Contributions to the muon g − 2 from a three-form field
A bstract We examine contributions to the muon dipole moment g − 2 from a 3-form field Ω, which naturally arises from many fundamental theories, such as the string theory and the hyperunified field theory. In particular, by calculating the one-loop Feynman diagram, we have obtained the leading-order...
Saved in:
Published in | The journal of high energy physics Vol. 2023; no. 1; pp. 117 - 19 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
20.01.2023
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A
bstract
We examine contributions to the muon dipole moment
g
− 2 from a 3-form field Ω, which naturally arises from many fundamental theories, such as the string theory and the hyperunified field theory. In particular, by calculating the one-loop Feynman diagram, we have obtained the leading-order Ω-induced contribution to the muon
g
− 2, which is found to be finite. Then we investigate the theoretical constraints from perturbativity and unitarity. Especially, the unitarity bounds are yielded by computing the tree-level
μ
+
μ
−
scattering amplitudes of various initial and final helicity configurations. As a result, despite the strong unitarity bounds imposed on this model of Ω, we have still found a substantial parameter space which can accommodates the muon
g −
2 data. |
---|---|
AbstractList | Abstract We examine contributions to the muon dipole moment g − 2 from a 3-form field Ω, which naturally arises from many fundamental theories, such as the string theory and the hyperunified field theory. In particular, by calculating the one-loop Feynman diagram, we have obtained the leading-order Ω-induced contribution to the muon g − 2, which is found to be finite. Then we investigate the theoretical constraints from perturbativity and unitarity. Especially, the unitarity bounds are yielded by computing the tree-level μ + μ − scattering amplitudes of various initial and final helicity configurations. As a result, despite the strong unitarity bounds imposed on this model of Ω, we have still found a substantial parameter space which can accommodates the muon g − 2 data. We examine contributions to the muon dipole moment g − 2 from a 3-form field Ω, which naturally arises from many fundamental theories, such as the string theory and the hyperunified field theory. In particular, by calculating the one-loop Feynman diagram, we have obtained the leading-order Ω-induced contribution to the muon g − 2, which is found to be finite. Then we investigate the theoretical constraints from perturbativity and unitarity. Especially, the unitarity bounds are yielded by computing the tree-level μ+μ− scattering amplitudes of various initial and final helicity configurations. As a result, despite the strong unitarity bounds imposed on this model of Ω, we have still found a substantial parameter space which can accommodates the muon g − 2 data. A bstract We examine contributions to the muon dipole moment g − 2 from a 3-form field Ω, which naturally arises from many fundamental theories, such as the string theory and the hyperunified field theory. In particular, by calculating the one-loop Feynman diagram, we have obtained the leading-order Ω-induced contribution to the muon g − 2, which is found to be finite. Then we investigate the theoretical constraints from perturbativity and unitarity. Especially, the unitarity bounds are yielded by computing the tree-level μ + μ − scattering amplitudes of various initial and final helicity configurations. As a result, despite the strong unitarity bounds imposed on this model of Ω, we have still found a substantial parameter space which can accommodates the muon g − 2 data. We examine contributions to the muon dipole moment g − 2 from a 3-form field Ω, which naturally arises from many fundamental theories, such as the string theory and the hyperunified field theory. In particular, by calculating the one-loop Feynman diagram, we have obtained the leading-order Ω-induced contribution to the muon g − 2, which is found to be finite. Then we investigate the theoretical constraints from perturbativity and unitarity. Especially, the unitarity bounds are yielded by computing the tree-level μ + μ − scattering amplitudes of various initial and final helicity configurations. As a result, despite the strong unitarity bounds imposed on this model of Ω, we have still found a substantial parameter space which can accommodates the muon g − 2 data. |
ArticleNumber | 117 |
Author | Huang, Da Tang, Yong Wu, Yue-Liang |
Author_xml | – sequence: 1 givenname: Da orcidid: 0000-0001-8357-754X surname: Huang fullname: Huang, Da email: dahuang@bao.ac.cn organization: National Astronomical Observatories, Chinese Academy of Sciences, School of Fundamental Physics and Mathematical Sciences, Hangzhou Institute for Advanced Study, UCAS, International Centre for Theoretical Physics Asia-Pacific – sequence: 2 givenname: Yong surname: Tang fullname: Tang, Yong organization: National Astronomical Observatories, Chinese Academy of Sciences, University of Chinese Academy of Sciences (UCAS) – sequence: 3 givenname: Yue-Liang surname: Wu fullname: Wu, Yue-Liang organization: School of Fundamental Physics and Mathematical Sciences, Hangzhou Institute for Advanced Study, UCAS, International Centre for Theoretical Physics Asia-Pacific, University of Chinese Academy of Sciences (UCAS), Institute of Theoretical Physics, Chinese Academy of Sciences |
BookMark | eNp1kL1OwzAUhS0EEm1hZrXEAkPotR3_jagqtKgSDDBbTuyUVE1cnGTgDZh5RJ6ElCBgYbpXR-d89-qM0WEdao_QGYErAiCnd4v5A5ALCpRdEiIP0IgA1YlKpT78sx-jcdNsAAgnGkZIz0LdxjLr2jLUDW4Dbp89rrpQ4zX-eHvHFBcxVNj2evQ-KUKscFH6rTtBR4XdNv70e07Q0838cbZIVve3y9n1KsmZJG2imRBcCwKcZgScgNxy6YRiuQLKdVooR7xiKsuso1muUgaOEW8zpoTw1LMJWg5cF-zG7GJZ2fhqgi3NlxDi2tjYlvnWG880d8QJnkqbKukVuFSDSKnLGZNU9KzzgbWL4aXzTWs2oYt1_76hUkhOqVDQu6aDK4-haaIvfq4SMPuuzdC12Xdt-q77BAyJpnfWax9_uf9FPgEpXH9W |
Cites_doi | 10.1016/0370-2693(93)91205-2 10.1103/PhysRevD.103.095024 10.1103/RevModPhys.84.987 10.1103/PhysRevD.22.301 10.1007/JHEP10(2018)141 10.1103/PhysRevLett.38.883 10.1103/PhysRevLett.59.2405 10.1142/S0217751X21430028 10.1007/JHEP03(2020)101 10.1088/1126-6708/2006/11/034 10.1007/BF01429824 10.1088/0253-6102/70/2/161 10.1016/0550-3213(87)90469-X 10.1103/PhysRevD.70.113006 10.1103/PhysRevD.95.054026 10.1142/S0217751X21430016 10.1007/JHEP09(2021)080 10.1103/PhysRevLett.27.1688 10.1016/S0370-2693(00)00962-X 10.1103/PhysRevD.101.075013 10.1016/j.physletb.2014.05.043 10.1103/PhysRevD.77.093013 10.1007/BF02734585 10.1016/j.physletb.2014.06.012 10.1016/0550-3213(72)90279-9 10.1103/PhysRevD.91.095024 10.1140/epjc/s10052-017-5161-6 10.1016/j.physletb.2019.134994 10.1007/JHEP02(2022)029 10.1103/PhysRevD.100.034520 10.1016/j.nuclphysb.2012.04.012 10.1007/978-1-4684-7571-5_9 10.1103/PhysRevD.97.114025 10.1007/JHEP08(2019)137 10.1103/PhysRevLett.124.132002 10.1088/1126-6708/2008/08/056 10.1103/PhysRev.159.1251 10.1016/j.scib.2017.08.005 10.1103/PhysRevD.15.996 10.1103/PhysRevD.78.065016 10.1103/PhysRevD.94.015008 10.1016/0550-3213(73)90194-6 10.1103/PhysRevD.21.3269 10.1103/PhysRevD.93.024012 10.1016/0550-3213(88)90394-X 10.1140/epjc/s10052-020-7857-2 10.1103/PhysRevD.101.014029 10.1016/0370-2693(91)90068-2 10.1016/0370-2693(80)90212-9 10.3390/atoms7010028 10.1016/j.physrep.2020.07.006 10.1103/PhysRev.135.B1049 10.1103/PhysRevD.88.053005 10.1016/0550-3213(75)90279-5 10.1016/j.nuclphysb.2006.10.002 10.1103/PhysRevLett.109.111808 10.1140/epjc/s10052-017-5504-3 10.1103/PhysRevD.67.073006 10.1140/epjc/s10052-018-6127-z 10.1016/0370-2693(87)91275-5 10.1007/JHEP04(2017)161 10.1103/PhysRev.179.1518 10.1103/PhysRevD.16.1519 10.1103/PhysRevD.15.1958 10.1007/JHEP02(2019)006 10.1016/j.physletb.2015.10.047 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
DOI | 10.1007/JHEP01(2023)117 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central SciTech Premium Collection AAdvanced Technologies & Aerospace Database (subscription) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database (subscription) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals (ODIN) |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals (ODIN) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1029-8479 |
EndPage | 19 |
ExternalDocumentID | oai_doaj_org_article_e395d1d6547a487e80d490642dc33726 10_1007_JHEP01_2023_117 |
GroupedDBID | -5F -5G -A0 -BR 0R~ 0VY 199 1N0 30V 4.4 408 40D 5GY 5VS 8FE 8FG 8TC 8UJ 95. AAFWJ AAKKN ABEEZ ACACY ACGFS ACHIP ACREN ACULB ADBBV ADINQ AEGXH AENEX AFGXO AFKRA AFPKN AFWTZ AHBYD AHYZX AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOAED ARAPS ASPBG ATQHT AVWKF AZFZN BCNDV BENPR BGLVJ C24 C6C CCPQU CS3 CSCUP DU5 EBS ER. FEDTE GQ6 GROUPED_DOAJ HCIFZ HF~ HLICF HMJXF HVGLF HZ~ IHE KOV LAP M~E N5L N9A NB0 O93 OK1 P62 P9T PIMPY PROAC R9I RO9 RSV S27 S3B SOJ SPH T13 TUS U2A VC2 VSI WK8 XPP Z45 ZMT AAYXX AMVHM CITATION PHGZM PHGZT ABUWG AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c371t-93665961052b10d60ca57d683c802594f8d1e838bbad2bc8430d31eab3866e2e3 |
IEDL.DBID | BENPR |
ISSN | 1029-8479 |
IngestDate | Wed Aug 27 01:23:54 EDT 2025 Fri Jul 25 09:36:49 EDT 2025 Tue Jul 01 01:00:42 EDT 2025 Fri Feb 21 02:43:20 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Theories of Flavour Other Weak Scale BSM Models Specific BSM Phenomenology |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c371t-93665961052b10d60ca57d683c802594f8d1e838bbad2bc8430d31eab3866e2e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8357-754X |
OpenAccessLink | https://www.proquest.com/docview/2767522680?pq-origsite=%requestingapplication% |
PQID | 2767522680 |
PQPubID | 2034718 |
PageCount | 19 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e395d1d6547a487e80d490642dc33726 proquest_journals_2767522680 crossref_primary_10_1007_JHEP01_2023_117 springer_journals_10_1007_JHEP01_2023_117 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-20 |
PublicationDateYYYYMMDD | 2023-01-20 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | The journal of high energy physics |
PublicationTitleAbbrev | J. High Energ. Phys |
PublicationYear | 2023 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: SpringerOpen |
References | SezginEvan NieuwenhuizenPRenormalizability properties of antisymmetric tensor fields coupled to gravityPhys. Rev. D1980223011980PhRvD..22..301S57895210.1103/PhysRevD.22.301[INSPIRE] Y.-L. Wu, Gravidynamics, spinodynamics and electrodynamics within the framework of gravitational quantum field theory, arXiv:2208.03290 [INSPIRE]. D. Das and I. Saha, Search for a stable alignment limit in two-Higgs-doublet models, Phys. Rev. D91 (2015) 095024 [arXiv:1503.02135] [INSPIRE]. GoodsellMDStaubFUnitarity constraints on general scalar couplings with SARAHEur. Phys. J. C2018786492018EPJC...78..649G10.1140/epjc/s10052-018-6127-z[arXiv:1805.07306] [INSPIRE] WuY-LUnified field theory of basic forces and elementary particles with gravitational origin of gauge symmetry in hyper-spacetimeSci. Bull.201762110910.1016/j.scib.2017.08.005[arXiv:1705.06365] [INSPIRE] C. Gnendiger, D. Stöckinger and H. Stöckinger-Kim, The electroweak contributions to (g − 2)μafter the Higgs boson mass measurement, Phys. Rev. D88 (2013) 053005 [arXiv:1306.5546] [INSPIRE]. CMS collaboration, Search for high-mass resonances in dilepton final states in proton-proton collisions ats\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 13 TeV, JHEP06 (2018) 120 [arXiv:1803.06292] [INSPIRE]. M. Gell-Mann, M.L. Goldberger, N.M. Kroll and F.E. Low, Amelioration of divergence difficulties in the theory of weak interactions, Phys. Rev.179 (1969) 1518 [INSPIRE]. CEPC Study Group collaboration, CEPC conceptual design report: volume 1 — accelerator, arXiv:1809.00285 [INSPIRE]. G. ’t Hooft, Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking, NATO Sci. Ser. B59 (1980) 135 [INSPIRE]. M. Nebot, J.F. Oliver, D. Palao and A. Santamaria, Prospects for the Zee-Babu model at the CERN LHC and low energy experiments, Phys. Rev. D77 (2008) 093013 [arXiv:0711.0483] [INSPIRE]. HoferichterMHoidB-LKubisBThree-pion contribution to hadronic vacuum polarizationJHEP2019081372019JHEP...08..137H10.1007/JHEP08(2019)137[arXiv:1907.01556] [INSPIRE] AthronPBalázsCJacobDHJKotlarskiWStöckingerDStöckinger-KimHNew physics explanations of aμin light of the FNAL muon g − 2 measurementJHEP2021090802021JHEP...09..080A10.1007/JHEP09(2021)080[arXiv:2104.03691] [INSPIRE] FCC collaboration, FCC-ee: the lepton collider. Future Circular Collider conceptual design report volume 2, Eur. Phys. J. ST228 (2019) 261 [INSPIRE]. Muon g-2 collaboration, Final report of the muon E821 anomalous magnetic moment measurement at BNL, Phys. Rev. D73 (2006) 072003 [hep-ex/0602035] [INSPIRE]. BekaertXBoulangerNSundellPHow higher-spin gravity surpasses the spin two barrier: no-go theorems versus yes-go examplesRev. Mod. Phys.2012849872012RvMP...84..987B10.1103/RevModPhys.84.987[arXiv:1007.0435] [INSPIRE] B.W. Lee, C. Quigg and H.B. Thacker, Weak interactions at very high-energies: the role of the Higgs boson mass, Phys. Rev. D16 (1977) 1519 [INSPIRE]. M.B. Green, J.H. Schwarz and E. Witten, Superstring theory. Volume 1: introduction, Cambridge University Press, Cambridge, U.K. (1988) [ISBN:978-0-521-35752-4] [INSPIRE]. A. Falkowski and J.F. Kamenik, Diphoton portal to warped gravity, Phys. Rev. D94 (2016) 015008 [arXiv:1603.06980] [INSPIRE]. MaalampiJSirkkaJViljaITree level unitarity and triviality bounds for two Higgs modelsPhys. Lett. B19912653711991PhLB..265..371M10.1016/0370-2693(91)90068-2[INSPIRE] M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, A new evaluation of the hadronic vacuum polarisation contributions to the muon anomalous magnetic moment and to α(mZ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {m}_Z^2 $$\end{document}), Eur. Phys. J. C80 (2020) 241 [Erratum ibid.80 (2020) 410] [arXiv:1908.00921] [INSPIRE]. ColangeloGHoferichterMProcuraMStofferPDispersion relation for hadronic light-by-light scattering: two-pion contributionsJHEP2017041612017JHEP...04..161C10.1007/JHEP04(2017)1611388.81508[arXiv:1702.07347] [INSPIRE] T. Blum et al., Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment from lattice QCD, Phys. Rev. Lett.124 (2020) 132002 [arXiv:1911.08123] [INSPIRE]. HaagRLopuszanskiJTSohniusMAll possible generators of supersymmetries of the S matrixNucl. Phys. B1975882571975NuPhB..88..257H41139610.1016/0550-3213(75)90279-5[INSPIRE] Particle Data Group collaboration, Review of particle physics, PTEP2022 (2022) 083C01 [INSPIRE]. WuY-LHyperunified field theory and gravitational gauge-geometry dualityEur. Phys. J. C201878282018EPJC...78...28W10.1140/epjc/s10052-017-5504-3[arXiv:1712.04537] [INSPIRE] WuY-LThe foundation of the hyperunified field theory II — fundamental interaction and evolving universeInt. J. Mod. Phys. A20213621430022021IJMPA..3643002W433806510.1142/S0217751X21430028[arXiv:2104.11078] [INSPIRE] RiversRJLagrangian theory for neutral massive spin-2 fieldsNuovo Cim.1964343861964NCim...34..386R19399810.1007/BF02734585 R. Sekhar Chivukula, D. Foren, K.A. Mohan, D. Sengupta and E.H. Simmons, Scattering amplitudes of massive spin-2 Kaluza-Klein states grow only as O(s), Phys. Rev. D101 (2020) 055013 [arXiv:1906.11098] [INSPIRE]. S.L. Glashow and S. Weinberg, Natural conservation laws for neutral currents, Phys. Rev. D15 (1977) 1958 [INSPIRE]. J. Polchinski, String theory. Volume 2: superstring theory and beyond, Cambridge University Press, Cambridge, U.K. (2007) [INSPIRE]. S. Weinberg and E. Witten, Limits on massless particles, Phys. Lett. B96 (1980) 59 [INSPIRE]. GrisaruMTPendletonHNvan NieuwenhuizenPSupergravity and the S matrixPhys. Rev. D1977159961977PhRvD..15..996G10.1103/PhysRevD.15.996[INSPIRE] ATLAS collaboration, Search for new resonances in high-mass diphoton final states using proton-proton collision data collected with the ATLAS detector, PoSICHEP2020 (2021) 109 [INSPIRE]. E. Sezgin and P. van Nieuwenhuizen, New ghost free gravity Lagrangians with propagating torsion, Phys. Rev. D21 (1980) 3269 [INSPIRE]. CMS collaboration, Searches for new heavy resonances in final states with leptons and photons at CMS, PoSICHEP2018 (2019) 287 [INSPIRE]. KurzALiuTMarquardPSteinhauserMHadronic contribution to the muon anomalous magnetic moment to next-to-next-to-leading orderPhys. Lett. B20147341442014PhLB..734..144K10.1016/j.physletb.2014.05.043[arXiv:1403.6400] [INSPIRE] ColangeloGHagelsteinFHoferichterMLaubLStofferPLongitudinal short-distance constraints for the hadronic light-by-light contribution to (g − 2)μwith large-NcRegge modelsJHEP2020031012020JHEP...03..101C10.1007/JHEP03(2020)101[arXiv:1910.13432] [INSPIRE] A. Keshavarzi, D. Nomura and T. Teubner, g − 2 of charged leptons, α(MZ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {M}_Z^2 $$\end{document}), and the hyperfine splitting of muonium, Phys. Rev. D101 (2020) 014029 [arXiv:1911.00367] [INSPIRE]. ChaichianMFischerJHigher dimensional space-time and unitarity bound on the scattering amplitudeNucl. Phys. B19883035571988NuPhB.303..557C94509310.1016/0550-3213(88)90394-X[INSPIRE] M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Reevaluation of the hadronic vacuum polarisation contributions to the Standard Model predictions of the muon g − 2 and α(mZ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {m}_Z^2 $$\end{document}) using newest hadronic cross-section data, Eur. Phys. J. C77 (2017) 827 [arXiv:1706.09436] [INSPIRE]. ColangeloGHoferichterMNyffelerAPasseraMStofferPRemarks on higher-order hadronic corrections to the muon g − 2Phys. Lett. B2014735902014PhLB..735...90C10.1016/j.physletb.2014.06.012[arXiv:1403.7512] [INSPIRE] L. Linssen, A. Miyamoto, M. Stanitzki and H. Weerts eds., Physics and detectors at CLIC: CLIC conceptual design report, CERN-2012-003, CERN, Geneva, Switzerland (2012) [arXiv:1202.5940] [INSPIRE]. S. Weinberg, Physical processes in a convergent theory of the weak and electromagnetic interactions, Phys. Rev. Lett.27 (1971) 1688 [INSPIRE]. BoulangerNLeclercqSConsistent couplings between spin-2 and spin-3 massless fieldsJHEP2006110342006JHEP...11..034B227042010.1088/1126-6708/2006/11/034[hep-th/0609221] [INSPIRE] ATLAS collaboration, Search for diboson resonances in hadronic final states in 139 fb−1of pp collisions ats\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 13 TeV with the ATLAS detector, JHEP09 (2019) 091 [Erratum ibid.06 (2020) 042] [arXiv:1906.08589] [INSPIRE]. ATLAS collaboration, Search for high-mass dilepton resonances using 139 fb−1of pp collision data collected ats\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 13 TeV with the ATLAS detector, Phys. Lett. B796 (2019) 68 [arXiv:1903.06248] [INSPIRE]. P. Masjuan and P. Sanchez-Puertas, Pseudoscalar-pole contribution to the (gμ − 2): a rational approach, Phys. Rev. D95 (2017) 054026 [arXiv:1701.05829] [INSPIRE]. HoferichterMHoidB-LKubisBLeupoldSSchneiderSPDispersion relation for hadronic light-by-light scattering: pion poleJHEP2018101412018JHEP...10..141H10.1007/JHEP10(2018)141[arXiv:1808.04823] [INSPIRE] H. Y-L Wu (20031_CR5) 2017; 62 20031_CR62 20031_CR63 20031_CR61 20031_CR66 20031_CR23 20031_CR67 20031_CR20 20031_CR65 G Colangelo (20031_CR32) 2020; 03 G Colangelo (20031_CR21) 2019; 02 G Colangelo (20031_CR34) 2014; 735 P Van Nieuwenhuizen (20031_CR40) 1973; 60 Y-L Wu (20031_CR6) 2018; 78 R Haag (20031_CR44) 1975; 88 20031_CR15 20031_CR59 E Sezgin (20031_CR11) 1980; 22 20031_CR16 20031_CR13 20031_CR57 Y-L Wu (20031_CR8) 2021; 36 20031_CR14 20031_CR58 20031_CR19 20031_CR17 20031_CR18 20031_CR95 20031_CR93 20031_CR94 20031_CR55 20031_CR12 ES Fradkin (20031_CR52) 1987; 291 20031_CR56 20031_CR53 20031_CR10 A Kurz (20031_CR25) 2014; 734 P Athron (20031_CR36) 2021; 09 MA Vasiliev (20031_CR54) 2012; 862 20031_CR91 20031_CR92 20031_CR90 Y-L Wu (20031_CR7) 2018; 70 20031_CR48 20031_CR46 20031_CR47 20031_CR84 20031_CR85 20031_CR82 20031_CR83 20031_CR88 20031_CR89 20031_CR42 J Maalampi (20031_CR64) 1991; 265 S Kanemura (20031_CR68) 2015; 751 20031_CR86 20031_CR43 20031_CR87 M Hoferichter (20031_CR22) 2019; 08 MD Goodsell (20031_CR69) 2018; 78 20031_CR80 RJ Rivers (20031_CR39) 1964; 34 20031_CR81 20031_CR4 20031_CR3 G Colangelo (20031_CR28) 2017; 04 20031_CR2 20031_CR1 N Boulanger (20031_CR51) 2008; 08 20031_CR37 T Aoyama (20031_CR35) 2020; 887 20031_CR38 20031_CR79 20031_CR73 20031_CR30 20031_CR74 20031_CR72 20031_CR33 X Bekaert (20031_CR41) 2012; 84 M Chaichian (20031_CR71) 1988; 303 20031_CR77 20031_CR31 20031_CR75 20031_CR76 20031_CR70 RR Metsaev (20031_CR49) 2006; 759 I Banta (20031_CR78) 2022; 02 Y-L Wu (20031_CR9) 2021; 36 MT Grisaru (20031_CR45) 1977; 15 BW Lee (20031_CR60) 1977; 38 20031_CR26 20031_CR27 20031_CR24 N Boulanger (20031_CR50) 2006; 11 M Hoferichter (20031_CR29) 2018; 10 |
References_xml | – reference: R.S. Chivukula, D. Foren, K.A. Mohan, D. Sengupta and E.H. Simmons, Spin-2 Kaluza-Klein scattering in a stabilized warped background, arXiv:2206.10628 [INSPIRE]. – reference: H. Huffel and G. Pocsik, Unitarity bounds on Higgs boson masses in the Weinberg-Salam model with two Higgs doublets, Z. Phys. C8 (1981) 13 [INSPIRE]. – reference: Muon g-2 collaboration, Final report of the muon E821 anomalous magnetic moment measurement at BNL, Phys. Rev. D73 (2006) 072003 [hep-ex/0602035] [INSPIRE]. – reference: S. Weinberg and E. Witten, Limits on massless particles, Phys. Lett. B96 (1980) 59 [INSPIRE]. – reference: MaalampiJSirkkaJViljaITree level unitarity and triviality bounds for two Higgs modelsPhys. Lett. B19912653711991PhLB..265..371M10.1016/0370-2693(91)90068-2[INSPIRE] – reference: S.R. Coleman and J. Mandula, All possible symmetries of the S matrix, Phys. Rev.159 (1967) 1251 [INSPIRE]. – reference: ChaichianMFischerJHigher dimensional space-time and unitarity bound on the scattering amplitudeNucl. Phys. B19883035571988NuPhB.303..557C94509310.1016/0550-3213(88)90394-X[INSPIRE] – reference: ATLAS collaboration, Search for low-mass dijet resonances using trigger-level jets with the ATLAS detector in pp collisions ats\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 13 TeV, Phys. Rev. Lett. 121 (2018) 081801 [arXiv:1804.03496] [INSPIRE]. – reference: M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Reevaluation of the hadronic vacuum polarisation contributions to the Standard Model predictions of the muon g − 2 and α(mZ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {m}_Z^2 $$\end{document}) using newest hadronic cross-section data, Eur. Phys. J. C77 (2017) 827 [arXiv:1706.09436] [INSPIRE]. – reference: CEPC Study Group collaboration, CEPC conceptual design report: volume 2 — physics & detector, arXiv:1811.10545 [INSPIRE]. – reference: M. Porrati, Universal limits on massless high-spin particles, Phys. Rev. D78 (2008) 065016 [arXiv:0804.4672] [INSPIRE]. – reference: BantaICohenTCraigNLuXSutherlandDNon-decoupling new particlesJHEP2022020292022JHEP...02..029B440743610.1007/JHEP02(2022)02907608030[arXiv:2110.02967] [INSPIRE] – reference: S. Weinberg, Physical processes in a convergent theory of the weak and electromagnetic interactions, Phys. Rev. Lett.27 (1971) 1688 [INSPIRE]. – reference: KanemuraSYagyuKUnitarity bound in the most general two Higgs doublet modelPhys. Lett. B20157512892015PhLB..751..289K10.1016/j.physletb.2015.10.047[arXiv:1509.06060] [INSPIRE] – reference: A. Keshavarzi, D. Nomura and T. Teubner, Muon g − 2 and α(MZ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {M}_Z^2 $$\end{document}): a new data-based analysis, Phys. Rev. D97 (2018) 114025 [arXiv:1802.02995] [INSPIRE]. – reference: ColangeloGHoferichterMNyffelerAPasseraMStofferPRemarks on higher-order hadronic corrections to the muon g − 2Phys. Lett. B2014735902014PhLB..735...90C10.1016/j.physletb.2014.06.012[arXiv:1403.7512] [INSPIRE] – reference: LeeBWQuiggCThackerHBThe strength of weak interactions at very high-energies and the Higgs boson massPhys. Rev. Lett.1977388831977PhRvL..38..883L10.1103/PhysRevLett.38.883[INSPIRE] – reference: GoodsellMDStaubFUnitarity constraints on general scalar couplings with SARAHEur. Phys. J. C2018786492018EPJC...78..649G10.1140/epjc/s10052-018-6127-z[arXiv:1805.07306] [INSPIRE] – reference: ATLAS collaboration, Search for new resonances in high-mass diphoton final states using proton-proton collision data collected with the ATLAS detector, PoSICHEP2020 (2021) 109 [INSPIRE]. – reference: G. ’t Hooft and M.J.G. Veltman, Regularization and renormalization of gauge fields, Nucl. Phys. B44 (1972) 189 [INSPIRE]. – reference: M. Nebot, J.F. Oliver, D. Palao and A. Santamaria, Prospects for the Zee-Babu model at the CERN LHC and low energy experiments, Phys. Rev. D77 (2008) 093013 [arXiv:0711.0483] [INSPIRE]. – reference: GrisaruMTPendletonHNvan NieuwenhuizenPSupergravity and the S matrixPhys. Rev. D1977159961977PhRvD..15..996G10.1103/PhysRevD.15.996[INSPIRE] – reference: J. Polchinski, String theory. Volume 2: superstring theory and beyond, Cambridge University Press, Cambridge, U.K. (2007) [INSPIRE]. – reference: VasilievMACubic vertices for symmetric higher-spin gauge fields in (A)dSdNucl. Phys. B20128623412012NuPhB.862..341V10.1016/j.nuclphysb.2012.04.0121246.81155[arXiv:1108.5921] [INSPIRE] – reference: CMS collaboration, Search for high-mass resonances in dilepton final states in proton-proton collisions ats\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 13 TeV, JHEP06 (2018) 120 [arXiv:1803.06292] [INSPIRE]. – reference: WuY-LHyperunified field theory and gravitational gauge-geometry dualityEur. Phys. J. C201878282018EPJC...78...28W10.1140/epjc/s10052-017-5504-3[arXiv:1712.04537] [INSPIRE] – reference: BoulangerNLeclercqSSundellPOn the uniqueness of minimal coupling in higher-spin gauge theoryJHEP2008080562008JHEP...08..056B243453010.1088/1126-6708/2008/08/056[arXiv:0805.2764] [INSPIRE] – reference: RiversRJLagrangian theory for neutral massive spin-2 fieldsNuovo Cim.1964343861964NCim...34..386R19399810.1007/BF02734585 – reference: Muon g-2 collaboration, Measurement of the positive muon anomalous magnetic moment to 0.46 ppm, Phys. Rev. Lett.126 (2021) 141801 [arXiv:2104.03281] [INSPIRE]. – reference: CMS collaboration, A multi-dimensional search for new heavy resonances decaying to boosted WW, WZ, or ZZ boson pairs in the dijet final state at 13 TeV, Eur. Phys. J. C80 (2020) 237 [arXiv:1906.05977] [INSPIRE]. – reference: ILC collaboration, The International Linear Collider technical design report — volume 2: physics, arXiv:1306.6352 [INSPIRE]. – reference: WuY-LThe foundation of the hyperunified field theory I — fundamental building block and symmetryInt. J. Mod. Phys. A20213621430012021IJMPA..3643001W433806410.1142/S0217751X21430016[arXiv:2104.05404] [INSPIRE] – reference: B.W. Lee, C. Quigg and H.B. Thacker, Weak interactions at very high-energies: the role of the Higgs boson mass, Phys. Rev. D16 (1977) 1519 [INSPIRE]. – reference: WuY-LThe foundation of the hyperunified field theory II — fundamental interaction and evolving universeInt. J. Mod. Phys. A20213621430022021IJMPA..3643002W433806510.1142/S0217751X21430028[arXiv:2104.11078] [INSPIRE] – reference: T. Blum et al., Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment from lattice QCD, Phys. Rev. Lett.124 (2020) 132002 [arXiv:1911.08123] [INSPIRE]. – reference: S.L. Glashow and S. Weinberg, Natural conservation laws for neutral currents, Phys. Rev. D15 (1977) 1958 [INSPIRE]. – reference: CMS collaboration, Search for resonanttt¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ t\overline{t} $$\end{document}production in proton-proton collisions ats\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 13 TeV, JHEP04 (2019) 031 [arXiv:1810.05905] [INSPIRE]. – reference: Y.-L. Wu, Quantum field theory of gravity with spin and scaling gauge invariance and spacetime dynamics with quantum inflation, Phys. Rev. D93 (2016) 024012 [arXiv:1506.01807] [INSPIRE]. – reference: ColangeloGHagelsteinFHoferichterMLaubLStofferPLongitudinal short-distance constraints for the hadronic light-by-light contribution to (g − 2)μwith large-NcRegge modelsJHEP2020031012020JHEP...03..101C10.1007/JHEP03(2020)101[arXiv:1910.13432] [INSPIRE] – reference: CMS collaboration, Search for narrow and broad dijet resonances in proton-proton collisions ats\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 13 TeV and constraints on dark matter mediators and other new particles, JHEP08 (2018) 130 [arXiv:1806.00843] [INSPIRE]. – reference: M.B. Green, J.H. Schwarz and E. Witten, Superstring theory. Volume 1: introduction, Cambridge University Press, Cambridge, U.K. (1988) [ISBN:978-0-521-35752-4] [INSPIRE]. – reference: R. Sekhar Chivukula, D. Foren, K.A. Mohan, D. Sengupta and E.H. Simmons, Scattering amplitudes of massive spin-2 Kaluza-Klein states grow only as O(s), Phys. Rev. D101 (2020) 055013 [arXiv:1906.11098] [INSPIRE]. – reference: C. Gnendiger, D. Stöckinger and H. Stöckinger-Kim, The electroweak contributions to (g − 2)μafter the Higgs boson mass measurement, Phys. Rev. D88 (2013) 053005 [arXiv:1306.5546] [INSPIRE]. – reference: T. Appelquist and M.S. Chanowitz, Unitarity bound on the scale of fermion mass generation, Phys. Rev. Lett.59 (1987) 2405 [Erratum ibid.60 (1988) 1589] [INSPIRE]. – reference: AthronPBalázsCJacobDHJKotlarskiWStöckingerDStöckinger-KimHNew physics explanations of aμin light of the FNAL muon g − 2 measurementJHEP2021090802021JHEP...09..080A10.1007/JHEP09(2021)080[arXiv:2104.03691] [INSPIRE] – reference: Particle Data Group collaboration, Review of particle physics, PTEP2022 (2022) 083C01 [INSPIRE]. – reference: ColangeloGHoferichterMStofferPTwo-pion contribution to hadronic vacuum polarizationJHEP2019020062019JHEP...02..006C10.1007/JHEP02(2019)006[arXiv:1810.00007] [INSPIRE] – reference: ColangeloGHoferichterMProcuraMStofferPDispersion relation for hadronic light-by-light scattering: two-pion contributionsJHEP2017041612017JHEP...04..161C10.1007/JHEP04(2017)1611388.81508[arXiv:1702.07347] [INSPIRE] – reference: A.G. Akeroyd, A. Arhrib and E.-M. Naimi, Note on tree level unitarity in the general two Higgs doublet model, Phys. Lett. B490 (2000) 119 [hep-ph/0006035] [INSPIRE]. – reference: M. Aicheler et al. eds., A multi-TeV linear collider based on CLIC technology: CLIC conceptual design report, CERN-2012-007, CERN, Geneva, Switzerland (2012) [INSPIRE]. – reference: S. Kanemura, T. Kubota and E. Takasugi, Lee-Quigg-Thacker bounds for Higgs boson masses in a two doublet model, Phys. Lett. B313 (1993) 155 [hep-ph/9303263] [INSPIRE]. – reference: E. Sezgin and P. van Nieuwenhuizen, New ghost free gravity Lagrangians with propagating torsion, Phys. Rev. D21 (1980) 3269 [INSPIRE]. – reference: HoferichterMHoidB-LKubisBLeupoldSSchneiderSPDispersion relation for hadronic light-by-light scattering: pion poleJHEP2018101412018JHEP...10..141H10.1007/JHEP10(2018)141[arXiv:1808.04823] [INSPIRE] – reference: M. Gell-Mann, M.L. Goldberger, N.M. Kroll and F.E. Low, Amelioration of divergence difficulties in the theory of weak interactions, Phys. Rev.179 (1969) 1518 [INSPIRE]. – reference: T. Aoyama, T. Kinoshita and M. Nio, Theory of the anomalous magnetic moment of the electron, Atoms7 (2019) 28 [INSPIRE]. – reference: AoyamaTThe anomalous magnetic moment of the muon in the Standard ModelPhys. Rept.202088712020PhR...887....1A10.1016/j.physrep.2020.07.006[arXiv:2006.04822] [INSPIRE] – reference: T. Aoyama, M. Hayakawa, T. Kinoshita and M. Nio, Complete tenth-order QED contribution to the muon g − 2, Phys. Rev. Lett.109 (2012) 111808 [arXiv:1205.5370] [INSPIRE]. – reference: SezginEvan NieuwenhuizenPRenormalizability properties of antisymmetric tensor fields coupled to gravityPhys. Rev. D1980223011980PhRvD..22..301S57895210.1103/PhysRevD.22.301[INSPIRE] – reference: Van NieuwenhuizenPOn ghost-free tensor lagrangians and linearized gravitationNucl. Phys. B1973604781973NuPhB..60..478V41883610.1016/0550-3213(73)90194-6[INSPIRE] – reference: K. Melnikov and A. Vainshtein, Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment revisited, Phys. Rev. D70 (2004) 113006 [hep-ph/0312226] [INSPIRE]. – reference: MetsaevRRCubic interaction vertices of massive and massless higher spin fieldsNucl. Phys. B20067591472006NuPhB.759..147M228238710.1016/j.nuclphysb.2006.10.0021116.81042[hep-th/0512342] [INSPIRE] – reference: CMS collaboration, Search for physics beyond the Standard Model in high-mass diphoton events from proton-proton collisions ats\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 13 TeV, Phys. Rev. D98 (2018) 092001 [arXiv:1809.00327] [INSPIRE]. – reference: FradkinESVasilievMACubic interaction in extended theories of massless higher spin fieldsNucl. Phys. B19872911411987NuPhB.291..141F89597810.1016/0550-3213(87)90469-X[INSPIRE] – reference: ATLAS collaboration, Search for heavy particles decaying into top-quark pairs using lepton-plus-jets events in proton-proton collisions ats\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 13 TeV with the ATLAS detector, Eur. Phys. J. C78 (2018) 565 [arXiv:1804.10823] [INSPIRE]. – reference: HoferichterMHoidB-LKubisBThree-pion contribution to hadronic vacuum polarizationJHEP2019081372019JHEP...08..137H10.1007/JHEP08(2019)137[arXiv:1907.01556] [INSPIRE] – reference: BekaertXBoulangerNSundellPHow higher-spin gravity surpasses the spin two barrier: no-go theorems versus yes-go examplesRev. Mod. Phys.2012849872012RvMP...84..987B10.1103/RevModPhys.84.987[arXiv:1007.0435] [INSPIRE] – reference: Y.-L. Wu, Gravidynamics, spinodynamics and electrodynamics within the framework of gravitational quantum field theory, arXiv:2208.03290 [INSPIRE]. – reference: G. ’t Hooft, Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking, NATO Sci. Ser. B59 (1980) 135 [INSPIRE]. – reference: R.S. Chivukula, D. Foren, K.A. Mohan, D. Sengupta and E.H. Simmons, Spin-2 Kaluza-Klein mode scattering in models with a massive radion, Phys. Rev. D103 (2021) 095024 [arXiv:2104.08169] [INSPIRE]. – reference: WuY-LUnified field theory of basic forces and elementary particles with gravitational origin of gauge symmetry in hyper-spacetimeSci. Bull.201762110910.1016/j.scib.2017.08.005[arXiv:1705.06365] [INSPIRE] – reference: WuY-LZhangRGravity and spin forces in gravitational quantum field theoryCommun. Theor. Phys.2018701612018CoTPh..70..161W395290810.1088/0253-6102/70/2/1611451.83023[arXiv:1808.09797] [INSPIRE] – reference: R.S. Chivukula, D. Foren, K.A. Mohan, D. Sengupta and E.H. Simmons, Massive spin-2 scattering amplitudes in extra-dimensional theories, Phys. Rev. D101 (2020) 075013 [arXiv:2002.12458] [INSPIRE]. – reference: M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, A new evaluation of the hadronic vacuum polarisation contributions to the muon anomalous magnetic moment and to α(mZ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {m}_Z^2 $$\end{document}), Eur. Phys. J. C80 (2020) 241 [Erratum ibid.80 (2020) 410] [arXiv:1908.00921] [INSPIRE]. – reference: HaagRLopuszanskiJTSohniusMAll possible generators of supersymmetries of the S matrixNucl. Phys. B1975882571975NuPhB..88..257H41139610.1016/0550-3213(75)90279-5[INSPIRE] – reference: FCC collaboration, FCC-ee: the lepton collider. Future Circular Collider conceptual design report volume 2, Eur. Phys. J. ST228 (2019) 261 [INSPIRE]. – reference: M.B. Green, J.H. Schwarz and E. Witten, Superstring theory. Volume 2: loop amplitudes, anomalies and phenomenology, Cambridge University Press, Cambridge, U.K. (1988) [ISBN:978-0-521-35753-1] [INSPIRE]. – reference: D. Das and I. Saha, Search for a stable alignment limit in two-Higgs-doublet models, Phys. Rev. D91 (2015) 095024 [arXiv:1503.02135] [INSPIRE]. – reference: D. Huang, C.-Q. Geng and J. Wu, Unitarity bounds on the massive spin-2 particle explanation of muon g − 2 anomaly, arXiv:2208.01097 [INSPIRE]. – reference: CEPC Study Group collaboration, CEPC conceptual design report: volume 1 — accelerator, arXiv:1809.00285 [INSPIRE]. – reference: CMS collaboration, Searches for new heavy resonances in final states with leptons and photons at CMS, PoSICHEP2018 (2019) 287 [INSPIRE]. – reference: E.S. Fradkin and M.A. Vasiliev, On the gravitational interaction of massless higher spin fields, Phys. Lett. B189 (1987) 89 [INSPIRE]. – reference: A. Gérardin, H.B. Meyer and A. Nyffeler, Lattice calculation of the pion transition form factor with Nf = 2 + 1 Wilson quarks, Phys. Rev. D100 (2019) 034520 [arXiv:1903.09471] [INSPIRE]. – reference: KurzALiuTMarquardPSteinhauserMHadronic contribution to the muon anomalous magnetic moment to next-to-next-to-leading orderPhys. Lett. B20147341442014PhLB..734..144K10.1016/j.physletb.2014.05.043[arXiv:1403.6400] [INSPIRE] – reference: J. Bijnens, N. Hermansson-Truedsson and A. Rodríguez-Sánchez, Short-distance constraints for the HLbL contribution to the muon anomalous magnetic moment, Phys. Lett. B798 (2019) 134994 [arXiv:1908.03331] [INSPIRE]. – reference: BoulangerNLeclercqSConsistent couplings between spin-2 and spin-3 massless fieldsJHEP2006110342006JHEP...11..034B227042010.1088/1126-6708/2006/11/034[hep-th/0609221] [INSPIRE] – reference: P. Benincasa and F. Cachazo, Consistency conditions on the S-matrix of massless particles, arXiv:0705.4305 [INSPIRE]. – reference: A. Czarnecki, W.J. Marciano and A. Vainshtein, Refinements in electroweak contributions to the muon anomalous magnetic moment, Phys. Rev. D67 (2003) 073006 [Erratum ibid.73 (2006) 119901] [hep-ph/0212229] [INSPIRE]. – reference: P. Masjuan and P. Sanchez-Puertas, Pseudoscalar-pole contribution to the (gμ − 2): a rational approach, Phys. Rev. D95 (2017) 054026 [arXiv:1701.05829] [INSPIRE]. – reference: A. Falkowski and J.F. Kamenik, Diphoton portal to warped gravity, Phys. Rev. D94 (2016) 015008 [arXiv:1603.06980] [INSPIRE]. – reference: A. Keshavarzi, D. Nomura and T. Teubner, g − 2 of charged leptons, α(MZ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {M}_Z^2 $$\end{document}), and the hyperfine splitting of muonium, Phys. Rev. D101 (2020) 014029 [arXiv:1911.00367] [INSPIRE]. – reference: M.E. Peskin and D.V. Schroeder, An introduction to quantum field theory, Addison-Wesley (1995) [ISBN:978-0-201-50397-5] [INSPIRE]. – reference: S. Weinberg, Photons and gravitons in S-matrix theory: derivation of charge conservation and equality of gravitational and inertial mass, Phys. Rev.135 (1964) B1049 [INSPIRE]. – reference: L. Linssen, A. Miyamoto, M. Stanitzki and H. Weerts eds., Physics and detectors at CLIC: CLIC conceptual design report, CERN-2012-003, CERN, Geneva, Switzerland (2012) [arXiv:1202.5940] [INSPIRE]. – reference: ATLAS collaboration, Search for high-mass dilepton resonances using 139 fb−1of pp collision data collected ats\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 13 TeV with the ATLAS detector, Phys. Lett. B796 (2019) 68 [arXiv:1903.06248] [INSPIRE]. – reference: ATLAS collaboration, Search for diboson resonances in hadronic final states in 139 fb−1of pp collisions ats\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 13 TeV with the ATLAS detector, JHEP09 (2019) 091 [Erratum ibid.06 (2020) 042] [arXiv:1906.08589] [INSPIRE]. – ident: 20031_CR65 doi: 10.1016/0370-2693(93)91205-2 – ident: 20031_CR75 doi: 10.1103/PhysRevD.103.095024 – ident: 20031_CR12 – volume: 84 start-page: 987 year: 2012 ident: 20031_CR41 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.84.987 – volume: 22 start-page: 301 year: 1980 ident: 20031_CR11 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.22.301 – volume: 10 start-page: 141 year: 2018 ident: 20031_CR29 publication-title: JHEP doi: 10.1007/JHEP10(2018)141 – volume: 38 start-page: 883 year: 1977 ident: 20031_CR60 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.38.883 – ident: 20031_CR70 doi: 10.1103/PhysRevLett.59.2405 – ident: 20031_CR93 – volume: 36 start-page: 2143002 year: 2021 ident: 20031_CR9 publication-title: Int. J. Mod. Phys. A doi: 10.1142/S0217751X21430028 – volume: 03 start-page: 101 year: 2020 ident: 20031_CR32 publication-title: JHEP doi: 10.1007/JHEP03(2020)101 – volume: 11 start-page: 034 year: 2006 ident: 20031_CR50 publication-title: JHEP doi: 10.1088/1126-6708/2006/11/034 – ident: 20031_CR63 doi: 10.1007/BF01429824 – volume: 70 start-page: 161 year: 2018 ident: 20031_CR7 publication-title: Commun. Theor. Phys. doi: 10.1088/0253-6102/70/2/161 – volume: 291 start-page: 141 year: 1987 ident: 20031_CR52 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(87)90469-X – ident: 20031_CR3 – ident: 20031_CR26 doi: 10.1103/PhysRevD.70.113006 – ident: 20031_CR27 doi: 10.1103/PhysRevD.95.054026 – volume: 36 start-page: 2143001 year: 2021 ident: 20031_CR8 publication-title: Int. J. Mod. Phys. A doi: 10.1142/S0217751X21430016 – ident: 20031_CR87 – volume: 09 start-page: 080 year: 2021 ident: 20031_CR36 publication-title: JHEP doi: 10.1007/JHEP09(2021)080 – ident: 20031_CR59 doi: 10.1103/PhysRevLett.27.1688 – ident: 20031_CR66 doi: 10.1016/S0370-2693(00)00962-X – ident: 20031_CR83 – ident: 20031_CR13 – ident: 20031_CR73 doi: 10.1103/PhysRevD.101.075013 – volume: 734 start-page: 144 year: 2014 ident: 20031_CR25 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2014.05.043 – ident: 20031_CR74 doi: 10.1103/PhysRevD.101.075013 – ident: 20031_CR57 doi: 10.1103/PhysRevD.77.093013 – ident: 20031_CR92 – volume: 34 start-page: 386 year: 1964 ident: 20031_CR39 publication-title: Nuovo Cim. doi: 10.1007/BF02734585 – volume: 735 start-page: 90 year: 2014 ident: 20031_CR34 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2014.06.012 – ident: 20031_CR55 doi: 10.1016/0550-3213(72)90279-9 – ident: 20031_CR67 doi: 10.1103/PhysRevD.91.095024 – ident: 20031_CR19 doi: 10.1140/epjc/s10052-017-5161-6 – ident: 20031_CR31 doi: 10.1016/j.physletb.2019.134994 – volume: 02 start-page: 029 year: 2022 ident: 20031_CR78 publication-title: JHEP doi: 10.1007/JHEP02(2022)029 – ident: 20031_CR86 – ident: 20031_CR30 doi: 10.1103/PhysRevD.100.034520 – ident: 20031_CR48 – ident: 20031_CR82 – volume: 862 start-page: 341 year: 2012 ident: 20031_CR54 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2012.04.012 – ident: 20031_CR38 doi: 10.1007/978-1-4684-7571-5_9 – ident: 20031_CR89 – ident: 20031_CR20 doi: 10.1103/PhysRevD.97.114025 – ident: 20031_CR14 – volume: 08 start-page: 137 year: 2019 ident: 20031_CR22 publication-title: JHEP doi: 10.1007/JHEP08(2019)137 – ident: 20031_CR33 doi: 10.1103/PhysRevLett.124.132002 – volume: 08 start-page: 056 year: 2008 ident: 20031_CR51 publication-title: JHEP doi: 10.1088/1126-6708/2008/08/056 – ident: 20031_CR43 doi: 10.1103/PhysRev.159.1251 – volume: 62 start-page: 1109 year: 2017 ident: 20031_CR5 publication-title: Sci. Bull. doi: 10.1016/j.scib.2017.08.005 – ident: 20031_CR95 – volume: 15 start-page: 996 year: 1977 ident: 20031_CR45 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.15.996 – ident: 20031_CR47 doi: 10.1103/PhysRevD.78.065016 – ident: 20031_CR56 – ident: 20031_CR79 – ident: 20031_CR72 doi: 10.1103/PhysRevD.94.015008 – volume: 60 start-page: 478 year: 1973 ident: 20031_CR40 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(73)90194-6 – ident: 20031_CR76 – ident: 20031_CR91 – ident: 20031_CR37 doi: 10.1103/PhysRevD.21.3269 – ident: 20031_CR4 doi: 10.1103/PhysRevD.93.024012 – volume: 303 start-page: 557 year: 1988 ident: 20031_CR71 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(88)90394-X – ident: 20031_CR10 – ident: 20031_CR23 doi: 10.1140/epjc/s10052-020-7857-2 – ident: 20031_CR1 – ident: 20031_CR24 doi: 10.1103/PhysRevD.101.014029 – volume: 265 start-page: 371 year: 1991 ident: 20031_CR64 publication-title: Phys. Lett. B doi: 10.1016/0370-2693(91)90068-2 – ident: 20031_CR81 – ident: 20031_CR85 – ident: 20031_CR46 doi: 10.1016/0370-2693(80)90212-9 – ident: 20031_CR90 – ident: 20031_CR16 doi: 10.3390/atoms7010028 – ident: 20031_CR88 – volume: 887 start-page: 1 year: 2020 ident: 20031_CR35 publication-title: Phys. Rept. doi: 10.1016/j.physrep.2020.07.006 – ident: 20031_CR42 doi: 10.1103/PhysRev.135.B1049 – ident: 20031_CR18 doi: 10.1103/PhysRevD.88.053005 – volume: 88 start-page: 257 year: 1975 ident: 20031_CR44 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(75)90279-5 – volume: 759 start-page: 147 year: 2006 ident: 20031_CR49 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2006.10.002 – ident: 20031_CR15 doi: 10.1103/PhysRevLett.109.111808 – ident: 20031_CR94 – volume: 78 start-page: 28 year: 2018 ident: 20031_CR6 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-017-5504-3 – ident: 20031_CR77 – ident: 20031_CR17 doi: 10.1103/PhysRevD.67.073006 – ident: 20031_CR2 – volume: 78 start-page: 649 year: 2018 ident: 20031_CR69 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-018-6127-z – ident: 20031_CR53 doi: 10.1016/0370-2693(87)91275-5 – volume: 04 start-page: 161 year: 2017 ident: 20031_CR28 publication-title: JHEP doi: 10.1007/JHEP04(2017)161 – ident: 20031_CR58 doi: 10.1103/PhysRev.179.1518 – ident: 20031_CR61 doi: 10.1103/PhysRevD.16.1519 – ident: 20031_CR62 doi: 10.1103/PhysRevD.15.1958 – ident: 20031_CR80 – volume: 02 start-page: 006 year: 2019 ident: 20031_CR21 publication-title: JHEP doi: 10.1007/JHEP02(2019)006 – volume: 751 start-page: 289 year: 2015 ident: 20031_CR68 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2015.10.047 – ident: 20031_CR84 |
SSID | ssj0015190 |
Score | 2.4089715 |
Snippet | A
bstract
We examine contributions to the muon dipole moment
g
− 2 from a 3-form field Ω, which naturally arises from many fundamental theories, such as the... We examine contributions to the muon dipole moment g − 2 from a 3-form field Ω, which naturally arises from many fundamental theories, such as the string... We examine contributions to the muon dipole moment g − 2 from a 3-form field Ω, which naturally arises from many fundamental theories, such as the string... Abstract We examine contributions to the muon dipole moment g − 2 from a 3-form field Ω, which naturally arises from many fundamental theories, such as the... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 117 |
SubjectTerms | Classical and Quantum Gravitation Conventions Dipole moments Elementary Particles Feynman diagrams Field theory Helicity High energy physics Muons Other Weak Scale BSM Models Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Quantum Physics Regular Article - Theoretical Physics Relativity Theory Spacetime Specific BSM Phenomenology String Theory Symmetry Theoretical physics Theories of Flavour |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals (ODIN) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA4yELyIP3E6JQcP26EsTdo0OapMxkDx4GC30vyoJzfZuv_Bs3-if4nvpa1TQbx4TUN5fK_hfa9Jvo-QS6hQwivjI82MjZLSe1xSPkqVETZxQhYJXk6-u5fjaTKZpbMvVl94JqyWB66BG3qhUxc79MgtgFx7xVyikTU7K0TGg9g21Ly2mWr2D4CXsFbIh2XDyXj0wOI-WoUP4uBNtqlBQar_G7_8sSUaKs3tHtltKCK9qkPbJ1t-fkC2w1FNuzokGgWlWpuqFa0WFDgcfV4v5vSJvr--UU7xzggtYHwJoCArpeGg2hGZ3o4eb8ZRY4AQWZHFVaSFlKkGgpNyEzMnmS3SzEklrAKqopNSudgroYwpHDdWJYI5EfvCCCWl514ck858MfcnhGrgKRnzpTSuxB5Faw_TywIakizNOOuSfgtJ_lLrXOStonGNXo7ooTZ4l1wjZJ_TUKA6DEDa8iZt-V9p65JeC3jerJpVzlFZBviggnAGbRI2j3-J5_Q_4jkjO_g-_LnCWY90quXanwPdqMxF-LI-ANu8zCU priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagCIkF8RSFgjwwtEOEH_FrhKpVVQnEQKVuURw7TKSoTf8DMz-RX4IvTYpaxMAWOWfFurN13-V83yF0GzwU99r6yBCbRXHuPRwpHwlteRY7LtMYipMfn-RoEo-nYlqTJEEtzFb-_m48GjwT2oUm3z1K1S7aE5Qr6NHQl_11uiDAENLw9vyetOFyKmb-DTi5lQGtHMvwCB3WiBDfr0x4jHZ8cYL2q5uZ2eIUGeCParpSLXA5wwGy4bflrMCv-OvjEzMMJSI4DePzoAMAobi6l3aGJsPBS38U1f0OoowrWkaGSylMwDOCWUqcJFkqlJOaZzogExPn2lGvubY2dcxmOubEcepTy7WUnnl-jlrFrPAXCJsASxTxubQuh5DEGB_E8zTEH0ooRtqo26gkeV_RWiQNgfFKewloD6jA2-gBVLYWAz7qaiCYKam3d-K5EY466GSchu95TVxsILZxGeeKyTbqNApP6kOySBgQyQT4p8Nyeo0Rfl7_sZ7Lf8heoQN4hF8mjHRQq5wv_XUAEaW9qTbQN_8JvG8 priority: 102 providerName: Springer Nature |
Title | Contributions to the muon g − 2 from a three-form field |
URI | https://link.springer.com/article/10.1007/JHEP01(2023)117 https://www.proquest.com/docview/2767522680 https://doaj.org/article/e395d1d6547a487e80d490642dc33726 |
Volume | 2023 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwFD64ieCLeMV5GXnwQR-KadKmyZO4sTkExxAHvpXm0j256jb_g8_-RH-JOV27oaAvgaahDSe375wk3wdw4Vco7qR2gaLaBFHuHA4pF8RScxNZLrIILyc_DMVgHN0_x89VwG1eHaus58RyoraFwRj5NUPWEY8VJL15fQtQNQp3VysJjQZs-ilYyiZsdnrD0eNqH8HjE1oT-tDk-n7QG9HwEiXDr8JSo2y9FpWU_T9w5q-t0XLF6e_CTgUVye2ybfdgw033Yas8smnmB6CQWKqWq5qTRUE8liMv78WUTMjXxydhBO-OkMznz7xxEJ2S8sDaIYz7vafuIKiEEALDk3ARKC5ErDzQiZkOqRXUZHFiheRGesiiolza0Ekutc4s00ZGnFoeukxzKYRjjh9Bc1pM3TEQ5fFKQl0utM3RV1HK-eJ55h2TJE4YbcFlbZL0dcl3kdbMxkvrpWg95AhvQQdNtiqGRNVlRjGbpFW_Tx1XsQ0tShxn_n9OUhspdHqs4TxhogVntcHTavTM03Vbt-CqboT16z_qc_L_p05hG0ti-ITRM2guZu_u3AOKhW5DQ_bv2lXf8U9dFmEquu3SRffpmN1-A0Eryso |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VIkQvFb9iaQEfQGoPUR07cewDQvx02f6KQyv1FmJ70hObdncrxBtw5kF4KJ6Emey6K5Dg1qvjONF47PnGnpkP4CVZKI3WY-akD1nRIvKSwqy0XociatMUnJx8dGxGp8X-WXm2Aj9TLgyHVaY9sd-oYxf4jHxHcdURwgpWvrm4zJg1im9XE4XGXC0O8NtXctmmr_c-0Py-Umq4e_J-lC1YBbKgq3yWOW1M6Qg1lMrnMhoZmrKKxupgyf67orUxR6ut901UPthCy6hzbLy2xqBCTePegtuFJkvOmenDj9e3FoSGZCofJKud_dHuJ5lvMUH5dt4zoi0tX08Q8Aeq_esitrdvw3uwvgCm4u1ck-7DCo4fwJ0-QDRMH4LjMlaJHGsqZp0g5Ci-XHVjcS5-ff8hlOBMFdFQ-4SmgrGw6MPjHsHpjQjoMayOuzE-AeEIHVUSW-Njy56Rc0jd24bcoKqslBzAVhJJfTGvrlGnOspz6dUsPa5IPoB3LLLrblwWu2_oJuf1YpXVqF0Z88iEyg19D62MhWMXKwatK2UGsJkEXi_W6rReatYAttMkLB__43-e_n-oF3B3dHJ0WB_uHR9swBq_xQc3Sm7C6mxyhc8Iysz8815_BHy-aYX9DSiPAIw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VrUBcEL_qQgEfQGoP0Tp24tgHVLV0V9sWVitEpd5C_JOe2JTdrRBvwJnH4XH6JJ3Jxl2BBLdeHceJxmP7G3v8fQBvcIWSQduQGG5dktUh0JAKSa6tdJmXqsrocvLHiRqfZsdn-dkG_I53YSitMs6J7UTtG0d75ANBrCOIFTQf1F1axPRwtHfxLSEFKTppjXIaKxc5CT--Y_i2eHd0iH39VojR8PP7cdIpDCROFukyMVKp3CCCyIVNuVfcVXnhlZZOIxYwWa19GrTU1lZeWKczyb1MQ2WlViqIILHdO7BZUFTUg82D4WT66eYMA7ERj2RCvBgcj4dTnu6QXPlu2uqjrdfBVi7gD4z717Fsu9qNHsKDDqay_ZVfPYKNMHsMd9t0Ubd4AoZIraJU1oItG4Y4kn29bGbsnF39_MUEo3srrMLyOXYMIWPWJss9hdNbMdEz6M2aWdgCZhArFTzUyvqa4iRjAlavKwyKirwQvA870STlxYpro4ysyivrlWQ94ifvwwGZ7KYakWS3Bc38vOzGXBmkyX3qSV65wu8FzX1mKODyTspCqD5sR4OX3chdlGs_68Nu7IT143_8z_P_N_Ua7qGzlh-OJicv4D69RLs4gm9Dbzm_DC8R1yztq86BGHy5bZ-9BpT9Bh4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Contributions+to+the+muon+g+%E2%88%92+2+from+a+three-form+field&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Huang%2C+Da&rft.au=Tang%2C+Yong&rft.au=Wu%2C+Yue-Liang&rft.date=2023-01-20&rft.pub=Springer+Nature+B.V&rft.eissn=1029-8479&rft.volume=2023&rft.issue=1&rft.spage=117&rft_id=info:doi/10.1007%2FJHEP01%282023%29117&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon |