Scaling of Kostiakov-Lewis equation and estimation of scaling factors at field scale
Seventy-two infiltration tests were conducted to model soil water infiltration variability using scaling in the first and third terraces of Yangling District, respectively. The relationship between the scaling factor of the Kostiakov-Lewis equation and soil properties for multiple scales was determi...
Saved in:
Published in | Archiv für Acker- und Pflanzenbau und Bodenkunde Vol. 69; no. 4; pp. 632 - 647 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Abingdon
Taylor & Francis
21.03.2023
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Seventy-two infiltration tests were conducted to model soil water infiltration variability using scaling in the first and third terraces of Yangling District, respectively. The relationship between the scaling factor of the Kostiakov-Lewis equation and soil properties for multiple scales was determined through two-dimensional continuous wavelet transform (2D-CWT) and path analyses, and the pedotransfer functions (PTFs) based on the support vector machine (SVM) and back propagation (BP) neural network were developed for estimating the scaling factor. The results indicated that when scaling factor was calculated using the least square method (F
S
), the best match was achieved between the predicted infiltration and measured values. In the first and third terraces, the results of 2D-CWT and path analyses indicated that F
S
were positively correlated with sand content, silt content, and soil organic matter content. However, F
S
was negatively correlated with bulk density in the first terrace, and which was negatively correlated with clay content and initial water content in the third terrace. The accuracy of SVM-based PTF is higher than BP-based PTF, the mean absolute value of relative errors of SVM-based PTF were 11.3% and 8.16% for the first and third terrace, respectively. Therefore, the SVM is preferred for PTF development. |
---|---|
AbstractList | Seventy-two infiltration tests were conducted to model soil water infiltration variability using scaling in the first and third terraces of Yangling District, respectively. The relationship between the scaling factor of the Kostiakov–Lewis equation and soil properties for multiple scales was determined through two-dimensional continuous wavelet transform (2D-CWT) and path analyses, and the pedotransfer functions (PTFs) based on the support vector machine (SVM) and back propagation (BP) neural network were developed for estimating the scaling factor. The results indicated that when scaling factor was calculated using the least square method (FS), the best match was achieved between the predicted infiltration and measured values. In the first and third terraces, the results of 2D-CWT and path analyses indicated that FS were positively correlated with sand content, silt content, and soil organic matter content. However, FS was negatively correlated with bulk density in the first terrace, and which was negatively correlated with clay content and initial water content in the third terrace. The accuracy of SVM-based PTF is higher than BP-based PTF, the mean absolute value of relative errors of SVM-based PTF were 11.3% and 8.16% for the first and third terrace, respectively. Therefore, the SVM is preferred for PTF development. Seventy-two infiltration tests were conducted to model soil water infiltration variability using scaling in the first and third terraces of Yangling District, respectively. The relationship between the scaling factor of the Kostiakov-Lewis equation and soil properties for multiple scales was determined through two-dimensional continuous wavelet transform (2D-CWT) and path analyses, and the pedotransfer functions (PTFs) based on the support vector machine (SVM) and back propagation (BP) neural network were developed for estimating the scaling factor. The results indicated that when scaling factor was calculated using the least square method (F S ), the best match was achieved between the predicted infiltration and measured values. In the first and third terraces, the results of 2D-CWT and path analyses indicated that F S were positively correlated with sand content, silt content, and soil organic matter content. However, F S was negatively correlated with bulk density in the first terrace, and which was negatively correlated with clay content and initial water content in the third terrace. The accuracy of SVM-based PTF is higher than BP-based PTF, the mean absolute value of relative errors of SVM-based PTF were 11.3% and 8.16% for the first and third terrace, respectively. Therefore, the SVM is preferred for PTF development. |
Author | Feng, Zhengjiang Nie, WeiBo |
Author_xml | – sequence: 1 givenname: Zhengjiang orcidid: 0000-0003-0789-2331 surname: Feng fullname: Feng, Zhengjiang organization: State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology – sequence: 2 givenname: WeiBo surname: Nie fullname: Nie, WeiBo email: nwbo2000@163.com organization: State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology |
BookMark | eNqFkEtLAzEQx4NUsD4-grDgxctqXrvZxYsivrDgQT2HaR4S3SZtsrX47c3aeulBLxOG-f2HyW8fjXzwBqFjgs8IbvA5ZnWFGcdnFFMyFEoo30FjwkVdsqoWIzQemHKA9tB-Su8YY44FG6OXZwWd829FsMVjSL2Dj_BZTszKpcIsltC74AvwujB5Nlu3GU2blAXVh5gK6AvrTKd_BuYQ7VrokjnavAfo9fbm5fq-nDzdPVxfTUrFBOlLgblRFIBZAmJqjaYtpwJYS6e6qdq2VQosVdMp0UQLyiyvQVcatGhaypVhB-h0vXcew2KZL5Qzl5TpOvAmLJOkDSGtqCuKM3qyhb6HZfT5OklFk0XxhvBMXawpFUNK0VipXP_z6T6C6yTBcjAuf43LwbjcGM_pais9j9lZ_Po3d7nOOW9DnMEqxE7LHr66EG0Er1yS7O8V3_o8mVY |
CitedBy_id | crossref_primary_10_1038_s41598_024_68363_1 crossref_primary_10_1016_j_jhydrol_2024_132459 crossref_primary_10_1002_hyp_70011 |
Cites_doi | 10.1007/s40808-020-00771-4 10.1016/j.inpa.2021.04.008 10.1016/j.jhydrol.2005.04.003 10.1529/biophysj.106.102582 10.1016/j.ijhydene.2021.03.132 10.1145/1961189.1961199 10.1016/j.ecocom.2011.10.004 10.1016/j.biosystemseng.2020.05.014 10.1016/S0016-7061(02)00139-8 10.1002/ird.2126 10.1029/2005WR004118 10.1007/s40899-017-0091-x 10.1006/jaer.1995.1070 10.1016/j.iref.2017.07.013 10.1016/j.geoderma.2020.114240 10.1016/j.conbuildmat.2020.118475 10.1016/j.still.2017.04.009 10.1016/j.still.2018.12.007 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2 10.1016/j.saa.2017.01.029 10.1111/j.1365-2389.2004.00620.x 10.2136/sssaj1984.03615995004800050001x 10.1016/j.chemosphere.2017.04.015 10.1063/1.1722370 10.1201/9781315226774-18 10.1146/annurev.fl.24.010192.002143 10.1016/j.geoderma.2014.11.012 10.1016/j.asr.2021.03.021 10.1016/j.chemosphere.2020.127571 10.1007/s11104-014-2079-8 10.1016/j.jhydrol.2016.01.026 10.1016/j.biosystemseng.2006.08.007 10.1175/2009JTECHA1338.1 10.1016/j.geoderma.2020.114210 10.1016/j.still.2019.104542 10.1007/s42729-020-00239-5 10.1007/s11368-011-0356-1 10.1016/j.scitotenv.2018.01.104 10.1016/j.catena.2017.07.014 |
ContentType | Journal Article |
Copyright | 2022 Informa UK Limited, trading as Taylor & Francis Group 2022 2022 Informa UK Limited, trading as Taylor & Francis Group |
Copyright_xml | – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group 2022 – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group |
DBID | AAYXX CITATION 7ST 7T7 8FD C1K FR3 P64 SOI 7S9 L.6 |
DOI | 10.1080/03650340.2021.2022124 |
DatabaseName | CrossRef Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Engineering Research Database Technology Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Engineering Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1476-3567 |
EndPage | 647 |
ExternalDocumentID | 10_1080_03650340_2021_2022124 2022124 |
Genre | Research Article |
GroupedDBID | .7F .QJ 0BK 2DF 30N 4.4 5GY 5VS AAENE AAHBH AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACPRK ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRAH AGDLA AGMYJ AHDZW AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO EBS ECGQY E~A E~B GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 NX0 O9- RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEI TFL TFT TFW TQWBC TTHFI TUROJ TWF UT5 UU3 Y6R ~S~ AAGDL AAYXX ADYSH AFRVT AIYEW CITATION 7ST 7T7 8FD C1K FR3 P64 SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c371t-704ec2aa3f1a7bfed29427a392bd85999ccaf2cbb1d1d723f46ad5dad78924ce3 |
ISSN | 0365-0340 1476-3567 |
IngestDate | Wed Jul 02 04:49:43 EDT 2025 Wed Aug 13 07:59:02 EDT 2025 Tue Jul 01 03:30:37 EDT 2025 Thu Apr 24 23:10:37 EDT 2025 Wed Dec 25 09:04:49 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c371t-704ec2aa3f1a7bfed29427a392bd85999ccaf2cbb1d1d723f46ad5dad78924ce3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0789-2331 |
PQID | 2784764814 |
PQPubID | 186247 |
PageCount | 16 |
ParticipantIDs | informaworld_taylorfrancis_310_1080_03650340_2021_2022124 crossref_citationtrail_10_1080_03650340_2021_2022124 proquest_journals_2784764814 proquest_miscellaneous_2811976520 crossref_primary_10_1080_03650340_2021_2022124 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-03-21 |
PublicationDateYYYYMMDD | 2023-03-21 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | Abingdon |
PublicationPlace_xml | – name: Abingdon |
PublicationTitle | Archiv für Acker- und Pflanzenbau und Bodenkunde |
PublicationYear | 2023 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | cit0011 cit0033 cit0012 cit0034 cit0031 cit0010 cit0032 Onorato M (cit0027) 1997; 16 Dallard T (cit0008) 1993; 12 cit0019 Biswas A (cit0003) 2011; 161 cit0017 cit0039 cit0018 cit0015 cit0037 cit0016 cit0038 cit0013 cit0035 cit0014 cit0036 cit0022 cit0001 cit0023 cit0045 cit0020 cit0042 cit0021 cit0043 cit0040 cit0041 Dewey DR (cit0009) 1959; 51 Razzaghi S (cit0030) 2016; 61 Zhang Y (cit0044) 2019; 164 cit0006 cit0028 cit0007 cit0029 cit0004 cit0026 cit0005 cit0002 cit0024 cit0025 |
References_xml | – ident: cit0028 doi: 10.1007/s40808-020-00771-4 – ident: cit0033 doi: 10.1016/j.inpa.2021.04.008 – ident: cit0015 doi: 10.1016/j.jhydrol.2005.04.003 – ident: cit0022 doi: 10.1529/biophysj.106.102582 – ident: cit0036 doi: 10.1016/j.ijhydene.2021.03.132 – ident: cit0007 doi: 10.1145/1961189.1961199 – volume: 16 start-page: 575 issue: 4 year: 1997 ident: cit0027 publication-title: Eur J Mech B-Fluid – ident: cit0034 doi: 10.1016/j.ecocom.2011.10.004 – ident: cit0006 doi: 10.1016/j.biosystemseng.2020.05.014 – ident: cit0023 doi: 10.1016/S0016-7061(02)00139-8 – ident: cit0025 doi: 10.1002/ird.2126 – ident: cit0035 doi: 10.1029/2005WR004118 – ident: cit0040 doi: 10.1007/s40899-017-0091-x – ident: cit0032 doi: 10.1006/jaer.1995.1070 – ident: cit0020 doi: 10.1016/j.iref.2017.07.013 – volume: 12 start-page: 107 year: 1993 ident: cit0008 publication-title: Eur J Fluid Mech/B – ident: cit0045 doi: 10.1016/j.geoderma.2020.114240 – ident: cit0001 doi: 10.1016/j.conbuildmat.2020.118475 – ident: cit0011 doi: 10.1016/j.still.2017.04.009 – ident: cit0014 doi: 10.1016/j.still.2018.12.007 – ident: cit0039 doi: 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2 – ident: cit0019 doi: 10.1016/j.saa.2017.01.029 – ident: cit0016 doi: 10.1111/j.1365-2389.2004.00620.x – ident: cit0038 doi: 10.2136/sssaj1984.03615995004800050001x – volume: 161 start-page: 50 issue: 1 year: 2011 ident: cit0003 publication-title: J Hydrol – ident: cit0017 doi: 10.1016/j.chemosphere.2017.04.015 – ident: cit0024 doi: 10.1063/1.1722370 – ident: cit0029 doi: 10.1201/9781315226774-18 – volume: 61 start-page: 1778 issue: 10 year: 2016 ident: cit0030 publication-title: Hydrolog Sci J – ident: cit0010 doi: 10.1146/annurev.fl.24.010192.002143 – ident: cit0012 doi: 10.1016/j.geoderma.2014.11.012 – ident: cit0041 doi: 10.1016/j.asr.2021.03.021 – ident: cit0018 doi: 10.1016/j.chemosphere.2020.127571 – volume: 164 issue: 1 year: 2019 ident: cit0044 publication-title: Water Res – ident: cit0004 doi: 10.1007/s11104-014-2079-8 – ident: cit0031 doi: 10.1016/j.jhydrol.2016.01.026 – volume: 51 start-page: 70 issue: 9 year: 1959 ident: cit0009 publication-title: Probl Tuberk – ident: cit0021 doi: 10.1016/j.biosystemseng.2006.08.007 – ident: cit0026 doi: 10.1175/2009JTECHA1338.1 – ident: cit0002 doi: 10.1016/j.geoderma.2020.114210 – ident: cit0013 doi: 10.1016/j.still.2019.104542 – ident: cit0005 doi: 10.1007/s42729-020-00239-5 – ident: cit0043 doi: 10.1007/s11368-011-0356-1 – ident: cit0037 doi: 10.1016/j.scitotenv.2018.01.104 – ident: cit0042 doi: 10.1016/j.catena.2017.07.014 |
SSID | ssj0004073 |
Score | 2.293367 |
Snippet | Seventy-two infiltration tests were conducted to model soil water infiltration variability using scaling in the first and third terraces of Yangling District,... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 632 |
SubjectTerms | agronomy Back propagation networks back propagation neural network Bulk density clay fraction Continuous wavelet transform equations Estimation Infiltration infiltration (hydrology) Kostiakov-lewis equation Mathematical analysis Moisture content Neural networks Organic matter sand fraction Scaling scaling factor Scaling factors silt fraction Soil infiltration Soil organic matter Soil properties Soil water support vector machine Support vector machines Terraces Two dimensional analysis Water content Water infiltration wavelet wavelet analysis Wavelet transforms |
Title | Scaling of Kostiakov-Lewis equation and estimation of scaling factors at field scale |
URI | https://www.tandfonline.com/doi/abs/10.1080/03650340.2021.2022124 https://www.proquest.com/docview/2784764814 https://www.proquest.com/docview/2811976520 |
Volume | 69 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKcoED4ikWFhQkblWqPBwnPW5Xu1pBKUi0UHGJ7NhelpYE2hQQJ_4D_5BfwkzsPKquWOASpXGcpJ7P47Fn5jMhTyOdgdKXvquZL1yKJJgilpGr0MCXMEIyifnOLybsdEafzaN5r_etE7W0KcUg-35hXsn_SBWugVwxS_YfJNs8FC7AOcgXjiBhOP6VjF9DA9uo5ecF9tVF8aWOXgjH6uv5uq8-Gy7vykmAjBofGxtxbWvXW-5wZGlSS1kVbEUIGXravkav-ugIg-oXauXiFrr9V3oJ1qXKBd9Uv0cFKLIFZqa1RqZRJ-_ew8kHQONZ6wupVlPfqvNR0V19CEIMvwra1YfpzkYgnWgkk5QVQRXDyDRQRsfSmLlhZHbhqJWw2a_Fgo12NCqzy59mcGaGnnNH79tASXgbvgym_QHO_QMYl2k70NXO_cnL9GQ2HqfT4_n0CrkawAQDNWToTdqMWs_EJtSfX-d-ISv7RS_Zsmq2OG93xvjKcJneJDfsjMM5NPC5RXoqv02uH56tLOuKukPeWCA5hXYaIP368bOCkFNDyAEIOS2E8GYLIcdCyOGlU0GoKlB3yezkeHp06toNN9wsjP3SjT2qsoDzUPs8FlrJYEiDmIMJLWQSwVQCursOMiF86UtoNE0Zl5HkMk5gGp-p8B7Zy4tc3ScOpdpPVCaHTCAjkRI8k9xLuMfheTCy7RNaN1iaWTZ63BRlmfo1aa1t5xTbObXtvE8GTbVPho7lsgrDrjTSsgKsNlhNw0vqHtSiS22vX6foqI8Z_CUoftIUg05GRxvPVbGBexJ0zrMo8B78-REPybW2Ux2QvXK1UY_AyC3F4wqPvwG13KDC |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VcoAeeKMWChgJjllix4mzBw4VUG3Z7V7YSr0ZO7ZR1WoD3SwV_Vn9K_whZhKnUBDqAfXANX7EY4_nYc98BniRhwqFvuNJKLhNJIFgWuXyxJOB71BDFo7ynXenxWhPvt_P91fgrM-FobBK8qFDBxTRymra3HQY3YfEvUKpm6eZTNG9E-TjCZS_MgZWjv23E3TbFq933uIavxRi-93szSiJLwskVaZ4k6hU-koYkwVulA3eiaEUyqCtYF2Zo82EdAVRWcsdd0pkQRbG5c44VaK_UvkM-70G1_NhoWhvZen0Zy5m2t1qU_QYjbHPGvrbsC_owwtoqX9oh1blbd-G7_1kdZEuh4NlYwfV6W84kv_XbN6BW9ECZ1vdlrkLK35-D9a2Ph1HFBJ_H2YfkHNRp7M6sHFNQvCw_ppM_MnBgvkvHTg6Q4IZQZR0uZ9UdRFbxTeMmGlYGyDYFvgHsHclZD2E1Xk99-vApAy89JUbFpbwebw1lTNpaVKD_aGc3wDZM4GuIjY7PRFypHkP4RoXSdMi6bhIGzA4b_a5Aye5rMHwVw7TTXsqFLonXHR2SdvNnh11lHMLTdfWqkCSsPj5eTFKKLp2MnNfL7FOSVfVRS7SR__w-2dwYzTbnejJznT8GG7i14xCAQXfhNXmeOmfoG3Y2KftZmTw8ar59QcMlGbn |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTxRBEK4gJkQPPkAjitImcpx1uqfnsQcPRNwAixsTIOHW9tMYzA6ysxL9V_4Vf5FVMz0oEsPBcPA6_Zjprup6TFd9BfAiDxaFvuNJKLhJJIFgmtLliScD36GGLBzlO7-dFNuHcvcoP1qA730uDIVVkg8dOqCIVlbT4T5xoY-Ie4lCN08zmaJ3J8jFEyh-ZYyrHPuvZ-i1zV7tbCGJN4QYvTl4vZ3EwgKJzUreJGUqvRVaZ4Hr0gTvxFCKUqOpYFyVo8mEywrCGsMdd6XIgiy0y512ZYXuivUZznsDbhaU2ElZI-nkVypm2l1qU_AYfWOfNPS3z76gDi-ApV5SDq3GG92FH_1edYEux4N5Ywb22x8wkv_VZt6DO9H-ZpvdgbkPC366DLc3P5xGDBK_Agf7yLeo0Vkd2LgmEXhcf0n2_NnHGfOfO2h0hutlBFDSZX5S11kcFSsYMd2wNjywbfAP4PBalvUQFqf11D8CJmXglbduWBhC5_FGW6fTSqca50Mpvwqy5wFlIzI7FQj5pHgP4BqJpIhIKhJpFQbnw046aJKrBgx_ZzDVtP-EQlfARWVXjF3ruVFFKTdTdGldFrgkbH5-3ozyiS6d9NTXc-xT0UV1kYv08T-8fh2W3m2N1N7OZPwEbuHDjOIABV-DxeZ07p-iYdiYZ-1RZPD-utn1JyJeZYs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scaling+of+Kostiakov%E2%80%93Lewis+equation+and+estimation+of+scaling+factors+at+field+scale&rft.jtitle=Archiv+f%C3%BCr+Acker-+und+Pflanzenbau+und+Bodenkunde&rft.au=Feng%2C+Zhengjiang&rft.au=Nie%2C+WeiBo&rft.date=2023-03-21&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0365-0340&rft.eissn=1476-3567&rft.volume=69&rft.issue=4&rft.spage=632&rft.epage=647&rft_id=info:doi/10.1080%2F03650340.2021.2022124&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0365-0340&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0365-0340&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0365-0340&client=summon |