Reticular chemistry for the rational design of mechanically robust mesoporous merged-net metal-organic frameworks
Access to metal-organic frameworks (MOFs) with enhanced mechanical stability is key to their successful deployment in practical applications. However, the high porosity of the material often affects mechanical stability. In this article, to achieve highly porous MOFs with enhanced mechanical stabili...
Saved in:
Published in | Matter Vol. 6; no. 1; pp. 285 - 295 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
04.01.2023
Cell Press/Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Access to metal-organic frameworks (MOFs) with enhanced mechanical stability is key to their successful deployment in practical applications. However, the high porosity of the material often affects mechanical stability. In this article, to achieve highly porous MOFs with enhanced mechanical stability, we explored the merged-net approach where two relatively fragile frameworks were merged into a robust MOF structure. We demonstrate the effectiveness of this approach by computationally evaluating mechanical properties of sph-MOFs with varying lengths of linkers. Prominently, we pinpoint the significance of triangular rigidity on the robustness of large-pore MOFs and, subsequently, designed and synthesized a rare earth (RE)-based RE-sph-MOF-5 by the reticulation of hexanuclear RE clusters, tritopic linkers, and unprecedentedly large planar hexatopic linkers containing 19 phenyl rings. The mechanical properties of sph-MOFs were characterized and quantified using amplitude-frequency modulation (AM-FM) bimodal atomic force microscopy (AFM) analyses. Markedly, the mesoporous RE-sph-MOF-5 expresses high mechanical stability despite its large mesoporous cavities.
[Display omitted]
•Reveal mechanical enhancement of merged frameworks in reticular chemistry•Computational calculation of three mechanisms impacts MOFs' mechanical stability•Synthesis of a high-mechanical-stability mesoporous mixed-linker MOF, RE-sph-MOF-5•AFM mechanical stability study of synthesized sph-MOFs
The linker expansion, affording extra-large, free open space in metal-organic frameworks (MOFs), is generally accompanied by a decrease in their mechanical stabilities, which makes it difficult to obtain highly stable mesoporous MOFs with elongated linkers. Here, we demonstrate the combination of the merged-net approach and triangular rigidity as an effective strategy for the rational design of mechanically robust mesoporous MOFs. The merged-net approach can merge two mechanically fragile frameworks into a more robust framework, and the introduction of rigid triangular structures can further increase their mechanical stability. We report RE-sph-MOF-5 as an example containing both high porosity and high mechanical stability without losing much porosity. We expect this work will further promote the synthesis of mechanically robust materials, i.e., MOFs and COFs, as various other potential merged nets offer great potential for the synthesis of mechanically stable structures.
Mechanical stability plays a key role in the practical applications of metal-organic frameworks (MOFs). This study provides new insight into the design of high-mechanical-stability MOFs by merging two mechanically fragile frameworks into a more robust framework. A mesoporous MOF with high mechanical stability was synthesized by combining the topological merged-net approach and the introduction of triangular rigidity. The enhancement of mechanical stability was studied by computational force field calculation and experimental AFM characterization. |
---|---|
AbstractList | Access to metal-organic frameworks (MOFs) with enhanced mechanical stability is key to their successful deployment in practical applications. However, the high porosity of the material often affects mechanical stability. In this article, to achieve highly porous MOFs with enhanced mechanical stability, we explored the merged-net approach where two relatively fragile frameworks were merged into a robust MOF structure. We demonstrate the effectiveness of this approach by computationally evaluating mechanical properties of sph-MOFs with varying lengths of linkers. Prominently, we pinpoint the significance of triangular rigidity on the robustness of large-pore MOFs and, subsequently, designed and synthesized a rare earth (RE)-based RE-sph-MOF-5 by the reticulation of hexanuclear RE clusters, tritopic linkers, and unprecedentedly large planar hexatopic linkers containing 19 phenyl rings. The mechanical properties of sph-MOFs were characterized and quantified using amplitude-frequency modulation (AM-FM) bimodal atomic force microscopy (AFM) analyses. Markedly, the mesoporous RE-sph-MOF-5 expresses high mechanical stability despite its large mesoporous cavities.
[Display omitted]
•Reveal mechanical enhancement of merged frameworks in reticular chemistry•Computational calculation of three mechanisms impacts MOFs' mechanical stability•Synthesis of a high-mechanical-stability mesoporous mixed-linker MOF, RE-sph-MOF-5•AFM mechanical stability study of synthesized sph-MOFs
The linker expansion, affording extra-large, free open space in metal-organic frameworks (MOFs), is generally accompanied by a decrease in their mechanical stabilities, which makes it difficult to obtain highly stable mesoporous MOFs with elongated linkers. Here, we demonstrate the combination of the merged-net approach and triangular rigidity as an effective strategy for the rational design of mechanically robust mesoporous MOFs. The merged-net approach can merge two mechanically fragile frameworks into a more robust framework, and the introduction of rigid triangular structures can further increase their mechanical stability. We report RE-sph-MOF-5 as an example containing both high porosity and high mechanical stability without losing much porosity. We expect this work will further promote the synthesis of mechanically robust materials, i.e., MOFs and COFs, as various other potential merged nets offer great potential for the synthesis of mechanically stable structures.
Mechanical stability plays a key role in the practical applications of metal-organic frameworks (MOFs). This study provides new insight into the design of high-mechanical-stability MOFs by merging two mechanically fragile frameworks into a more robust framework. A mesoporous MOF with high mechanical stability was synthesized by combining the topological merged-net approach and the introduction of triangular rigidity. The enhancement of mechanical stability was studied by computational force field calculation and experimental AFM characterization. Not provided. |
Author | Alsadun, Norah Shekhah, Osama Moosavi, Seyed Mohamad Shkurenko, Aleksander Torre, Bruno Jia, Jiangtao Di Fabrizio, Enzo Eddaoudi, Mohamed Ameur, Zied Ouled Czaban-Jóźwiak, Justyna Jiang, Hao Smit, Berend |
Author_xml | – sequence: 1 givenname: Hao surname: Jiang fullname: Jiang, Hao organization: Functional Materials Design, Discovery and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia – sequence: 2 givenname: Seyed Mohamad surname: Moosavi fullname: Moosavi, Seyed Mohamad organization: Laboratory of Molecular Simulation, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), Rue de l’Industrie 17, 1951 Sion, Valais, Switzerland – sequence: 3 givenname: Justyna surname: Czaban-Jóźwiak fullname: Czaban-Jóźwiak, Justyna organization: Functional Materials Design, Discovery and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia – sequence: 4 givenname: Bruno surname: Torre fullname: Torre, Bruno organization: SMILEs Lab, Physical Science and Engineering (PSE) and Biological and Environmental Science and Engineering (BESE) Divisions, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia – sequence: 5 givenname: Aleksander surname: Shkurenko fullname: Shkurenko, Aleksander organization: Functional Materials Design, Discovery and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia – sequence: 6 givenname: Zied Ouled surname: Ameur fullname: Ameur, Zied Ouled organization: Functional Materials Design, Discovery and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia – sequence: 7 givenname: Jiangtao surname: Jia fullname: Jia, Jiangtao organization: Functional Materials Design, Discovery and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia – sequence: 8 givenname: Norah surname: Alsadun fullname: Alsadun, Norah organization: Functional Materials Design, Discovery and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia – sequence: 9 givenname: Osama surname: Shekhah fullname: Shekhah, Osama organization: Functional Materials Design, Discovery and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia – sequence: 10 givenname: Enzo surname: Di Fabrizio fullname: Di Fabrizio, Enzo organization: SMILEs Lab, Physical Science and Engineering (PSE) and Biological and Environmental Science and Engineering (BESE) Divisions, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia – sequence: 11 givenname: Berend surname: Smit fullname: Smit, Berend email: berend.smit@epfl.ch organization: Laboratory of Molecular Simulation, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), Rue de l’Industrie 17, 1951 Sion, Valais, Switzerland – sequence: 12 givenname: Mohamed orcidid: 0000-0003-1916-9837 surname: Eddaoudi fullname: Eddaoudi, Mohamed email: mohamed.eddaoudi@kaust.edu.sa organization: Functional Materials Design, Discovery and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia |
BackLink | https://www.osti.gov/servlets/purl/2424586$$D View this record in Osti.gov |
BookMark | eNp9kEtLAzEUhYMoWGv_gKvgfsa85gVupPiCgiDdh0zmTps6k9QkVfrvzVAXrlzdw-E7h8u5QufWWUDohpKcElre7fJRxZgzwlgyckLEGZqxoiEZ43Vx_kdfokUIO0ISSXkl-Ax9vkM0-jAoj_UWRhOiP-LeeRy3gL2Kxlk14A6C2VjsejyC3iprtBqGI_auPYSYvOD2zrtDSNJvoMssTG5UQ-b8ZsJx79UI385_hGt00ashwOL3ztH66XG9fMlWb8-vy4dVpnlFY1bVjAnCBWdtSXUvBKNC1VBwEF3NOS3brm84LztWtbpuaCE4lLqEvmwZaRSfo9tTrQvRyKBNTJ9rZy3oKJlgoqjLBLETpL0LwUMv996Myh8lJXLaVu7ktK2ctp28tG0K3Z9CkL7_MuCndrAaOuOn8s6Z_-I_iZmF5Q |
CitedBy_id | crossref_primary_10_1016_j_chempr_2023_09_026 crossref_primary_10_1021_jacs_3c03672 crossref_primary_10_1021_acs_chemmater_3c01885 crossref_primary_10_1021_jacs_3c12679 crossref_primary_10_1016_j_fuel_2023_129377 crossref_primary_10_1016_j_ccr_2024_215690 crossref_primary_10_1016_j_gee_2023_06_001 crossref_primary_10_1039_D3MH02185H crossref_primary_10_1039_D4NR00948G crossref_primary_10_1063_5_0173494 crossref_primary_10_1007_s11426_023_1809_8 crossref_primary_10_1007_s12598_023_02584_7 crossref_primary_10_1016_j_microc_2023_108956 crossref_primary_10_1007_s40820_023_01180_9 |
Cites_doi | 10.1021/jacs.7b00219 10.1063/1.4904818 10.1016/j.cej.2017.05.008 10.1021/ar020022l 10.1038/nmat4238 10.1021/jacs.0c06925 10.1073/pnas.1003205107 10.1039/c4sc00497c 10.1038/s41563-022-01237-x 10.1021/jacs.5b08212 10.1103/PhysRevLett.109.195502 10.1021/acs.accounts.7b00404 10.1021/jacs.8b04745 10.1021/acsenergylett.7b00692 10.1021/jacs.8b11527 10.1002/adma.201704303 10.1021/jacs.0c10007 10.1039/C8CC08922A 10.1038/natrevmats.2015.18 10.1021/jz4002345 10.1021/acsami.7b13402 10.1021/jacs.6b11821 10.1039/C7FD00119C 10.1021/ja5131403 10.1039/c0cs00163e 10.1016/j.matt.2019.03.002 10.1002/anie.201506345 10.1021/acs.accounts.1c00280 10.1021/acscentsci.7b00169 10.1038/s41578-021-00287-y 10.1039/b807083k 10.1021/jacs.0c10774 10.1021/acs.chemrev.9b00648 10.1039/C9SC04249K 10.1021/ja908415z 10.1016/j.cpc.2021.108171 10.1126/science.1230444 10.1039/C8CC03841D 10.1021/acscentsci.8b00157 10.1021/acs.jpclett.6b02532 10.1016/j.chempr.2020.08.008 10.1021/j100389a010 |
ContentType | Journal Article |
Copyright | 2022 The Authors |
Copyright_xml | – notice: 2022 The Authors |
CorporateAuthor | King Abdullah University of Science and Technology (KAUST), Thuwal (Saudi Arabia) |
CorporateAuthor_xml | – name: King Abdullah University of Science and Technology (KAUST), Thuwal (Saudi Arabia) |
DBID | 6I. AAFTH AAYXX CITATION OIOZB OTOTI |
DOI | 10.1016/j.matt.2022.10.004 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2590-2385 |
EndPage | 295 |
ExternalDocumentID | 2424586 10_1016_j_matt_2022_10_004 S2590238522005914 |
GroupedDBID | 6I. AAEDW AAFTH AAIAV AALRI AAXUO ADJPV AFTJW ALMA_UNASSIGNED_HOLDINGS EBS EJD FDB HX~ M3Z M41 OK1 0R~ 0SF AAMRU AAYXX ADVLN AITUG AKAPO AKRWK AMRAJ CITATION ROL OIOZB OTOTI |
ID | FETCH-LOGICAL-c371t-7822403432b61cf44214a8e53e4d83316bdf9336d27bc891543e6c6ef6b209a3 |
ISSN | 2590-2385 |
IngestDate | Mon Sep 23 03:24:58 EDT 2024 Thu Sep 26 19:00:13 EDT 2024 Thu Jul 20 20:12:33 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | reticular chemistry molecular simulation mechanical stability merged nets bimodal AFM mixed-linker MOFs MAP3: Understanding metal-organic frameworks |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c371t-7822403432b61cf44214a8e53e4d83316bdf9336d27bc891543e6c6ef6b209a3 |
Notes | USDOE |
ORCID | 0000-0003-1916-9837 0000000319169837 |
OpenAccessLink | https://www.osti.gov/servlets/purl/2424586 |
PageCount | 11 |
ParticipantIDs | osti_scitechconnect_2424586 crossref_primary_10_1016_j_matt_2022_10_004 elsevier_sciencedirect_doi_10_1016_j_matt_2022_10_004 |
PublicationCentury | 2000 |
PublicationDate | 2023-01-04 |
PublicationDateYYYYMMDD | 2023-01-04 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-04 day: 04 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Matter |
PublicationYear | 2023 |
Publisher | Elsevier Inc Cell Press/Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Cell Press/Elsevier |
References | Tan, Bennett, Cheetham (bib28) 2010; 107 Iizuka, Honjo, Uemura (bib33) 2019; 55 Chen, Jiang, Li, O’Keeffe, Eddaoudi (bib39) 2020; 120 Tan, Cheetham (bib17) 2011; 40 Chapman, Halder, Chupas (bib20) 2009; 131 Mayo, Olafson, Goddard (bib40) 1990; 94 Yaghi (bib3) 2016; 138 He, Kong, Li (bib19) 2021; 54 Xue, Cadiau, Weseliński, Jiang, Bhatt, Shkurenko, Wojtas, Chen, Belmabkhout, Adil, Eddaoudi (bib8) 2018; 54 Nam, Shekhah, Lee, Mallick, Jiang, Li, Chen, Wicks, Eddaoudi, Sargent (bib13) 2020; 142 Assen, Belmabkhout, Adil, Bhatt, Xue, Jiang, Eddaoudi (bib5) 2015; 54 He, Kong, Bian, Zhang, Si, Xie, Wu, Huang, Chang, Bu (bib9) 2022; 21 Bhatt, Belmabkhout, Assen, Weseliński, Jiang, Cadiau, Xue, Eddaoudi (bib7) 2017; 324 Thompson, Aktulga, Berger, Bolintineanu, Brown, Crozier, in 't Veld, Kohlmeyer, Moore, Nguyen (bib42) 2022; 271 Yuan, Feng, Wang, Pang, Bosch, Lollar, Sun, Qin, Yang, Zhang (bib18) 2018; 30 Ockwig, Delgado-Friedrichs, O'Keeffe, Yaghi (bib34) 2005; 38 Chen, Weseliński, Adil, Belmabkhout, Shkurenko, Jiang, Bhatt, Guillerm, Dauzon, Xue (bib37) 2017; 139 Jiang, Jia, Shkurenko, Chen, Adil, Belmabkhout, Weselinski, Assen, Xue, O’Keeffe, Eddaoudi (bib38) 2018; 140 Furukawa, Cordova, O’Keeffe, Yaghi (bib1) 2013; 341 Howarth, Liu, Li, Li, Wang, Hupp, Farha (bib16) 2016; 1 Kapustin, Lee, Alshammari, Yaghi (bib31) 2017; 3 Lal, Derakhshandeh, Akhtar, Spasyuk, Lin, Trifkovic, Shimizu (bib32) 2019; 141 Wu, Yildirim, Zhou (bib27) 2013; 4 Rogge, Waroquier, Van Speybroeck (bib26) 2018; 51 Zeng, Tan (bib30) 2017; 9 Bouëssel du Bourg, Ortiz, Boutin, Coudert (bib25) 2014; 2 Li, Wan, Huang, Assen, Hsiung, Jiang, Han, Eddaoudi, Lai, Ming, Li (bib15) 2017; 2 Jiang, Alezi, Eddaoudi (bib2) 2021; 6 Henke, Li, Cheetham (bib29) 2014; 5 Boyd, Moosavi, Witman, Smit (bib41) 2017; 8 Ortiz, Boutin, Fuchs, Coudert (bib24) 2012; 109 Xue, Belmabkhout, Shekhah, Jiang, Adil, Cairns, Eddaoudi (bib6) 2015; 137 Lyu, Ji, Wuttke, Yaghi (bib35) 2020; 6 Mondloch, Katz, Isley, Ghosh, Liao, Bury, Wagner, Hall, DeCoste, Peterson (bib12) 2015; 14 Moosavi, Boyd, Sarkisov, Smit (bib22) 2018; 4 Ma, Abney, Lin (bib11) 2009; 38 Alsadun, Mouchaham, Guillerm, Czaban-Jóźwiak, Shkurenko, Jiang, Bhatt, Parvatkar, Eddaoudi (bib4) 2020; 142 Redfern, Farha (bib21) 2019; 10 Thiam, Abou-Hamad, Dereli, Liu, Emwas, Ahmad, Jiang, Isah, Ndiaye, Taoufik (bib10) 2020; 142 Moghadam, Rogge, Li, Chow, Wieme, Moharrami, Aragones-Anglada, Conduit, Gomez-Gualdron, Van Speybroeck, Fairen-Jimenez (bib23) 2019; 1 Kornienko, Zhao, Kley, Zhu, Kim, Lin, Chang, Yaghi, Yang (bib14) 2015; 137 Chen, Jiang, O'Keeffe, Eddaoudi (bib36) 2017; 201 Xue (10.1016/j.matt.2022.10.004_bib8) 2018; 54 Zeng (10.1016/j.matt.2022.10.004_bib30) 2017; 9 Assen (10.1016/j.matt.2022.10.004_bib5) 2015; 54 Thiam (10.1016/j.matt.2022.10.004_bib10) 2020; 142 Chen (10.1016/j.matt.2022.10.004_bib39) 2020; 120 Jiang (10.1016/j.matt.2022.10.004_bib38) 2018; 140 Moosavi (10.1016/j.matt.2022.10.004_bib22) 2018; 4 Kornienko (10.1016/j.matt.2022.10.004_bib14) 2015; 137 He (10.1016/j.matt.2022.10.004_bib19) 2021; 54 Ockwig (10.1016/j.matt.2022.10.004_bib34) 2005; 38 Lal (10.1016/j.matt.2022.10.004_bib32) 2019; 141 He (10.1016/j.matt.2022.10.004_bib9) 2022; 21 Howarth (10.1016/j.matt.2022.10.004_bib16) 2016; 1 Li (10.1016/j.matt.2022.10.004_bib15) 2017; 2 Bouëssel du Bourg (10.1016/j.matt.2022.10.004_bib25) 2014; 2 Rogge (10.1016/j.matt.2022.10.004_bib26) 2018; 51 Bhatt (10.1016/j.matt.2022.10.004_bib7) 2017; 324 Moghadam (10.1016/j.matt.2022.10.004_bib23) 2019; 1 Tan (10.1016/j.matt.2022.10.004_bib28) 2010; 107 Furukawa (10.1016/j.matt.2022.10.004_bib1) 2013; 341 Alsadun (10.1016/j.matt.2022.10.004_bib4) 2020; 142 Henke (10.1016/j.matt.2022.10.004_bib29) 2014; 5 Iizuka (10.1016/j.matt.2022.10.004_bib33) 2019; 55 Nam (10.1016/j.matt.2022.10.004_bib13) 2020; 142 Yaghi (10.1016/j.matt.2022.10.004_bib3) 2016; 138 Wu (10.1016/j.matt.2022.10.004_bib27) 2013; 4 Chapman (10.1016/j.matt.2022.10.004_bib20) 2009; 131 Boyd (10.1016/j.matt.2022.10.004_bib41) 2017; 8 Jiang (10.1016/j.matt.2022.10.004_bib2) 2021; 6 Kapustin (10.1016/j.matt.2022.10.004_bib31) 2017; 3 Mondloch (10.1016/j.matt.2022.10.004_bib12) 2015; 14 Ortiz (10.1016/j.matt.2022.10.004_bib24) 2012; 109 Xue (10.1016/j.matt.2022.10.004_bib6) 2015; 137 Yuan (10.1016/j.matt.2022.10.004_bib18) 2018; 30 Thompson (10.1016/j.matt.2022.10.004_bib42) 2022; 271 Ma (10.1016/j.matt.2022.10.004_bib11) 2009; 38 Chen (10.1016/j.matt.2022.10.004_bib37) 2017; 139 Redfern (10.1016/j.matt.2022.10.004_bib21) 2019; 10 Tan (10.1016/j.matt.2022.10.004_bib17) 2011; 40 Chen (10.1016/j.matt.2022.10.004_bib36) 2017; 201 Lyu (10.1016/j.matt.2022.10.004_bib35) 2020; 6 Mayo (10.1016/j.matt.2022.10.004_bib40) 1990; 94 |
References_xml | – volume: 142 start-page: 20547 year: 2020 end-page: 20553 ident: bib4 article-title: Introducing a cantellation strategy for the design of mesoporous zeolite-like metal–organic frameworks: Zr-sod-ZMOFs as a case study publication-title: J. Am. Chem. Soc. contributor: fullname: Eddaoudi – volume: 140 start-page: 8858 year: 2018 end-page: 8867 ident: bib38 article-title: Enriching the reticular chemistry repertoire: merged nets approach for the rational design of intricate mixed-linker metal–organic framework platforms publication-title: J. Am. Chem. Soc. contributor: fullname: Eddaoudi – volume: 142 start-page: 21513 year: 2020 end-page: 21521 ident: bib13 article-title: Intermediate binding control using metal–organic frameworks enhances electrochemical CO2 reduction publication-title: J. Am. Chem. Soc. contributor: fullname: Sargent – volume: 2 start-page: 2362 year: 2017 end-page: 2367 ident: bib15 article-title: Metal–organic framework-based separators for enhancing Li–S battery stability: mechanism of mitigating polysulfide diffusion publication-title: ACS Energy Lett. contributor: fullname: Li – volume: 6 start-page: 466 year: 2021 end-page: 487 ident: bib2 article-title: A reticular chemistry guide for the design of periodic solids publication-title: Nat. Rev. Mater. contributor: fullname: Eddaoudi – volume: 9 start-page: 39839 year: 2017 end-page: 39854 ident: bib30 article-title: AFM nanoindentation to quantify mechanical properties of nano- and micron-sized crystals of a metal–organic framework material publication-title: ACS Appl. Mater. Interfaces contributor: fullname: Tan – volume: 131 start-page: 17546 year: 2009 end-page: 17547 ident: bib20 article-title: Pressure-induced amorphization and porosity modification in a Metal−Organic framework publication-title: J. Am. Chem. Soc. contributor: fullname: Chupas – volume: 40 start-page: 1059 year: 2011 end-page: 1080 ident: bib17 article-title: Mechanical properties of hybrid inorganic–organic framework materials: establishing fundamental structure–property relationships publication-title: Chem. Soc. Rev. contributor: fullname: Cheetham – volume: 1 start-page: 219 year: 2019 end-page: 234 ident: bib23 article-title: Structure-mechanical stability relations of metal-organic frameworks via machine learning publication-title: Matter contributor: fullname: Fairen-Jimenez – volume: 14 start-page: 512 year: 2015 end-page: 516 ident: bib12 article-title: Destruction of chemical warfare agents using metal–organic frameworks publication-title: Nat. Mater. contributor: fullname: Peterson – volume: 38 start-page: 176 year: 2005 end-page: 182 ident: bib34 article-title: Reticular chemistry: occurrence and taxonomy of nets and grammar for the design of frameworks publication-title: Acc. Chem. Res. contributor: fullname: Yaghi – volume: 201 start-page: 127 year: 2017 end-page: 143 ident: bib36 article-title: Minimal edge-transitive nets for the design and construction of metal-organic frameworks publication-title: Faraday Discuss contributor: fullname: Eddaoudi – volume: 55 start-page: 691 year: 2019 end-page: 694 ident: bib33 article-title: Enhanced mechanical properties of a metal–organic framework by polymer insertion publication-title: Chem. Commun. contributor: fullname: Uemura – volume: 94 start-page: 8897 year: 1990 end-page: 8909 ident: bib40 article-title: DREIDING: a generic force field for molecular simulations publication-title: J. Phys. Chem. contributor: fullname: Goddard – volume: 5 start-page: 2392 year: 2014 end-page: 2397 ident: bib29 article-title: Guest-dependent mechanical anisotropy in pillared-layered soft porous crystals – a nanoindentation study publication-title: Chem. Sci. contributor: fullname: Cheetham – volume: 21 start-page: 689 year: 2022 end-page: 695 ident: bib9 article-title: Trace removal of benzene vapour using double-walled metal–dipyrazolate frameworks publication-title: Nat. Mater. contributor: fullname: Bu – volume: 54 start-page: 3083 year: 2021 end-page: 3094 ident: bib19 article-title: Chemically stable metal–organic frameworks: rational construction and application expansion publication-title: Acc. Chem. Res. contributor: fullname: Li – volume: 139 start-page: 3265 year: 2017 end-page: 3274 ident: bib37 article-title: Applying the power of reticular chemistry to finding the missing alb-MOF platform based on the (6, 12)-coordinated edge-transitive net publication-title: J. Am. Chem. Soc. contributor: fullname: Xue – volume: 120 start-page: 8039 year: 2020 end-page: 8065 ident: bib39 article-title: Reticular chemistry 3.2: typical minimal edge-transitive derived and related nets for the design and synthesis of metal–organic frameworks publication-title: Chem. Rev. contributor: fullname: Eddaoudi – volume: 10 start-page: 10666 year: 2019 end-page: 10679 ident: bib21 article-title: Mechanical properties of metal–organic frameworks publication-title: Chem. Sci. contributor: fullname: Farha – volume: 6 start-page: 2219 year: 2020 end-page: 2241 ident: bib35 article-title: Digital reticular chemistry publication-title: Chem contributor: fullname: Yaghi – volume: 109 start-page: 195502 year: 2012 ident: bib24 article-title: Anisotropic elastic properties of flexible metal-organic frameworks: how soft are soft porous crystals? publication-title: Phys. Rev. Lett. contributor: fullname: Coudert – volume: 142 start-page: 16690 year: 2020 end-page: 16703 ident: bib10 article-title: Extension of surface organometallic chemistry to metal–organic frameworks: development of a well-defined single site [(≡Zr–O−)W(O)(CH2tBu)3] olefin metathesis catalyst publication-title: J. Am. Chem. Soc. contributor: fullname: Taoufik – volume: 271 start-page: 108171 year: 2022 ident: bib42 article-title: Lammps - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales publication-title: Comput. Phys. Commun. contributor: fullname: Nguyen – volume: 138 start-page: 15507 year: 2016 end-page: 15509 ident: bib3 article-title: Reticular chemistry—construction, properties, and precision reactions of frameworks publication-title: J. Am. Chem. Soc. contributor: fullname: Yaghi – volume: 4 start-page: 925 year: 2013 end-page: 930 ident: bib27 article-title: Exceptional mechanical stability of highly porous zirconium metal–organic framework UiO-66 and its important implications publication-title: J. Phys. Chem. Lett. contributor: fullname: Zhou – volume: 1 start-page: 15018 year: 2016 ident: bib16 article-title: Chemical, thermal and mechanical stabilities of metal–organic frameworks publication-title: Nat. Rev. Mater. contributor: fullname: Farha – volume: 341 start-page: 1230444 year: 2013 ident: bib1 article-title: The chemistry and applications of metal-organic frameworks publication-title: Science contributor: fullname: Yaghi – volume: 3 start-page: 662 year: 2017 end-page: 667 ident: bib31 article-title: Molecular retrofitting adapts a metal–organic framework to extreme pressure publication-title: ACS Cent. Sci. contributor: fullname: Yaghi – volume: 30 start-page: 1704303 year: 2018 ident: bib18 article-title: Stable metal–organic frameworks: design, synthesis, and applications publication-title: Adv. Mater. contributor: fullname: Zhang – volume: 324 start-page: 392 year: 2017 end-page: 396 ident: bib7 article-title: Isoreticular rare earth fcu-MOFs for the selective removal of H2S from CO2 containing gases publication-title: Chem. Eng. J. contributor: fullname: Eddaoudi – volume: 137 start-page: 5034 year: 2015 end-page: 5040 ident: bib6 article-title: Tunable rare earth fcu-MOF platform: access to adsorption kinetics driven gas/vapor separations via pore size contraction publication-title: J. Am. Chem. Soc. contributor: fullname: Eddaoudi – volume: 4 start-page: 832 year: 2018 end-page: 839 ident: bib22 article-title: Improving the mechanical stability of metal–organic frameworks using chemical caryatids publication-title: ACS Cent. Sci. contributor: fullname: Smit – volume: 2 start-page: 124110 year: 2014 ident: bib25 article-title: Thermal and mechanical stability of zeolitic imidazolate frameworks polymorphs publication-title: Apl. Mater. contributor: fullname: Coudert – volume: 38 start-page: 1248 year: 2009 end-page: 1256 ident: bib11 article-title: Enantioselective catalysis with homochiral metal-organic frameworks publication-title: Chem. Soc. Rev. contributor: fullname: Lin – volume: 107 start-page: 9938 year: 2010 end-page: 9943 ident: bib28 article-title: Chemical structure, network topology, and porosity effects on the mechanical properties of Zeolitic Imidazolate Frameworks publication-title: Proc. Natl. Acad. Sci. USA. contributor: fullname: Cheetham – volume: 51 start-page: 138 year: 2018 end-page: 148 ident: bib26 article-title: Reliably modeling the mechanical stability of rigid and flexible metal–organic frameworks publication-title: Acc. Chem. Res. contributor: fullname: Van Speybroeck – volume: 54 start-page: 6404 year: 2018 end-page: 6407 ident: bib8 article-title: Topology meets MOF chemistry for pore-aperture fine tuning: ftw-MOF platform for energy-efficient separations via adsorption kinetics or molecular sieving publication-title: Chem. Commun. contributor: fullname: Eddaoudi – volume: 54 start-page: 14353 year: 2015 end-page: 14358 ident: bib5 article-title: Ultra-Tuning of the rare-earth fcu-MOF aperture size for selective molecular exclusion of branched paraffins publication-title: Angew. Chem. Int. Ed. Engl. contributor: fullname: Eddaoudi – volume: 8 start-page: 357 year: 2017 end-page: 363 ident: bib41 article-title: Force-field prediction of materials properties in metal-organic frameworks publication-title: J. Phys. Chem. Lett. contributor: fullname: Smit – volume: 137 start-page: 14129 year: 2015 end-page: 14135 ident: bib14 article-title: Metal–organic frameworks for electrocatalytic reduction of carbon dioxide publication-title: J. Am. Chem. Soc. contributor: fullname: Yang – volume: 141 start-page: 1045 year: 2019 end-page: 1053 ident: bib32 article-title: Mechanical properties of a metal–organic framework formed by covalent cross-linking of metal–organic polyhedra publication-title: J. Am. Chem. Soc. contributor: fullname: Shimizu – volume: 139 start-page: 3265 year: 2017 ident: 10.1016/j.matt.2022.10.004_bib37 article-title: Applying the power of reticular chemistry to finding the missing alb-MOF platform based on the (6, 12)-coordinated edge-transitive net publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b00219 contributor: fullname: Chen – volume: 2 start-page: 124110 year: 2014 ident: 10.1016/j.matt.2022.10.004_bib25 article-title: Thermal and mechanical stability of zeolitic imidazolate frameworks polymorphs publication-title: Apl. Mater. doi: 10.1063/1.4904818 contributor: fullname: Bouëssel du Bourg – volume: 324 start-page: 392 year: 2017 ident: 10.1016/j.matt.2022.10.004_bib7 article-title: Isoreticular rare earth fcu-MOFs for the selective removal of H2S from CO2 containing gases publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.05.008 contributor: fullname: Bhatt – volume: 38 start-page: 176 year: 2005 ident: 10.1016/j.matt.2022.10.004_bib34 article-title: Reticular chemistry: occurrence and taxonomy of nets and grammar for the design of frameworks publication-title: Acc. Chem. Res. doi: 10.1021/ar020022l contributor: fullname: Ockwig – volume: 14 start-page: 512 year: 2015 ident: 10.1016/j.matt.2022.10.004_bib12 article-title: Destruction of chemical warfare agents using metal–organic frameworks publication-title: Nat. Mater. doi: 10.1038/nmat4238 contributor: fullname: Mondloch – volume: 142 start-page: 16690 year: 2020 ident: 10.1016/j.matt.2022.10.004_bib10 article-title: Extension of surface organometallic chemistry to metal–organic frameworks: development of a well-defined single site [(≡Zr–O−)W(O)(CH2tBu)3] olefin metathesis catalyst publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c06925 contributor: fullname: Thiam – volume: 107 start-page: 9938 year: 2010 ident: 10.1016/j.matt.2022.10.004_bib28 article-title: Chemical structure, network topology, and porosity effects on the mechanical properties of Zeolitic Imidazolate Frameworks publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.1003205107 contributor: fullname: Tan – volume: 5 start-page: 2392 year: 2014 ident: 10.1016/j.matt.2022.10.004_bib29 article-title: Guest-dependent mechanical anisotropy in pillared-layered soft porous crystals – a nanoindentation study publication-title: Chem. Sci. doi: 10.1039/c4sc00497c contributor: fullname: Henke – volume: 21 start-page: 689 year: 2022 ident: 10.1016/j.matt.2022.10.004_bib9 article-title: Trace removal of benzene vapour using double-walled metal–dipyrazolate frameworks publication-title: Nat. Mater. doi: 10.1038/s41563-022-01237-x contributor: fullname: He – volume: 137 start-page: 14129 year: 2015 ident: 10.1016/j.matt.2022.10.004_bib14 article-title: Metal–organic frameworks for electrocatalytic reduction of carbon dioxide publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b08212 contributor: fullname: Kornienko – volume: 109 start-page: 195502 year: 2012 ident: 10.1016/j.matt.2022.10.004_bib24 article-title: Anisotropic elastic properties of flexible metal-organic frameworks: how soft are soft porous crystals? publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.195502 contributor: fullname: Ortiz – volume: 51 start-page: 138 year: 2018 ident: 10.1016/j.matt.2022.10.004_bib26 article-title: Reliably modeling the mechanical stability of rigid and flexible metal–organic frameworks publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.7b00404 contributor: fullname: Rogge – volume: 140 start-page: 8858 year: 2018 ident: 10.1016/j.matt.2022.10.004_bib38 article-title: Enriching the reticular chemistry repertoire: merged nets approach for the rational design of intricate mixed-linker metal–organic framework platforms publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b04745 contributor: fullname: Jiang – volume: 2 start-page: 2362 year: 2017 ident: 10.1016/j.matt.2022.10.004_bib15 article-title: Metal–organic framework-based separators for enhancing Li–S battery stability: mechanism of mitigating polysulfide diffusion publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00692 contributor: fullname: Li – volume: 141 start-page: 1045 year: 2019 ident: 10.1016/j.matt.2022.10.004_bib32 article-title: Mechanical properties of a metal–organic framework formed by covalent cross-linking of metal–organic polyhedra publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b11527 contributor: fullname: Lal – volume: 30 start-page: 1704303 year: 2018 ident: 10.1016/j.matt.2022.10.004_bib18 article-title: Stable metal–organic frameworks: design, synthesis, and applications publication-title: Adv. Mater. doi: 10.1002/adma.201704303 contributor: fullname: Yuan – volume: 142 start-page: 20547 year: 2020 ident: 10.1016/j.matt.2022.10.004_bib4 article-title: Introducing a cantellation strategy for the design of mesoporous zeolite-like metal–organic frameworks: Zr-sod-ZMOFs as a case study publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c10007 contributor: fullname: Alsadun – volume: 55 start-page: 691 year: 2019 ident: 10.1016/j.matt.2022.10.004_bib33 article-title: Enhanced mechanical properties of a metal–organic framework by polymer insertion publication-title: Chem. Commun. doi: 10.1039/C8CC08922A contributor: fullname: Iizuka – volume: 1 start-page: 15018 year: 2016 ident: 10.1016/j.matt.2022.10.004_bib16 article-title: Chemical, thermal and mechanical stabilities of metal–organic frameworks publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2015.18 contributor: fullname: Howarth – volume: 4 start-page: 925 year: 2013 ident: 10.1016/j.matt.2022.10.004_bib27 article-title: Exceptional mechanical stability of highly porous zirconium metal–organic framework UiO-66 and its important implications publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz4002345 contributor: fullname: Wu – volume: 9 start-page: 39839 year: 2017 ident: 10.1016/j.matt.2022.10.004_bib30 article-title: AFM nanoindentation to quantify mechanical properties of nano- and micron-sized crystals of a metal–organic framework material publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b13402 contributor: fullname: Zeng – volume: 138 start-page: 15507 year: 2016 ident: 10.1016/j.matt.2022.10.004_bib3 article-title: Reticular chemistry—construction, properties, and precision reactions of frameworks publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b11821 contributor: fullname: Yaghi – volume: 201 start-page: 127 year: 2017 ident: 10.1016/j.matt.2022.10.004_bib36 article-title: Minimal edge-transitive nets for the design and construction of metal-organic frameworks publication-title: Faraday Discuss doi: 10.1039/C7FD00119C contributor: fullname: Chen – volume: 137 start-page: 5034 year: 2015 ident: 10.1016/j.matt.2022.10.004_bib6 article-title: Tunable rare earth fcu-MOF platform: access to adsorption kinetics driven gas/vapor separations via pore size contraction publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5131403 contributor: fullname: Xue – volume: 40 start-page: 1059 year: 2011 ident: 10.1016/j.matt.2022.10.004_bib17 article-title: Mechanical properties of hybrid inorganic–organic framework materials: establishing fundamental structure–property relationships publication-title: Chem. Soc. Rev. doi: 10.1039/c0cs00163e contributor: fullname: Tan – volume: 1 start-page: 219 year: 2019 ident: 10.1016/j.matt.2022.10.004_bib23 article-title: Structure-mechanical stability relations of metal-organic frameworks via machine learning publication-title: Matter doi: 10.1016/j.matt.2019.03.002 contributor: fullname: Moghadam – volume: 54 start-page: 14353 year: 2015 ident: 10.1016/j.matt.2022.10.004_bib5 article-title: Ultra-Tuning of the rare-earth fcu-MOF aperture size for selective molecular exclusion of branched paraffins publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201506345 contributor: fullname: Assen – volume: 54 start-page: 3083 year: 2021 ident: 10.1016/j.matt.2022.10.004_bib19 article-title: Chemically stable metal–organic frameworks: rational construction and application expansion publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.1c00280 contributor: fullname: He – volume: 3 start-page: 662 year: 2017 ident: 10.1016/j.matt.2022.10.004_bib31 article-title: Molecular retrofitting adapts a metal–organic framework to extreme pressure publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.7b00169 contributor: fullname: Kapustin – volume: 6 start-page: 466 year: 2021 ident: 10.1016/j.matt.2022.10.004_bib2 article-title: A reticular chemistry guide for the design of periodic solids publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-021-00287-y contributor: fullname: Jiang – volume: 38 start-page: 1248 year: 2009 ident: 10.1016/j.matt.2022.10.004_bib11 article-title: Enantioselective catalysis with homochiral metal-organic frameworks publication-title: Chem. Soc. Rev. doi: 10.1039/b807083k contributor: fullname: Ma – volume: 142 start-page: 21513 year: 2020 ident: 10.1016/j.matt.2022.10.004_bib13 article-title: Intermediate binding control using metal–organic frameworks enhances electrochemical CO2 reduction publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c10774 contributor: fullname: Nam – volume: 120 start-page: 8039 year: 2020 ident: 10.1016/j.matt.2022.10.004_bib39 article-title: Reticular chemistry 3.2: typical minimal edge-transitive derived and related nets for the design and synthesis of metal–organic frameworks publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00648 contributor: fullname: Chen – volume: 10 start-page: 10666 year: 2019 ident: 10.1016/j.matt.2022.10.004_bib21 article-title: Mechanical properties of metal–organic frameworks publication-title: Chem. Sci. doi: 10.1039/C9SC04249K contributor: fullname: Redfern – volume: 131 start-page: 17546 year: 2009 ident: 10.1016/j.matt.2022.10.004_bib20 article-title: Pressure-induced amorphization and porosity modification in a Metal−Organic framework publication-title: J. Am. Chem. Soc. doi: 10.1021/ja908415z contributor: fullname: Chapman – volume: 271 start-page: 108171 year: 2022 ident: 10.1016/j.matt.2022.10.004_bib42 article-title: Lammps - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2021.108171 contributor: fullname: Thompson – volume: 341 start-page: 1230444 year: 2013 ident: 10.1016/j.matt.2022.10.004_bib1 article-title: The chemistry and applications of metal-organic frameworks publication-title: Science doi: 10.1126/science.1230444 contributor: fullname: Furukawa – volume: 54 start-page: 6404 year: 2018 ident: 10.1016/j.matt.2022.10.004_bib8 article-title: Topology meets MOF chemistry for pore-aperture fine tuning: ftw-MOF platform for energy-efficient separations via adsorption kinetics or molecular sieving publication-title: Chem. Commun. doi: 10.1039/C8CC03841D contributor: fullname: Xue – volume: 4 start-page: 832 year: 2018 ident: 10.1016/j.matt.2022.10.004_bib22 article-title: Improving the mechanical stability of metal–organic frameworks using chemical caryatids publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.8b00157 contributor: fullname: Moosavi – volume: 8 start-page: 357 year: 2017 ident: 10.1016/j.matt.2022.10.004_bib41 article-title: Force-field prediction of materials properties in metal-organic frameworks publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.6b02532 contributor: fullname: Boyd – volume: 6 start-page: 2219 year: 2020 ident: 10.1016/j.matt.2022.10.004_bib35 article-title: Digital reticular chemistry publication-title: Chem doi: 10.1016/j.chempr.2020.08.008 contributor: fullname: Lyu – volume: 94 start-page: 8897 year: 1990 ident: 10.1016/j.matt.2022.10.004_bib40 article-title: DREIDING: a generic force field for molecular simulations publication-title: J. Phys. Chem. doi: 10.1021/j100389a010 contributor: fullname: Mayo |
SSID | ssj0002213743 |
Score | 2.3577173 |
Snippet | Access to metal-organic frameworks (MOFs) with enhanced mechanical stability is key to their successful deployment in practical applications. However, the high... Not provided. |
SourceID | osti crossref elsevier |
SourceType | Open Access Repository Aggregation Database Publisher |
StartPage | 285 |
SubjectTerms | bimodal AFM Materials Science mechanical stability merged nets metal-organic frameworks mixed-linker MOFs molecular simulation reticular chemistry |
Title | Reticular chemistry for the rational design of mechanically robust mesoporous merged-net metal-organic frameworks |
URI | https://dx.doi.org/10.1016/j.matt.2022.10.004 https://www.osti.gov/servlets/purl/2424586 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLaq7sIFgQAxBsgHdqpcJbbjJsduAlWdymEUsVvkxI7YgHg0Kaj7i_gzeY7jJOwHYlyi5Em2krwvz1-ev2cj9CZQLAoCKYiSeUF4wgOSCKVJzhRVQHcTldhC4dV7sfjIl2fR2Wj0a6Ba2tbZNL-6ta7kf7wKNvCrrZK9h2e7TsEA5-BfOIKH4fhPPj7VzdIZcjPJ_b5tvWzQZ_lUo9Fw8-i2zNd65etusjHZtqrBVhmg4FYI2xRiKlJqawVOTtyOT_mk8AKuakhlV7IeSHuX523ieSFN50RjKvmjkQt80DtgtivzWX6Tqpv3uJKZLMnSTtYfscPj6PBo_vNcfnHVIlW9K7sxY203EWmxWJphqoKyJlXB-4gGv1oBAY7gprH1LbY2JIsbyGvDq2_qrtz2nDcGAZePuJgC5bdqWUqnjX6P90Oen-a_NhJ2-kQvfbtIbR-p7QMMabPw7B6FkAaxdG9-cvrppMvnURoyV8_RPVFbo-XkhNdv5i4eNDYQ2gcUZ_0IPWz_TfDcAe0xGunyCfregQx3IMMAMgwgwx5k2IEMmwIPQYYdyHAPMtyDDP8BMtyD7Clav3u7Pl6Qdp8O-KJnYU1mjRLZVihnIswLzmnIZawjprmKGQtFpoqEMaHoLMvjBEg70yIXuhAZDRLJnqFxaUr9HGGVhAxaBloXiodWW8pCPlNBESeZEkLto4l_aemlW40lvdtX-yjy7zVt-aTjiSkg5a_tDqwTbBu7kHJuFWfQyBZSRbF4ca97OEAP-i_hJRrXm61-BTS2zl63CPoN-rKgmQ |
link.rule.ids | 230,315,783,787,888,27936,27937 |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reticular+chemistry+for+the+rational+design+of+mechanically+robust+mesoporous+merged-net+metal-organic+frameworks&rft.jtitle=Matter&rft.au=Jiang%2C+Hao&rft.au=Moosavi%2C+Seyed+Mohamad&rft.au=Czaban-J%C3%B3%C5%BAwiak%2C+Justyna&rft.au=Torre%2C+Bruno&rft.date=2023-01-04&rft.issn=2590-2385&rft.eissn=2590-2385&rft.volume=6&rft.issue=1&rft.spage=285&rft.epage=295&rft_id=info:doi/10.1016%2Fj.matt.2022.10.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_matt_2022_10_004 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-2385&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-2385&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-2385&client=summon |