\end{document}), and the hyperfine splitting of muonium, Phys. Rev. D101 (2020) 014029 [arXiv:1911.00367] [INSPIRE].
– reference: M.E. Peskin and D.V. Schroeder, An introduction to quantum field theory, Addison-Wesley (1995) [ISBN:978-0-201-50397-5] [INSPIRE].
– reference: S. Weinberg, Photons and gravitons in S-matrix theory: derivation of charge conservation and equality of gravitational and inertial mass, Phys. Rev.135 (1964) B1049 [INSPIRE].
– reference: L. Linssen, A. Miyamoto, M. Stanitzki and H. Weerts eds., Physics and detectors at CLIC: CLIC conceptual design report, CERN-2012-003, CERN, Geneva, Switzerland (2012) [arXiv:1202.5940] [INSPIRE].
– reference: ATLAS collaboration, Search for high-mass dilepton resonances using 139 fb−1of pp collision data collected ats\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 13 TeV with the ATLAS detector, Phys. Lett. B796 (2019) 68 [arXiv:1903.06248] [INSPIRE].
– reference: ATLAS collaboration, Search for diboson resonances in hadronic final states in 139 fb−1of pp collisions ats\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 13 TeV with the ATLAS detector, JHEP09 (2019) 091 [Erratum ibid.06 (2020) 042] [arXiv:1906.08589] [INSPIRE].
– ident: 20031_CR65
  doi: 10.1016/0370-2693(93)91205-2
– ident: 20031_CR75
  doi: 10.1103/PhysRevD.103.095024
– ident: 20031_CR12
– volume: 84
  start-page: 987
  year: 2012
  ident: 20031_CR41
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.84.987
– volume: 22
  start-page: 301
  year: 1980
  ident: 20031_CR11
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.22.301
– volume: 10
  start-page: 141
  year: 2018
  ident: 20031_CR29
  publication-title: JHEP
  doi: 10.1007/JHEP10(2018)141
– volume: 38
  start-page: 883
  year: 1977
  ident: 20031_CR60
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.38.883
– ident: 20031_CR70
  doi: 10.1103/PhysRevLett.59.2405
– ident: 20031_CR93
– volume: 36
  start-page: 2143002
  year: 2021
  ident: 20031_CR9
  publication-title: Int. J. Mod. Phys. A
  doi: 10.1142/S0217751X21430028
– volume: 03
  start-page: 101
  year: 2020
  ident: 20031_CR32
  publication-title: JHEP
  doi: 10.1007/JHEP03(2020)101
– volume: 11
  start-page: 034
  year: 2006
  ident: 20031_CR50
  publication-title: JHEP
  doi: 10.1088/1126-6708/2006/11/034
– ident: 20031_CR63
  doi: 10.1007/BF01429824
– volume: 70
  start-page: 161
  year: 2018
  ident: 20031_CR7
  publication-title: Commun. Theor. Phys.
  doi: 10.1088/0253-6102/70/2/161
– volume: 291
  start-page: 141
  year: 1987
  ident: 20031_CR52
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(87)90469-X
– ident: 20031_CR3
– ident: 20031_CR26
  doi: 10.1103/PhysRevD.70.113006
– ident: 20031_CR27
  doi: 10.1103/PhysRevD.95.054026
– volume: 36
  start-page: 2143001
  year: 2021
  ident: 20031_CR8
  publication-title: Int. J. Mod. Phys. A
  doi: 10.1142/S0217751X21430016
– ident: 20031_CR87
– volume: 09
  start-page: 080
  year: 2021
  ident: 20031_CR36
  publication-title: JHEP
  doi: 10.1007/JHEP09(2021)080
– ident: 20031_CR59
  doi: 10.1103/PhysRevLett.27.1688
– ident: 20031_CR66
  doi: 10.1016/S0370-2693(00)00962-X
– ident: 20031_CR83
– ident: 20031_CR13
– ident: 20031_CR73
  doi: 10.1103/PhysRevD.101.075013
– volume: 734
  start-page: 144
  year: 2014
  ident: 20031_CR25
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2014.05.043
– ident: 20031_CR74
  doi: 10.1103/PhysRevD.101.075013
– ident: 20031_CR57
  doi: 10.1103/PhysRevD.77.093013
– ident: 20031_CR92
– volume: 34
  start-page: 386
  year: 1964
  ident: 20031_CR39
  publication-title: Nuovo Cim.
  doi: 10.1007/BF02734585
– volume: 735
  start-page: 90
  year: 2014
  ident: 20031_CR34
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2014.06.012
– ident: 20031_CR55
  doi: 10.1016/0550-3213(72)90279-9
– ident: 20031_CR67
  doi: 10.1103/PhysRevD.91.095024
– ident: 20031_CR19
  doi: 10.1140/epjc/s10052-017-5161-6
– ident: 20031_CR31
  doi: 10.1016/j.physletb.2019.134994
– volume: 02
  start-page: 029
  year: 2022
  ident: 20031_CR78
  publication-title: JHEP
  doi: 10.1007/JHEP02(2022)029
– ident: 20031_CR86
– ident: 20031_CR30
  doi: 10.1103/PhysRevD.100.034520
– ident: 20031_CR48
– ident: 20031_CR82
– volume: 862
  start-page: 341
  year: 2012
  ident: 20031_CR54
  publication-title: Nucl. Phys. B
  doi: 10.1016/j.nuclphysb.2012.04.012
– ident: 20031_CR38
  doi: 10.1007/978-1-4684-7571-5_9
– ident: 20031_CR89
– ident: 20031_CR20
  doi: 10.1103/PhysRevD.97.114025
– ident: 20031_CR14
– volume: 08
  start-page: 137
  year: 2019
  ident: 20031_CR22
  publication-title: JHEP
  doi: 10.1007/JHEP08(2019)137
– ident: 20031_CR33
  doi: 10.1103/PhysRevLett.124.132002
– volume: 08
  start-page: 056
  year: 2008
  ident: 20031_CR51
  publication-title: JHEP
  doi: 10.1088/1126-6708/2008/08/056
– ident: 20031_CR43
  doi: 10.1103/PhysRev.159.1251
– volume: 62
  start-page: 1109
  year: 2017
  ident: 20031_CR5
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2017.08.005
– ident: 20031_CR95
– volume: 15
  start-page: 996
  year: 1977
  ident: 20031_CR45
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.15.996
– ident: 20031_CR47
  doi: 10.1103/PhysRevD.78.065016
– ident: 20031_CR56
– ident: 20031_CR79
– ident: 20031_CR72
  doi: 10.1103/PhysRevD.94.015008
– volume: 60
  start-page: 478
  year: 1973
  ident: 20031_CR40
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(73)90194-6
– ident: 20031_CR76
– ident: 20031_CR91
– ident: 20031_CR37
  doi: 10.1103/PhysRevD.21.3269
– ident: 20031_CR4
  doi: 10.1103/PhysRevD.93.024012
– volume: 303
  start-page: 557
  year: 1988
  ident: 20031_CR71
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(88)90394-X
– ident: 20031_CR10
– ident: 20031_CR23
  doi: 10.1140/epjc/s10052-020-7857-2
– ident: 20031_CR1
– ident: 20031_CR24
  doi: 10.1103/PhysRevD.101.014029
– volume: 265
  start-page: 371
  year: 1991
  ident: 20031_CR64
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(91)90068-2
– ident: 20031_CR81
– ident: 20031_CR85
– ident: 20031_CR46
  doi: 10.1016/0370-2693(80)90212-9
– ident: 20031_CR90
– ident: 20031_CR16
  doi: 10.3390/atoms7010028
– ident: 20031_CR88
– volume: 887
  start-page: 1
  year: 2020
  ident: 20031_CR35
  publication-title: Phys. Rept.
  doi: 10.1016/j.physrep.2020.07.006
– ident: 20031_CR42
  doi: 10.1103/PhysRev.135.B1049
– ident: 20031_CR18
  doi: 10.1103/PhysRevD.88.053005
– volume: 88
  start-page: 257
  year: 1975
  ident: 20031_CR44
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(75)90279-5
– volume: 759
  start-page: 147
  year: 2006
  ident: 20031_CR49
  publication-title: Nucl. Phys. B
  doi: 10.1016/j.nuclphysb.2006.10.002
– ident: 20031_CR15
  doi: 10.1103/PhysRevLett.109.111808
– ident: 20031_CR94
– volume: 78
  start-page: 28
  year: 2018
  ident: 20031_CR6
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-017-5504-3
– ident: 20031_CR77
– ident: 20031_CR17
  doi: 10.1103/PhysRevD.67.073006
– ident: 20031_CR2
– volume: 78
  start-page: 649
  year: 2018
  ident: 20031_CR69
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-018-6127-z
– ident: 20031_CR53
  doi: 10.1016/0370-2693(87)91275-5
– volume: 04
  start-page: 161
  year: 2017
  ident: 20031_CR28
  publication-title: JHEP
  doi: 10.1007/JHEP04(2017)161
– ident: 20031_CR58
  doi: 10.1103/PhysRev.179.1518
– ident: 20031_CR61
  doi: 10.1103/PhysRevD.16.1519
– ident: 20031_CR62
  doi: 10.1103/PhysRevD.15.1958
– ident: 20031_CR80
– volume: 02
  start-page: 006
  year: 2019
  ident: 20031_CR21
  publication-title: JHEP
  doi: 10.1007/JHEP02(2019)006
– volume: 751
  start-page: 289
  year: 2015
  ident: 20031_CR68
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2015.10.047
– ident: 20031_CR84
SSID ssj0015190
Score 2.4089715
Snippet A bstract We examine contributions to the muon dipole moment g − 2 from a 3-form field Ω, which naturally arises from many fundamental theories, such as the...
We examine contributions to the muon dipole moment g − 2 from a 3-form field Ω, which naturally arises from many fundamental theories, such as the string...
We examine contributions to the muon dipole moment g − 2 from a 3-form field Ω, which naturally arises from many fundamental theories, such as the string...
Abstract We examine contributions to the muon dipole moment g − 2 from a 3-form field Ω, which naturally arises from many fundamental theories, such as the...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 117
SubjectTerms Classical and Quantum Gravitation
Conventions
Dipole moments
Elementary Particles
Feynman diagrams
Field theory
Helicity
High energy physics
Muons
Other Weak Scale BSM Models
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Regular Article - Theoretical Physics
Relativity Theory
Spacetime
Specific BSM Phenomenology
String Theory
Symmetry
Theoretical physics
Theories of Flavour
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals (ODIN)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA4yELyIP3E6JQcP26EsTdo0OapMxkDx4GC30vyoJzfZuv_Bs3-if4nvpa1TQbx4TUN5fK_hfa9Jvo-QS6hQwivjI82MjZLSe1xSPkqVETZxQhYJXk6-u5fjaTKZpbMvVl94JqyWB66BG3qhUxc79MgtgFx7xVyikTU7K0TGg9g21Ly2mWr2D4CXsFbIh2XDyXj0wOI-WoUP4uBNtqlBQar_G7_8sSUaKs3tHtltKCK9qkPbJ1t-fkC2w1FNuzokGgWlWpuqFa0WFDgcfV4v5vSJvr--UU7xzggtYHwJoCArpeGg2hGZ3o4eb8ZRY4AQWZHFVaSFlKkGgpNyEzMnmS3SzEklrAKqopNSudgroYwpHDdWJYI5EfvCCCWl514ck858MfcnhGrgKRnzpTSuxB5Faw_TywIakizNOOuSfgtJ_lLrXOStonGNXo7ooTZ4l1wjZJ_TUKA6DEDa8iZt-V9p65JeC3jerJpVzlFZBviggnAGbRI2j3-J5_Q_4jkjO_g-_LnCWY90quXanwPdqMxF-LI-ANu8zCU
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagCIkF8RSFgjwwtEOEH_FrhKpVVQnEQKVuURw7TKSoTf8DMz-RX4IvTYpaxMAWOWfFurN13-V83yF0GzwU99r6yBCbRXHuPRwpHwlteRY7LtMYipMfn-RoEo-nYlqTJEEtzFb-_m48GjwT2oUm3z1K1S7aE5Qr6NHQl_11uiDAENLw9vyetOFyKmb-DTi5lQGtHMvwCB3WiBDfr0x4jHZ8cYL2q5uZ2eIUGeCParpSLXA5wwGy4bflrMCv-OvjEzMMJSI4DePzoAMAobi6l3aGJsPBS38U1f0OoowrWkaGSylMwDOCWUqcJFkqlJOaZzogExPn2lGvubY2dcxmOubEcepTy7WUnnl-jlrFrPAXCJsASxTxubQuh5DEGB_E8zTEH0ooRtqo26gkeV_RWiQNgfFKewloD6jA2-gBVLYWAz7qaiCYKam3d-K5EY466GSchu95TVxsILZxGeeKyTbqNApP6kOySBgQyQT4p8Nyeo0Rfl7_sZ7Lf8heoQN4hF8mjHRQq5wv_XUAEaW9qTbQN_8JvG8
  priority: 102
  providerName: Springer Nature
Title Contributions to the muon g − 2 from a three-form field
URI https://link.springer.com/article/10.1007/JHEP01(2023)117
https://www.proquest.com/docview/2767522680
https://doaj.org/article/e395d1d6547a487e80d490642dc33726
Volume 2023
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwFD64ieCLeMV5GXnwQR-KadKmyZO4sTkExxAHvpXm0j256jb_g8_-RH-JOV27oaAvgaahDSe375wk3wdw4Vco7qR2gaLaBFHuHA4pF8RScxNZLrIILyc_DMVgHN0_x89VwG1eHaus58RyoraFwRj5NUPWEY8VJL15fQtQNQp3VysJjQZs-ilYyiZsdnrD0eNqH8HjE1oT-tDk-n7QG9HwEiXDr8JSo2y9FpWU_T9w5q-t0XLF6e_CTgUVye2ybfdgw033Yas8smnmB6CQWKqWq5qTRUE8liMv78WUTMjXxydhBO-OkMznz7xxEJ2S8sDaIYz7vafuIKiEEALDk3ARKC5ErDzQiZkOqRXUZHFiheRGesiiolza0Ekutc4s00ZGnFoeukxzKYRjjh9Bc1pM3TEQ5fFKQl0utM3RV1HK-eJ55h2TJE4YbcFlbZL0dcl3kdbMxkvrpWg95AhvQQdNtiqGRNVlRjGbpFW_Tx1XsQ0tShxn_n9OUhspdHqs4TxhogVntcHTavTM03Vbt-CqboT16z_qc_L_p05hG0ti-ITRM2guZu_u3AOKhW5DQ_bv2lXf8U9dFmEquu3SRffpmN1-A0Eryso
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VIkQvFb9iaQEfQGoPUR07cewDQvx02f6KQyv1FmJ70hObdncrxBtw5kF4KJ6Emey6K5Dg1qvjONF47PnGnpkP4CVZKI3WY-akD1nRIvKSwqy0XociatMUnJx8dGxGp8X-WXm2Aj9TLgyHVaY9sd-oYxf4jHxHcdURwgpWvrm4zJg1im9XE4XGXC0O8NtXctmmr_c-0Py-Umq4e_J-lC1YBbKgq3yWOW1M6Qg1lMrnMhoZmrKKxupgyf67orUxR6ut901UPthCy6hzbLy2xqBCTePegtuFJkvOmenDj9e3FoSGZCofJKud_dHuJ5lvMUH5dt4zoi0tX08Q8Aeq_esitrdvw3uwvgCm4u1ck-7DCo4fwJ0-QDRMH4LjMlaJHGsqZp0g5Ci-XHVjcS5-ff8hlOBMFdFQ-4SmgrGw6MPjHsHpjQjoMayOuzE-AeEIHVUSW-Njy56Rc0jd24bcoKqslBzAVhJJfTGvrlGnOspz6dUsPa5IPoB3LLLrblwWu2_oJuf1YpXVqF0Z88iEyg19D62MhWMXKwatK2UGsJkEXi_W6rReatYAttMkLB__43-e_n-oF3B3dHJ0WB_uHR9swBq_xQc3Sm7C6mxyhc8Iysz8815_BHy-aYX9DSiPAIw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VrUBcEL_qQgEfQGoP0Tp24tgHVLV0V9sWVitEpd5C_JOe2JTdrRBvwJnH4XH6JJ3Jxl2BBLdeHceJxmP7G3v8fQBvcIWSQduQGG5dktUh0JAKSa6tdJmXqsrocvLHiRqfZsdn-dkG_I53YSitMs6J7UTtG0d75ANBrCOIFTQf1F1axPRwtHfxLSEFKTppjXIaKxc5CT--Y_i2eHd0iH39VojR8PP7cdIpDCROFukyMVKp3CCCyIVNuVfcVXnhlZZOIxYwWa19GrTU1lZeWKczyb1MQ2WlViqIILHdO7BZUFTUg82D4WT66eYMA7ERj2RCvBgcj4dTnu6QXPlu2uqjrdfBVi7gD4z717Fsu9qNHsKDDqay_ZVfPYKNMHsMd9t0Ubd4AoZIraJU1oItG4Y4kn29bGbsnF39_MUEo3srrMLyOXYMIWPWJss9hdNbMdEz6M2aWdgCZhArFTzUyvqa4iRjAlavKwyKirwQvA870STlxYpro4ysyivrlWQ94ifvwwGZ7KYakWS3Bc38vOzGXBmkyX3qSV65wu8FzX1mKODyTspCqD5sR4OX3chdlGs_68Nu7IT143_8z_P_N_Ua7qGzlh-OJicv4D69RLs4gm9Dbzm_DC8R1yztq86BGHy5bZ-9BpT9Bh4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Contributions+to+the+muon+g+%E2%88%92+2+from+a+three-form+field&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Huang%2C+Da&rft.au=Tang%2C+Yong&rft.au=Wu%2C+Yue-Liang&rft.date=2023-01-20&rft.pub=Springer+Nature+B.V&rft.eissn=1029-8479&rft.volume=2023&rft.issue=1&rft.spage=117&rft_id=info:doi/10.1007%2FJHEP01%282023%29117&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon