Scaling of Kostiakov-Lewis equation and estimation of scaling factors at field scale

Seventy-two infiltration tests were conducted to model soil water infiltration variability using scaling in the first and third terraces of Yangling District, respectively. The relationship between the scaling factor of the Kostiakov-Lewis equation and soil properties for multiple scales was determi...

Full description

Saved in:
Bibliographic Details
Published inArchiv für Acker- und Pflanzenbau und Bodenkunde Vol. 69; no. 4; pp. 632 - 647
Main Authors Feng, Zhengjiang, Nie, WeiBo
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 21.03.2023
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Seventy-two infiltration tests were conducted to model soil water infiltration variability using scaling in the first and third terraces of Yangling District, respectively. The relationship between the scaling factor of the Kostiakov-Lewis equation and soil properties for multiple scales was determined through two-dimensional continuous wavelet transform (2D-CWT) and path analyses, and the pedotransfer functions (PTFs) based on the support vector machine (SVM) and back propagation (BP) neural network were developed for estimating the scaling factor. The results indicated that when scaling factor was calculated using the least square method (F S ), the best match was achieved between the predicted infiltration and measured values. In the first and third terraces, the results of 2D-CWT and path analyses indicated that F S were positively correlated with sand content, silt content, and soil organic matter content. However, F S was negatively correlated with bulk density in the first terrace, and which was negatively correlated with clay content and initial water content in the third terrace. The accuracy of SVM-based PTF is higher than BP-based PTF, the mean absolute value of relative errors of SVM-based PTF were 11.3% and 8.16% for the first and third terrace, respectively. Therefore, the SVM is preferred for PTF development.
AbstractList Seventy-two infiltration tests were conducted to model soil water infiltration variability using scaling in the first and third terraces of Yangling District, respectively. The relationship between the scaling factor of the Kostiakov–Lewis equation and soil properties for multiple scales was determined through two-dimensional continuous wavelet transform (2D-CWT) and path analyses, and the pedotransfer functions (PTFs) based on the support vector machine (SVM) and back propagation (BP) neural network were developed for estimating the scaling factor. The results indicated that when scaling factor was calculated using the least square method (FS), the best match was achieved between the predicted infiltration and measured values. In the first and third terraces, the results of 2D-CWT and path analyses indicated that FS were positively correlated with sand content, silt content, and soil organic matter content. However, FS was negatively correlated with bulk density in the first terrace, and which was negatively correlated with clay content and initial water content in the third terrace. The accuracy of SVM-based PTF is higher than BP-based PTF, the mean absolute value of relative errors of SVM-based PTF were 11.3% and 8.16% for the first and third terrace, respectively. Therefore, the SVM is preferred for PTF development.
Seventy-two infiltration tests were conducted to model soil water infiltration variability using scaling in the first and third terraces of Yangling District, respectively. The relationship between the scaling factor of the Kostiakov-Lewis equation and soil properties for multiple scales was determined through two-dimensional continuous wavelet transform (2D-CWT) and path analyses, and the pedotransfer functions (PTFs) based on the support vector machine (SVM) and back propagation (BP) neural network were developed for estimating the scaling factor. The results indicated that when scaling factor was calculated using the least square method (F S ), the best match was achieved between the predicted infiltration and measured values. In the first and third terraces, the results of 2D-CWT and path analyses indicated that F S were positively correlated with sand content, silt content, and soil organic matter content. However, F S was negatively correlated with bulk density in the first terrace, and which was negatively correlated with clay content and initial water content in the third terrace. The accuracy of SVM-based PTF is higher than BP-based PTF, the mean absolute value of relative errors of SVM-based PTF were 11.3% and 8.16% for the first and third terrace, respectively. Therefore, the SVM is preferred for PTF development.
Author Feng, Zhengjiang
Nie, WeiBo
Author_xml – sequence: 1
  givenname: Zhengjiang
  orcidid: 0000-0003-0789-2331
  surname: Feng
  fullname: Feng, Zhengjiang
  organization: State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology
– sequence: 2
  givenname: WeiBo
  surname: Nie
  fullname: Nie, WeiBo
  email: nwbo2000@163.com
  organization: State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology
BookMark eNqFkEtLAzEQx4NUsD4-grDgxctqXrvZxYsivrDgQT2HaR4S3SZtsrX47c3aeulBLxOG-f2HyW8fjXzwBqFjgs8IbvA5ZnWFGcdnFFMyFEoo30FjwkVdsqoWIzQemHKA9tB-Su8YY44FG6OXZwWd829FsMVjSL2Dj_BZTszKpcIsltC74AvwujB5Nlu3GU2blAXVh5gK6AvrTKd_BuYQ7VrokjnavAfo9fbm5fq-nDzdPVxfTUrFBOlLgblRFIBZAmJqjaYtpwJYS6e6qdq2VQosVdMp0UQLyiyvQVcatGhaypVhB-h0vXcew2KZL5Qzl5TpOvAmLJOkDSGtqCuKM3qyhb6HZfT5OklFk0XxhvBMXawpFUNK0VipXP_z6T6C6yTBcjAuf43LwbjcGM_pais9j9lZ_Po3d7nOOW9DnMEqxE7LHr66EG0Er1yS7O8V3_o8mVY
CitedBy_id crossref_primary_10_1038_s41598_024_68363_1
crossref_primary_10_1016_j_jhydrol_2024_132459
crossref_primary_10_1002_hyp_70011
Cites_doi 10.1007/s40808-020-00771-4
10.1016/j.inpa.2021.04.008
10.1016/j.jhydrol.2005.04.003
10.1529/biophysj.106.102582
10.1016/j.ijhydene.2021.03.132
10.1145/1961189.1961199
10.1016/j.ecocom.2011.10.004
10.1016/j.biosystemseng.2020.05.014
10.1016/S0016-7061(02)00139-8
10.1002/ird.2126
10.1029/2005WR004118
10.1007/s40899-017-0091-x
10.1006/jaer.1995.1070
10.1016/j.iref.2017.07.013
10.1016/j.geoderma.2020.114240
10.1016/j.conbuildmat.2020.118475
10.1016/j.still.2017.04.009
10.1016/j.still.2018.12.007
10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
10.1016/j.saa.2017.01.029
10.1111/j.1365-2389.2004.00620.x
10.2136/sssaj1984.03615995004800050001x
10.1016/j.chemosphere.2017.04.015
10.1063/1.1722370
10.1201/9781315226774-18
10.1146/annurev.fl.24.010192.002143
10.1016/j.geoderma.2014.11.012
10.1016/j.asr.2021.03.021
10.1016/j.chemosphere.2020.127571
10.1007/s11104-014-2079-8
10.1016/j.jhydrol.2016.01.026
10.1016/j.biosystemseng.2006.08.007
10.1175/2009JTECHA1338.1
10.1016/j.geoderma.2020.114210
10.1016/j.still.2019.104542
10.1007/s42729-020-00239-5
10.1007/s11368-011-0356-1
10.1016/j.scitotenv.2018.01.104
10.1016/j.catena.2017.07.014
ContentType Journal Article
Copyright 2022 Informa UK Limited, trading as Taylor & Francis Group 2022
2022 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group 2022
– notice: 2022 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7ST
7T7
8FD
C1K
FR3
P64
SOI
7S9
L.6
DOI 10.1080/03650340.2021.2022124
DatabaseName CrossRef
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

Engineering Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1476-3567
EndPage 647
ExternalDocumentID 10_1080_03650340_2021_2022124
2022124
Genre Research Article
GroupedDBID .7F
.QJ
0BK
2DF
30N
4.4
5GY
5VS
AAENE
AAHBH
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACPRK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRAH
AGDLA
AGMYJ
AHDZW
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
EBS
ECGQY
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
NX0
O9-
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEI
TFL
TFT
TFW
TQWBC
TTHFI
TUROJ
TWF
UT5
UU3
Y6R
~S~
AAGDL
AAYXX
ADYSH
AFRVT
AIYEW
CITATION
7ST
7T7
8FD
C1K
FR3
P64
SOI
7S9
L.6
ID FETCH-LOGICAL-c371t-704ec2aa3f1a7bfed29427a392bd85999ccaf2cbb1d1d723f46ad5dad78924ce3
ISSN 0365-0340
1476-3567
IngestDate Wed Jul 02 04:49:43 EDT 2025
Wed Aug 13 07:59:02 EDT 2025
Tue Jul 01 03:30:37 EDT 2025
Thu Apr 24 23:10:37 EDT 2025
Wed Dec 25 09:04:49 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c371t-704ec2aa3f1a7bfed29427a392bd85999ccaf2cbb1d1d723f46ad5dad78924ce3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0789-2331
PQID 2784764814
PQPubID 186247
PageCount 16
ParticipantIDs informaworld_taylorfrancis_310_1080_03650340_2021_2022124
crossref_citationtrail_10_1080_03650340_2021_2022124
proquest_journals_2784764814
proquest_miscellaneous_2811976520
crossref_primary_10_1080_03650340_2021_2022124
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-21
PublicationDateYYYYMMDD 2023-03-21
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-21
  day: 21
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Archiv für Acker- und Pflanzenbau und Bodenkunde
PublicationYear 2023
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References cit0011
cit0033
cit0012
cit0034
cit0031
cit0010
cit0032
Onorato M (cit0027) 1997; 16
Dallard T (cit0008) 1993; 12
cit0019
Biswas A (cit0003) 2011; 161
cit0017
cit0039
cit0018
cit0015
cit0037
cit0016
cit0038
cit0013
cit0035
cit0014
cit0036
cit0022
cit0001
cit0023
cit0045
cit0020
cit0042
cit0021
cit0043
cit0040
cit0041
Dewey DR (cit0009) 1959; 51
Razzaghi S (cit0030) 2016; 61
Zhang Y (cit0044) 2019; 164
cit0006
cit0028
cit0007
cit0029
cit0004
cit0026
cit0005
cit0002
cit0024
cit0025
References_xml – ident: cit0028
  doi: 10.1007/s40808-020-00771-4
– ident: cit0033
  doi: 10.1016/j.inpa.2021.04.008
– ident: cit0015
  doi: 10.1016/j.jhydrol.2005.04.003
– ident: cit0022
  doi: 10.1529/biophysj.106.102582
– ident: cit0036
  doi: 10.1016/j.ijhydene.2021.03.132
– ident: cit0007
  doi: 10.1145/1961189.1961199
– volume: 16
  start-page: 575
  issue: 4
  year: 1997
  ident: cit0027
  publication-title: Eur J Mech B-Fluid
– ident: cit0034
  doi: 10.1016/j.ecocom.2011.10.004
– ident: cit0006
  doi: 10.1016/j.biosystemseng.2020.05.014
– ident: cit0023
  doi: 10.1016/S0016-7061(02)00139-8
– ident: cit0025
  doi: 10.1002/ird.2126
– ident: cit0035
  doi: 10.1029/2005WR004118
– ident: cit0040
  doi: 10.1007/s40899-017-0091-x
– ident: cit0032
  doi: 10.1006/jaer.1995.1070
– ident: cit0020
  doi: 10.1016/j.iref.2017.07.013
– volume: 12
  start-page: 107
  year: 1993
  ident: cit0008
  publication-title: Eur J Fluid Mech/B
– ident: cit0045
  doi: 10.1016/j.geoderma.2020.114240
– ident: cit0001
  doi: 10.1016/j.conbuildmat.2020.118475
– ident: cit0011
  doi: 10.1016/j.still.2017.04.009
– ident: cit0014
  doi: 10.1016/j.still.2018.12.007
– ident: cit0039
  doi: 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
– ident: cit0019
  doi: 10.1016/j.saa.2017.01.029
– ident: cit0016
  doi: 10.1111/j.1365-2389.2004.00620.x
– ident: cit0038
  doi: 10.2136/sssaj1984.03615995004800050001x
– volume: 161
  start-page: 50
  issue: 1
  year: 2011
  ident: cit0003
  publication-title: J Hydrol
– ident: cit0017
  doi: 10.1016/j.chemosphere.2017.04.015
– ident: cit0024
  doi: 10.1063/1.1722370
– ident: cit0029
  doi: 10.1201/9781315226774-18
– volume: 61
  start-page: 1778
  issue: 10
  year: 2016
  ident: cit0030
  publication-title: Hydrolog Sci J
– ident: cit0010
  doi: 10.1146/annurev.fl.24.010192.002143
– ident: cit0012
  doi: 10.1016/j.geoderma.2014.11.012
– ident: cit0041
  doi: 10.1016/j.asr.2021.03.021
– ident: cit0018
  doi: 10.1016/j.chemosphere.2020.127571
– volume: 164
  issue: 1
  year: 2019
  ident: cit0044
  publication-title: Water Res
– ident: cit0004
  doi: 10.1007/s11104-014-2079-8
– ident: cit0031
  doi: 10.1016/j.jhydrol.2016.01.026
– volume: 51
  start-page: 70
  issue: 9
  year: 1959
  ident: cit0009
  publication-title: Probl Tuberk
– ident: cit0021
  doi: 10.1016/j.biosystemseng.2006.08.007
– ident: cit0026
  doi: 10.1175/2009JTECHA1338.1
– ident: cit0002
  doi: 10.1016/j.geoderma.2020.114210
– ident: cit0013
  doi: 10.1016/j.still.2019.104542
– ident: cit0005
  doi: 10.1007/s42729-020-00239-5
– ident: cit0043
  doi: 10.1007/s11368-011-0356-1
– ident: cit0037
  doi: 10.1016/j.scitotenv.2018.01.104
– ident: cit0042
  doi: 10.1016/j.catena.2017.07.014
SSID ssj0004073
Score 2.293367
Snippet Seventy-two infiltration tests were conducted to model soil water infiltration variability using scaling in the first and third terraces of Yangling District,...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 632
SubjectTerms agronomy
Back propagation networks
back propagation neural network
Bulk density
clay fraction
Continuous wavelet transform
equations
Estimation
Infiltration
infiltration (hydrology)
Kostiakov-lewis equation
Mathematical analysis
Moisture content
Neural networks
Organic matter
sand fraction
Scaling
scaling factor
Scaling factors
silt fraction
Soil infiltration
Soil organic matter
Soil properties
Soil water
support vector machine
Support vector machines
Terraces
Two dimensional analysis
Water content
Water infiltration
wavelet
wavelet analysis
Wavelet transforms
Title Scaling of Kostiakov-Lewis equation and estimation of scaling factors at field scale
URI https://www.tandfonline.com/doi/abs/10.1080/03650340.2021.2022124
https://www.proquest.com/docview/2784764814
https://www.proquest.com/docview/2811976520
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKcoED4ikWFhQkblWqPBwnPW5Xu1pBKUi0UHGJ7NhelpYE2hQQJ_4D_5BfwkzsPKquWOASpXGcpJ7P47Fn5jMhTyOdgdKXvquZL1yKJJgilpGr0MCXMEIyifnOLybsdEafzaN5r_etE7W0KcUg-35hXsn_SBWugVwxS_YfJNs8FC7AOcgXjiBhOP6VjF9DA9uo5ecF9tVF8aWOXgjH6uv5uq8-Gy7vykmAjBofGxtxbWvXW-5wZGlSS1kVbEUIGXravkav-ugIg-oXauXiFrr9V3oJ1qXKBd9Uv0cFKLIFZqa1RqZRJ-_ew8kHQONZ6wupVlPfqvNR0V19CEIMvwra1YfpzkYgnWgkk5QVQRXDyDRQRsfSmLlhZHbhqJWw2a_Fgo12NCqzy59mcGaGnnNH79tASXgbvgym_QHO_QMYl2k70NXO_cnL9GQ2HqfT4_n0CrkawAQDNWToTdqMWs_EJtSfX-d-ISv7RS_Zsmq2OG93xvjKcJneJDfsjMM5NPC5RXoqv02uH56tLOuKukPeWCA5hXYaIP368bOCkFNDyAEIOS2E8GYLIcdCyOGlU0GoKlB3yezkeHp06toNN9wsjP3SjT2qsoDzUPs8FlrJYEiDmIMJLWQSwVQCursOMiF86UtoNE0Zl5HkMk5gGp-p8B7Zy4tc3ScOpdpPVCaHTCAjkRI8k9xLuMfheTCy7RNaN1iaWTZ63BRlmfo1aa1t5xTbObXtvE8GTbVPho7lsgrDrjTSsgKsNlhNw0vqHtSiS22vX6foqI8Z_CUoftIUg05GRxvPVbGBexJ0zrMo8B78-REPybW2Ux2QvXK1UY_AyC3F4wqPvwG13KDC
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VcoAeeKMWChgJjllix4mzBw4VUG3Z7V7YSr0ZO7ZR1WoD3SwV_Vn9K_whZhKnUBDqAfXANX7EY4_nYc98BniRhwqFvuNJKLhNJIFgWuXyxJOB71BDFo7ynXenxWhPvt_P91fgrM-FobBK8qFDBxTRymra3HQY3YfEvUKpm6eZTNG9E-TjCZS_MgZWjv23E3TbFq933uIavxRi-93szSiJLwskVaZ4k6hU-koYkwVulA3eiaEUyqCtYF2Zo82EdAVRWcsdd0pkQRbG5c44VaK_UvkM-70G1_NhoWhvZen0Zy5m2t1qU_QYjbHPGvrbsC_owwtoqX9oh1blbd-G7_1kdZEuh4NlYwfV6W84kv_XbN6BW9ECZ1vdlrkLK35-D9a2Ph1HFBJ_H2YfkHNRp7M6sHFNQvCw_ppM_MnBgvkvHTg6Q4IZQZR0uZ9UdRFbxTeMmGlYGyDYFvgHsHclZD2E1Xk99-vApAy89JUbFpbwebw1lTNpaVKD_aGc3wDZM4GuIjY7PRFypHkP4RoXSdMi6bhIGzA4b_a5Aye5rMHwVw7TTXsqFLonXHR2SdvNnh11lHMLTdfWqkCSsPj5eTFKKLp2MnNfL7FOSVfVRS7SR__w-2dwYzTbnejJznT8GG7i14xCAQXfhNXmeOmfoG3Y2KftZmTw8ar59QcMlGbn
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTxRBEK4gJkQPPkAjitImcpx1uqfnsQcPRNwAixsTIOHW9tMYzA6ysxL9V_4Vf5FVMz0oEsPBcPA6_Zjprup6TFd9BfAiDxaFvuNJKLhJJIFgmtLliScD36GGLBzlO7-dFNuHcvcoP1qA730uDIVVkg8dOqCIVlbT4T5xoY-Ie4lCN08zmaJ3J8jFEyh-ZYyrHPuvZ-i1zV7tbCGJN4QYvTl4vZ3EwgKJzUreJGUqvRVaZ4Hr0gTvxFCKUqOpYFyVo8mEywrCGsMdd6XIgiy0y512ZYXuivUZznsDbhaU2ElZI-nkVypm2l1qU_AYfWOfNPS3z76gDi-ApV5SDq3GG92FH_1edYEux4N5Ywb22x8wkv_VZt6DO9H-ZpvdgbkPC366DLc3P5xGDBK_Agf7yLeo0Vkd2LgmEXhcf0n2_NnHGfOfO2h0hutlBFDSZX5S11kcFSsYMd2wNjywbfAP4PBalvUQFqf11D8CJmXglbduWBhC5_FGW6fTSqca50Mpvwqy5wFlIzI7FQj5pHgP4BqJpIhIKhJpFQbnw046aJKrBgx_ZzDVtP-EQlfARWVXjF3ruVFFKTdTdGldFrgkbH5-3ozyiS6d9NTXc-xT0UV1kYv08T-8fh2W3m2N1N7OZPwEbuHDjOIABV-DxeZ07p-iYdiYZ-1RZPD-utn1JyJeZYs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scaling+of+Kostiakov%E2%80%93Lewis+equation+and+estimation+of+scaling+factors+at+field+scale&rft.jtitle=Archiv+f%C3%BCr+Acker-+und+Pflanzenbau+und+Bodenkunde&rft.au=Feng%2C+Zhengjiang&rft.au=Nie%2C+WeiBo&rft.date=2023-03-21&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0365-0340&rft.eissn=1476-3567&rft.volume=69&rft.issue=4&rft.spage=632&rft.epage=647&rft_id=info:doi/10.1080%2F03650340.2021.2022124&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0365-0340&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0365-0340&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0365-0340&client=summon