The Age–Velocity Dispersion Relations of the Galactic Disk as Revealed by the LAMOST-Gaia Red Clump Stars

Using nearly 230,000 red clump stars selected from LAMOST and Gaia, we conduct a comprehensive analysis of the stellar age–velocity dispersion relations (AVRs) for various disk populations, within 5.0 ≤ R ≤ 15.0 kpc and ∣ Z ∣ ≤ 3.0 kpc. The AVRs of the whole red clump sample stars are accurately des...

Full description

Saved in:
Bibliographic Details
Published inThe Astrophysical journal Vol. 979; no. 2; pp. 103 - 110
Main Authors Sun, Weixiang, Shen, Han, Jiang, Biwei, Liu, Xiaowei
Format Journal Article
LanguageEnglish
Published The American Astronomical Society 01.02.2025
IOP Publishing
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Using nearly 230,000 red clump stars selected from LAMOST and Gaia, we conduct a comprehensive analysis of the stellar age–velocity dispersion relations (AVRs) for various disk populations, within 5.0 ≤ R ≤ 15.0 kpc and ∣ Z ∣ ≤ 3.0 kpc. The AVRs of the whole red clump sample stars are accurately described as σ v = σ v ,0 ( τ + 0.1) β v , with β R , β ϕ , and β Z displaying a global exponential decreasing trend with R , which may point to the difference in spatial distributions of various disk heating mechanisms. The measurements of β – R for various disks suggest that the thin disk exhibits a radial dependence, with a global exponential decreasing trend in β R – R and β Z – R , while β ϕ remains a nearly constant value (around 0.20 ∼ 0.25) within 8.5 ≤ R ≤ 11.5 kpc. The thick disk displays a global increasing trend in β R – R , β ϕ – R , and β Z – R . These results indicate that the thin disk stars are likely heated by long-term heating from giant molecular clouds and spiral arms, while thick disk stars are likely heated by some violent heating process from merger and accretion, and/or formed by the inside-out and upside-down star formation scenarios, and/or born in the chaotic mergers of gas-rich systems and/or turbulent interstellar medium. Our results also suggest that the disk perturbation by a recent minor merger from Sagittarius may have occurred within 3.0 Gyr.
AbstractList Using nearly 230,000 red clump stars selected from LAMOST and Gaia, we conduct a comprehensive analysis of the stellar age–velocity dispersion relations (AVRs) for various disk populations, within 5.0 ≤ R ≤ 15.0 kpc and ∣ Z ∣ ≤ 3.0 kpc. The AVRs of the whole red clump sample stars are accurately described as σ _v = σ _v _,0 ( τ + 0.1) ^{{\beta }_{v}}$ , with β _R , β _ϕ , and β _Z displaying a global exponential decreasing trend with R , which may point to the difference in spatial distributions of various disk heating mechanisms. The measurements of β – R for various disks suggest that the thin disk exhibits a radial dependence, with a global exponential decreasing trend in β _R – R and β _Z – R , while β _ϕ remains a nearly constant value (around 0.20 ∼ 0.25) within 8.5 ≤ R ≤ 11.5 kpc. The thick disk displays a global increasing trend in β _R – R , β _ϕ – R , and β _Z – R . These results indicate that the thin disk stars are likely heated by long-term heating from giant molecular clouds and spiral arms, while thick disk stars are likely heated by some violent heating process from merger and accretion, and/or formed by the inside-out and upside-down star formation scenarios, and/or born in the chaotic mergers of gas-rich systems and/or turbulent interstellar medium. Our results also suggest that the disk perturbation by a recent minor merger from Sagittarius may have occurred within 3.0 Gyr.
Using nearly 230,000 red clump stars selected from LAMOST and Gaia, we conduct a comprehensive analysis of the stellar age–velocity dispersion relations (AVRs) for various disk populations, within 5.0 ≤ R ≤ 15.0 kpc and ∣ Z ∣ ≤ 3.0 kpc. The AVRs of the whole red clump sample stars are accurately described as σ v = σ v ,0 ( τ + 0.1) β v , with β R , β ϕ , and β Z displaying a global exponential decreasing trend with R , which may point to the difference in spatial distributions of various disk heating mechanisms. The measurements of β – R for various disks suggest that the thin disk exhibits a radial dependence, with a global exponential decreasing trend in β R – R and β Z – R , while β ϕ remains a nearly constant value (around 0.20 ∼ 0.25) within 8.5 ≤ R ≤ 11.5 kpc. The thick disk displays a global increasing trend in β R – R , β ϕ – R , and β Z – R . These results indicate that the thin disk stars are likely heated by long-term heating from giant molecular clouds and spiral arms, while thick disk stars are likely heated by some violent heating process from merger and accretion, and/or formed by the inside-out and upside-down star formation scenarios, and/or born in the chaotic mergers of gas-rich systems and/or turbulent interstellar medium. Our results also suggest that the disk perturbation by a recent minor merger from Sagittarius may have occurred within 3.0 Gyr.
Author Liu, Xiaowei
Jiang, Biwei
Shen, Han
Sun, Weixiang
Author_xml – sequence: 1
  givenname: Weixiang
  orcidid: 0009-0005-9277-6758
  surname: Sun
  fullname: Sun, Weixiang
  organization: Beijing Normal University School of Physics and Astronomy, Beijing 100875, sunweixiang@bnu.edu.cn, bjiang@bnu.edu.cn People’s Republic of China
– sequence: 2
  givenname: Han
  orcidid: 0000-0001-8962-4132
  surname: Shen
  fullname: Shen, Han
  organization: ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), Australia
– sequence: 3
  givenname: Biwei
  orcidid: 0000-0003-3168-2617
  surname: Jiang
  fullname: Jiang, Biwei
  organization: Beijing Normal University School of Physics and Astronomy, Beijing 100875, sunweixiang@bnu.edu.cn, bjiang@bnu.edu.cn People’s Republic of China
– sequence: 4
  givenname: Xiaowei
  orcidid: 0000-0003-1295-2909
  surname: Liu
  fullname: Liu, Xiaowei
  organization: Yunnan University South-Western Institute for Astronomy Research, Kunming 650500, x.liu@ynu.edu.cn People’s Republic of China
BookMark eNp1kM1OGzEURi1EJULafZfedMcQe-wZ28soLSFSKqSSVt1Zd_xDJwzxyJ4gZdd36BvyJPUQxApWtq_Pd6T7naPTXdg5hD5TcskkFzNaMVlwVokZWGU5PUGT19EpmhBCeFEz8fsMnae0HZ-lUhN0v_nj8PzOPf3998t1wbTDAX9tU-9iasMO_3AdDPmScPB4yOgSOjBDa0boHkPKxKODzlncHJ6B9fz7ze2mWEIL-c_iRbd_6PHtADF9RB88dMl9ejmn6OfVt83iuljfLFeL-bowTNChkLUAQYksm6qEBoS0hFYlrTlRvPZVXVNT1YYKYEaUjjbGV1wQoyrfCArUsSlaHb02wFb3sX2AeNABWv08CPFOQ8w7dE7XijMim6wjnlspJGsYd94yVTIjHc8ucnSZGFKKzr_6KNFj8XpsWY8t62PxOfLlGGlDr7dhH3d5WQ39ViuhdJmDTPfWZ-7iDe5d7X9kNpHJ
Cites_doi 10.1051/0004-6361:20078788
10.3847/1538-4357/ab1ea5
10.1093/mnras/stab289
10.1093/mnras/stw2096
10.1086/378316
10.1086/511056
10.1088/1674-4527/12/9/003
10.1086/422709
10.3847/1538-4357/abb1b7
10.1093/mnras/stz2343
10.3847/1538-4357/ad06ad
10.1093/mnras/stad3525
10.1093/mnras/sty2490
10.1093/mnras/stx1774
10.1051/0004-6361/202245809
10.1093/mnras/stz1521
10.3847/1538-4357/aad285
10.1086/301226
10.1086/424960
10.1088/1674-4527/ad3dc2
10.1046/j.1365-8711.2001.04549.x
10.1111/j.1365-2966.2011.19867.x
10.1051/0004-6361/202449744
10.1086/144830
10.1111/j.1365-2966.2004.07675.x
10.3847/2041-8213/ada02a
10.1093/mnras/stw1639
10.1093/mnras/stx093
10.1051/0004-6361/200811191
10.1093/mnras/208.4.687
10.3847/2041-8213/ad3554
10.1051/0004-6361/201322623
10.1088/0004-637X/750/2/107
10.3847/1538-4357/acdb58
10.1093/mnras/stx3204
10.1111/j.1365-2966.2010.17178.x
10.3847/1538-4357/ac27a9
10.1093/mnras/stu2723
10.1051/0004-6361/202243750
10.1093/mnras/sty982
10.1111/j.1365-2966.2010.16253.x
10.1093/mnras/stx2146
10.1086/149349
10.1046/j.1365-8711.2003.06358.x
10.1093/mnras/stac2571
10.1093/mnras/sty1256
10.1093/mnras/sts083
10.1088/0004-637X/783/2/130
10.1093/mnras/stw601
10.1086/172184
10.1093/mnras/stw777
10.1093/mnras/stw2363
10.1088/2041-8205/781/1/L20
10.1086/591958
10.1111/j.1365-2966.2012.21738.x
10.1086/145478
10.1111/j.1365-2966.2007.12210.x
10.1111/j.1365-2966.2012.21631.x
10.1111/j.1365-2966.2008.13979.x
10.3847/2041-8213/aad0ee
10.1086/145730
10.1088/1674-4527/12/7/003
10.3847/1538-4365/ab994f
10.3847/1538-4365/ad3043
10.1038/s41586-018-0510-7
10.1111/j.1365-2966.2009.15053.x
10.1086/300364
10.1088/0004-637X/799/2/209
10.1051/0004-6361:20035959
10.1046/j.1365-8711.2002.05956.x
10.1088/2041-8205/804/1/L9
10.1038/s41586-018-0625-x
10.1093/mnras/stx2777
10.1093/mnras/257.4.620
10.1111/j.1365-2966.2011.18891.x
10.1051/0004-6361/201220189
10.1093/mnras/staa335
10.1111/j.1365-2966.2012.21176.x
10.1093/mnras/stx129
10.1088/0004-637X/793/1/51
10.1093/mnras/sty1609
10.1093/mnras/stab1086
10.1146/annurev-astro-081915-023441
10.1051/0004-6361/201016276
10.1051/0004-6361/202243688
ContentType Journal Article
Copyright 2025. The Author(s). Published by the American Astronomical Society.
Copyright_xml – notice: 2025. The Author(s). Published by the American Astronomical Society.
DBID O3W
TSCCA
AAYXX
CITATION
DOA
DOI 10.3847/1538-4357/ad9d41
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
DOAJ: Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
EISSN 1538-4357
ExternalDocumentID oai_doaj_org_article_694308b6c10f4d8783b34efd3923c8e4
10_3847_1538_4357_ad9d41
apjad9d41
GroupedDBID -DZ
-~X
123
1JI
23N
2FS
4.4
6J9
85S
AAFWJ
AAGCD
AAJIO
ABHWH
ACBEA
ACGFS
ACHIP
ACNCT
ADACN
AEFHF
AENEX
AFPKN
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
CJUJL
CRLBU
CS3
EBS
F5P
FRP
GROUPED_DOAJ
IJHAN
IOP
KOT
M~E
N5L
O3W
O43
OK1
PJBAE
RIN
RNS
ROL
SJN
SY9
T37
TN5
TR2
TSCCA
WH7
XSW
AAYXX
CITATION
AEINN
ID FETCH-LOGICAL-c371t-867a71082b52aba78d01521640946f5661c56c17a3c72e1bcf5470c95fb71a1e3
IEDL.DBID DOA
ISSN 0004-637X
IngestDate Wed Aug 27 01:30:40 EDT 2025
Tue Jul 01 03:40:11 EDT 2025
Wed Jan 29 09:30:06 EST 2025
Wed Jan 29 09:30:48 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c371t-867a71082b52aba78d01521640946f5661c56c17a3c72e1bcf5470c95fb71a1e3
Notes AAS59865
Interstellar Matter and the Local Universe
ORCID 0000-0001-8962-4132
0000-0003-1295-2909
0000-0003-3168-2617
0009-0005-9277-6758
OpenAccessLink https://doaj.org/article/694308b6c10f4d8783b34efd3923c8e4
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_694308b6c10f4d8783b34efd3923c8e4
crossref_primary_10_3847_1538_4357_ad9d41
iop_journals_10_3847_1538_4357_ad9d41
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationTitle The Astrophysical journal
PublicationTitleAbbrev ApJ
PublicationTitleAlternate Astrophys. J
PublicationYear 2025
Publisher The American Astronomical Society
IOP Publishing
Publisher_xml – name: The American Astronomical Society
– name: IOP Publishing
References Liu (apjad9d41bib50) 2024; 24
Sanders (apjad9d41bib65) 2018; 481
Sun (apjad9d41bib78) 2024a; 961
Barbanis (apjad9d41bib8) 1967; 150
Strömberg (apjad9d41bib77) 1946; 104
Sun (apjad9d41bib82) 2023; 952
Reid (apjad9d41bib63) 2014; 783
Wang (apjad9d41bib88) 2023; 675
Bissantz (apjad9d41bib11) 2003; 340
Huang (apjad9d41bib36) 2016; 463
Hayden (apjad9d41bib32) 2020; 493
Huang (apjad9d41bib38) 2020; 249
Abadi (apjad9d41bib1) 2003; 597
Recio-Blanco (apjad9d41bib61) 2023; 674
Huang (apjad9d41bib37) 2018; 864
Sharma (apjad9d41bib72) 2021; 506
Mackereth (apjad9d41bib52) 2019; 489
Gaia Collaboration (apjad9d41bib26) 2023a; 674
Carrillo (apjad9d41bib16) 2019; 490
Liu (apjad9d41bib51) 2014
Jenkins (apjad9d41bib40) 1992; 257
Casagrande (apjad9d41bib17) 2011; 530
Sun (apjad9d41bib80) 2024b; 272
Yu (apjad9d41bib92) 2018; 475
Quillen (apjad9d41bib60) 2001
Brook (apjad9d41bib14) 2004; 612
McMillan (apjad9d41bib54) 2022; 516
Minchev (apjad9d41bib57) 2015; 804
Ting (apjad9d41bib83) 2019; 878
Belokurov (apjad9d41bib9) 2018; 478
Kruijssen (apjad9d41bib47) 2019; 486
Wielen (apjad9d41bib89) 1977; 60
Combes (apjad9d41bib18) 2014
Jenkins (apjad9d41bib41) 1990; 245
Bland-Hawthorn (apjad9d41bib12) 2016; 54
Fuchs (apjad9d41bib25) 2001; 325
Hunt (apjad9d41bib39) 2018; 474
Brook (apjad9d41bib13) 2007; 658
Dehnen (apjad9d41bib21) 1998; 115
Sun (apjad9d41bib84) 2025; 978
Schönrich (apjad9d41bib66) 2012; 427
Gómez (apjad9d41bib29) 2012b; 419
Laporte (apjad9d41bib49) 2018; 473
Sharma (apjad9d41bib73) 2012; 750
Antoja (apjad9d41bib2) 2014; 563
Holmberg (apjad9d41bib34) 2009; 501
Khanna (apjad9d41bib46) 2024
Spitzer (apjad9d41bib75) 1951; 114
Aumer (apjad9d41bib7) 2013; 428
Kazantzidis (apjad9d41bib45) 2008; 688
Sharma (apjad9d41bib71) 2014; 793
Minchev (apjad9d41bib56) 2014; 781
Cui (apjad9d41bib19) 2012; 12
Schönrich (apjad9d41bib69) 2017; 467
Deason (apjad9d41bib20) 2018; 862
Brook (apjad9d41bib15) 2012; 426
Soubiran (apjad9d41bib74) 2008; 480
Mackereth (apjad9d41bib53) 2017; 471
Villalobos (apjad9d41bib87) 2008; 391
Kalnajs (apjad9d41bib43) 1991
Xiang (apjad9d41bib91) 2017; 467
Yuan (apjad9d41bib93) 2015; 448
Antoja (apjad9d41bib3) 2018; 561
Dehnen (apjad9d41bib22) 2000; 119
Kawata (apjad9d41bib44) 2017; 464
Uppal (apjad9d41bib85) 2024; 527
House (apjad9d41bib35) 2011; 415
Minchev (apjad9d41bib55) 2013; 558
Sun (apjad9d41bib81) 2024c; 965
Bird (apjad9d41bib10) 2021; 503
Vickers (apjad9d41bib86) 2021; 922
Jónsson (apjad9d41bib42) 2024; 688
Nordström (apjad9d41bib58) 2004; 418
Schönrich (apjad9d41bib67) 2010; 403
Roškar (apjad9d41bib64) 2010; 408
Sun (apjad9d41bib79) 2020; 903
Aumer (apjad9d41bib6) 2009; 397
Quinn (apjad9d41bib59) 1993; 403
Aumer (apjad9d41bib4) 2016a; 459
Schönrich (apjad9d41bib68) 2018; 478
Hänninen (apjad9d41bib31) 2002; 337
De Simone (apjad9d41bib24) 2004; 350
Wisnioski (apjad9d41bib90) 2015; 799
Seabroke (apjad9d41bib70) 2007; 380
Deng (apjad9d41bib23) 2012; 12
Grand (apjad9d41bib30) 2016; 459
Spitzer (apjad9d41bib76) 1953; 118
Gaia Collaboration (apjad9d41bib27) 2023b; 674
Gómez (apjad9d41bib28) 2012a; 423
Reid (apjad9d41bib62) 2004; 616
Aumer (apjad9d41bib5) 2016b; 462
Helmi (apjad9d41bib33) 2018; 563
Lacey (apjad9d41bib48) 1984; 208
References_xml – volume: 480
  start-page: 91
  year: 2008
  ident: apjad9d41bib74
  publication-title: A&A
  doi: 10.1051/0004-6361:20078788
– volume: 878
  start-page: 21
  year: 2019
  ident: apjad9d41bib83
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab1ea5
– volume: 503
  start-page: 1815
  year: 2021
  ident: apjad9d41bib10
  publication-title: MNRAS
  doi: 10.1093/mnras/stab289
– volume: 463
  start-page: 2623
  year: 2016
  ident: apjad9d41bib36
  publication-title: MNRAS
  doi: 10.1093/mnras/stw2096
– volume: 597
  start-page: 21
  year: 2003
  ident: apjad9d41bib1
  publication-title: ApJ
  doi: 10.1086/378316
– volume: 658
  start-page: 60
  year: 2007
  ident: apjad9d41bib13
  publication-title: ApJ
  doi: 10.1086/511056
– volume: 12
  start-page: 1197
  year: 2012
  ident: apjad9d41bib19
  publication-title: RAA
  doi: 10.1088/1674-4527/12/9/003
– volume: 612
  start-page: 894
  year: 2004
  ident: apjad9d41bib14
  publication-title: ApJ
  doi: 10.1086/422709
– volume: 903
  start-page: 12
  year: 2020
  ident: apjad9d41bib79
  publication-title: ApJ
  doi: 10.3847/1538-4357/abb1b7
– volume: 490
  start-page: 797
  year: 2019
  ident: apjad9d41bib16
  publication-title: MNRAS
  doi: 10.1093/mnras/stz2343
– year: 2024
  ident: apjad9d41bib46
– volume: 961
  start-page: 141
  year: 2024a
  ident: apjad9d41bib78
  publication-title: ApJ
  doi: 10.3847/1538-4357/ad06ad
– volume: 527
  start-page: 4863
  year: 2024
  ident: apjad9d41bib85
  publication-title: MNRAS
  doi: 10.1093/mnras/stad3525
– volume: 481
  start-page: 4093
  year: 2018
  ident: apjad9d41bib65
  publication-title: MNRAS
  doi: 10.1093/mnras/sty2490
– volume: 471
  start-page: 3057
  year: 2017
  ident: apjad9d41bib53
  publication-title: MNRAS
  doi: 10.1093/mnras/stx1774
– volume: 675
  start-page: A26
  year: 2023
  ident: apjad9d41bib88
  publication-title: A&A
  doi: 10.1051/0004-6361/202245809
– volume: 489
  start-page: 176
  year: 2019
  ident: apjad9d41bib52
  publication-title: MNRAS
  doi: 10.1093/mnras/stz1521
– volume: 864
  start-page: 129
  year: 2018
  ident: apjad9d41bib37
  publication-title: ApJ
  doi: 10.3847/1538-4357/aad285
– volume: 119
  start-page: 800
  year: 2000
  ident: apjad9d41bib22
  publication-title: AJ
  doi: 10.1086/301226
– start-page: 310
  year: 2014
  ident: apjad9d41bib51
– volume: 616
  start-page: 872
  year: 2004
  ident: apjad9d41bib62
  publication-title: ApJ
  doi: 10.1086/424960
– volume: 24
  start-page: 065005
  year: 2024
  ident: apjad9d41bib50
  publication-title: RAA
  doi: 10.1088/1674-4527/ad3dc2
– volume: 325
  start-page: 1637
  year: 2001
  ident: apjad9d41bib25
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2001.04549.x
– volume: 245
  start-page: 305
  year: 1990
  ident: apjad9d41bib41
  publication-title: MNRAS
– volume: 419
  start-page: 2163
  year: 2012b
  ident: apjad9d41bib29
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2011.19867.x
– volume: 688
  start-page: A38
  year: 2024
  ident: apjad9d41bib42
  publication-title: A&A
  doi: 10.1051/0004-6361/202449744
– volume: 104
  start-page: 12
  year: 1946
  ident: apjad9d41bib77
  publication-title: ApJ
  doi: 10.1086/144830
– volume: 350
  start-page: 627
  year: 2004
  ident: apjad9d41bib24
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2004.07675.x
– volume: 978
  start-page: L24
  year: 2025
  ident: apjad9d41bib84
  publication-title: ApJL
  doi: 10.3847/2041-8213/ada02a
– volume: 462
  start-page: 1697
  year: 2016b
  ident: apjad9d41bib5
  publication-title: MNRAS
  doi: 10.1093/mnras/stw1639
– volume: 467
  start-page: 1154
  year: 2017
  ident: apjad9d41bib69
  publication-title: MNRAS
  doi: 10.1093/mnras/stx093
– volume: 501
  start-page: 941
  year: 2009
  ident: apjad9d41bib34
  publication-title: A&A
  doi: 10.1051/0004-6361/200811191
– volume: 208
  start-page: 687
  year: 1984
  ident: apjad9d41bib48
  publication-title: MNRAS
  doi: 10.1093/mnras/208.4.687
– volume: 965
  start-page: L9
  year: 2024c
  ident: apjad9d41bib81
  publication-title: ApJL
  doi: 10.3847/2041-8213/ad3554
– volume: 563
  start-page: A60
  year: 2014
  ident: apjad9d41bib2
  publication-title: A&A
  doi: 10.1051/0004-6361/201322623
– volume: 750
  start-page: 107
  year: 2012
  ident: apjad9d41bib73
  publication-title: ApJ
  doi: 10.1088/0004-637X/750/2/107
– volume: 952
  start-page: 163
  year: 2023
  ident: apjad9d41bib82
  publication-title: ApJ
  doi: 10.3847/1538-4357/acdb58
– volume: 475
  start-page: 1093
  year: 2018
  ident: apjad9d41bib92
  publication-title: MNRAS
  doi: 10.1093/mnras/stx3204
– volume: 408
  start-page: 783
  year: 2010
  ident: apjad9d41bib64
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2010.17178.x
– volume: 60
  start-page: 263
  year: 1977
  ident: apjad9d41bib89
  publication-title: A&A
– volume: 922
  start-page: 189
  year: 2021
  ident: apjad9d41bib86
  publication-title: ApJ
  doi: 10.3847/1538-4357/ac27a9
– volume: 448
  start-page: 855
  year: 2015
  ident: apjad9d41bib93
  publication-title: MNRAS
  doi: 10.1093/mnras/stu2723
– volume: 674
  start-page: A29
  year: 2023
  ident: apjad9d41bib61
  publication-title: A&A
  doi: 10.1051/0004-6361/202243750
– volume: 478
  start-page: 611
  year: 2018
  ident: apjad9d41bib9
  publication-title: MNRAS
  doi: 10.1093/mnras/sty982
– volume: 403
  start-page: 1829
  year: 2010
  ident: apjad9d41bib67
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2010.16253.x
– volume: 473
  start-page: 1218
  year: 2018
  ident: apjad9d41bib49
  publication-title: MNRAS
  doi: 10.1093/mnras/stx2146
– volume: 150
  start-page: 461
  year: 1967
  ident: apjad9d41bib8
  publication-title: ApJ
  doi: 10.1086/149349
– volume: 340
  start-page: 949
  year: 2003
  ident: apjad9d41bib11
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2003.06358.x
– volume: 516
  start-page: 4988
  year: 2022
  ident: apjad9d41bib54
  publication-title: MNRAS
  doi: 10.1093/mnras/stac2571
– volume: 478
  start-page: 3809
  year: 2018
  ident: apjad9d41bib68
  publication-title: MNRAS
  doi: 10.1093/mnras/sty1256
– volume: 428
  start-page: 1055
  year: 2013
  ident: apjad9d41bib7
  publication-title: MNRAS
  doi: 10.1093/mnras/sts083
– volume: 783
  start-page: 130
  year: 2014
  ident: apjad9d41bib63
  publication-title: ApJ
  doi: 10.1088/0004-637X/783/2/130
– volume: 459
  start-page: 199
  year: 2016
  ident: apjad9d41bib30
  publication-title: MNRAS
  doi: 10.1093/mnras/stw601
– volume: 403
  start-page: 74
  year: 1993
  ident: apjad9d41bib59
  publication-title: ApJ
  doi: 10.1086/172184
– volume: 459
  start-page: 3326
  year: 2016a
  ident: apjad9d41bib4
  publication-title: MNRAS
  doi: 10.1093/mnras/stw777
– volume: 464
  start-page: 702
  year: 2017
  ident: apjad9d41bib44
  publication-title: MNRAS
  doi: 10.1093/mnras/stw2363
– volume: 781
  start-page: L20
  year: 2014
  ident: apjad9d41bib56
  publication-title: ApJL
  doi: 10.1088/2041-8205/781/1/L20
– volume: 688
  start-page: 254
  year: 2008
  ident: apjad9d41bib45
  publication-title: ApJ
  doi: 10.1086/591958
– volume: 426
  start-page: 690
  year: 2012
  ident: apjad9d41bib15
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2012.21738.x
– volume: 114
  start-page: 385
  year: 1951
  ident: apjad9d41bib75
  publication-title: ApJ
  doi: 10.1086/145478
– volume: 380
  start-page: 1348
  year: 2007
  ident: apjad9d41bib70
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2007.12210.x
– volume: 427
  start-page: 274
  year: 2012
  ident: apjad9d41bib66
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2012.21631.x
– volume: 391
  start-page: 1806
  year: 2008
  ident: apjad9d41bib87
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2008.13979.x
– volume: 862
  start-page: 1D
  year: 2018
  ident: apjad9d41bib20
  publication-title: ApJ
  doi: 10.3847/2041-8213/aad0ee
– volume: 118
  start-page: 106
  year: 1953
  ident: apjad9d41bib76
  publication-title: ApJ
  doi: 10.1086/145730
– volume: 12
  start-page: 735
  year: 2012
  ident: apjad9d41bib23
  publication-title: RAA
  doi: 10.1088/1674-4527/12/7/003
– volume: 249
  start-page: 29
  year: 2020
  ident: apjad9d41bib38
  publication-title: ApJS
  doi: 10.3847/1538-4365/ab994f
– volume: 272
  start-page: 8
  year: 2024b
  ident: apjad9d41bib80
  publication-title: ApJS
  doi: 10.3847/1538-4365/ad3043
– volume: 561
  start-page: 360
  year: 2018
  ident: apjad9d41bib3
  publication-title: Natur
  doi: 10.1038/s41586-018-0510-7
– volume: 397
  start-page: 1286
  year: 2009
  ident: apjad9d41bib6
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2009.15053.x
– volume: 115
  start-page: 2384
  year: 1998
  ident: apjad9d41bib21
  publication-title: AJ
  doi: 10.1086/300364
– volume: 799
  start-page: 209
  year: 2015
  ident: apjad9d41bib90
  publication-title: ApJ
  doi: 10.1088/0004-637X/799/2/209
– volume: 418
  start-page: 989
  year: 2004
  ident: apjad9d41bib58
  publication-title: A&A
  doi: 10.1051/0004-6361:20035959
– volume: 337
  start-page: 731
  year: 2002
  ident: apjad9d41bib31
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2002.05956.x
– volume: 804
  start-page: L9
  year: 2015
  ident: apjad9d41bib57
  publication-title: ApJ
  doi: 10.1088/2041-8205/804/1/L9
– volume: 563
  start-page: 85
  year: 2018
  ident: apjad9d41bib33
  publication-title: Natur
  doi: 10.1038/s41586-018-0625-x
– start-page: 87
  year: 2001
  ident: apjad9d41bib60
– volume: 474
  start-page: 95
  year: 2018
  ident: apjad9d41bib39
  publication-title: MNRAS
  doi: 10.1093/mnras/stx2777
– start-page: 323
  year: 1991
  ident: apjad9d41bib43
– volume: 257
  start-page: 620
  year: 1992
  ident: apjad9d41bib40
  publication-title: MNRAS
  doi: 10.1093/mnras/257.4.620
– volume: 415
  start-page: 2652
  year: 2011
  ident: apjad9d41bib35
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2011.18891.x
– volume: 558
  start-page: A9
  year: 2013
  ident: apjad9d41bib55
  publication-title: A&A
  doi: 10.1051/0004-6361/201220189
– volume: 493
  start-page: 2952
  year: 2020
  ident: apjad9d41bib32
  publication-title: MNRAS
  doi: 10.1093/mnras/staa335
– volume: 423
  start-page: 3727
  year: 2012a
  ident: apjad9d41bib28
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2012.21176.x
– volume: 467
  start-page: 1890
  year: 2017
  ident: apjad9d41bib91
  publication-title: MNRAS
  doi: 10.1093/mnras/stx129
– volume: 793
  start-page: 51
  year: 2014
  ident: apjad9d41bib71
  publication-title: ApJ
  doi: 10.1088/0004-637X/793/1/51
– volume: 486
  start-page: 3180
  year: 2019
  ident: apjad9d41bib47
  publication-title: MNRAS
  doi: 10.1093/mnras/sty1609
– start-page: 211
  year: 2014
  ident: apjad9d41bib18
– volume: 506
  start-page: 1761
  year: 2021
  ident: apjad9d41bib72
  publication-title: MNRAS
  doi: 10.1093/mnras/stab1086
– volume: 54
  start-page: 529
  year: 2016
  ident: apjad9d41bib12
  publication-title: ARA&A
  doi: 10.1146/annurev-astro-081915-023441
– volume: 530
  start-page: A138
  year: 2011
  ident: apjad9d41bib17
  publication-title: A&A
  doi: 10.1051/0004-6361/201016276
– volume: 674
  start-page: A39
  year: 2023a
  ident: apjad9d41bib26
  publication-title: A&A
  doi: 10.1051/0004-6361/202243688
– volume: 674
  start-page: A38
  year: 2023b
  ident: apjad9d41bib27
  publication-title: A&A
  doi: 10.1051/0004-6361/202243750
SSID ssj0004299
Score 2.4758162
Snippet Using nearly 230,000 red clump stars selected from LAMOST and Gaia, we conduct a comprehensive analysis of the stellar age–velocity dispersion relations (AVRs)...
SourceID doaj
crossref
iop
SourceType Open Website
Index Database
Enrichment Source
Publisher
StartPage 103
SubjectTerms Galaxy kinematics
Galaxy structure
Milky Way disk
Milky Way dynamics
Stellar abundances
Stellar kinematics
SummonAdditionalLinks – databaseName: IOP Science Platform
  dbid: IOP
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaqIiQu_BRQl5_KB0Di4O06dmJHnJZCWyFKK9GiPSBZtmNXZWE3arZI5cQ78IY8CTN2ulCEEOJmJRPHmfF4Pjuez4Q84rpC1i3FbFEoJsGbmA1BMxVrgX0m6JQovPem2j2SryblZIU8W-bCzNt-6B9CMRMFZxWifwsYSzeTj0KUV5u2qRtMWr8iNAROzN7bP_iZFFnUPfaVrBJqkv9R_rGGSzEpUfdDpIHX_xJptm-Q9xdtzBtMpsOzhRv6L7_RN_7nR9wk13sESsdZ9BZZCbM1sj7ucE18_umcPqGpnJc8ujVy9SCXbpMp9Ck6Pg7fv357FyAIAoCnL06QahyX3OhyXx2dRwq4ku7YjykFC4Wm1HYg8RlxaUPdeRJ4Pd7bf3vIduyJhXsN3YKRsqWAf0-7O-Ro--Xh1i7rD2tgXii-YLpSFtCKLlxZWGeVbkYIDSqcP1YRQCP3ZeW5ssKrInDnYynVyNdldIpbHsRdsjqbz8I6oU4p5WOAqauyUkautZO6hqjKBZL7xAF5emEu02ZODgNzGdSrQb0a1KvJeh2Q52jPpRyyaacLYBTTG8VUyEGvHTRvFGWjlRZOyBAbwI7C6yAH5DHY0fTe3f3lZRuX5Gz7wdSqNgU8IUzbxHv_WNF9cq3Ac4bT7vAHZHVxehYeAvhZuI3UyX8AHhL5Ig
  priority: 102
  providerName: IOP Publishing
Title The Age–Velocity Dispersion Relations of the Galactic Disk as Revealed by the LAMOST-Gaia Red Clump Stars
URI https://iopscience.iop.org/article/10.3847/1538-4357/ad9d41
https://doaj.org/article/694308b6c10f4d8783b34efd3923c8e4
Volume 979
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUqJKReUIFWbPmQD1Cph2jXsZNxjss3VekiFSg3y07sagvsRmRB4sZ_4B_yS5hxdhFc2ksvkZVMFOuN7Xnj2M-MbQqdk-oWJDZNIVHYmxLrvU4gFJLajNdxo_Dxj_zwTH27yC5eHfVFa8JaeeAWuG5O-uDa5aXoBVVp0NJJ5UOFcV2W2kclUIx5s2RqtiMSR9n2p6TE4bcbuzUSA-jaqqiUeBOEolY_hpbhuH4VWvY_sIUpJ-T9ti6L7J0fLbGVfkOz1OPre_6Fx3I7CdEssfmTtrTMLtHLvP_bPz08nnsMS0ip-e6QxL9pEoy_rHTj48CR6fEDexU3RZHRJbcNWtwRU6y4u48G3_vHg5-nyYEdWnxW8R0cu2qOjPSm-cjO9vdOdw6T6fEJSSlBTBKdg0X-oFOXpdZZ0FWPgnVOGV0ekMaJMkNYwcoSUi9cGTIFvbLIggNhhZef2NxoPPIrjDsAKIPHZBKsUkFo7ZQuMM4JSXI7ocO-zvA0dauSYTC7IOwNYW8Ie9Ni32HbBPiLHelbxxvodTP1uvmX1ztsC91lpv2t-cvHNt7Y2fqPKaAwKb4hTV2Fz_-jNqvsfUrHAsfF3GtsbnJz69eRq0zcRmyWeD0anOB1IH89Ax1t45Q
linkProvider Directory of Open Access Journals
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbhMxEB6VIhAXfgqo4af4QJE4bBL_7Np74BAa0pb-RaJFubn2ro1K2iTqpqBw4h14EF6FZ-BJGO9uA0UIcemBm5VMHK9nxt83Xs8Y4ClVSai6JSPDmIwEelNknFOR9CkPNuNUmSi8s5tsHIjXg3iwAF_nuTDjSb30N7FZFQqupjD4N8e1tFX6KKK8bJk8zQVtTXJfn6rccrOPGLMVLza7qOBVxnqv9tc2ovpagSjjkk4jlUiDuKqYjZmxRqq8HUAsCZFO4pHe0CxOMioNzyRz1GY-FrKdpbG3khrqOPZ7Ba7GHLE6ZAzu9X8mYrK05tsiSrgcVO9F_zjqCzhYXheA6IaP_Au69W7Bt_N5qQ61DJtnU9vMPv1WMvI_mrjbcLNm2qRTDe8OLLjREix3irD3Pz6ZkWekbFdbO8USXOtXrbswRN8hnXfu--cvbx2CPQYqpHsUSqqHrUUyPz9Ixp4gfybr5rhMNQtCQ2IKlPgQ-HdO7KwU2O7s7L3Zj9bNkcHvcrKGiDAhyPNPi3twcCmTcB8WR-ORWwZipZSZdxiiSyOEp0pZoVJkD5SHIka-Ac_PTURPqtojGmO2oEsddKmDLnWlywa8DDY0lwtVw8sP0BB0bQg6CbX2lcXhtb3IlVTccuF8jhyZZ8qJBqyi7eh6FSv-8mcrF-TM5L1OZaoZ_oJrtKoH_9jRE7je7_b09ubu1kO4wcLVyuWB-EewOD09c4-R703tSuljBA4v2zZ_AO_UVgw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Age%E2%80%93Velocity+Dispersion+Relations+of+the+Galactic+Disk+as+Revealed+by+the+LAMOST-Gaia+Red+Clump+Stars&rft.jtitle=The+Astrophysical+journal&rft.au=Weixiang+Sun&rft.au=Han+Shen&rft.au=Biwei+Jiang&rft.au=Xiaowei+Liu&rft.date=2025-02-01&rft.pub=IOP+Publishing&rft.eissn=1538-4357&rft.volume=979&rft.issue=2&rft.spage=103&rft_id=info:doi/10.3847%2F1538-4357%2Fad9d41&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_694308b6c10f4d8783b34efd3923c8e4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon