Landslide extraction using a novel empirical method and binary semantic segmentation U-NET framework using sentinel-2 imagery
Artificial intelligence (AI) has achieved a remarkable place in solving complex problems in almost all disciplines. Based on the recent notable performances of machine learning and deep learning techniques for rapid and automatic landslide identifcation, it is observed that availability of quality t...
Saved in:
Published in | Remote sensing letters Vol. 15; no. 3; pp. 326 - 338 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Abingdon
Taylor & Francis
03.03.2024
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Artificial intelligence (AI) has achieved a remarkable place in solving complex problems in almost all disciplines. Based on the recent notable performances of machine learning and deep learning techniques for rapid and automatic landslide identifcation, it is observed that availability of quality training data, proper model training and associated cost are crucial for developing such frameworks. Therefore, the primary objective of the study is to propose a novel empirical algorithm, DvD, for rapid landslide identification using Sentinel-2 imagery and comparatively evaluate its performance to a deep learning architecture popularly used in feature extraction problems, binary semantic segmentation U-NET (BSS-UNET) framework. The empirical method has been investigated over a dataset diverse in topography and land cover to evaluate its efficacy. The proposed BSS-UNET framework is trained on the landslide database provided by the Institute of Advance Research in Artificial Intelligence (IARAI) in Landslide4Sense 2022 challenge which achieved a high mIoU value of 0.78 with 84.23% precision, 65% recall and 73.32 F1-score. The DvD algorithm outperformed the BSS-UNET framework and achieved 0.80 mIoU when applied to the IARAI dataset. The proposed empirical method has the potential to serve as large-scale rapid landslide inventory preparation subject to the availability of cloud-free satellite imagery. |
---|---|
AbstractList | Artificial intelligence (AI) has achieved a remarkable place in solving complex problems in almost all disciplines. Based on the recent notable performances of machine learning and deep learning techniques for rapid and automatic landslide identifcation, it is observed that availability of quality training data, proper model training and associated cost are crucial for developing such frameworks. Therefore, the primary objective of the study is to propose a novel empirical algorithm, DvD, for rapid landslide identification using Sentinel-2 imagery and comparatively evaluate its performance to a deep learning architecture popularly used in feature extraction problems, binary semantic segmentation U-NET (BSS-UNET) framework. The empirical method has been investigated over a dataset diverse in topography and land cover to evaluate its efficacy. The proposed BSS-UNET framework is trained on the landslide database provided by the Institute of Advance Research in Artificial Intelligence (IARAI) in Landslide4Sense 2022 challenge which achieved a high mIoU value of 0.78 with 84.23% precision, 65% recall and 73.32 F1-score. The DvD algorithm outperformed the BSS-UNET framework and achieved 0.80 mIoU when applied to the IARAI dataset. The proposed empirical method has the potential to serve as large-scale rapid landslide inventory preparation subject to the availability of cloud-free satellite imagery. |
Author | Dwivedi, Ramji Maurya, Vipin Kumar Devara, Meghanadh |
Author_xml | – sequence: 1 givenname: Meghanadh orcidid: 0000-0002-8282-063X surname: Devara fullname: Devara, Meghanadh organization: GIS Cell, MNNIT – sequence: 2 givenname: Vipin Kumar surname: Maurya fullname: Maurya, Vipin Kumar organization: GIS Cell, MNNIT – sequence: 3 givenname: Ramji orcidid: 0000-0002-9935-1710 surname: Dwivedi fullname: Dwivedi, Ramji email: ramjid@mnnit.ac.in organization: GIS Cell, MNNIT |
BookMark | eNqFkU9vGyEQxVGVSEmTfIRISL30si6wsMsql1RR_lSy2osj5YZYdnBJWXBh3caHfPfg2u0hh4YLo-H9Rsx779FBiAEQOqdkRokknxgVpCX8YcYI4zNWM0Jb-Q4db_tVS4Q8-FfzhyN0lvMjKaemXLbyGD3PdRiydwNgeJqSNpOLAa-zC0uscYi_wGMYVy45oz0eYfoeB1wQ3Lug0wZnGHWYnCnFcoQw6T_8ffX1eoFt0iP8junHfl4u7y6Arxh2o15C2pyiQ6t9hrP9fYIWN9eLq7tq_u32y9XneWXqlk6VBC6stN3AGRuE6Vivu5qJzuoGLDWd6Cm3RlDaDcApMaRupdCy570uTVqfoI-7sasUf64hT2p02YD3OkBcZ1UTTnjDGimL9MMr6WNcp1A-p1gnGkEb0WxVFzuVSTHnBFYZt1u9WOi8okRtw1F_w1HbcNQ-nEKLV_QqFUPS5k3ucse5YGMadbHWD2rSGx9T8ToYV1b5_4gXgIOpAA |
CitedBy_id | crossref_primary_10_1007_s41064_025_00333_2 crossref_primary_10_1016_j_asr_2024_06_048 crossref_primary_10_1038_s41598_024_79266_6 crossref_primary_10_1109_ACCESS_2024_3508881 crossref_primary_10_3390_rs16142598 crossref_primary_10_1007_s12145_024_01434_z crossref_primary_10_1016_j_ige_2024_10_003 crossref_primary_10_1111_tgis_70023 |
Cites_doi | 10.3390/app12168153 10.1007/978-981-13-7067-0_39 10.5194/isprs-archives-XLIII-B3-2021-679-2021 10.1007/s10346-021-01645-1 10.1007/978-3-031-18471-0_20 10.1016/j.enggeo.2021.106000 10.1007/s12517-022-09475-8 10.48550/arXiv.2209.02556 10.1109/YAC.2016.7804935 10.3390/rs11060690 10.1016/j.gsf.2020.02.012 10.1109/JSTARS.2022.3171290 10.1007/s10346-022-01861-3 10.1007/s10346-019-01186-8 10.1007/978-3-319-24574-4_28 10.3390/rs11020196 10.1038/s41598-021-89015-8 10.1016/j.geomorph.2009.10.004 |
ContentType | Journal Article |
Copyright | 2024 Informa UK Limited, trading as Taylor & Francis Group 2024 2024 Informa UK Limited, trading as Taylor & Francis Group |
Copyright_xml | – notice: 2024 Informa UK Limited, trading as Taylor & Francis Group 2024 – notice: 2024 Informa UK Limited, trading as Taylor & Francis Group |
DBID | AAYXX CITATION 7TN 8FD F1W FR3 H8D H96 KR7 L.G L7M 7S9 L.6 |
DOI | 10.1080/2150704X.2024.2320178 |
DatabaseName | CrossRef Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2150-7058 |
EndPage | 338 |
ExternalDocumentID | 10_1080_2150704X_2024_2320178 2320178 |
Genre | Research Letter |
GroupedDBID | .7F 0BK 0R~ 2DF 30N 4.4 AAHBH AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABJNI ABLIJ ABPAQ ABPEM ABRLO ABTAI ABXUL ABXYU ACGFO ACGFS ACIWK ACTIO ADCVX ADGTB ADMSI AEISY AENEX AEYOC AFRAH AGDLA AHDSZ AHDZW AIJEM AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 DGEBU DKSSO EBS GTTXZ H13 HZ~ IPNFZ J~4 KYCEM LJTGL M4Z O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ SNACF TBQAZ TDBHL TEN TFL TFT TFW TQWBC TTHFI TUROJ UU3 ZGOLN AAGDL AAHIA AAYXX ABDBF ADYSH AFRVT AIYEW AMPGV CITATION 7TN 8FD F1W FR3 H8D H96 KR7 L.G L7M TASJS 7S9 L.6 |
ID | FETCH-LOGICAL-c371t-8e45f8f9d422d5c92ba93259fa6ef1c95b14fc5119de410c03785a8b4ba51113 |
ISSN | 2150-704X 2150-7058 |
IngestDate | Wed Jul 02 04:44:37 EDT 2025 Wed Aug 13 04:33:33 EDT 2025 Tue Jul 01 03:28:06 EDT 2025 Thu Apr 24 23:08:08 EDT 2025 Wed Dec 25 09:02:14 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c371t-8e45f8f9d422d5c92ba93259fa6ef1c95b14fc5119de410c03785a8b4ba51113 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9935-1710 0000-0002-8282-063X |
PQID | 2956516568 |
PQPubID | 436422 |
PageCount | 13 |
ParticipantIDs | crossref_primary_10_1080_2150704X_2024_2320178 proquest_journals_2956516568 proquest_miscellaneous_3040462688 informaworld_taylorfrancis_310_1080_2150704X_2024_2320178 crossref_citationtrail_10_1080_2150704X_2024_2320178 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-03 |
PublicationDateYYYYMMDD | 2024-03-03 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | Abingdon |
PublicationPlace_xml | – name: Abingdon |
PublicationTitle | Remote sensing letters |
PublicationYear | 2024 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | e_1_3_4_4_1 e_1_3_4_3_1 e_1_3_4_2_1 Pal M. (e_1_3_4_14_1) 2017 e_1_3_4_9_1 e_1_3_4_8_1 e_1_3_4_7_1 e_1_3_4_20_1 e_1_3_4_6_1 e_1_3_4_12_1 e_1_3_4_13_1 e_1_3_4_10_1 e_1_3_4_21_1 e_1_3_4_11_1 e_1_3_4_16_1 Ciresan D. (e_1_3_4_5_1) 2012 e_1_3_4_17_1 e_1_3_4_15_1 e_1_3_4_18_1 e_1_3_4_19_1 |
References_xml | – ident: e_1_3_4_21_1 doi: 10.3390/app12168153 – ident: e_1_3_4_17_1 doi: 10.1007/978-981-13-7067-0_39 – ident: e_1_3_4_3_1 doi: 10.5194/isprs-archives-XLIII-B3-2021-679-2021 – ident: e_1_3_4_11_1 doi: 10.1007/s10346-021-01645-1 – ident: e_1_3_4_19_1 doi: 10.1007/978-3-031-18471-0_20 – volume-title: 38th Asian Conference on Remote Sensing year: 2017 ident: e_1_3_4_14_1 – ident: e_1_3_4_2_1 doi: 10.1016/j.enggeo.2021.106000 – start-page: 25 year: 2012 ident: e_1_3_4_5_1 article-title: Deep Neural Networks Segment Neuronal Membranes in Electron Microscopy Images publication-title: Advances in Neural Information Processing Systems – ident: e_1_3_4_13_1 doi: 10.1007/s12517-022-09475-8 – ident: e_1_3_4_8_1 doi: 10.48550/arXiv.2209.02556 – ident: e_1_3_4_6_1 doi: 10.1109/YAC.2016.7804935 – ident: e_1_3_4_9_1 doi: 10.3390/rs11060690 – ident: e_1_3_4_20_1 doi: 10.1016/j.gsf.2020.02.012 – ident: e_1_3_4_4_1 doi: 10.1109/JSTARS.2022.3171290 – ident: e_1_3_4_12_1 doi: 10.1007/s10346-022-01861-3 – ident: e_1_3_4_15_1 doi: 10.1007/s10346-019-01186-8 – ident: e_1_3_4_18_1 doi: 10.1007/978-3-319-24574-4_28 – ident: e_1_3_4_7_1 doi: 10.3390/rs11020196 – ident: e_1_3_4_16_1 doi: 10.1038/s41598-021-89015-8 – ident: e_1_3_4_10_1 doi: 10.1016/j.geomorph.2009.10.004 |
SSID | ssj0000314878 |
Score | 2.3531005 |
Snippet | Artificial intelligence (AI) has achieved a remarkable place in solving complex problems in almost all disciplines. Based on the recent notable performances of... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 326 |
SubjectTerms | Algorithms Artificial intelligence Availability data collection Datasets Deep learning empirical research Feature extraction Image processing Image segmentation inventories Land cover Landslides Machine learning Optical disks Performance evaluation remote sensing Satellite imagery Semantic segmentation Semantics topography Training |
Title | Landslide extraction using a novel empirical method and binary semantic segmentation U-NET framework using sentinel-2 imagery |
URI | https://www.tandfonline.com/doi/abs/10.1080/2150704X.2024.2320178 https://www.proquest.com/docview/2956516568 https://www.proquest.com/docview/3040462688 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKeIAXxFUMBjISb1FKEjut84hQx4TaIk0p2ltkO_bo1KbT1g4JiX_Cj-X4EjejEwNeosiOncv35fjYPheE3uaioCJVGn4kkcAEpZAxl4mO85RJkdcmk7RZh5xMB0cz-ukkP-n1fnasljZr0Zffb_Qr-R9UoQxwNV6y_4Bs6BQK4BzwhSMgDMe_wnhs_HQX81pFIGIvfNbvjZ3986hZXalFpJbncxcFxOWKtpsFwjnhXqolfNe5hJPTpfdBaqJZPB2VkW6Ntnx_xkcJFNJFnEXzJf_dk_pYAeLKXGQvXlgfoW3KenXFbTqjaKJOvxors7AGPeGAqa36YpJoR9biO7T7BqK4tuYGx3x5Nu-uUGTUmmiRwKlyJ1lIx2IJ5BwoHUk8TJyhZl91y1xU9yCo8w4hSUfqkmzQGcCJCxezMzY4Y0rTs7lZ3zxpH_RJEElsOxi2BgDTz9XhbDyuytFJeQfdzWASYqQoSaZhBc8E_md2qA9v0LqIseTdjfe5pvxcC427owpY_aZ8iB74iQl-71j2CPVU8xjd-6h8SPMn6EdgG96yDVt2YI4t23BgG3Zsw9AEO7bhlm24yzZs2YYD23x_W7Zhz7anqDwclR-OYp-8I5ZkmK5jpmiumS5qmmV1LotMcJgq5IXmA6VTWeQipVqaXexa0TSRCRmynDNBBYfClDxDe82qUc8RlokcgtIs6ZDCiKMIS4ioC6HrjBBZ6HQf0fajVtIHtjf5VRZV6uPftlhUBovKY7GP-qHZuYvscluDootYtba81o7SFbml7UELb-UFyGWVFTCbMtGvoPpNqAbxbvbseKNWG-gWXpkOsgFjL_7cxUt0f_vvHaC99cVGvQJ9eS1eW9r-ApHfvj4 |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RT9swELY29sBeYIxNwNjwpL2mxLHd2I9oAnVQ-lSkvlmxY7OKNkWQIoHEf99d4lSwaeKBtyjWObF9Pt-d774j5Ie0WljmA2wkm4KBol1SuDQkkilnZYmVpNEPeT7qDy7E6UROnuTCYFgl2tChBYpoZDVubnRGdyFxhxlqMamYgHmXiR7oBFhj_i15J3U_R17n6WjlZ0F4dtUIZKRKkKxL5PlfT8-OqGcApv8I7OYUOtkkrvv_Nvjkqresbc89_AXt-LoBfiAbUUmlRy1XbZE3vvpI1mO99N_32-RxiBnCs2npKQj3mzY5gmIM_SUtaLW48zPq59fTBn-EtlWqKZBQ26T_0ls_hxWdOni4nMfsp4peJKPjMQ1duFjsD7OjYAizJKPTOSJu3H8i45Pj8c9BEgs5JI7nrE6UFzKooEuRZaV0OrMFqI1Sh6LvA3NaWiaCwxvN0guWupTnShbKClvAS8Y_k7VqUfkdQl3qclCgnMgFSB_PVcptqW0oM86dDmyXiG7pjIsg51hrY2ZYxELtptbg1Jo4tbuktyK7blE-XiLQT_nC1I17JbS1UAx_gXa_YyITBcatycBOlYiEBM3fV82w1fH-pqj8YgndwpAFGKBK7b3i8wdkfTA-H5rhr9HZF_Iem5qYOr5P1uqbpf8KSlZtvzW76A9CdRiy |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swELc2Jm17GYMxjQ02I_GaEsd2az9OQMU2VvFQJN6s2LGhWptWNEUCif-du8Sp-NDEA29RrHNi--58Z9_9jpBdabWwzAcQJJuCg6Jdkrs0JJIpZ2WBlaTxHPLvoHt0Kn6fyTaacB7DKtGHDg1QRK2rUbhnRWgj4vYyNGJScQbeXSY6YBJgifnX5E0XEy0xiyMdLI9ZEJ1d1foYqRIka_N4_tfTgx3qAX7pE31db0L9VWLb329iT_51FpXtuJtHyI4vGt9H8iGaqPRnw1Nr5JUv18m7WC394voTuT3G_ODxqPAUVPtlkxpBMYL-nOa0nF75MfWT2ahGH6FNjWoKJNTWyb907iewniMHD-eTmPtU0tNkcDikoQ0Wi_1hbhSMYJxkdDRBvI3rDTLsHw73j5JYxiFxvMeqRHkhgwq6EFlWSKczm4PRKHXIuz4wp6VlIji8zyy8YKlLeU_JXFlhc3jJ-GeyUk5L_4VQl7oemE9O9AToHs9Vym2hbSgyzp0ObJOIduWMixDnWGljbFhEQm2n1uDUmji1m6SzJJs1GB_PEej7bGGq-nAlNJVQDH-GdqvlIRPVxdxk4KVKxEGC5p1lMwg63t7kpZ8uoFsYMvB3V6mvL_j8D_L25KBvjn8N_nwj77GlDqjjW2Slulz4bbCwKvu9lqE7sJQXVg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Landslide+extraction+using+a+novel+empirical+method+and+binary+semantic+segmentation+U-NET+framework+using+sentinel-2+imagery&rft.jtitle=Remote+sensing+letters&rft.au=Devara%2C+Meghanadh&rft.au=Maurya%2C+Vipin+Kumar&rft.au=Dwivedi%2C+Ramji&rft.date=2024-03-03&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=2150-704X&rft.eissn=2150-7058&rft.volume=15&rft.issue=3&rft.spage=326&rft.epage=338&rft_id=info:doi/10.1080%2F2150704X.2024.2320178&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2150-704X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2150-704X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2150-704X&client=summon |