Forecasting and Comparative Application of PV System Electricity Generation for Sprinkler Irrigation Machines Based on Multiple Models

Currently, photovoltaic (PV) resources have been widely applied in the agricultural sector. However, due to the unreasonable configuration of multi-energy collaboration, issues such as unstable power supply and high investment costs still persist. Therefore, this study proposes a solution to reasona...

Full description

Saved in:
Bibliographic Details
Published inAgronomy (Basel) Vol. 14; no. 11; p. 2696
Main Authors Li, Bohan, Liu, Kenan, Cai, Yaohui, Sun, Wei, Feng, Quan
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.11.2024
Subjects
Online AccessGet full text
ISSN2073-4395
2073-4395
DOI10.3390/agronomy14112696

Cover

Loading…
Abstract Currently, photovoltaic (PV) resources have been widely applied in the agricultural sector. However, due to the unreasonable configuration of multi-energy collaboration, issues such as unstable power supply and high investment costs still persist. Therefore, this study proposes a solution to reasonably determine the area and capacity of PV panels for irrigation machines, addressing the fluctuations in power generation of solar sprinkler PV systems under different regional and meteorological conditions. The aim is to more accurately predict photovoltaic power generation (PVPG) to optimize the configuration of the solar sprinkler power supply system, ensuring reliability while reducing investment costs. This paper first establishes a PVPG prediction model based on four forecasting models and conducts a comparative analysis to identify the optimal model. Next, annual, seasonal, and solar term scale models are developed and further studied in conjunction with the optimal model, using evaluation metrics to assess and compare the models. Finally, a mathematical model is established based on the optimal combination and solved to optimize the configuration of the power supply system in the irrigation machines. The results indicate that among the four PVPG prediction models, the SARIMAX model performs the best, as the R2 index reached 0.948, which was 19.4% higher than the others, while the MAE index was 10% lower than the others. The solar term scale model exhibited the highest accuracy among the three time scale models, the RMSE index was 4.8% lower than the others, and the MAE index was 1.1% lower than the others. After optimizing the configuration of the power supply system for the irrigation machine using the SARIMAX model based on the solar term scale, it is verified that the model can ensure both power supply reliability and manage energy overflow effectively.
AbstractList Currently, photovoltaic (PV) resources have been widely applied in the agricultural sector. However, due to the unreasonable configuration of multi-energy collaboration, issues such as unstable power supply and high investment costs still persist. Therefore, this study proposes a solution to reasonably determine the area and capacity of PV panels for irrigation machines, addressing the fluctuations in power generation of solar sprinkler PV systems under different regional and meteorological conditions. The aim is to more accurately predict photovoltaic power generation (PVPG) to optimize the configuration of the solar sprinkler power supply system, ensuring reliability while reducing investment costs. This paper first establishes a PVPG prediction model based on four forecasting models and conducts a comparative analysis to identify the optimal model. Next, annual, seasonal, and solar term scale models are developed and further studied in conjunction with the optimal model, using evaluation metrics to assess and compare the models. Finally, a mathematical model is established based on the optimal combination and solved to optimize the configuration of the power supply system in the irrigation machines. The results indicate that among the four PVPG prediction models, the SARIMAX model performs the best, as the R2 index reached 0.948, which was 19.4% higher than the others, while the MAE index was 10% lower than the others. The solar term scale model exhibited the highest accuracy among the three time scale models, the RMSE index was 4.8% lower than the others, and the MAE index was 1.1% lower than the others. After optimizing the configuration of the power supply system for the irrigation machine using the SARIMAX model based on the solar term scale, it is verified that the model can ensure both power supply reliability and manage energy overflow effectively.
Currently, photovoltaic (PV) resources have been widely applied in the agricultural sector. However, due to the unreasonable configuration of multi-energy collaboration, issues such as unstable power supply and high investment costs still persist. Therefore, this study proposes a solution to reasonably determine the area and capacity of PV panels for irrigation machines, addressing the fluctuations in power generation of solar sprinkler PV systems under different regional and meteorological conditions. The aim is to more accurately predict photovoltaic power generation (PVPG) to optimize the configuration of the solar sprinkler power supply system, ensuring reliability while reducing investment costs. This paper first establishes a PVPG prediction model based on four forecasting models and conducts a comparative analysis to identify the optimal model. Next, annual, seasonal, and solar term scale models are developed and further studied in conjunction with the optimal model, using evaluation metrics to assess and compare the models. Finally, a mathematical model is established based on the optimal combination and solved to optimize the configuration of the power supply system in the irrigation machines. The results indicate that among the four PVPG prediction models, the SARIMAX model performs the best, as the R[sup.2] index reached 0.948, which was 19.4% higher than the others, while the MAE index was 10% lower than the others. The solar term scale model exhibited the highest accuracy among the three time scale models, the RMSE index was 4.8% lower than the others, and the MAE index was 1.1% lower than the others. After optimizing the configuration of the power supply system for the irrigation machine using the SARIMAX model based on the solar term scale, it is verified that the model can ensure both power supply reliability and manage energy overflow effectively.
Audience Academic
Author Sun, Wei
Li, Bohan
Cai, Yaohui
Liu, Kenan
Feng, Quan
Author_xml – sequence: 1
  givenname: Bohan
  surname: Li
  fullname: Li, Bohan
– sequence: 2
  givenname: Kenan
  surname: Liu
  fullname: Liu, Kenan
– sequence: 3
  givenname: Yaohui
  surname: Cai
  fullname: Cai, Yaohui
– sequence: 4
  givenname: Wei
  orcidid: 0000-0002-9158-7817
  surname: Sun
  fullname: Sun, Wei
– sequence: 5
  givenname: Quan
  surname: Feng
  fullname: Feng, Quan
BookMark eNpdUU1v1DAQjVCRKKV3jpY4b_FHnMTHZdWWlVqBVOAaTexx8JLYwfYi7R_gd-M2FULMHGb05s3Tk97r6swHj1X1ltErIRR9D2MMPswnVjPGG9W8qM45bcWmFkqe_bO_qi5TOtBSiomOtufV75sQUUPKzo8EvCG7MC8QIbtfSLbLMjld9uBJsOTzN_JwShlncj2hztFpl0_kFj3GlWNDJA9LdP7HhJHsY3TjergH_d15TOQDJDTkETlO2S0TkvtgcEpvqpcWpoSXz_Oi-npz_WX3cXP36Xa_295ttGhZ3nQajZamawBUi4pbKiXjIAwg5cq2dS2kHJhhvBaN5q1SYqhRD4NEOnChxEW1X3VNgENfrM4QT30A1z8BIY49xOz0hL3qLKcDa6QAVXNWd1IY5A3UrbBGGVq03q1aSww_j5hyfwjH6Iv9XjDBO0Gl4oV1tbJGKKLO25Aj6NIGZ6dLjNYVfNuxVgmquCwPdH3QMaQU0f61yWj_mHb_f9riD22DoWk
Cites_doi 10.1016/j.apenergy.2018.06.112
10.1016/j.jobe.2020.101629
10.1016/j.renene.2024.120437
10.1016/j.est.2023.108552
10.1016/j.renene.2017.10.005
10.1109/IPACT.2017.8245060
10.1016/j.jclepro.2019.04.331
10.1016/j.energy.2021.119848
10.1016/j.energy.2017.11.085
10.1016/j.rser.2016.10.068
10.1016/j.neucom.2016.01.104
10.1016/j.renene.2017.01.019
10.4236/sgre.2012.32020
10.1016/j.energy.2021.120026
10.1016/j.solener.2021.04.004
10.3390/en12071220
10.1007/s10994-006-6226-1
10.3390/en17174377
10.1007/BF00058655
10.1016/j.engappai.2022.105647
10.1007/s00500-015-1685-6
10.3390/app7040423
10.1016/j.renene.2013.11.067
10.1016/j.renene.2016.01.027
10.1016/j.est.2018.10.016
10.1155/2022/6481531
10.13031/trans.13298
10.1016/j.enconman.2015.05.018
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SN
7SS
7ST
7T7
7TM
7X2
8FD
8FE
8FH
8FK
ABUWG
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
M0K
P64
PATMY
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
SOI
DOA
DOI 10.3390/agronomy14112696
DatabaseName CrossRef
ProQuest Central (Corporate)
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Agricultural Science Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
Agricultural Science Database
Biotechnology and BioEngineering Abstracts
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
Environment Abstracts
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest SciTech Collection
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Agricultural Science Database

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 2073-4395
ExternalDocumentID oai_doaj_org_article_98f20b1653a94214853de26a473fd9d0
A817930925
10_3390_agronomy14112696
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 2XV
5VS
7X2
7XC
8FE
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BHPHI
CCPQU
CITATION
ECGQY
GROUPED_DOAJ
HCIFZ
IAO
ITC
KQ8
M0K
MODMG
M~E
OK1
OZF
PATMY
PHGZM
PHGZT
PIMPY
PROAC
PYCSY
PMFND
3V.
7SN
7SS
7ST
7T7
7TM
8FD
8FK
ABUWG
AZQEC
C1K
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
SOI
PUEGO
ID FETCH-LOGICAL-c371t-8cedc5d86aa97e92f05512a3dae029f744355b1d12436c27993b4ecbb5e0b2393
IEDL.DBID DOA
ISSN 2073-4395
IngestDate Wed Aug 27 01:23:59 EDT 2025
Mon Jun 30 13:59:55 EDT 2025
Tue Jun 10 20:55:17 EDT 2025
Tue Jul 01 02:31:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c371t-8cedc5d86aa97e92f05512a3dae029f744355b1d12436c27993b4ecbb5e0b2393
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9158-7817
OpenAccessLink https://doaj.org/article/98f20b1653a94214853de26a473fd9d0
PQID 3132830592
PQPubID 2032440
ParticipantIDs doaj_primary_oai_doaj_org_article_98f20b1653a94214853de26a473fd9d0
proquest_journals_3132830592
gale_infotracacademiconefile_A817930925
crossref_primary_10_3390_agronomy14112696
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Agronomy (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Graditi (ref_8) 2016; 90
Barbieri (ref_14) 2017; 75
Zhao (ref_33) 2016; 20
Houran (ref_4) 2023; 72
Sabzehgar (ref_5) 2020; 32
Ariyaratna (ref_6) 2018; 20
Sun (ref_31) 2021; 221
Malvoni (ref_16) 2016; 211
Li (ref_15) 2019; 228
ref_19
ref_18
Kazemi (ref_1) 2022; 2022
ref_17
Zhao (ref_10) 2021; 223
Ziane (ref_11) 2021; 220
Du (ref_21) 2023; 118
Sepasi (ref_13) 2017; 106
Cai (ref_37) 2017; 35
Zhou (ref_25) 2024; 36
Wang (ref_26) 2017; 141
Li (ref_3) 2019; 62
Jiao (ref_20) 2024; 45
Geurts (ref_32) 2006; 63
Olcan (ref_34) 2015; 100
ref_2
Liu (ref_23) 2018; 228
Liu (ref_22) 2024; 226
ref_29
Bataineh (ref_35) 2012; 3
ref_28
Breiman (ref_30) 1996; 24
ref_27
ref_9
Liu (ref_12) 2017; 33
Li (ref_24) 2014; 66
Wang (ref_7) 2018; 116
Li (ref_36) 2019; 50
References_xml – volume: 228
  start-page: 70011
  year: 2018
  ident: ref_23
  article-title: Prediction of short-term PV power output and uncertainty analysis
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.06.112
– ident: ref_28
– ident: ref_9
– volume: 36
  start-page: 001322
  year: 2024
  ident: ref_25
  article-title: PV Power Forecasting Based on SARIMAX-SVR
  publication-title: Proc. CSU-EPSA
– volume: 32
  start-page: 101629
  year: 2020
  ident: ref_5
  article-title: Solar power forecast for a residential smart microgrid based on numerical weather predictions using artificial intelligence methods
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2020.101629
– volume: 226
  start-page: 120437
  year: 2024
  ident: ref_22
  article-title: Short-term PV power forecasting with feature extraction and attention mechanisms
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2024.120437
– volume: 72
  start-page: 108552
  year: 2023
  ident: ref_4
  article-title: Active power filter module function to improve power quality conditions using GWO and PSO techniques for solar PV arrays and battery energy storage systems
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2023.108552
– volume: 116
  start-page: 438
  year: 2018
  ident: ref_7
  article-title: Flexible operation of shared energy storage at households to facilitate PV penetration
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2017.10.005
– ident: ref_17
  doi: 10.1109/IPACT.2017.8245060
– volume: 228
  start-page: 359
  year: 2019
  ident: ref_15
  article-title: Renewable energy prediction: A novel short-term prediction model of PV output power
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.04.331
– volume: 221
  start-page: 119848
  year: 2021
  ident: ref_31
  article-title: Hybrid model with secondary decomposition, randomforest algorithm, clustering analysis and long short memory network principal computing for short-term wind power forecasting on multiple scales
  publication-title: Energy
  doi: 10.1016/j.energy.2021.119848
– volume: 141
  start-page: 2288
  year: 2017
  ident: ref_26
  article-title: An efficient multi-objective model and algorithm for sizing a stand-alone hybrid renewable energy system
  publication-title: Energy
  doi: 10.1016/j.energy.2017.11.085
– volume: 75
  start-page: 242
  year: 2017
  ident: ref_14
  article-title: Very short-term PV power forecasting with cloud modeling: A review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2016.10.068
– volume: 211
  start-page: 72
  year: 2016
  ident: ref_16
  article-title: PV predict based on hybrid PCA-LSSVM using dimensionality reducted data
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.01.104
– volume: 50
  start-page: 1000
  year: 2019
  ident: ref_36
  article-title: Optimization of Oil-Light Complementary Power Supply System for Traction Device of Reel Sprinkler Irrigation Machine
  publication-title: Trans. CSAM
– volume: 35
  start-page: 417
  year: 2017
  ident: ref_37
  article-title: PV optimization of solar-powered linear move sprinkler irrigation system
  publication-title: J. Drain. Irrig. Mach. Eng. (JDIME)
– volume: 106
  start-page: 142
  year: 2017
  ident: ref_13
  article-title: Very short term load forecasting of a distribution system with high PV penetration
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2017.01.019
– volume: 3
  start-page: 139
  year: 2012
  ident: ref_35
  article-title: Optimal configuration for design of stand-alone PV system
  publication-title: Smart Grid Renew. Energy
  doi: 10.4236/sgre.2012.32020
– volume: 223
  start-page: 120026
  year: 2021
  ident: ref_10
  article-title: A point prediction method based automatic machine learning for day-ahead power output of multi-region PV plants
  publication-title: Energy
  doi: 10.1016/j.energy.2021.120026
– volume: 220
  start-page: 745
  year: 2021
  ident: ref_11
  article-title: PV output power performance assessment and forecasting: Impact of meteorological variables
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2021.04.004
– volume: 33
  start-page: 96
  year: 2017
  ident: ref_12
  article-title: Design and test of driving power and PV power matching for solar-driven sprinkler irrigation unit
  publication-title: Trans. Chin. Soc. Agric. Eng.
– ident: ref_19
  doi: 10.3390/en12071220
– volume: 63
  start-page: 3
  year: 2006
  ident: ref_32
  article-title: Extremely randomized trees
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-006-6226-1
– ident: ref_29
  doi: 10.3390/en17174377
– volume: 24
  start-page: 123
  year: 1996
  ident: ref_30
  article-title: Bagging predictors
  publication-title: Mach. Learn.
  doi: 10.1007/BF00058655
– ident: ref_27
– ident: ref_2
– volume: 118
  start-page: 105647
  year: 2023
  ident: ref_21
  article-title: A theory-guided deep-learning method for predicting power generation of multi-region PV plants
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2022.105647
– volume: 20
  start-page: 2841
  year: 2016
  ident: ref_33
  article-title: Multi-objective optimization of stand-alone hybrid PV-wind-diesel-battery system using improved fruit fly optimization algorithm
  publication-title: Soft Comput.
  doi: 10.1007/s00500-015-1685-6
– ident: ref_18
  doi: 10.3390/app7040423
– volume: 66
  start-page: 78
  year: 2014
  ident: ref_24
  article-title: An ARMAX model for forecasting the power output of a grid connected PV system
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2013.11.067
– volume: 90
  start-page: 513
  year: 2016
  ident: ref_8
  article-title: Comparison of PV plant power production prediction methods using a large measured dataset
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2016.01.027
– volume: 45
  start-page: 435
  year: 2024
  ident: ref_20
  article-title: BiLSTM short-term PV power prediction considering data decomposition and evolutionary predation strategiesite
  publication-title: Acta Energiae Solaris Sin.
– volume: 20
  start-page: 409
  year: 2018
  ident: ref_6
  article-title: A novel control strategy to mitigate slow and fast fluctuations of the voltage profile at common coupling point of rooftop solar PV unit with an integrated hybrid energy storage system
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2018.10.016
– volume: 2022
  start-page: 6481531
  year: 2022
  ident: ref_1
  article-title: Participation of energy storage-based flexible hubs in day-ahead reserve regulation and energy markets based on a coordinated energy management strategy
  publication-title: Int. Trans. Electr. Energy Syst.
  doi: 10.1155/2022/6481531
– volume: 62
  start-page: 1789
  year: 2019
  ident: ref_3
  article-title: Optimal configuration and field experiments for PV generation system of solar-powered hose-drawn traveler
  publication-title: Trans. ASABE
  doi: 10.13031/trans.13298
– volume: 100
  start-page: 358
  year: 2015
  ident: ref_34
  article-title: Multi-objective analytical model for optimal sizing of stand-alone PV water pumping systems
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2015.05.018
SSID ssj0000913807
Score 2.2914047
Snippet Currently, photovoltaic (PV) resources have been widely applied in the agricultural sector. However, due to the unreasonable configuration of multi-energy...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 2696
SubjectTerms Accuracy
Agricultural industry
Agricultural production
Agriculture
Algorithms
Alternative energy sources
Comparative analysis
Configuration management
configuration optimization
Cultural heritage
Electric power production
Energy consumption
Energy costs
Forecasting
Industry forecasts
Irrigation
Irrigation systems
Machine learning
machine learning models
Mathematical models
Neural networks
Optimization
Overflow
Photovoltaic cells
Photovoltaics
Power supply
Prediction models
PVPG prediction
Random variables
Regional development
Reliability
Renewable resources
Scale models
Solar energy
Solar energy industry
solar sprinkler irrigation machine
Sprinkler irrigation
statistical model
Support vector machines
Sustainable development
time scales
SummonAdditionalLinks – databaseName: ProQuest
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELagvcAB8RSBgnxAQhxWdWzv2ntCSZWqILWqEEW9WbbHG6FWSdkNf6G_uzNep0FIcLV9WO3YM9-8vmHsgyWabhPQLdEAlQ4KKhuEqvAwBOE7CHkc0OlZc3Khv17WlyXgNpSyyq1OzIoa1pFi5IdEMWjxcrby882viqZGUXa1jNB4yPZRBVu84fvzxdn5t_soC7FeWmHG_KRC__7QL_vcLTDV1DxDXP1_2KNM2_8v5ZwtzvFT9qRART4bZfuMPUir5-zxbNkXuoz0gt3SZM3oB6pd5n4F_GhH5s1nu9w0X3f8_Acf6cn5Io---RkRgPORdjqfQfjKc5zv6jr1_EvfZ_YN3DjNBZdp4HM0ecBppZQhchqldj28ZBfHi-9HJ1WZrFBFZaabysYEsQbbeN-a1MpOIHCSXoFPQrad0Qii6jAFNP6qidIgiAk6xRDqJAKRpr1ie6v1Kr1m3GhKDRrjtUeDaLpQW5Cp8RK07VKwE_Zp-3_dzUig4dDxIFm4v2UxYXMSwP05or7OC-t-6cpLcq3tpAjTpla-1RK9uVpBko3XRnXQgpiwjyQ-Rw900_voS58Bfi5RXbmZJZ0kWllP2MFWwq683MHt7tmb_2-_ZY8kApyxL_GA7W363-kdApRNeF9u4R2CAejc
  priority: 102
  providerName: ProQuest
Title Forecasting and Comparative Application of PV System Electricity Generation for Sprinkler Irrigation Machines Based on Multiple Models
URI https://www.proquest.com/docview/3132830592
https://doaj.org/article/98f20b1653a94214853de26a473fd9d0
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA6iFz2IT6wvchDEw9LdJLtJjq1UqqCIqPQWkk22iNLKtv4Ff7cz2VWLIF68ZnMYMpOZbzYz3xByopCmWzpIS4T3iXDcJ8qlPIHN3qW28i6OA7q-KYYP4mqUjxZGfWFNWEMP3BxcV6uKpS4rcm61YADec-4DK6yQvPLax2wdYt5CMhV9sM6QSb15l-SQ13ftuI5dApnAphnk6F-IQ5Gu_zenHCPNxQZZbyEi7TWibZKlMNkia71x3dJkhG3yjhM1SzvDmmVqJ56ef5N40973mzSdVvT2kTa05HQQR948lQC8aUM3HfcAbKXx_97zS6jpZV1H1g34cB0LLcOM9iHUeYorbfkhxRFqL7Md8nAxuD8fJu1EhaTkMpsnqgy-zL0qrNUyaFalAJiY5d6GlOlKCgBPucs8BH1elEwCeHEilM7lIXVIlrZLlifTSdgjVAp8EpTSCguBUFYuV56FwjIvVBWc6pCzz_M1rw1xhoGEA3VhfuqiQ_qogK99SHkdF8AQTGsI5i9D6JBTVJ_BizmvbWnb_gIQFymuTE-hL0o1yzvk8FPDpr2xM4MUlgqcn2b7_yHNAVllAH-arsVDsjyv38IRwJe5OyYr_cHN7d1xtNgPnTLwng
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxELZKegAOiF81tIAPIMRhVcf2rr0HhJKSKqFNVKEW9WbstTdCVEm7G4R4AR6HZ2TGu9sgJLj1alurlWc8P_bM9xHyUiNMt3KQlkjvE-mET7RjIoHF3jFbehfpgGbzbHImP5yn51vkV9cLg2WVnU2MhtqvCrwj30eIQQ3KmfN3l1cJskbh62pHodGoxVH48R1Stvrt9D3I9xXnh-PTg0nSsgokhVCDdaKL4IvU68zaXIWclwyCBm6Ft4HxvFQSAojUDTw4PpEVXIEDdzIUzqWBOQQMg-_eItswyViPbI_G85OP17c6iLKpmWreQ4XI2b5dVLE7YSCxWQe5Af7wf5Em4F_OIHq4w_vkXhua0mGjSw_IVlg-JHeHi6qF5wiPyE9k8ixsjbXS1C49PdiAh9Ph5i2crkp68ok2cOh0HKl2vhQQ8NMG5jqugXCZxnvFrxehotOqimgfMDGLBZ6hpiNwsZ7iSFv2SJG67aJ-TM5uZM-fkN5ytQw7hCqJT5FKWWnBAavSpdrzkFnupS6D033ypttfc9kAdhhIdFAW5m9Z9MkIBXC9DqG248CqWpj25Jpcl5y5QZYKm0sO2WMqfOCZlUqUPvesT16j-AwahHVlC9v2NcDvIrSWGWq0gSznaZ_sdRI2raWozUavn_5_-gW5PTmdHZvj6fxol9zhEFw1PZF7pLeuvoVnEByt3fNWIyn5fNOH4Dc1ZSWG
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxELZKKiE4IH5FSgEfQIjDKo7tXXsPCCVtoobSKEIU9WbstTdCVEm7G4R4AR6Kp2PGu9sgJLj1alurlWc8P_bM9xHyQiNMt3KQlkjvE-mET7RjIoHF3jFbehfpgE7m2dGpfHeWnu2QX10vDJZVdjYxGmq_LvCOfIAQgxqUM-eDsi2LWBxO315cJsgghS-tHZ1GoyLH4cd3SN_qN7NDkPVLzqeTjwdHScswkBRCDTeJLoIvUq8za3MVcl4yCCC4Fd4GxvNSSQgmUjf04ARFVnAFztzJUDiXBuYQPAy-e4PsKmwf7ZHd8WS--HB1w4OIm5qp5m1UiJwN7LKKnQpDiY07yBPwhy-MlAH_cgzR203vkjttmEpHjV7dIzthdZ_cHi2rFqojPCA_kdWzsDXWTVO78vRgCyROR9t3cbou6eITbaDR6STS7nwpIPinDeR1XAOhM413jF_PQ0VnVRWRP2DiJBZ7hpqOwd16iiNtCSRFGrfz-iE5vZY9f0R6q_UqPCZUSXyWVMpKC85YlS7VnofMci91GZzuk9fd_pqLBrzDQNKDsjB_y6JPxiiAq3UIux0H1tXStKfY5LrkzA2zVNhccsgkU-EDz6xUovS5Z33yCsVn0DhsKlvYtscBfhdhtsxIoz1kOU_7ZL-TsGmtRm22Or73_-nn5CYov3k_mx8_Ibc4xFlNe-Q-6W2qb-EpxEkb96xVSEo-X_cZ-A2pVynE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forecasting+and+Comparative+Application+of+PV+System+Electricity+Generation+for+Sprinkler+Irrigation+Machines+Based+on+Multiple+Models&rft.jtitle=Agronomy+%28Basel%29&rft.au=Bohan+Li&rft.au=Kenan+Liu&rft.au=Yaohui+Cai&rft.au=Wei+Sun&rft.date=2024-11-01&rft.pub=MDPI+AG&rft.eissn=2073-4395&rft.volume=14&rft.issue=11&rft.spage=2696&rft_id=info:doi/10.3390%2Fagronomy14112696&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_98f20b1653a94214853de26a473fd9d0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4395&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4395&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4395&client=summon