Landslide extraction using a novel empirical method and binary semantic segmentation U-NET framework using sentinel-2 imagery

Artificial intelligence (AI) has achieved a remarkable place in solving complex problems in almost all disciplines. Based on the recent notable performances of machine learning and deep learning techniques for rapid and automatic landslide identifcation, it is observed that availability of quality t...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing letters Vol. 15; no. 3; pp. 326 - 338
Main Authors Devara, Meghanadh, Maurya, Vipin Kumar, Dwivedi, Ramji
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 03.03.2024
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Artificial intelligence (AI) has achieved a remarkable place in solving complex problems in almost all disciplines. Based on the recent notable performances of machine learning and deep learning techniques for rapid and automatic landslide identifcation, it is observed that availability of quality training data, proper model training and associated cost are crucial for developing such frameworks. Therefore, the primary objective of the study is to propose a novel empirical algorithm, DvD, for rapid landslide identification using Sentinel-2 imagery and comparatively evaluate its performance to a deep learning architecture popularly used in feature extraction problems, binary semantic segmentation U-NET (BSS-UNET) framework. The empirical method has been investigated over a dataset diverse in topography and land cover to evaluate its efficacy. The proposed BSS-UNET framework is trained on the landslide database provided by the Institute of Advance Research in Artificial Intelligence (IARAI) in Landslide4Sense 2022 challenge which achieved a high mIoU value of 0.78 with 84.23% precision, 65% recall and 73.32 F1-score. The DvD algorithm outperformed the BSS-UNET framework and achieved 0.80 mIoU when applied to the IARAI dataset. The proposed empirical method has the potential to serve as large-scale rapid landslide inventory preparation subject to the availability of cloud-free satellite imagery.
AbstractList Artificial intelligence (AI) has achieved a remarkable place in solving complex problems in almost all disciplines. Based on the recent notable performances of machine learning and deep learning techniques for rapid and automatic landslide identifcation, it is observed that availability of quality training data, proper model training and associated cost are crucial for developing such frameworks. Therefore, the primary objective of the study is to propose a novel empirical algorithm, DvD, for rapid landslide identification using Sentinel-2 imagery and comparatively evaluate its performance to a deep learning architecture popularly used in feature extraction problems, binary semantic segmentation U-NET (BSS-UNET) framework. The empirical method has been investigated over a dataset diverse in topography and land cover to evaluate its efficacy. The proposed BSS-UNET framework is trained on the landslide database provided by the Institute of Advance Research in Artificial Intelligence (IARAI) in Landslide4Sense 2022 challenge which achieved a high mIoU value of 0.78 with 84.23% precision, 65% recall and 73.32 F1-score. The DvD algorithm outperformed the BSS-UNET framework and achieved 0.80 mIoU when applied to the IARAI dataset. The proposed empirical method has the potential to serve as large-scale rapid landslide inventory preparation subject to the availability of cloud-free satellite imagery.
Author Dwivedi, Ramji
Maurya, Vipin Kumar
Devara, Meghanadh
Author_xml – sequence: 1
  givenname: Meghanadh
  orcidid: 0000-0002-8282-063X
  surname: Devara
  fullname: Devara, Meghanadh
  organization: GIS Cell, MNNIT
– sequence: 2
  givenname: Vipin Kumar
  surname: Maurya
  fullname: Maurya, Vipin Kumar
  organization: GIS Cell, MNNIT
– sequence: 3
  givenname: Ramji
  orcidid: 0000-0002-9935-1710
  surname: Dwivedi
  fullname: Dwivedi, Ramji
  email: ramjid@mnnit.ac.in
  organization: GIS Cell, MNNIT
BookMark eNqFkU9vGyEQxVGVSEmTfIRISL30si6wsMsql1RR_lSy2osj5YZYdnBJWXBh3caHfPfg2u0hh4YLo-H9Rsx779FBiAEQOqdkRokknxgVpCX8YcYI4zNWM0Jb-Q4db_tVS4Q8-FfzhyN0lvMjKaemXLbyGD3PdRiydwNgeJqSNpOLAa-zC0uscYi_wGMYVy45oz0eYfoeB1wQ3Lug0wZnGHWYnCnFcoQw6T_8ffX1eoFt0iP8junHfl4u7y6Arxh2o15C2pyiQ6t9hrP9fYIWN9eLq7tq_u32y9XneWXqlk6VBC6stN3AGRuE6Vivu5qJzuoGLDWd6Cm3RlDaDcApMaRupdCy570uTVqfoI-7sasUf64hT2p02YD3OkBcZ1UTTnjDGimL9MMr6WNcp1A-p1gnGkEb0WxVFzuVSTHnBFYZt1u9WOi8okRtw1F_w1HbcNQ-nEKLV_QqFUPS5k3ucse5YGMadbHWD2rSGx9T8ToYV1b5_4gXgIOpAA
CitedBy_id crossref_primary_10_1007_s41064_025_00333_2
crossref_primary_10_1016_j_asr_2024_06_048
crossref_primary_10_1038_s41598_024_79266_6
crossref_primary_10_1109_ACCESS_2024_3508881
crossref_primary_10_3390_rs16142598
crossref_primary_10_1007_s12145_024_01434_z
crossref_primary_10_1016_j_ige_2024_10_003
crossref_primary_10_1111_tgis_70023
Cites_doi 10.3390/app12168153
10.1007/978-981-13-7067-0_39
10.5194/isprs-archives-XLIII-B3-2021-679-2021
10.1007/s10346-021-01645-1
10.1007/978-3-031-18471-0_20
10.1016/j.enggeo.2021.106000
10.1007/s12517-022-09475-8
10.48550/arXiv.2209.02556
10.1109/YAC.2016.7804935
10.3390/rs11060690
10.1016/j.gsf.2020.02.012
10.1109/JSTARS.2022.3171290
10.1007/s10346-022-01861-3
10.1007/s10346-019-01186-8
10.1007/978-3-319-24574-4_28
10.3390/rs11020196
10.1038/s41598-021-89015-8
10.1016/j.geomorph.2009.10.004
ContentType Journal Article
Copyright 2024 Informa UK Limited, trading as Taylor & Francis Group 2024
2024 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2024 Informa UK Limited, trading as Taylor & Francis Group 2024
– notice: 2024 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7TN
8FD
F1W
FR3
H8D
H96
KR7
L.G
L7M
7S9
L.6
DOI 10.1080/2150704X.2024.2320178
DatabaseName CrossRef
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2150-7058
EndPage 338
ExternalDocumentID 10_1080_2150704X_2024_2320178
2320178
Genre Research Letter
GroupedDBID .7F
0BK
0R~
2DF
30N
4.4
AAHBH
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABJNI
ABLIJ
ABPAQ
ABPEM
ABRLO
ABTAI
ABXUL
ABXYU
ACGFO
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADMSI
AEISY
AENEX
AEYOC
AFRAH
AGDLA
AHDSZ
AHDZW
AIJEM
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
DGEBU
DKSSO
EBS
GTTXZ
H13
HZ~
IPNFZ
J~4
KYCEM
LJTGL
M4Z
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
SNACF
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TQWBC
TTHFI
TUROJ
UU3
ZGOLN
AAGDL
AAHIA
AAYXX
ABDBF
ADYSH
AFRVT
AIYEW
AMPGV
CITATION
7TN
8FD
F1W
FR3
H8D
H96
KR7
L.G
L7M
TASJS
7S9
L.6
ID FETCH-LOGICAL-c371t-8e45f8f9d422d5c92ba93259fa6ef1c95b14fc5119de410c03785a8b4ba51113
ISSN 2150-704X
2150-7058
IngestDate Wed Jul 02 04:44:37 EDT 2025
Wed Aug 13 04:33:33 EDT 2025
Tue Jul 01 03:28:06 EDT 2025
Thu Apr 24 23:08:08 EDT 2025
Wed Dec 25 09:02:14 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c371t-8e45f8f9d422d5c92ba93259fa6ef1c95b14fc5119de410c03785a8b4ba51113
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9935-1710
0000-0002-8282-063X
PQID 2956516568
PQPubID 436422
PageCount 13
ParticipantIDs crossref_primary_10_1080_2150704X_2024_2320178
proquest_journals_2956516568
proquest_miscellaneous_3040462688
informaworld_taylorfrancis_310_1080_2150704X_2024_2320178
crossref_citationtrail_10_1080_2150704X_2024_2320178
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-03
PublicationDateYYYYMMDD 2024-03-03
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-03
  day: 03
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Remote sensing letters
PublicationYear 2024
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References e_1_3_4_4_1
e_1_3_4_3_1
e_1_3_4_2_1
Pal M. (e_1_3_4_14_1) 2017
e_1_3_4_9_1
e_1_3_4_8_1
e_1_3_4_7_1
e_1_3_4_20_1
e_1_3_4_6_1
e_1_3_4_12_1
e_1_3_4_13_1
e_1_3_4_10_1
e_1_3_4_21_1
e_1_3_4_11_1
e_1_3_4_16_1
Ciresan D. (e_1_3_4_5_1) 2012
e_1_3_4_17_1
e_1_3_4_15_1
e_1_3_4_18_1
e_1_3_4_19_1
References_xml – ident: e_1_3_4_21_1
  doi: 10.3390/app12168153
– ident: e_1_3_4_17_1
  doi: 10.1007/978-981-13-7067-0_39
– ident: e_1_3_4_3_1
  doi: 10.5194/isprs-archives-XLIII-B3-2021-679-2021
– ident: e_1_3_4_11_1
  doi: 10.1007/s10346-021-01645-1
– ident: e_1_3_4_19_1
  doi: 10.1007/978-3-031-18471-0_20
– volume-title: 38th Asian Conference on Remote Sensing
  year: 2017
  ident: e_1_3_4_14_1
– ident: e_1_3_4_2_1
  doi: 10.1016/j.enggeo.2021.106000
– start-page: 25
  year: 2012
  ident: e_1_3_4_5_1
  article-title: Deep Neural Networks Segment Neuronal Membranes in Electron Microscopy Images
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_3_4_13_1
  doi: 10.1007/s12517-022-09475-8
– ident: e_1_3_4_8_1
  doi: 10.48550/arXiv.2209.02556
– ident: e_1_3_4_6_1
  doi: 10.1109/YAC.2016.7804935
– ident: e_1_3_4_9_1
  doi: 10.3390/rs11060690
– ident: e_1_3_4_20_1
  doi: 10.1016/j.gsf.2020.02.012
– ident: e_1_3_4_4_1
  doi: 10.1109/JSTARS.2022.3171290
– ident: e_1_3_4_12_1
  doi: 10.1007/s10346-022-01861-3
– ident: e_1_3_4_15_1
  doi: 10.1007/s10346-019-01186-8
– ident: e_1_3_4_18_1
  doi: 10.1007/978-3-319-24574-4_28
– ident: e_1_3_4_7_1
  doi: 10.3390/rs11020196
– ident: e_1_3_4_16_1
  doi: 10.1038/s41598-021-89015-8
– ident: e_1_3_4_10_1
  doi: 10.1016/j.geomorph.2009.10.004
SSID ssj0000314878
Score 2.3531005
Snippet Artificial intelligence (AI) has achieved a remarkable place in solving complex problems in almost all disciplines. Based on the recent notable performances of...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 326
SubjectTerms Algorithms
Artificial intelligence
Availability
data collection
Datasets
Deep learning
empirical research
Feature extraction
Image processing
Image segmentation
inventories
Land cover
Landslides
Machine learning
Optical disks
Performance evaluation
remote sensing
Satellite imagery
Semantic segmentation
Semantics
topography
Training
Title Landslide extraction using a novel empirical method and binary semantic segmentation U-NET framework using sentinel-2 imagery
URI https://www.tandfonline.com/doi/abs/10.1080/2150704X.2024.2320178
https://www.proquest.com/docview/2956516568
https://www.proquest.com/docview/3040462688
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKeIAXxFUMBjISb1FKEjut84hQx4TaIk0p2ltkO_bo1KbT1g4JiX_Cj-X4EjejEwNeosiOncv35fjYPheE3uaioCJVGn4kkcAEpZAxl4mO85RJkdcmk7RZh5xMB0cz-ukkP-n1fnasljZr0Zffb_Qr-R9UoQxwNV6y_4Bs6BQK4BzwhSMgDMe_wnhs_HQX81pFIGIvfNbvjZ3986hZXalFpJbncxcFxOWKtpsFwjnhXqolfNe5hJPTpfdBaqJZPB2VkW6Ntnx_xkcJFNJFnEXzJf_dk_pYAeLKXGQvXlgfoW3KenXFbTqjaKJOvxors7AGPeGAqa36YpJoR9biO7T7BqK4tuYGx3x5Nu-uUGTUmmiRwKlyJ1lIx2IJ5BwoHUk8TJyhZl91y1xU9yCo8w4hSUfqkmzQGcCJCxezMzY4Y0rTs7lZ3zxpH_RJEElsOxi2BgDTz9XhbDyuytFJeQfdzWASYqQoSaZhBc8E_md2qA9v0LqIseTdjfe5pvxcC427owpY_aZ8iB74iQl-71j2CPVU8xjd-6h8SPMn6EdgG96yDVt2YI4t23BgG3Zsw9AEO7bhlm24yzZs2YYD23x_W7Zhz7anqDwclR-OYp-8I5ZkmK5jpmiumS5qmmV1LotMcJgq5IXmA6VTWeQipVqaXexa0TSRCRmynDNBBYfClDxDe82qUc8RlokcgtIs6ZDCiKMIS4ioC6HrjBBZ6HQf0fajVtIHtjf5VRZV6uPftlhUBovKY7GP-qHZuYvscluDootYtba81o7SFbml7UELb-UFyGWVFTCbMtGvoPpNqAbxbvbseKNWG-gWXpkOsgFjL_7cxUt0f_vvHaC99cVGvQJ9eS1eW9r-ApHfvj4
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RT9swELY29sBeYIxNwNjwpL2mxLHd2I9oAnVQ-lSkvlmxY7OKNkWQIoHEf99d4lSwaeKBtyjWObF9Pt-d774j5Ie0WljmA2wkm4KBol1SuDQkkilnZYmVpNEPeT7qDy7E6UROnuTCYFgl2tChBYpoZDVubnRGdyFxhxlqMamYgHmXiR7oBFhj_i15J3U_R17n6WjlZ0F4dtUIZKRKkKxL5PlfT8-OqGcApv8I7OYUOtkkrvv_Nvjkqresbc89_AXt-LoBfiAbUUmlRy1XbZE3vvpI1mO99N_32-RxiBnCs2npKQj3mzY5gmIM_SUtaLW48zPq59fTBn-EtlWqKZBQ26T_0ls_hxWdOni4nMfsp4peJKPjMQ1duFjsD7OjYAizJKPTOSJu3H8i45Pj8c9BEgs5JI7nrE6UFzKooEuRZaV0OrMFqI1Sh6LvA3NaWiaCwxvN0guWupTnShbKClvAS8Y_k7VqUfkdQl3qclCgnMgFSB_PVcptqW0oM86dDmyXiG7pjIsg51hrY2ZYxELtptbg1Jo4tbuktyK7blE-XiLQT_nC1I17JbS1UAx_gXa_YyITBcatycBOlYiEBM3fV82w1fH-pqj8YgndwpAFGKBK7b3i8wdkfTA-H5rhr9HZF_Iem5qYOr5P1uqbpf8KSlZtvzW76A9CdRiy
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swELc2Jm17GYMxjQ02I_GaEsd2az9OQMU2VvFQJN6s2LGhWptWNEUCif-du8Sp-NDEA29RrHNi--58Z9_9jpBdabWwzAcQJJuCg6Jdkrs0JJIpZ2WBlaTxHPLvoHt0Kn6fyTaacB7DKtGHDg1QRK2rUbhnRWgj4vYyNGJScQbeXSY6YBJgifnX5E0XEy0xiyMdLI9ZEJ1d1foYqRIka_N4_tfTgx3qAX7pE31db0L9VWLb329iT_51FpXtuJtHyI4vGt9H8iGaqPRnw1Nr5JUv18m7WC394voTuT3G_ODxqPAUVPtlkxpBMYL-nOa0nF75MfWT2ahGH6FNjWoKJNTWyb907iewniMHD-eTmPtU0tNkcDikoQ0Wi_1hbhSMYJxkdDRBvI3rDTLsHw73j5JYxiFxvMeqRHkhgwq6EFlWSKczm4PRKHXIuz4wp6VlIji8zyy8YKlLeU_JXFlhc3jJ-GeyUk5L_4VQl7oemE9O9AToHs9Vym2hbSgyzp0ObJOIduWMixDnWGljbFhEQm2n1uDUmji1m6SzJJs1GB_PEej7bGGq-nAlNJVQDH-GdqvlIRPVxdxk4KVKxEGC5p1lMwg63t7kpZ8uoFsYMvB3V6mvL_j8D_L25KBvjn8N_nwj77GlDqjjW2Slulz4bbCwKvu9lqE7sJQXVg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Landslide+extraction+using+a+novel+empirical+method+and+binary+semantic+segmentation+U-NET+framework+using+sentinel-2+imagery&rft.jtitle=Remote+sensing+letters&rft.au=Devara%2C+Meghanadh&rft.au=Maurya%2C+Vipin+Kumar&rft.au=Dwivedi%2C+Ramji&rft.date=2024-03-03&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=2150-704X&rft.eissn=2150-7058&rft.volume=15&rft.issue=3&rft.spage=326&rft.epage=338&rft_id=info:doi/10.1080%2F2150704X.2024.2320178&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2150-704X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2150-704X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2150-704X&client=summon