Counteracting French Fake News on Climate Change Using Language Models

The unprecedented scale of disinformation on the Internet for more than a decade represents a serious challenge for democratic societies. When this process is focused on a well-established subject such as climate change, it can subvert measures and policies that various governmental bodies have take...

Full description

Saved in:
Bibliographic Details
Published inSustainability Vol. 14; no. 18; p. 11724
Main Authors Meddeb, Paul, Ruseti, Stefan, Dascalu, Mihai, Terian, Simina-Maria, Travadel, Sebastien
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.09.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The unprecedented scale of disinformation on the Internet for more than a decade represents a serious challenge for democratic societies. When this process is focused on a well-established subject such as climate change, it can subvert measures and policies that various governmental bodies have taken to mitigate the phenomenon. It is therefore essential to effectively identify and counteract fake news on climate change. To do this, our main contribution represents a novel dataset with more than 2300 articles written in French, gathered using web scraping from all types of media dealing with climate change. Manual labeling was performed by two annotators with three classes: “fake”, “biased”, and “true”. Machine Learning models ranging from bag-of-words representations used by an SVM to Transformer-based architectures built on top of CamemBERT were built to automatically classify the articles. Our results, with an F1-score of 84.75% using the BERT-based model at the article level coupled with hand-crafted features specifically tailored for this task, represent a strong baseline. At the same time, we highlight perceptual properties as text sequences (i.e., fake, biased, and irrelevant text fragments) at the sentence level, with a macro F1 of 45.01% and a micro F1 of 78.11%. Based on these results, our proposed method facilitates the identification of fake news, and thus contributes to better education of the public.
AbstractList The unprecedented scale of disinformation on the Internet for more than a decade represents a serious challenge for democratic societies. When this process is focused on a well-established subject such as climate change, it can subvert measures and policies that various governmental bodies have taken to mitigate the phenomenon. It is therefore essential to effectively identify and counteract fake news on climate change. To do this, our main contribution represents a novel dataset with more than 2300 articles written in French, gathered using web scraping from all types of media dealing with climate change. Manual labeling was performed by two annotators with three classes: "fake", "biased", and "true". Machine Learning models ranging from bag-of-words representations used by an SVM to Transformer-based architectures built on top of CamemBERT were built to automatically classify the articles. Our results, with an F1-score of 84.75% using the BERT-based model at the article level coupled with hand-crafted features specifically tailored for this task, represent a strong baseline. At the same time, we highlight perceptual properties as text sequences (i.e., fake, biased, and irrelevant text fragments) at the sentence level, with a macro F1 of 45.01% and a micro F1 of 78.11%. Based on these results, our proposed method facilitates the identification of fake news, and thus contributes to better education of the public.
Audience Academic
Author Ruseti, Stefan
Meddeb, Paul
Dascalu, Mihai
Terian, Simina-Maria
Travadel, Sebastien
Author_xml – sequence: 1
  givenname: Paul
  surname: Meddeb
  fullname: Meddeb, Paul
– sequence: 2
  givenname: Stefan
  orcidid: 0000-0002-0380-6814
  surname: Ruseti
  fullname: Ruseti, Stefan
– sequence: 3
  givenname: Mihai
  orcidid: 0000-0002-4815-9227
  surname: Dascalu
  fullname: Dascalu, Mihai
– sequence: 4
  givenname: Simina-Maria
  surname: Terian
  fullname: Terian, Simina-Maria
– sequence: 5
  givenname: Sebastien
  surname: Travadel
  fullname: Travadel, Sebastien
BookMark eNptkcFOwzAMhiM0JMbYiReoxAmhjjhp0_Y4VRQmDZBgnKs0TbeMLh1JKuDtyTQOGyI-2I6-35btczTQnZYIXQKeUJrhW9tDBClAQqITNCQ4gRBwjAcH8RkaW7vG_lEKGbAhKvKu104aLpzSy6AwUotVUPB3GTzJTxt0OshbteFOBvmK66UM3uwOnPu45z597GrZ2gt02vDWyvGvH6FFcbfIH8L58_0sn85DQRNwYUJiGtdcNGmVMMIEyxLAjMU15SlUkUgj74isSRRhmjGGKeZ11VRZmglJYzpCV_uyW9N99NK6ct31RvuOJUmAMUhjyjw12VNL3spS6aZzfj5vtdwo4ZfWKP8_TSKWMSAx8YLrI4FnnPxyS95bW85eX47Zmz0rTGetkU25NX4_5rsEXO7uUB7cwdPwhxbKcad8A8NV-6_mB9H-iLc
CitedBy_id crossref_primary_10_1371_journal_pone_0317338
crossref_primary_10_1371_journal_pone_0291423
crossref_primary_10_1007_s40593_024_00402_4
crossref_primary_10_1371_journal_pclm_0000356
Cites_doi 10.3390/app12031116
10.1016/j.ejor.2019.06.022
10.1007/s11042-021-11782-3
10.1016/j.eswa.2020.113503
10.1609/icwsm.v12i1.14984
10.18653/v1/2020.acl-main.645
10.1145/3184558.3191610
10.1016/j.cogsys.2019.12.005
10.3390/su12052123
10.1016/j.eswa.2019.03.036
10.1007/978-3-319-31816-5
10.1111/socf.12546
10.1007/3-540-44853-5
10.1016/j.asoc.2020.107050
10.1155/2021/5557784
10.1109/SCEECS.2018.8546944
10.1145/2939672.2939778
10.1088/2515-7620/abae77
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ISR
4U-
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.3390/su141811724
DatabaseName CrossRef
Gale In Context: Science
University Readers
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
University Readers
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EISSN 2071-1050
ExternalDocumentID A746961252
10_3390_su141811724
GeographicLocations France
GeographicLocations_xml – name: France
GroupedDBID 29Q
2WC
2XV
4P2
5VS
7XC
8FE
8FH
A8Z
AAHBH
AAYXX
ACHQT
ADBBV
ADMLS
AENEX
AFKRA
AFMMW
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
E3Z
ECGQY
FRS
GX1
IAO
IEP
ISR
ITC
KQ8
ML.
MODMG
M~E
OK1
P2P
PHGZM
PHGZT
PIMPY
PROAC
TR2
PMFND
4U-
ABUWG
AZQEC
COVID
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c371t-72535dacf8b7626c69710665d3a81b4c8481b2ed24403966030adbfb989ce353
IEDL.DBID BENPR
ISSN 2071-1050
IngestDate Mon Jun 30 07:32:23 EDT 2025
Tue Jun 10 20:46:04 EDT 2025
Fri Jun 27 06:10:30 EDT 2025
Tue Jul 01 02:44:32 EDT 2025
Thu Apr 24 23:06:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c371t-72535dacf8b7626c69710665d3a81b4c8481b2ed24403966030adbfb989ce353
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0380-6814
0000-0002-4815-9227
OpenAccessLink https://www.proquest.com/docview/2716618536?pq-origsite=%requestingapplication%
PQID 2716618536
PQPubID 2032327
ParticipantIDs proquest_journals_2716618536
gale_infotracacademiconefile_A746961252
gale_incontextgauss_ISR_A746961252
crossref_primary_10_3390_su141811724
crossref_citationtrail_10_3390_su141811724
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sustainability
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Gravanis (ref_22) 2019; 128
Faustini (ref_21) 2020; 158
ref_14
Palani (ref_17) 2022; 81
Drummond (ref_1) 2020; 2
ref_13
Zhang (ref_19) 2019; 279
ref_12
Prasad (ref_3) 2019; 34
ref_11
ref_10
Demestichas (ref_4) 2021; 101
ref_18
ref_16
Aslam (ref_24) 2021; 2021
Kouzy (ref_20) 2020; 12
ref_25
Terian (ref_28) 2022; 31
ref_23
Kaliyar (ref_15) 2020; 61
ref_2
ref_27
ref_26
ref_9
ref_8
ref_5
ref_7
ref_6
References_xml – ident: ref_7
– ident: ref_16
  doi: 10.3390/app12031116
– ident: ref_5
– volume: 279
  start-page: 1036
  year: 2019
  ident: ref_19
  article-title: Detecting fake news for reducing misinformation risks using analytics approaches
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2019.06.022
– ident: ref_26
– volume: 81
  start-page: 5587
  year: 2022
  ident: ref_17
  article-title: CB-Fake: A multimodal deep learning framework for automatic fake news detection using capsule neural network and BERT
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-021-11782-3
– volume: 158
  start-page: 113503
  year: 2020
  ident: ref_21
  article-title: Fake news detection in multiple platforms and languages
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113503
– ident: ref_11
  doi: 10.1609/icwsm.v12i1.14984
– ident: ref_18
– ident: ref_10
  doi: 10.18653/v1/2020.acl-main.645
– ident: ref_6
  doi: 10.1145/3184558.3191610
– volume: 61
  start-page: 32
  year: 2020
  ident: ref_15
  article-title: FNDNet—A deep convolutional neural network for fake news detection
  publication-title: Cogn. Syst. Res.
  doi: 10.1016/j.cogsys.2019.12.005
– ident: ref_2
  doi: 10.3390/su12052123
– volume: 128
  start-page: 201
  year: 2019
  ident: ref_22
  article-title: Behind the cues: A benchmarking study for fake news detection
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.03.036
– ident: ref_8
– ident: ref_25
– ident: ref_9
  doi: 10.1007/978-3-319-31816-5
– volume: 31
  start-page: 270
  year: 2022
  ident: ref_28
  article-title: Discerning Fake News: An Automated Analysis Using the ReaderBench Framework
  publication-title: Transylv. Rev.
– ident: ref_12
– volume: 34
  start-page: 1217
  year: 2019
  ident: ref_3
  article-title: Denying anthropogenic climate change: Or, how our rejection of objective reality gave intellectual legitimacy to fake news
  publication-title: Sociol. Forum
  doi: 10.1111/socf.12546
– ident: ref_23
  doi: 10.1007/3-540-44853-5
– ident: ref_13
– volume: 101
  start-page: 107050
  year: 2021
  ident: ref_4
  article-title: Advanced Machine Learning techniques for fake news (online disinformation) detection: A systematic mapping study
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.107050
– volume: 12
  start-page: e7255
  year: 2020
  ident: ref_20
  article-title: Coronavirus Goes Viral: Quantifying the COVID-19 Misinformation Epidemic on Twitter
  publication-title: Cureus
– volume: 2021
  start-page: 5557784
  year: 2021
  ident: ref_24
  article-title: Fake Detect: A Deep Learning Ensemble Model for Fake News Detection
  publication-title: Complexity
  doi: 10.1155/2021/5557784
– ident: ref_14
  doi: 10.1109/SCEECS.2018.8546944
– ident: ref_27
  doi: 10.1145/2939672.2939778
– volume: 2
  start-page: 081003
  year: 2020
  ident: ref_1
  article-title: Limited effects of exposure to fake news about climate change
  publication-title: Environ. Res. Commun.
  doi: 10.1088/2515-7620/abae77
SSID ssj0000331916
Score 2.347702
Snippet The unprecedented scale of disinformation on the Internet for more than a decade represents a serious challenge for democratic societies. When this process is...
SourceID proquest
gale
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 11724
SubjectTerms Climate change
Climatic changes
Computational linguistics
Control
Datasets
Deception
Language processing
Media coverage
Natural language interfaces
Neural networks
Social aspects
Social networks
Sustainability
Title Counteracting French Fake News on Climate Change Using Language Models
URI https://www.proquest.com/docview/2716618536
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ZS8NAEB60PuiLeBXrxSKCIAST3ZxPotJ4oEW0Qt_C7majYkmqaf-_M-m2KojPGbJhdneuzPcNwFEstVcIYm7lESYoPEqcRObaMQV3tevKRDZTFO574fWzfzsIBrbgVtu2yplNbAx1XmmqkZ_iq9CVoHMJz0YfDk2Nor-rdoTGIiyhCY7jFixddHsPj_MqiyvwiHnhFJgnML_H_fV8j9CV3P_liv42yI2XSddg1YaH7Hy6n-uwYMoNWJ6hh-sNaHe_kWkoaK9mvQkpocsJTqypkZmlhOJ7Zal8N4wMGatKdjl8w_jUsCmigDXdAuzOFiwZTUUb1lvQT7v9y2vHDklwtIi8sRPxQAS51EWs0K6FOkwwZgjDIBcSI1JfE12-4iZHN-4KouIUrsxVoZI40UYEog2tsirNNrBACSON8Dylc19IpfJEchUHimIeHagOnMzUlWlLIE5zLIYZJhKk2-yHbjtwNBceTXkz_hY7JL1nxERRUqvLi5zUdXbz9JidR5i5U_zFO3BshYoKF9TSIgfws4m86pfk3mz_MnsX6-z75Oz8_3gXVjiBG5oOsj1ojT8nZh9DjrE6sOfqABavBt4XI6nV4Q
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Ra9RAEB7K9aG-iFaLV6suUhGEYLKbbG4fRNp64c5eD6kn9G3Z3WxUPHLVXBF_lP-xM8mmtVB863OGJMxOvpndzDcfwP7IuKQSNLmV57hB4bmKlCld5Cseuzg2yrQqCidzOfmSfjzLzjbgb8-FobbKHhNboC5Xjs7I3-KtMJVgcpHvz39GpBpFf1d7CY0uLI79n9-4ZWveTT_g-r7ivBgvjiZRUBWInMiTdZTzTGSlcdXIIhBIJxUmWSmzUhgs4VJH8-Ut9yXmvVjQ7EoRm9JWVo2U861IBCL-ZipkzAeweTiefzq9OtSJBUZ0IjseoBAqxnBK0oTInDy9kflux_82qRUP4H6oRtlBFz4PYcPX27DVk5WbbdgZXxPh0DAgQfMICiKzE3vZUd80K4g0-I0V5odnhJtsVbOj5Xcshz3rCAysbU5gs3A-ykiEbdk8hsVdeG8HBvWq9k-AZVZ440WSWFemwlhbKsPtKLNUYrnMDuFN7y7twrxyks1Yaty3kG_1P74dwv6V8Xk3puN2s5fkd02DL2rqrPlqLppGTz-f6oM8lYrKPT6E18GoWuEDnQlEBXxtmpV1w3KvXz8dPv1GXwfq7v8vv4CtyeJkpmfT-fFTuMeJV9E2r-3BYP3rwj_Damdtn4cYY6DvOKovAeczD8Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bS9xAFD7ICrYv0nqhq7YdiiIUgslMLjsPpVjd4HpZxFrwbZiZTFRcsrZZKf1p_Xc9J5l4Aembzzkk4eTjXCbn-w7A5kDbqBSk3MozbFB4JgOpCxu4koc2DLXUzRaFk3F68CM-vEgu5uBvx4WhscouJjaBuphaOiPfwVthKsHkku6UfizidD__evszoA1S9Ke1W6fRQuTI_fmN7Vv9ZbSP33qL83x4vncQ-A0DgRVZNAsynoik0LYcGAwKqU0lJtw0TQqhsZyLLWnNG-4KzIGhIB1LEerClEYOpHXNwgiM_vMZNUU9mP82HJ-e3R_whALRHaUtJ1AIGSK0ojgiYiePn2TB53NBk-DyN7DoK1O220LpLcy5agledcTleglWhw-kODT0UaFehpyI7cRktjRDzXIiEF6xXN84RjGUTSu2N7nG0tixlszAmkEFduzPShktZJvUK3D-Et5bhV41rdw7YIkRTjsRRcYWsdDGFFJzM0gMlVs2MX343LlLWa9dTis0Jgp7GPKteuTbPmzeG9-2kh3Pm30ivysSwagITpf6rq7V6PuZ2s3iVFLpx_uw7Y3KKT7Qak9awNcm3awnlhvd91M-DNTqAbRr_7_8ERYQzep4ND5ah9ecKBbNHNsG9Ga_7tx7LHxm5oOHGAP1wqD-B3IxE_k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Counteracting+French+Fake+News+on+Climate+Change+Using+Language+Models&rft.jtitle=Sustainability&rft.au=Meddeb%2C+Paul&rft.au=Ruseti%2C+Stefan&rft.au=Dascalu%2C+Mihai&rft.au=Terian%2C+Simina-Maria&rft.date=2022-09-01&rft.pub=MDPI+AG&rft.issn=2071-1050&rft.eissn=2071-1050&rft.volume=14&rft.issue=18&rft_id=info:doi/10.3390%2Fsu141811724&rft.externalDocID=A746961252
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2071-1050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2071-1050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2071-1050&client=summon