Indole-3-propionic acid alleviates ischemic brain injury in a mouse middle cerebral artery occlusion model
Increasing evidence highlights the importance of gut microbiota and its metabolites as an environmental factor affecting ischemic stroke. However, the role of microbial indole metabolites in ischemic stroke remains largely unknown. Here, we evaluated the effects and the underlying mechanism of indol...
Saved in:
Published in | Experimental neurology Vol. 353; p. 114081 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.07.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Increasing evidence highlights the importance of gut microbiota and its metabolites as an environmental factor affecting ischemic stroke. However, the role of microbial indole metabolites in ischemic stroke remains largely unknown. Here, we evaluated the effects and the underlying mechanism of indole-3-propionic acid (IPA) in a mouse model of acute middle cerebral artery occlusion (MCAO) and the mechanisms underlying these effects. We collected blood samples and evaluated serum indole derivatives levels using ultra-performance liquid chromatography with tandem mass spectrometry (UPLC-MS) in 8–10-week-old male C57 mice undergoing MCAO or sham. Intragastric IPA administration (400 μg/20 g/d) was performed in mice with MCAO, and its effects and mechanisms were assessed. We found that the serum IPA levels were significantly lower in mice with MCAO than in sham-treated subjects. 16S rRNA gene sequencing revealed that IPA treatment ameliorated the MCAO-induced alterations of the gut microbiome structure, specifically reshaping the microbial community composition in mice with MCAO to resemble that in the mice from the control group, with an increase in the abundance of probiotics and a decrease in the abundance of harmful bacteria. IPA repaired the integrity of the intestinal barrier and regulated the activities of regulatory T cells (Tregs) and Th17 cells in the gut-associated lymphoid tissue. Intragastric IPA administration effectively alleviated neuroinflammation, neurological impairment and brain infarction. Of note, Tregs in the IPA treatment group inhibited A1 reactive astrogliosis in vitro. The beneficial effects of IPA are thus mediated by the gut microbiota, which could enable the development of prebiotics for microbiome-based treatments for ischemic stroke.
•IPA levels are reduced after stroke.•IPA improves symptoms of gut and brain disorders.•IPA alters gut microbiota structure after stroke.•IPA inhibites A1 reactive astrogliosis in OGD/R by mediating Tregs. |
---|---|
AbstractList | Increasing evidence highlights the importance of gut microbiota and its metabolites as an environmental factor affecting ischemic stroke. However, the role of microbial indole metabolites in ischemic stroke remains largely unknown. Here, we evaluated the effects and the underlying mechanism of indole-3-propionic acid (IPA) in a mouse model of acute middle cerebral artery occlusion (MCAO) and the mechanisms underlying these effects. We collected blood samples and evaluated serum indole derivatives levels using ultra-performance liquid chromatography with tandem mass spectrometry (UPLC-MS) in 8-10-week-old male C57 mice undergoing MCAO or sham. Intragastric IPA administration (400 μg/20 g/d) was performed in mice with MCAO, and its effects and mechanisms were assessed. We found that the serum IPA levels were significantly lower in mice with MCAO than in sham-treated subjects. 16S rRNA gene sequencing revealed that IPA treatment ameliorated the MCAO-induced alterations of the gut microbiome structure, specifically reshaping the microbial community composition in mice with MCAO to resemble that in the mice from the control group, with an increase in the abundance of probiotics and a decrease in the abundance of harmful bacteria. IPA repaired the integrity of the intestinal barrier and regulated the activities of regulatory T cells (Tregs) and Th17 cells in the gut-associated lymphoid tissue. Intragastric IPA administration effectively alleviated neuroinflammation, neurological impairment and brain infarction. Of note, Tregs in the IPA treatment group inhibited A1 reactive astrogliosis in vitro. The beneficial effects of IPA are thus mediated by the gut microbiota, which could enable the development of prebiotics for microbiome-based treatments for ischemic stroke.Increasing evidence highlights the importance of gut microbiota and its metabolites as an environmental factor affecting ischemic stroke. However, the role of microbial indole metabolites in ischemic stroke remains largely unknown. Here, we evaluated the effects and the underlying mechanism of indole-3-propionic acid (IPA) in a mouse model of acute middle cerebral artery occlusion (MCAO) and the mechanisms underlying these effects. We collected blood samples and evaluated serum indole derivatives levels using ultra-performance liquid chromatography with tandem mass spectrometry (UPLC-MS) in 8-10-week-old male C57 mice undergoing MCAO or sham. Intragastric IPA administration (400 μg/20 g/d) was performed in mice with MCAO, and its effects and mechanisms were assessed. We found that the serum IPA levels were significantly lower in mice with MCAO than in sham-treated subjects. 16S rRNA gene sequencing revealed that IPA treatment ameliorated the MCAO-induced alterations of the gut microbiome structure, specifically reshaping the microbial community composition in mice with MCAO to resemble that in the mice from the control group, with an increase in the abundance of probiotics and a decrease in the abundance of harmful bacteria. IPA repaired the integrity of the intestinal barrier and regulated the activities of regulatory T cells (Tregs) and Th17 cells in the gut-associated lymphoid tissue. Intragastric IPA administration effectively alleviated neuroinflammation, neurological impairment and brain infarction. Of note, Tregs in the IPA treatment group inhibited A1 reactive astrogliosis in vitro. The beneficial effects of IPA are thus mediated by the gut microbiota, which could enable the development of prebiotics for microbiome-based treatments for ischemic stroke. Increasing evidence highlights the importance of gut microbiota and its metabolites as an environmental factor affecting ischemic stroke. However, the role of microbial indole metabolites in ischemic stroke remains largely unknown. Here, we evaluated the effects and the underlying mechanism of indole-3-propionic acid (IPA) in a mouse model of acute middle cerebral artery occlusion (MCAO) and the mechanisms underlying these effects. We collected blood samples and evaluated serum indole derivatives levels using ultra-performance liquid chromatography with tandem mass spectrometry (UPLC-MS) in 8–10-week-old male C57 mice undergoing MCAO or sham. Intragastric IPA administration (400 μg/20 g/d) was performed in mice with MCAO, and its effects and mechanisms were assessed. We found that the serum IPA levels were significantly lower in mice with MCAO than in sham-treated subjects. 16S rRNA gene sequencing revealed that IPA treatment ameliorated the MCAO-induced alterations of the gut microbiome structure, specifically reshaping the microbial community composition in mice with MCAO to resemble that in the mice from the control group, with an increase in the abundance of probiotics and a decrease in the abundance of harmful bacteria. IPA repaired the integrity of the intestinal barrier and regulated the activities of regulatory T cells (Tregs) and Th17 cells in the gut-associated lymphoid tissue. Intragastric IPA administration effectively alleviated neuroinflammation, neurological impairment and brain infarction. Of note, Tregs in the IPA treatment group inhibited A1 reactive astrogliosis in vitro. The beneficial effects of IPA are thus mediated by the gut microbiota, which could enable the development of prebiotics for microbiome-based treatments for ischemic stroke. •IPA levels are reduced after stroke.•IPA improves symptoms of gut and brain disorders.•IPA alters gut microbiota structure after stroke.•IPA inhibites A1 reactive astrogliosis in OGD/R by mediating Tregs. Increasing evidence highlights the importance of gut microbiota and its metabolites as an environmental factor affecting ischemic stroke. However, the role of microbial indole metabolites in ischemic stroke remains largely unknown. Here, we evaluated the effects and the underlying mechanism of indole-3-propionic acid (IPA) in a mouse model of acute middle cerebral artery occlusion (MCAO) and the mechanisms underlying these effects. We collected blood samples and evaluated serum indole derivatives levels using ultra-performance liquid chromatography with tandem mass spectrometry (UPLC-MS) in 8-10-week-old male C57 mice undergoing MCAO or sham. Intragastric IPA administration (400 μg/20 g/d) was performed in mice with MCAO, and its effects and mechanisms were assessed. We found that the serum IPA levels were significantly lower in mice with MCAO than in sham-treated subjects. 16S rRNA gene sequencing revealed that IPA treatment ameliorated the MCAO-induced alterations of the gut microbiome structure, specifically reshaping the microbial community composition in mice with MCAO to resemble that in the mice from the control group, with an increase in the abundance of probiotics and a decrease in the abundance of harmful bacteria. IPA repaired the integrity of the intestinal barrier and regulated the activities of regulatory T cells (Tregs) and Th17 cells in the gut-associated lymphoid tissue. Intragastric IPA administration effectively alleviated neuroinflammation, neurological impairment and brain infarction. Of note, Tregs in the IPA treatment group inhibited A1 reactive astrogliosis in vitro. The beneficial effects of IPA are thus mediated by the gut microbiota, which could enable the development of prebiotics for microbiome-based treatments for ischemic stroke. |
ArticleNumber | 114081 |
Author | Feng, Zhiming Tang, Yanping Hua, Shiting Li, Cong Cai, Yingqian Zou, Yuxi Zou, Xiaoxiong Han, Jianbang Xie, Yu Zhang, Zhongfei Jiang, Xiaodan Ouyang, Qian Liu, Zhizheng |
Author_xml | – sequence: 1 givenname: Yu surname: Xie fullname: Xie, Yu – sequence: 2 givenname: Xiaoxiong surname: Zou fullname: Zou, Xiaoxiong – sequence: 3 givenname: Jianbang surname: Han fullname: Han, Jianbang – sequence: 4 givenname: Zhongfei surname: Zhang fullname: Zhang, Zhongfei – sequence: 5 givenname: Zhiming surname: Feng fullname: Feng, Zhiming – sequence: 6 givenname: Qian surname: Ouyang fullname: Ouyang, Qian – sequence: 7 givenname: Shiting surname: Hua fullname: Hua, Shiting – sequence: 8 givenname: Zhizheng surname: Liu fullname: Liu, Zhizheng – sequence: 9 givenname: Cong surname: Li fullname: Li, Cong – sequence: 10 givenname: Yingqian surname: Cai fullname: Cai, Yingqian – sequence: 11 givenname: Yuxi surname: Zou fullname: Zou, Yuxi – sequence: 12 givenname: Yanping surname: Tang fullname: Tang, Yanping – sequence: 13 givenname: Xiaodan surname: Jiang fullname: Jiang, Xiaodan email: jiangxd@smu.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35405119$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkTtPHTEQha2IKFwgfyFxSbM3fq13XaRAiCRISGlCbfkxq3jltW_sXQT_PkYXUqShmmK-c-wz5wydpJwAoc-U7Cmh8su8h8dDgq3kuGeEsT2lgoz0HdpRokjHBCcnaEcIFZ0YR3mKzmqdCSFKsOEDOuW9ID2laofm2-RzhI53h5IPIafgsHHBYxMjPASzQsWhut-wtIUtJiQc0ryVpzawwUveKuAleB8BOyjQkIhNWaER2bm41ebZMA_xAr2fTKzw8WWeo_tvN7-uf3R3P7_fXl_ddY4PdO0GKe3UCzdx6UYmhLN28EoBn5hQxnkmhbWjV7aX08BGOdHe9lSMThhugVN-ji6Pvi3Rnw3qqpeWAGI0Cdp3dTNQveK9lA399IJudgGvDyUspjzp1_s04OsRcCXXWmDSLqxmbZnWdouoKdHPfehZ_-tDP_ehj300_fCf_vWJt5VXRyW0Uz0EKLq6AMmBDwXcqn0Ob3r8Bdugq6c |
CitedBy_id | crossref_primary_10_1002_glia_24501 crossref_primary_10_1016_j_neurot_2024_e00470 crossref_primary_10_22141_2308_2097_57_3_2023_550 crossref_primary_10_1007_s12035_023_03379_8 crossref_primary_10_3390_ijms241310820 crossref_primary_10_1016_j_phymed_2024_155530 crossref_primary_10_1007_s11655_024_3766_9 crossref_primary_10_3390_metabo15030210 crossref_primary_10_3390_antiox13010060 crossref_primary_10_1016_j_intimp_2024_113570 crossref_primary_10_1002_nep3_70001 crossref_primary_10_1016_j_heliyon_2024_e30424 crossref_primary_10_1016_j_biopha_2023_114559 crossref_primary_10_1039_D4FO03783A crossref_primary_10_1007_s12035_023_03723_y crossref_primary_10_1016_j_neuropharm_2023_109690 crossref_primary_10_3390_nu14173467 crossref_primary_10_1016_j_nantod_2025_102652 crossref_primary_10_1016_j_jep_2024_118874 crossref_primary_10_1007_s12035_024_04500_1 crossref_primary_10_2147_DDDT_S500505 crossref_primary_10_3390_biomedicines12122781 crossref_primary_10_3390_microorganisms12010037 crossref_primary_10_1016_j_jep_2023_116392 crossref_primary_10_1016_j_devcel_2022_07_013 crossref_primary_10_1016_j_lfs_2024_122815 crossref_primary_10_3390_ph18030320 crossref_primary_10_4103_NRR_NRR_D_23_01776 crossref_primary_10_3390_metabo14080399 crossref_primary_10_3389_fmicb_2024_1403892 crossref_primary_10_1002_nep3_44 crossref_primary_10_1038_s41598_022_24878_z crossref_primary_10_1007_s11010_024_04961_x crossref_primary_10_1186_s13321_024_00911_3 crossref_primary_10_3389_fnins_2023_1158057 crossref_primary_10_3389_fcimb_2024_1334581 crossref_primary_10_3724_SP_J_1329_2022_05001 crossref_primary_10_3390_ijms25063389 crossref_primary_10_1038_s41392_024_01743_1 crossref_primary_10_3390_jpm13040631 |
Cites_doi | 10.1021/ac8024569 10.1161/STROKEAHA.114.008608 10.1136/gutjnl-2018-317232 10.1002/1097-0320(20011101)45:3<194::AID-CYTO1163>3.0.CO;2-C 10.1016/j.jaci.2018.11.036 10.3390/ijms22020915 10.1038/nature24661 10.1016/j.cell.2009.09.033 10.1002/glia.23544 10.1186/s12974-017-1017-0 10.1126/sciimmunol.abc7191 10.1016/S0140-6736(16)30962-X 10.3389/fphar.2019.00630 10.1038/s41598-017-18904-8 10.1038/nm.4068 10.1038/s41586-019-1785-z 10.1038/s41586-018-0824-5 10.1186/s40168-020-00845-6 10.1016/j.immuni.2017.04.008 10.1172/JCI135530 10.1038/nm.3681 10.1016/j.immuni.2014.06.014 10.1073/pnas.0812874106 10.1038/s41598-018-19753-9 10.1128/AEM.01906-15 10.15252/emmm.201809302 10.1016/j.immuni.2013.08.003 10.1126/science.aah5825 10.1038/nm.1927 10.1039/C8FO02364F 10.1038/s41387-018-0046-9 10.1016/S1474-4422(11)70066-7 10.1161/CIRCRESAHA.119.316448 10.1523/JNEUROSCI.1114-16.2016 10.1084/jem.20182386 10.1016/j.cell.2020.02.035 10.1523/JNEUROSCI.4901-12.2013 10.1038/nm.2399 10.1186/s12877-020-01644-2 10.1073/pnas.0909122107 10.1038/s41467-018-05470-4 10.1016/j.ajpath.2018.01.011 10.1007/s00401-015-1513-1 10.1016/j.expneurol.2019.113159 10.1002/jnr.22030 10.1212/WNL.56.12.1666 10.1016/j.jvs.2017.09.029 10.1038/nm.4106 10.3389/fimmu.2019.00560 10.1007/s10072-018-3250-4 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Inc. Copyright © 2022 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2022 Elsevier Inc. – notice: Copyright © 2022 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.expneurol.2022.114081 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1090-2430 |
ExternalDocumentID | 35405119 10_1016_j_expneurol_2022_114081 S0014488622001066 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .55 .GJ .~1 0R~ 1B1 1RT 1~. 1~5 29G 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXLA AAXUO AAYJJ ABBQC ABCQJ ABFNM ABFRF ABJNI ABLVK ABMAC ABMZM ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNCT ACRLP ADBBV ADEZE ADFGL ADMUD AEBSH AEFWE AEKER AENEX AETEA AFFNX AFKWA AFTJW AFXIZ AGEKW AGHFR AGUBO AGWIK AGYEJ AHHHB AHPSJ AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY AKRLJ ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV C45 CAG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HDW HMK HMO HMQ HVGLF HZ~ IHE J1W K-O KOM L7B LCYCR LG5 LUGTX LX8 M29 M2U M41 MO0 MOBAO N9A O-L O9- OAUVE OHT OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAE SCC SDF SDG SDP SES SEW SNS SPCBC SSH SSN SSZ T5K TEORI WUQ X7M XJT XPP ZA5 ZGI ZKB ZMT ZU3 ZXP ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACRPL ACVFH ADCNI ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION CGR CUY CVF ECM EIF NPM PKN 7X8 EFKBS |
ID | FETCH-LOGICAL-c371t-766bf54cf36c8244cbb7d99e3f249acd264bb8d9b56f7286f15b5148c4a3be313 |
IEDL.DBID | .~1 |
ISSN | 0014-4886 1090-2430 |
IngestDate | Mon Jul 21 09:18:18 EDT 2025 Wed Feb 19 02:26:30 EST 2025 Thu Apr 24 22:50:43 EDT 2025 Tue Jul 01 02:57:29 EDT 2025 Fri Feb 23 02:41:25 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Gut microbiota Indole-3-propionic acid Neuroinflammation Ischemic stroke Regulatory T cells Astrocytes |
Language | English |
License | Copyright © 2022 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c371t-766bf54cf36c8244cbb7d99e3f249acd264bb8d9b56f7286f15b5148c4a3be313 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 35405119 |
PQID | 2649593566 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2649593566 pubmed_primary_35405119 crossref_citationtrail_10_1016_j_expneurol_2022_114081 crossref_primary_10_1016_j_expneurol_2022_114081 elsevier_sciencedirect_doi_10_1016_j_expneurol_2022_114081 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2022 2022-07-00 2022-Jul 20220701 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: July 2022 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Experimental neurology |
PublicationTitleAlternate | Exp Neurol |
PublicationYear | 2022 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Cervantes-Barragan, Chai, Tianero, Di Luccia, Ahern, Merriman, Cortez, Caparon, Donia, Gilfillan, Cella, Gordon, Hsieh, Colonna (bb0035) 2017; 357 Macrez, Ali, Toutirais, Le Mauff, Defer, Dirnagl, Vivien (bb0165) 2011; 10 Rakers, Schleif, Blank, Matušková, Ulas, Händler, Torres, Schumacher, Tai, Schultze, Jackson, Petzold (bb0200) 2019; 67 Hendrikx, Duan, Wang, Oh, Alexander, Huang, Stärkel, Ho, Gao, Fiehn, Emond, Sokol, van Pijkeren, Schnabl (bb0080) 2019; 68 Yw, Mk, By, Xj, Xr, Lq (bb0270) 2015; 81 Hwang, Yoo, Li, Park, Lee, Choi, Jeong, Lee, Kim, Kwon, Won (bb0095) 2009; 87 Stanley, Moore, Wong (bb0235) 2018; 8 Feng, Liao, Wei, Jia, Wood, Liu, Wang, Shi, Jin (bb0065) 2017; 14 Kim, Lillehoj, Min (bb0120) 2019; 10 Iadecola, Buckwalter, Anrather (bb0100) 2020; 130 Hu, Wang, Xu, Yang, Wang, Xue, Yan, Su (bb0090) 2019; 10 Duscha, Gisevius, Hirschberg, Yissachar, Stangl, Eilers, Bader, Haase, Kaisler, David, Schneider, Troisi, Zent, Hegelmaier, Dokalis, Gerstein, Del Mare-Roumani, Amidror, Staszewski, Poschmann, Stühler, Hirche, Balogh, Kempa, Träger, Zaiss, Holm, Massa, Nielsen, Faissner, Lukas, Gatermann, Scholz, Przuntek, Prinz, Forslund, Winklhofer, Müller, Linker, Gold, Haghikia (bb0060) 2020; 180 Malone, Amu, Moore, Waeber (bb0170) 2019; 10 Round, Mazmanian (bb0220) 2010; 107 Rothhammer, Mascanfroni, Bunse, Takenaka, Kenison, Mayo, Chao, Patel, Yan, Blain, Alvarez, Kébir, Anandasabapathy, Izquierdo, Jung, Obholzer, Pochet, Clish, Prinz, Prat, Antel, Quintana (bb0215) 2016; 22 Roederer (bb0210) 2001; 45 Alexeev, Lanis, Kao, Campbell, Kelly, Battista, Gerich, Jenkins, Walk, Kominsky, Colgan (bb0005) 2018; 188 Pröbstel, Zhou, Baumann, Wischnewski, Kutza, Rojas, Sellrie, Bischof, Kim, Ramesh, Dandekar, Greenfield, Schubert, Bisanz, Vistnes, Khaleghi, Landefeld, Kirkish, Liesche-Starnecker, Ramaglia, Singh, Tran, Barba, Zorn, Oechtering, Forsberg, Shiow, Henry, Graves, Cree, Hauser, Kuhle, Gelfand, Andersen, Schlegel, Turnbaugh, Seeberger, Gommerman, Wilson, Schirmer, Baranzini (bb0195) 2020; 5 Zelante, Iannitti, Cunha, De Luca, Giovannini, Pieraccini, Zecchi, D’Angelo, Massi-Benedetti, Fallarino, Carvalho, Puccetti, Romani (bb0275) 2013; 39 Wikoff, Anfora, Liu, Schultz, Lesley, Peters, Siuzdak (bb0250) 2009; 106 Da Silva, Teterina, Comelli, Taibi, Arendt, Fischer, Lou, Allard (bb0040) 2018; 8 Stadlbauer, Engertsberger, Komarova, Feldbacher, Leber, Pichler, Fink, Scarpatetti, Schippinger, Schmidt, Horvath (bb0230) 2020; 20 Venkatesh, Mukherjee, Wang, Li, Sun, Benechet, Qiu, Maher, Redinbo, Phillips, Fleet, Kortagere, Mukherjee, Fasano, Le Ven, Nicholson, Dumas, Khanna, Mani (bb0245) 2014; 41 Mayo, Trauger, Blain, Nadeau, Patel, Alvarez, Mascanfroni, Yeste, Kivisäkk, Kallas, Ellezam, Bakshi, Prat, Antel, Weiner, Quintana (bb0175) 2014; 20 Benakis, Brea, Caballero, Faraco, Moore, Murphy, Sita, Racchumi, Ling, Pamer, Iadecola, Anrather (bb0015) 2016; 22 Singh, Roth, Llovera, Sadler, Garzetti, Stecher, Dichgans, Liesz (bb0225) 2016; 36 Dolati, Ahmadi, Khalili, Taheraghdam, Siahmansouri, Babaloo, Aghebati-Maleki, Jadidi-Niaragh, Younesi, Yousefi (bb0055) 2018; 39 Lee, d’Aigle, Atadja, Quaicoe, Honarpisheh, Ganesh, Hassan, Graf, Petrosino, Putluri, Zhu, Durgan, Bryan, McCullough, Venna (bb0135) 2020; 127 Phipps, Cronin (bb0185) 2020; 368 Koutzoumis, Vergara, Pino, Buddendorff, Khoshbouei, Mandel, Torres (bb0130) 2020; 325 Cason, Dolan, Sharma, Tao, Kulkarni, Helenowski, Doane, Avram, McDermott, Chang, Ozaki, Ho (bb0030) 2018; 68 Pluta, Januszewski, Czuczwar (bb0190) 2021; 22 Liu, Zhang, Shi, Zhang, Li, Wang, Ling, Fu, Dong, Shen, Reeves, Greenberg, Zhao, Peng, Ding (bb0160) 2017; 8 Xiao, Cui, Li, Dong, Zhang, Zhu, Jiang, Zhu, Wang, Wang, Fan (bb0255) 2020; 8 Ivanov, Atarashi, Manel, Brodie, Shima, Karaoz, Wei, Goldfarb, Santee, Lynch, Tanoue, Imaoka, Itoh, Takeda, Umesaki, Honda, Littman (bb0115) 2009; 139 Li, Chen, Wang, Lu, Chopp (bb0140) 2001; 56 Ito, Komai, Mise-Omata, Iizuka-Koga, Noguchi, Kondo, Sakai, Matsuo, Nakayama, Yoshie, Nakatsukasa, Chikuma, Shichita, Yoshimura (bb0110) 2019; 565 Dodiya, Kuntz, Shaik, Baufeld, Leibowitz, Zhang, Gottel, Zhang, Butovsky, Gilbert, Sisodia (bb0050) 2019; 216 Liesz, Zhou, Na, Hämmerling, Garbi, Karcher, Mracsko, Backs, Rivest, Veltkamp (bb0150) 2013; 33 Bruce, Tavazzi, Parisod, Rezzi, Kochhar, Guy (bb0025) 2009; 81 Xu, Gao, Xia, Chen, Zeng, Wang, You, Tian, Di, Tang, Li, Wang, Zeng, Tan, Meng, Li, He, Zhou, Yin (bb0260) 2021; 0 Yu, Luo, Zhu, Zhou, Sun, Gao, Sun, Wang, Yao, Li (bb0265) 2019; 143 Zhao, Xin, Xue, Hu, Han, Ma, Zhou, Liu, Cui, Liu, Liu, Gao, Pan, Li, Fan (bb0280) 2019; 51 Liesz, Suri-Payer, Veltkamp, Doerr, Sommer, Rivest, Giese, Veltkamp (bb0145) 2009; 15 Pekny, Pekna, Messing, Steinhäuser, Lee, Parpura, Hol, Sofroniew, Verkhratsky (bb0180) 2016; 131 Dodd, Spitzer, Van Treuren, Merrill, Hryckowian, Higginbottom, Le, Cowan, Nolan, Fischbach, Sonnenburg (bb0045) 2017; 551 Hankey (bb0075) 2017; 389 Kolodziejczyk, Zheng, Shibolet, Elinav (bb0125) 2019; 11 Hang, Paik, Yao, Kim, Trinath, Lu, Ha, Nelson, Kelly, Wu, Zheng, Longman, Rastinejad, Devlin, Krout, Fischbach, Littman, Huh (bb0070) 2019; 576 Liesz, Hu, Kleinschnitz, Offner (bb0155) 2015; 46 Roager, Licht (bb0205) 2018; 9 Benakis, Brea, Caballero, Faraco, Moore, Murphy, Sita, Racchumi, Ling, Pamer, Iadecola, Anrather (bb0020) 2016; 22 Tuomainen, Lindström, Lehtonen, Auriola, Pihlajamäki, Peltonen, Tuomilehto, Uusitupa, de Mello, Hanhineva (bb0240) 2018; 8 Belkaid, Harrison (bb0010) 2017; 46 Iadecola, Anrather (bb0105) 2011; 17 Liu (10.1016/j.expneurol.2022.114081_bb0160) 2017; 8 Pekny (10.1016/j.expneurol.2022.114081_bb0180) 2016; 131 Belkaid (10.1016/j.expneurol.2022.114081_bb0010) 2017; 46 Iadecola (10.1016/j.expneurol.2022.114081_bb0100) 2020; 130 Ivanov (10.1016/j.expneurol.2022.114081_bb0115) 2009; 139 Singh (10.1016/j.expneurol.2022.114081_bb0225) 2016; 36 Liesz (10.1016/j.expneurol.2022.114081_bb0150) 2013; 33 Pluta (10.1016/j.expneurol.2022.114081_bb0190) 2021; 22 Ito (10.1016/j.expneurol.2022.114081_bb0110) 2019; 565 Stadlbauer (10.1016/j.expneurol.2022.114081_bb0230) 2020; 20 Zhao (10.1016/j.expneurol.2022.114081_bb0280) 2019; 51 Alexeev (10.1016/j.expneurol.2022.114081_bb0005) 2018; 188 Roederer (10.1016/j.expneurol.2022.114081_bb0210) 2001; 45 Cason (10.1016/j.expneurol.2022.114081_bb0030) 2018; 68 Benakis (10.1016/j.expneurol.2022.114081_bb0020) 2016; 22 Hang (10.1016/j.expneurol.2022.114081_bb0070) 2019; 576 Dodd (10.1016/j.expneurol.2022.114081_bb0045) 2017; 551 Dodiya (10.1016/j.expneurol.2022.114081_bb0050) 2019; 216 Tuomainen (10.1016/j.expneurol.2022.114081_bb0240) 2018; 8 Macrez (10.1016/j.expneurol.2022.114081_bb0165) 2011; 10 Round (10.1016/j.expneurol.2022.114081_bb0220) 2010; 107 Zelante (10.1016/j.expneurol.2022.114081_bb0275) 2013; 39 Hankey (10.1016/j.expneurol.2022.114081_bb0075) 2017; 389 Hu (10.1016/j.expneurol.2022.114081_bb0090) 2019; 10 Feng (10.1016/j.expneurol.2022.114081_bb0065) 2017; 14 Koutzoumis (10.1016/j.expneurol.2022.114081_bb0130) 2020; 325 Mayo (10.1016/j.expneurol.2022.114081_bb0175) 2014; 20 Rakers (10.1016/j.expneurol.2022.114081_bb0200) 2019; 67 Cervantes-Barragan (10.1016/j.expneurol.2022.114081_bb0035) 2017; 357 Venkatesh (10.1016/j.expneurol.2022.114081_bb0245) 2014; 41 Da Silva (10.1016/j.expneurol.2022.114081_bb0040) 2018; 8 Wikoff (10.1016/j.expneurol.2022.114081_bb0250) 2009; 106 Kolodziejczyk (10.1016/j.expneurol.2022.114081_bb0125) 2019; 11 Benakis (10.1016/j.expneurol.2022.114081_bb0015) 2016; 22 Xiao (10.1016/j.expneurol.2022.114081_bb0255) 2020; 8 Li (10.1016/j.expneurol.2022.114081_bb0140) 2001; 56 Lee (10.1016/j.expneurol.2022.114081_bb0135) 2020; 127 Malone (10.1016/j.expneurol.2022.114081_bb0170) 2019; 10 Hwang (10.1016/j.expneurol.2022.114081_bb0095) 2009; 87 Bruce (10.1016/j.expneurol.2022.114081_bb0025) 2009; 81 Duscha (10.1016/j.expneurol.2022.114081_bb0060) 2020; 180 Stanley (10.1016/j.expneurol.2022.114081_bb0235) 2018; 8 Kim (10.1016/j.expneurol.2022.114081_bb0120) 2019; 10 Dolati (10.1016/j.expneurol.2022.114081_bb0055) 2018; 39 Xu (10.1016/j.expneurol.2022.114081_bb0260) 2021; 0 Pröbstel (10.1016/j.expneurol.2022.114081_bb0195) 2020; 5 Liesz (10.1016/j.expneurol.2022.114081_bb0155) 2015; 46 Liesz (10.1016/j.expneurol.2022.114081_bb0145) 2009; 15 Iadecola (10.1016/j.expneurol.2022.114081_bb0105) 2011; 17 Rothhammer (10.1016/j.expneurol.2022.114081_bb0215) 2016; 22 Phipps (10.1016/j.expneurol.2022.114081_bb0185) 2020; 368 Roager (10.1016/j.expneurol.2022.114081_bb0205) 2018; 9 Yu (10.1016/j.expneurol.2022.114081_bb0265) 2019; 143 Yw (10.1016/j.expneurol.2022.114081_bb0270) 2015; 81 Hendrikx (10.1016/j.expneurol.2022.114081_bb0080) 2019; 68 |
References_xml | – volume: 8 start-page: 568 year: 2018 ident: bb0235 article-title: An insight into intestinal mucosal microbiota disruption after stroke publication-title: Sci. Rep. – volume: 46 start-page: 1422 year: 2015 end-page: 1430 ident: bb0155 article-title: Functional role of regulatory lymphocytes in stroke: facts and controversies publication-title: Stroke – volume: 10 start-page: 630 year: 2019 ident: bb0170 article-title: Immunomodulatory therapeutic strategies in stroke publication-title: Front. Pharmacol. – volume: 41 start-page: 296 year: 2014 end-page: 310 ident: bb0245 article-title: Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and Toll-like receptor 4 publication-title: Immunity – volume: 8 start-page: 324 year: 2017 ident: bb0160 article-title: Dysbiosis of gut microbiota associated with clinical parameters in polycystic ovary syndrome publication-title: Front. Microbiol. – volume: 22 start-page: 516 year: 2016 end-page: 523 ident: bb0020 article-title: Commensal microbiota affects ischemic stroke outcome by regulating intestinal γδ T cells publication-title: Nat. Med. – volume: 188 start-page: 1183 year: 2018 end-page: 1194 ident: bb0005 article-title: Microbiota-derived indole metabolites promote human and murine intestinal homeostasis through regulation of Interleukin-10 receptor publication-title: Am. J. Pathol. – volume: 22 start-page: 516 year: 2016 end-page: 523 ident: bb0015 article-title: Commensal microbiota affects ischemic stroke outcome by regulating intestinal γδ T cells publication-title: Nat. Med. – volume: 8 start-page: 69 year: 2020 ident: bb0255 article-title: Gut microbiota-derived indole 3-propionic acid protects against radiation toxicity via retaining acyl-CoA-binding protein publication-title: Microbiome – volume: 357 start-page: 806 year: 2017 end-page: 810 ident: bb0035 article-title: induces gut intraepithelial CD4+CD8αα+ T cells publication-title: Science – volume: 68 start-page: 1552 year: 2018 end-page: 1562.e7 ident: bb0030 article-title: Plasma microbiome-modulated indole- and phenyl-derived metabolites associate with advanced atherosclerosis and postoperative outcomes publication-title: J. Vasc. Surg. – volume: 87 start-page: 2126 year: 2009 end-page: 2137 ident: bb0095 article-title: Indole-3-propionic acid attenuates neuronal damage and oxidative stress in the ischemic hippocampus publication-title: J. Neurosci. Res. – volume: 15 start-page: 192 year: 2009 end-page: 199 ident: bb0145 article-title: Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke publication-title: Nat. Med. – volume: 45 start-page: 194 year: 2001 end-page: 205 ident: bb0210 article-title: Spectral compensation for flow cytometry: visualization artifacts, limitations, and caveats publication-title: Cytometry – volume: 107 start-page: 12204 year: 2010 end-page: 12209 ident: bb0220 article-title: Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 81 start-page: 3285 year: 2009 end-page: 3296 ident: bb0025 article-title: Investigation of human blood plasma sample preparation for performing metabolomics using ultrahigh performance liquid chromatography/mass spectrometry publication-title: Anal. Chem. – volume: 68 start-page: 1504 year: 2019 end-page: 1515 ident: bb0080 article-title: Bacteria engineered to produce IL-22 in intestine induce expression of REG3G to reduce ethanol-induced liver disease in mice publication-title: Gut – volume: 8 start-page: 1466 year: 2018 ident: bb0040 article-title: Nonalcoholic fatty liver disease is associated with dysbiosis independent of body mass index and insulin resistance publication-title: Sci. Rep. – volume: 67 start-page: 619 year: 2019 end-page: 633 ident: bb0200 article-title: Stroke target identification guided by astrocyte transcriptome analysis publication-title: Glia – volume: 36 start-page: 7428 year: 2016 end-page: 7440 ident: bb0225 article-title: Microbiota Dysbiosis controls the Neuroinflammatory response after stroke publication-title: J. Neurosci. – volume: 51 start-page: 1 year: 2019 end-page: 14 ident: bb0280 article-title: Indole-3-propionic acid inhibits gut dysbiosis and endotoxin leakage to attenuate steatohepatitis in rats publication-title: Exp. Mol. Med. – volume: 565 start-page: 246 year: 2019 end-page: 250 ident: bb0110 article-title: Brain regulatory T cells suppress astrogliosis and potentiate neurological recovery publication-title: Nature – volume: 576 start-page: 143 year: 2019 end-page: 148 ident: bb0070 article-title: Bile acid metabolites control TH17 and Treg cell differentiation publication-title: Nature – volume: 551 start-page: 648 year: 2017 end-page: 652 ident: bb0045 article-title: A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites publication-title: Nature – volume: 14 start-page: 248 year: 2017 ident: bb0065 article-title: Infiltration and persistence of lymphocytes during late-stage cerebral ischemia in middle cerebral artery occlusion and photothrombotic stroke models publication-title: J. Neuroinflammation – volume: 368 year: 2020 ident: bb0185 article-title: Management of acute ischemic stroke publication-title: BMJ – volume: 81 start-page: 6749 year: 2015 end-page: 6756 ident: bb0270 article-title: Use of 16S rRNA gene-targeted group-specific primers for real-time PCR analysis of predominant Bacteria in mouse feces publication-title: Appl. Environ. Microbiol. – volume: 216 start-page: 1542 year: 2019 end-page: 1560 ident: bb0050 article-title: Sex-specific effects of microbiome perturbations on cerebral Aβ amyloidosis and microglia phenotypes publication-title: J. Exp. Med. – volume: 17 start-page: 796 year: 2011 end-page: 808 ident: bb0105 article-title: The immunology of stroke: from mechanisms to translation publication-title: Nat. Med. – volume: 325 year: 2020 ident: bb0130 article-title: Alterations of the gut microbiota with antibiotics protects dopamine neuron loss and improve motor deficits in a pharmacological rodent model of Parkinson’s disease publication-title: Exp. Neurol. – volume: 10 start-page: 1736 year: 2019 end-page: 1746 ident: bb0090 article-title: Anti-inflammation effects of fucosylated chondroitin sulphate from publication-title: Food Funct. – volume: 22 start-page: 586 year: 2016 end-page: 597 ident: bb0215 article-title: Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor publication-title: Nat. Med. – volume: 22 start-page: 915 year: 2021 ident: bb0190 article-title: The role of gut microbiota in an ischemic stroke publication-title: Int. J. Mol. Sci. – volume: 180 start-page: 1067 year: 2020 end-page: 1080.e16 ident: bb0060 article-title: Propionic acid shapes the multiple sclerosis disease course by an immunomodulatory mechanism publication-title: Cell – volume: 20 start-page: 248 year: 2020 ident: bb0230 article-title: Dysbiosis, gut barrier dysfunction and inflammation in dementia: a pilot study publication-title: BMC Geriatr. – volume: 389 start-page: 641 year: 2017 end-page: 654 ident: bb0075 article-title: Stroke publication-title: Lancet – volume: 106 start-page: 3698 year: 2009 end-page: 3703 ident: bb0250 article-title: Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 131 start-page: 323 year: 2016 end-page: 345 ident: bb0180 article-title: Astrocytes: a central element in neurological diseases publication-title: Acta Neuropathol. – volume: 130 start-page: 2777 year: 2020 end-page: 2788 ident: bb0100 article-title: Immune responses to stroke: mechanisms, modulation, and therapeutic potential publication-title: J. Clin. Invest. – volume: 0 start-page: 1 year: 2021 end-page: 9 ident: bb0260 article-title: Rapid gut dysbiosis induced by stroke exacerbates brain infarction in turn publication-title: Gut – volume: 56 start-page: 1666 year: 2001 end-page: 1672 ident: bb0140 article-title: Treatment of stroke in rat with intracarotid administration of marrow stromal cells publication-title: Neurology – volume: 127 start-page: 453 year: 2020 end-page: 465 ident: bb0135 article-title: Gut microbiota-derived short-chain fatty acids promote Poststroke recovery in aged mice publication-title: Circ. Res. – volume: 143 start-page: 2108 year: 2019 end-page: 2119.e12 ident: bb0265 article-title: A tryptophan metabolite of the skin microbiota attenuates inflammation in patients with atopic dermatitis through the aryl hydrocarbon receptor publication-title: J. Allergy Clin. Immunol. – volume: 5 start-page: eabc7191 year: 2020 ident: bb0195 article-title: Gut microbiota-specific IgA+ B cells traffic to the CNS in active multiple sclerosis publication-title: Sci. Immunol. – volume: 46 start-page: 562 year: 2017 end-page: 576 ident: bb0010 article-title: Homeostatic immunity and the microbiota publication-title: Immunity – volume: 11 year: 2019 ident: bb0125 article-title: The role of the microbiome in NAFLD and NASH publication-title: EMBO Mol. Med. – volume: 9 start-page: 3294 year: 2018 ident: bb0205 article-title: Microbial tryptophan catabolites in health and disease publication-title: Nat. Commun. – volume: 10 start-page: 560 year: 2019 ident: bb0120 article-title: Indole treatment alleviates intestinal tissue damage induced by chicken coccidiosis through activation of the aryl hydrocarbon receptor publication-title: Front. Immunol. – volume: 10 start-page: 471 year: 2011 end-page: 480 ident: bb0165 article-title: Stroke and the immune system: from pathophysiology to new therapeutic strategies publication-title: Lancet Neurol. – volume: 33 start-page: 17350 year: 2013 end-page: 17362 ident: bb0150 article-title: Boosting regulatory T cells limits neuroinflammation in permanent cortical stroke publication-title: J. Neurosci. – volume: 39 start-page: 372 year: 2013 end-page: 385 ident: bb0275 article-title: Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22 publication-title: Immunity – volume: 20 start-page: 1147 year: 2014 end-page: 1156 ident: bb0175 article-title: Regulation of astrocyte activation by glycolipids drives chronic CNS inflammation publication-title: Nat. Med. – volume: 39 start-page: 647 year: 2018 end-page: 654 ident: bb0055 article-title: Peripheral Th17/Treg imbalance in elderly patients with ischemic stroke publication-title: Neurol. Sci. – volume: 139 start-page: 485 year: 2009 end-page: 498 ident: bb0115 article-title: Induction of intestinal Th17 cells by segmented filamentous bacteria publication-title: Cell – volume: 8 start-page: 1 year: 2018 end-page: 5 ident: bb0240 article-title: Associations of serum indolepropionic acid, a gut microbiota metabolite, with type 2 diabetes and low-grade inflammation in high-risk individuals publication-title: Nutrition & Diabetes – volume: 81 start-page: 3285 year: 2009 ident: 10.1016/j.expneurol.2022.114081_bb0025 article-title: Investigation of human blood plasma sample preparation for performing metabolomics using ultrahigh performance liquid chromatography/mass spectrometry publication-title: Anal. Chem. doi: 10.1021/ac8024569 – volume: 46 start-page: 1422 year: 2015 ident: 10.1016/j.expneurol.2022.114081_bb0155 article-title: Functional role of regulatory lymphocytes in stroke: facts and controversies publication-title: Stroke doi: 10.1161/STROKEAHA.114.008608 – volume: 68 start-page: 1504 year: 2019 ident: 10.1016/j.expneurol.2022.114081_bb0080 article-title: Bacteria engineered to produce IL-22 in intestine induce expression of REG3G to reduce ethanol-induced liver disease in mice publication-title: Gut doi: 10.1136/gutjnl-2018-317232 – volume: 45 start-page: 194 year: 2001 ident: 10.1016/j.expneurol.2022.114081_bb0210 article-title: Spectral compensation for flow cytometry: visualization artifacts, limitations, and caveats publication-title: Cytometry doi: 10.1002/1097-0320(20011101)45:3<194::AID-CYTO1163>3.0.CO;2-C – volume: 143 start-page: 2108 year: 2019 ident: 10.1016/j.expneurol.2022.114081_bb0265 article-title: A tryptophan metabolite of the skin microbiota attenuates inflammation in patients with atopic dermatitis through the aryl hydrocarbon receptor publication-title: J. Allergy Clin. Immunol. doi: 10.1016/j.jaci.2018.11.036 – volume: 22 start-page: 915 year: 2021 ident: 10.1016/j.expneurol.2022.114081_bb0190 article-title: The role of gut microbiota in an ischemic stroke publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms22020915 – volume: 0 start-page: 1 year: 2021 ident: 10.1016/j.expneurol.2022.114081_bb0260 article-title: Rapid gut dysbiosis induced by stroke exacerbates brain infarction in turn publication-title: Gut – volume: 551 start-page: 648 year: 2017 ident: 10.1016/j.expneurol.2022.114081_bb0045 article-title: A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites publication-title: Nature doi: 10.1038/nature24661 – volume: 368 year: 2020 ident: 10.1016/j.expneurol.2022.114081_bb0185 article-title: Management of acute ischemic stroke publication-title: BMJ – volume: 139 start-page: 485 year: 2009 ident: 10.1016/j.expneurol.2022.114081_bb0115 article-title: Induction of intestinal Th17 cells by segmented filamentous bacteria publication-title: Cell doi: 10.1016/j.cell.2009.09.033 – volume: 67 start-page: 619 year: 2019 ident: 10.1016/j.expneurol.2022.114081_bb0200 article-title: Stroke target identification guided by astrocyte transcriptome analysis publication-title: Glia doi: 10.1002/glia.23544 – volume: 14 start-page: 248 year: 2017 ident: 10.1016/j.expneurol.2022.114081_bb0065 article-title: Infiltration and persistence of lymphocytes during late-stage cerebral ischemia in middle cerebral artery occlusion and photothrombotic stroke models publication-title: J. Neuroinflammation doi: 10.1186/s12974-017-1017-0 – volume: 5 start-page: eabc7191 year: 2020 ident: 10.1016/j.expneurol.2022.114081_bb0195 article-title: Gut microbiota-specific IgA+ B cells traffic to the CNS in active multiple sclerosis publication-title: Sci. Immunol. doi: 10.1126/sciimmunol.abc7191 – volume: 389 start-page: 641 year: 2017 ident: 10.1016/j.expneurol.2022.114081_bb0075 article-title: Stroke publication-title: Lancet doi: 10.1016/S0140-6736(16)30962-X – volume: 10 start-page: 630 year: 2019 ident: 10.1016/j.expneurol.2022.114081_bb0170 article-title: Immunomodulatory therapeutic strategies in stroke publication-title: Front. Pharmacol. doi: 10.3389/fphar.2019.00630 – volume: 8 start-page: 568 year: 2018 ident: 10.1016/j.expneurol.2022.114081_bb0235 article-title: An insight into intestinal mucosal microbiota disruption after stroke publication-title: Sci. Rep. doi: 10.1038/s41598-017-18904-8 – volume: 22 start-page: 516 year: 2016 ident: 10.1016/j.expneurol.2022.114081_bb0015 article-title: Commensal microbiota affects ischemic stroke outcome by regulating intestinal γδ T cells publication-title: Nat. Med. doi: 10.1038/nm.4068 – volume: 576 start-page: 143 year: 2019 ident: 10.1016/j.expneurol.2022.114081_bb0070 article-title: Bile acid metabolites control TH17 and Treg cell differentiation publication-title: Nature doi: 10.1038/s41586-019-1785-z – volume: 565 start-page: 246 year: 2019 ident: 10.1016/j.expneurol.2022.114081_bb0110 article-title: Brain regulatory T cells suppress astrogliosis and potentiate neurological recovery publication-title: Nature doi: 10.1038/s41586-018-0824-5 – volume: 8 start-page: 69 year: 2020 ident: 10.1016/j.expneurol.2022.114081_bb0255 article-title: Gut microbiota-derived indole 3-propionic acid protects against radiation toxicity via retaining acyl-CoA-binding protein publication-title: Microbiome doi: 10.1186/s40168-020-00845-6 – volume: 46 start-page: 562 year: 2017 ident: 10.1016/j.expneurol.2022.114081_bb0010 article-title: Homeostatic immunity and the microbiota publication-title: Immunity doi: 10.1016/j.immuni.2017.04.008 – volume: 130 start-page: 2777 year: 2020 ident: 10.1016/j.expneurol.2022.114081_bb0100 article-title: Immune responses to stroke: mechanisms, modulation, and therapeutic potential publication-title: J. Clin. Invest. doi: 10.1172/JCI135530 – volume: 20 start-page: 1147 year: 2014 ident: 10.1016/j.expneurol.2022.114081_bb0175 article-title: Regulation of astrocyte activation by glycolipids drives chronic CNS inflammation publication-title: Nat. Med. doi: 10.1038/nm.3681 – volume: 41 start-page: 296 year: 2014 ident: 10.1016/j.expneurol.2022.114081_bb0245 article-title: Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and Toll-like receptor 4 publication-title: Immunity doi: 10.1016/j.immuni.2014.06.014 – volume: 106 start-page: 3698 year: 2009 ident: 10.1016/j.expneurol.2022.114081_bb0250 article-title: Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0812874106 – volume: 8 start-page: 1466 year: 2018 ident: 10.1016/j.expneurol.2022.114081_bb0040 article-title: Nonalcoholic fatty liver disease is associated with dysbiosis independent of body mass index and insulin resistance publication-title: Sci. Rep. doi: 10.1038/s41598-018-19753-9 – volume: 81 start-page: 6749 year: 2015 ident: 10.1016/j.expneurol.2022.114081_bb0270 article-title: Use of 16S rRNA gene-targeted group-specific primers for real-time PCR analysis of predominant Bacteria in mouse feces publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.01906-15 – volume: 11 year: 2019 ident: 10.1016/j.expneurol.2022.114081_bb0125 article-title: The role of the microbiome in NAFLD and NASH publication-title: EMBO Mol. Med. doi: 10.15252/emmm.201809302 – volume: 39 start-page: 372 year: 2013 ident: 10.1016/j.expneurol.2022.114081_bb0275 article-title: Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22 publication-title: Immunity doi: 10.1016/j.immuni.2013.08.003 – volume: 357 start-page: 806 year: 2017 ident: 10.1016/j.expneurol.2022.114081_bb0035 article-title: Lactobacillus reuteri induces gut intraepithelial CD4+CD8αα+ T cells publication-title: Science doi: 10.1126/science.aah5825 – volume: 15 start-page: 192 year: 2009 ident: 10.1016/j.expneurol.2022.114081_bb0145 article-title: Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke publication-title: Nat. Med. doi: 10.1038/nm.1927 – volume: 10 start-page: 1736 year: 2019 ident: 10.1016/j.expneurol.2022.114081_bb0090 article-title: Anti-inflammation effects of fucosylated chondroitin sulphate from Acaudina molpadioides by altering gut microbiota in obese mice publication-title: Food Funct. doi: 10.1039/C8FO02364F – volume: 8 start-page: 1 year: 2018 ident: 10.1016/j.expneurol.2022.114081_bb0240 article-title: Associations of serum indolepropionic acid, a gut microbiota metabolite, with type 2 diabetes and low-grade inflammation in high-risk individuals publication-title: Nutrition & Diabetes doi: 10.1038/s41387-018-0046-9 – volume: 10 start-page: 471 year: 2011 ident: 10.1016/j.expneurol.2022.114081_bb0165 article-title: Stroke and the immune system: from pathophysiology to new therapeutic strategies publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(11)70066-7 – volume: 127 start-page: 453 year: 2020 ident: 10.1016/j.expneurol.2022.114081_bb0135 article-title: Gut microbiota-derived short-chain fatty acids promote Poststroke recovery in aged mice publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.119.316448 – volume: 36 start-page: 7428 year: 2016 ident: 10.1016/j.expneurol.2022.114081_bb0225 article-title: Microbiota Dysbiosis controls the Neuroinflammatory response after stroke publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1114-16.2016 – volume: 22 start-page: 516 year: 2016 ident: 10.1016/j.expneurol.2022.114081_bb0020 article-title: Commensal microbiota affects ischemic stroke outcome by regulating intestinal γδ T cells publication-title: Nat. Med. doi: 10.1038/nm.4068 – volume: 216 start-page: 1542 year: 2019 ident: 10.1016/j.expneurol.2022.114081_bb0050 article-title: Sex-specific effects of microbiome perturbations on cerebral Aβ amyloidosis and microglia phenotypes publication-title: J. Exp. Med. doi: 10.1084/jem.20182386 – volume: 180 start-page: 1067 year: 2020 ident: 10.1016/j.expneurol.2022.114081_bb0060 article-title: Propionic acid shapes the multiple sclerosis disease course by an immunomodulatory mechanism publication-title: Cell doi: 10.1016/j.cell.2020.02.035 – volume: 33 start-page: 17350 year: 2013 ident: 10.1016/j.expneurol.2022.114081_bb0150 article-title: Boosting regulatory T cells limits neuroinflammation in permanent cortical stroke publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4901-12.2013 – volume: 17 start-page: 796 year: 2011 ident: 10.1016/j.expneurol.2022.114081_bb0105 article-title: The immunology of stroke: from mechanisms to translation publication-title: Nat. Med. doi: 10.1038/nm.2399 – volume: 20 start-page: 248 year: 2020 ident: 10.1016/j.expneurol.2022.114081_bb0230 article-title: Dysbiosis, gut barrier dysfunction and inflammation in dementia: a pilot study publication-title: BMC Geriatr. doi: 10.1186/s12877-020-01644-2 – volume: 107 start-page: 12204 year: 2010 ident: 10.1016/j.expneurol.2022.114081_bb0220 article-title: Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0909122107 – volume: 9 start-page: 3294 year: 2018 ident: 10.1016/j.expneurol.2022.114081_bb0205 article-title: Microbial tryptophan catabolites in health and disease publication-title: Nat. Commun. doi: 10.1038/s41467-018-05470-4 – volume: 188 start-page: 1183 year: 2018 ident: 10.1016/j.expneurol.2022.114081_bb0005 article-title: Microbiota-derived indole metabolites promote human and murine intestinal homeostasis through regulation of Interleukin-10 receptor publication-title: Am. J. Pathol. doi: 10.1016/j.ajpath.2018.01.011 – volume: 131 start-page: 323 year: 2016 ident: 10.1016/j.expneurol.2022.114081_bb0180 article-title: Astrocytes: a central element in neurological diseases publication-title: Acta Neuropathol. doi: 10.1007/s00401-015-1513-1 – volume: 325 year: 2020 ident: 10.1016/j.expneurol.2022.114081_bb0130 article-title: Alterations of the gut microbiota with antibiotics protects dopamine neuron loss and improve motor deficits in a pharmacological rodent model of Parkinson’s disease publication-title: Exp. Neurol. doi: 10.1016/j.expneurol.2019.113159 – volume: 87 start-page: 2126 year: 2009 ident: 10.1016/j.expneurol.2022.114081_bb0095 article-title: Indole-3-propionic acid attenuates neuronal damage and oxidative stress in the ischemic hippocampus publication-title: J. Neurosci. Res. doi: 10.1002/jnr.22030 – volume: 51 start-page: 1 year: 2019 ident: 10.1016/j.expneurol.2022.114081_bb0280 article-title: Indole-3-propionic acid inhibits gut dysbiosis and endotoxin leakage to attenuate steatohepatitis in rats publication-title: Exp. Mol. Med. – volume: 56 start-page: 1666 year: 2001 ident: 10.1016/j.expneurol.2022.114081_bb0140 article-title: Treatment of stroke in rat with intracarotid administration of marrow stromal cells publication-title: Neurology doi: 10.1212/WNL.56.12.1666 – volume: 68 start-page: 1552 year: 2018 ident: 10.1016/j.expneurol.2022.114081_bb0030 article-title: Plasma microbiome-modulated indole- and phenyl-derived metabolites associate with advanced atherosclerosis and postoperative outcomes publication-title: J. Vasc. Surg. doi: 10.1016/j.jvs.2017.09.029 – volume: 22 start-page: 586 year: 2016 ident: 10.1016/j.expneurol.2022.114081_bb0215 article-title: Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor publication-title: Nat. Med. doi: 10.1038/nm.4106 – volume: 10 start-page: 560 year: 2019 ident: 10.1016/j.expneurol.2022.114081_bb0120 article-title: Indole treatment alleviates intestinal tissue damage induced by chicken coccidiosis through activation of the aryl hydrocarbon receptor publication-title: Front. Immunol. doi: 10.3389/fimmu.2019.00560 – volume: 39 start-page: 647 year: 2018 ident: 10.1016/j.expneurol.2022.114081_bb0055 article-title: Peripheral Th17/Treg imbalance in elderly patients with ischemic stroke publication-title: Neurol. Sci. doi: 10.1007/s10072-018-3250-4 – volume: 8 start-page: 324 year: 2017 ident: 10.1016/j.expneurol.2022.114081_bb0160 article-title: Dysbiosis of gut microbiota associated with clinical parameters in polycystic ovary syndrome publication-title: Front. Microbiol. |
SSID | ssj0009427 |
Score | 2.5486054 |
Snippet | Increasing evidence highlights the importance of gut microbiota and its metabolites as an environmental factor affecting ischemic stroke. However, the role of... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 114081 |
SubjectTerms | Animals Astrocytes Brain Injuries Chromatography, Liquid Disease Models, Animal Gut microbiota Humans Indole-3-propionic acid Indoles - metabolism Indoles - pharmacology Indoles - therapeutic use Infarction, Middle Cerebral Artery - complications Infarction, Middle Cerebral Artery - drug therapy Ischemic Stroke Male Mice Neuroinflammation Propionates Regulatory T cells RNA, Ribosomal, 16S - genetics Tandem Mass Spectrometry |
Title | Indole-3-propionic acid alleviates ischemic brain injury in a mouse middle cerebral artery occlusion model |
URI | https://dx.doi.org/10.1016/j.expneurol.2022.114081 https://www.ncbi.nlm.nih.gov/pubmed/35405119 https://www.proquest.com/docview/2649593566 |
Volume | 353 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA9jgngRv50fI4LX6NqkaettDGVTtpOCt5CkKXTMboxN9OLf7nv9mOwwdvDUD5o2_JLm_d5H3iPk1orIcl9LZmWimbBhwDTMY6aTOEo8A-cd3Jw8HMn-m3h-D94bpFfvhcGwymrtL9f0YrWu7txXaN7Psgz3-IIyEAEj9wvFBtNuCxHiLL_7-QvziEVVttUTDJ9ei_FyX7MibST6IHwf8-Z2Im-ThNrEQAtJ9HRA9isKSbtlLw9Jw-VHZHdYOcmPyXiQY5omxhm8aob2Vku1zRKKZVM-MySXNAOlFsPiqcESETTLx4AtHKimaAtw9KMwXFDr5uhZntAi9PObTq2dLNHARosSOifk7enxtddnVUkFZnnoLVgopUkDYVMubQSS3RoTJnHseApqmLYJ0CNjoiQ2gUxDP5KpFxigVJEVmhvHPX5Kmvk0d-eEutBph_TBB40LpZqMPV_Ck0iqOly3iKxhVLbKN45lLyaqDiwbqxX-CvFXJf4t0lk1nJUpN7Y3eajHSa3NHgWCYXvjm3pkFfxb6DDRuQOsFaCBeZuB8bbIWTnkqx6hvQx9sBf_-fQl2cOrMvz3ijQX86W7BpKzMO1iFrfJTnfw0h_9Aq2z_L8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50BfUivl2fEbwGt02btt5ElF1196TgLSRpCl3Wusgq-u-dadMVD-LBU0vbtGGSZr555BuAMxulVoRacitzzSObxFzjPOY6z9I8MHjeo83Jw5HsP0a3T_HTAly1e2EordKv_c2aXq_W_sq5l-b5tCxpjy8aAyki8rA2bOQiLBE7VdyBpcvBXX_0zb0b-cqtQcSpwY80L_cxrZkjKQwRhkSd20uD35TUbyC0VkY367DmUSS7bDq6AQuu2oTloY-Tb8F4UBFTExccXzUll6tl2pY5o8op7yXhS1aiXUuZ8cxQlQhWVmMULx6YZuQOcOy59l0w614puDxhdfbnJ3uxdvJGPjZWV9HZhseb64erPvdVFbgVSTDjiZSmiCNbCGlTVO7WmCTPMicKtMS0zREhGZPmmYllkYSpLILYIKpKbaSFcSIQO9CpXiq3B8wlTjtCECEaXaTYZBaEEp8kXNUTuguyFaOynnKcKl9MVJtbNlZz-SuSv2rk34XevOG0Yd34u8lFO07qxwRSqBv-bnzajqzC34tiJrpyKGuF0iDqZgS9XdhthnzeI3KZURh2_z-fPoGV_sPwXt0PRncHsEp3mmzgQ-jMXt_cEWKemTn2c_oLUh7_cA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Indole-3-propionic+acid+alleviates+ischemic+brain+injury+in+a+mouse+middle+cerebral+artery+occlusion+model&rft.jtitle=Experimental+neurology&rft.au=Xie%2C+Yu&rft.au=Zou%2C+Xiaoxiong&rft.au=Han%2C+Jianbang&rft.au=Zhang%2C+Zhongfei&rft.date=2022-07-01&rft.issn=0014-4886&rft.volume=353&rft.spage=114081&rft_id=info:doi/10.1016%2Fj.expneurol.2022.114081&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_expneurol_2022_114081 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-4886&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-4886&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-4886&client=summon |