Counteracting French Fake News on Climate Change Using Language Models
The unprecedented scale of disinformation on the Internet for more than a decade represents a serious challenge for democratic societies. When this process is focused on a well-established subject such as climate change, it can subvert measures and policies that various governmental bodies have take...
Saved in:
Published in | Sustainability Vol. 14; no. 18; p. 11724 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.09.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The unprecedented scale of disinformation on the Internet for more than a decade represents a serious challenge for democratic societies. When this process is focused on a well-established subject such as climate change, it can subvert measures and policies that various governmental bodies have taken to mitigate the phenomenon. It is therefore essential to effectively identify and counteract fake news on climate change. To do this, our main contribution represents a novel dataset with more than 2300 articles written in French, gathered using web scraping from all types of media dealing with climate change. Manual labeling was performed by two annotators with three classes: “fake”, “biased”, and “true”. Machine Learning models ranging from bag-of-words representations used by an SVM to Transformer-based architectures built on top of CamemBERT were built to automatically classify the articles. Our results, with an F1-score of 84.75% using the BERT-based model at the article level coupled with hand-crafted features specifically tailored for this task, represent a strong baseline. At the same time, we highlight perceptual properties as text sequences (i.e., fake, biased, and irrelevant text fragments) at the sentence level, with a macro F1 of 45.01% and a micro F1 of 78.11%. Based on these results, our proposed method facilitates the identification of fake news, and thus contributes to better education of the public. |
---|---|
AbstractList | The unprecedented scale of disinformation on the Internet for more than a decade represents a serious challenge for democratic societies. When this process is focused on a well-established subject such as climate change, it can subvert measures and policies that various governmental bodies have taken to mitigate the phenomenon. It is therefore essential to effectively identify and counteract fake news on climate change. To do this, our main contribution represents a novel dataset with more than 2300 articles written in French, gathered using web scraping from all types of media dealing with climate change. Manual labeling was performed by two annotators with three classes: "fake", "biased", and "true". Machine Learning models ranging from bag-of-words representations used by an SVM to Transformer-based architectures built on top of CamemBERT were built to automatically classify the articles. Our results, with an F1-score of 84.75% using the BERT-based model at the article level coupled with hand-crafted features specifically tailored for this task, represent a strong baseline. At the same time, we highlight perceptual properties as text sequences (i.e., fake, biased, and irrelevant text fragments) at the sentence level, with a macro F1 of 45.01% and a micro F1 of 78.11%. Based on these results, our proposed method facilitates the identification of fake news, and thus contributes to better education of the public. |
Audience | Academic |
Author | Ruseti, Stefan Meddeb, Paul Dascalu, Mihai Terian, Simina-Maria Travadel, Sebastien |
Author_xml | – sequence: 1 givenname: Paul surname: Meddeb fullname: Meddeb, Paul – sequence: 2 givenname: Stefan orcidid: 0000-0002-0380-6814 surname: Ruseti fullname: Ruseti, Stefan – sequence: 3 givenname: Mihai orcidid: 0000-0002-4815-9227 surname: Dascalu fullname: Dascalu, Mihai – sequence: 4 givenname: Simina-Maria surname: Terian fullname: Terian, Simina-Maria – sequence: 5 givenname: Sebastien surname: Travadel fullname: Travadel, Sebastien |
BookMark | eNptkcFOwzAMhiM0JMbYiReoxAmhjjhp0_Y4VRQmDZBgnKs0TbeMLh1JKuDtyTQOGyI-2I6-35btczTQnZYIXQKeUJrhW9tDBClAQqITNCQ4gRBwjAcH8RkaW7vG_lEKGbAhKvKu104aLpzSy6AwUotVUPB3GTzJTxt0OshbteFOBvmK66UM3uwOnPu45z597GrZ2gt02vDWyvGvH6FFcbfIH8L58_0sn85DQRNwYUJiGtdcNGmVMMIEyxLAjMU15SlUkUgj74isSRRhmjGGKeZ11VRZmglJYzpCV_uyW9N99NK6ct31RvuOJUmAMUhjyjw12VNL3spS6aZzfj5vtdwo4ZfWKP8_TSKWMSAx8YLrI4FnnPxyS95bW85eX47Zmz0rTGetkU25NX4_5rsEXO7uUB7cwdPwhxbKcad8A8NV-6_mB9H-iLc |
CitedBy_id | crossref_primary_10_1371_journal_pone_0317338 crossref_primary_10_1371_journal_pone_0291423 crossref_primary_10_1007_s40593_024_00402_4 crossref_primary_10_1371_journal_pclm_0000356 |
Cites_doi | 10.3390/app12031116 10.1016/j.ejor.2019.06.022 10.1007/s11042-021-11782-3 10.1016/j.eswa.2020.113503 10.1609/icwsm.v12i1.14984 10.18653/v1/2020.acl-main.645 10.1145/3184558.3191610 10.1016/j.cogsys.2019.12.005 10.3390/su12052123 10.1016/j.eswa.2019.03.036 10.1007/978-3-319-31816-5 10.1111/socf.12546 10.1007/3-540-44853-5 10.1016/j.asoc.2020.107050 10.1155/2021/5557784 10.1109/SCEECS.2018.8546944 10.1145/2939672.2939778 10.1088/2515-7620/abae77 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ISR 4U- ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS |
DOI | 10.3390/su141811724 |
DatabaseName | CrossRef Gale In Context: Science University Readers ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College Coronavirus Research Database ProQuest Central ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Publicly Available Content Database University Readers ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Environmental Sciences |
EISSN | 2071-1050 |
ExternalDocumentID | A746961252 10_3390_su141811724 |
GeographicLocations | France |
GeographicLocations_xml | – name: France |
GroupedDBID | 29Q 2WC 2XV 4P2 5VS 7XC 8FE 8FH A8Z AAHBH AAYXX ACHQT ADBBV ADMLS AENEX AFKRA AFMMW ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION E3Z ECGQY FRS GX1 IAO IEP ISR ITC KQ8 ML. MODMG M~E OK1 P2P PHGZM PHGZT PIMPY PROAC TR2 PMFND 4U- ABUWG AZQEC COVID DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c371t-72535dacf8b7626c69710665d3a81b4c8481b2ed24403966030adbfb989ce353 |
IEDL.DBID | BENPR |
ISSN | 2071-1050 |
IngestDate | Mon Jun 30 07:32:23 EDT 2025 Tue Jun 10 20:46:04 EDT 2025 Fri Jun 27 06:10:30 EDT 2025 Tue Jul 01 02:44:32 EDT 2025 Thu Apr 24 23:06:45 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c371t-72535dacf8b7626c69710665d3a81b4c8481b2ed24403966030adbfb989ce353 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0380-6814 0000-0002-4815-9227 |
OpenAccessLink | https://www.proquest.com/docview/2716618536?pq-origsite=%requestingapplication% |
PQID | 2716618536 |
PQPubID | 2032327 |
ParticipantIDs | proquest_journals_2716618536 gale_infotracacademiconefile_A746961252 gale_incontextgauss_ISR_A746961252 crossref_primary_10_3390_su141811724 crossref_citationtrail_10_3390_su141811724 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-01 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Sustainability |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Gravanis (ref_22) 2019; 128 Faustini (ref_21) 2020; 158 ref_14 Palani (ref_17) 2022; 81 Drummond (ref_1) 2020; 2 ref_13 Zhang (ref_19) 2019; 279 ref_12 Prasad (ref_3) 2019; 34 ref_11 ref_10 Demestichas (ref_4) 2021; 101 ref_18 ref_16 Aslam (ref_24) 2021; 2021 Kouzy (ref_20) 2020; 12 ref_25 Terian (ref_28) 2022; 31 ref_23 Kaliyar (ref_15) 2020; 61 ref_2 ref_27 ref_26 ref_9 ref_8 ref_5 ref_7 ref_6 |
References_xml | – ident: ref_7 – ident: ref_16 doi: 10.3390/app12031116 – ident: ref_5 – volume: 279 start-page: 1036 year: 2019 ident: ref_19 article-title: Detecting fake news for reducing misinformation risks using analytics approaches publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2019.06.022 – ident: ref_26 – volume: 81 start-page: 5587 year: 2022 ident: ref_17 article-title: CB-Fake: A multimodal deep learning framework for automatic fake news detection using capsule neural network and BERT publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-021-11782-3 – volume: 158 start-page: 113503 year: 2020 ident: ref_21 article-title: Fake news detection in multiple platforms and languages publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113503 – ident: ref_11 doi: 10.1609/icwsm.v12i1.14984 – ident: ref_18 – ident: ref_10 doi: 10.18653/v1/2020.acl-main.645 – ident: ref_6 doi: 10.1145/3184558.3191610 – volume: 61 start-page: 32 year: 2020 ident: ref_15 article-title: FNDNet—A deep convolutional neural network for fake news detection publication-title: Cogn. Syst. Res. doi: 10.1016/j.cogsys.2019.12.005 – ident: ref_2 doi: 10.3390/su12052123 – volume: 128 start-page: 201 year: 2019 ident: ref_22 article-title: Behind the cues: A benchmarking study for fake news detection publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.03.036 – ident: ref_8 – ident: ref_25 – ident: ref_9 doi: 10.1007/978-3-319-31816-5 – volume: 31 start-page: 270 year: 2022 ident: ref_28 article-title: Discerning Fake News: An Automated Analysis Using the ReaderBench Framework publication-title: Transylv. Rev. – ident: ref_12 – volume: 34 start-page: 1217 year: 2019 ident: ref_3 article-title: Denying anthropogenic climate change: Or, how our rejection of objective reality gave intellectual legitimacy to fake news publication-title: Sociol. Forum doi: 10.1111/socf.12546 – ident: ref_23 doi: 10.1007/3-540-44853-5 – ident: ref_13 – volume: 101 start-page: 107050 year: 2021 ident: ref_4 article-title: Advanced Machine Learning techniques for fake news (online disinformation) detection: A systematic mapping study publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.107050 – volume: 12 start-page: e7255 year: 2020 ident: ref_20 article-title: Coronavirus Goes Viral: Quantifying the COVID-19 Misinformation Epidemic on Twitter publication-title: Cureus – volume: 2021 start-page: 5557784 year: 2021 ident: ref_24 article-title: Fake Detect: A Deep Learning Ensemble Model for Fake News Detection publication-title: Complexity doi: 10.1155/2021/5557784 – ident: ref_14 doi: 10.1109/SCEECS.2018.8546944 – ident: ref_27 doi: 10.1145/2939672.2939778 – volume: 2 start-page: 081003 year: 2020 ident: ref_1 article-title: Limited effects of exposure to fake news about climate change publication-title: Environ. Res. Commun. doi: 10.1088/2515-7620/abae77 |
SSID | ssj0000331916 |
Score | 2.347702 |
Snippet | The unprecedented scale of disinformation on the Internet for more than a decade represents a serious challenge for democratic societies. When this process is... |
SourceID | proquest gale crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 11724 |
SubjectTerms | Climate change Climatic changes Computational linguistics Control Datasets Deception Language processing Media coverage Natural language interfaces Neural networks Social aspects Social networks Sustainability |
Title | Counteracting French Fake News on Climate Change Using Language Models |
URI | https://www.proquest.com/docview/2716618536 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ZS8NAEB60PuiLeBXrxSKCIAST3ZxPotJ4oEW0Qt_C7majYkmqaf-_M-m2KojPGbJhdneuzPcNwFEstVcIYm7lESYoPEqcRObaMQV3tevKRDZTFO574fWzfzsIBrbgVtu2yplNbAx1XmmqkZ_iq9CVoHMJz0YfDk2Nor-rdoTGIiyhCY7jFixddHsPj_MqiyvwiHnhFJgnML_H_fV8j9CV3P_liv42yI2XSddg1YaH7Hy6n-uwYMoNWJ6hh-sNaHe_kWkoaK9mvQkpocsJTqypkZmlhOJ7Zal8N4wMGatKdjl8w_jUsCmigDXdAuzOFiwZTUUb1lvQT7v9y2vHDklwtIi8sRPxQAS51EWs0K6FOkwwZgjDIBcSI1JfE12-4iZHN-4KouIUrsxVoZI40UYEog2tsirNNrBACSON8Dylc19IpfJEchUHimIeHagOnMzUlWlLIE5zLIYZJhKk2-yHbjtwNBceTXkz_hY7JL1nxERRUqvLi5zUdXbz9JidR5i5U_zFO3BshYoKF9TSIgfws4m86pfk3mz_MnsX6-z75Oz8_3gXVjiBG5oOsj1ojT8nZh9DjrE6sOfqABavBt4XI6nV4Q |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Ra9RAEB7K9aG-iFaLV6suUhGEYLKbbG4fRNp64c5eD6kn9G3Z3WxUPHLVXBF_lP-xM8mmtVB863OGJMxOvpndzDcfwP7IuKQSNLmV57hB4bmKlCld5Cseuzg2yrQqCidzOfmSfjzLzjbgb8-FobbKHhNboC5Xjs7I3-KtMJVgcpHvz39GpBpFf1d7CY0uLI79n9-4ZWveTT_g-r7ivBgvjiZRUBWInMiTdZTzTGSlcdXIIhBIJxUmWSmzUhgs4VJH8-Ut9yXmvVjQ7EoRm9JWVo2U861IBCL-ZipkzAeweTiefzq9OtSJBUZ0IjseoBAqxnBK0oTInDy9kflux_82qRUP4H6oRtlBFz4PYcPX27DVk5WbbdgZXxPh0DAgQfMICiKzE3vZUd80K4g0-I0V5odnhJtsVbOj5Xcshz3rCAysbU5gs3A-ykiEbdk8hsVdeG8HBvWq9k-AZVZ440WSWFemwlhbKsPtKLNUYrnMDuFN7y7twrxyks1Yaty3kG_1P74dwv6V8Xk3puN2s5fkd02DL2rqrPlqLppGTz-f6oM8lYrKPT6E18GoWuEDnQlEBXxtmpV1w3KvXz8dPv1GXwfq7v8vv4CtyeJkpmfT-fFTuMeJV9E2r-3BYP3rwj_Damdtn4cYY6DvOKovAeczD8Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bS9xAFD7ICrYv0nqhq7YdiiIUgslMLjsPpVjd4HpZxFrwbZiZTFRcsrZZKf1p_Xc9J5l4Aembzzkk4eTjXCbn-w7A5kDbqBSk3MozbFB4JgOpCxu4koc2DLXUzRaFk3F68CM-vEgu5uBvx4WhscouJjaBuphaOiPfwVthKsHkku6UfizidD__evszoA1S9Ke1W6fRQuTI_fmN7Vv9ZbSP33qL83x4vncQ-A0DgRVZNAsynoik0LYcGAwKqU0lJtw0TQqhsZyLLWnNG-4KzIGhIB1LEerClEYOpHXNwgiM_vMZNUU9mP82HJ-e3R_whALRHaUtJ1AIGSK0ojgiYiePn2TB53NBk-DyN7DoK1O220LpLcy5agledcTleglWhw-kODT0UaFehpyI7cRktjRDzXIiEF6xXN84RjGUTSu2N7nG0tixlszAmkEFduzPShktZJvUK3D-Et5bhV41rdw7YIkRTjsRRcYWsdDGFFJzM0gMlVs2MX343LlLWa9dTis0Jgp7GPKteuTbPmzeG9-2kh3Pm30ivysSwagITpf6rq7V6PuZ2s3iVFLpx_uw7Y3KKT7Qak9awNcm3awnlhvd91M-DNTqAbRr_7_8ERYQzep4ND5ah9ecKBbNHNsG9Ga_7tx7LHxm5oOHGAP1wqD-B3IxE_k |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Counteracting+French+Fake+News+on+Climate+Change+Using+Language+Models&rft.jtitle=Sustainability&rft.au=Meddeb%2C+Paul&rft.au=Ruseti%2C+Stefan&rft.au=Dascalu%2C+Mihai&rft.au=Terian%2C+Simina-Maria&rft.date=2022-09-01&rft.pub=MDPI+AG&rft.issn=2071-1050&rft.eissn=2071-1050&rft.volume=14&rft.issue=18&rft_id=info:doi/10.3390%2Fsu141811724&rft.externalDocID=A746961252 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2071-1050&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2071-1050&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2071-1050&client=summon |